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Echoes of a squeezed oscillator
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Parametric coupling is commonly used to prepare oscillators in a time-varying squeezed state in which the
variance of the coordinate or momentum may dip below that of the equilibrium thermal or quantum ground state
during a fraction of the period. We show here that pulses applied to drive parametrically an inhomogeneously
broadened set of harmonic oscillators result in a spontaneous recovery of coherence, manifesting itself as an echo,
similar to those exhibited by an ensemble of spins aligned by a magnetic field, when excited by properly designed
electromagnetic pulses. Such echoes, of classical or quantum nature, are expected to arise in the squeezing of
linear systems of various sorts and, in particular, light and vibrational modes. Unlike existing methods for the
generation of spin echoes, squeezed echoes do not require the use of resonant excitation.
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In quantum mechanics, squeezing is used to describe non-
stationary states for which the uncertainty of a particular
operator can become smaller than that for the vacuum [1].
Although the term was originally introduced in quantum elec-
trodynamics [2,3] and, more generally, to describe bosonic
systems such as lattice modes [4,5], magnons [6], and local-
ized vibrations [7–9], it has also been applied to spin states
[10,11] as well as classical oscillators [12–14]. The reduction
of noise below the thermal- or shot-noise limit is the main
motivation for numerous proposals and experimental realiza-
tions of squeezing [1,2,4,6,7,10,12–16] including the use of
squeezed light in the detection of gravitational waves [17].

Unrelated to squeezing, spin echoes refer to the refocus-
ing of the magnetization that results from the application
of electromagnetic pulses to a heterogeneous ensemble of
ordered spins [18,19], an effect that is central to magnetic
resonance imaging [20]. Closely related to spin echoes are
photon echoes, which involve the interaction of laser pulses
with few-level systems [21] and are widely used in quantum
optics and quantum information science [22].

Spin and photon echoes involve the application of resonant
pulses [23]. In this paper, we show that echoes can arise
in a bosonic system under off-resonance conditions, as the
impulsive parametric excitation of a dephased, heterogeneous
set of squeezed oscillators can lead to a spontaneous resur-
gence of coherence, similar to that exhibited by a collection
of few-level systems. We note that echoes caused by phase
resetting have been recently observed in oscillatory chemical
reactions [24].

*Present address: School of Theology and Ministry, Boston Col-
lege, Brighton, MA, 02135-3841.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Squeezed states can be produced using different methods,
which all exploit either a particular nonlinear property of
the system one wishes to squeeze or, more commonly, of its
interaction with an ancilla [4,7,10,16,25,26]. Here, we focus
on squeezing resulting from frequency control, for which the
relevant Hamiltonian is that of a frequency-driven parametric
oscillator,

H = P2/2 + [�2 − 2g(t )]Q2/2, (1)

where Q is the displacement from equilibrium, P is the canon-
ical momentum, and � is the frequency. We are interested in
the case where the frequency is modified by a sequence of
two pulses applied at t = 0 and t = �. Provided the duration
of the pulses is small compared with the period of oscillations,
we approximate

g = μ1δ(t ) + μ2δ(t − �); (2)

μ1 and μ2 are constants. We note that, other than squeezed
light [15], electromagnetic pulses have been used to gener-
ate (quantum and classical) squeezed states involving various
condensed-matter excitations [4–6,27–29], in molecularlike
systems [7,8] and in macroscopic mechanical oscillators [16].
In most of these cases, the relevant effective Hamiltonian is
of the form given by Eq. (1). In the following, we discuss
separately the effect of the two-pulse sequence on the dynam-
ics of Q and Q2. Note that, because the harmonic potential
is quadratic in Q, the classical variables obey the same dy-
namical equations of motion as the corresponding quantum
expectation values 〈�|Q|�〉 and 〈�|Q2|�〉 (� is the wave
function satisfying H� = ih̄∂�/∂t).

We discuss first Q echoes by concentrating on the clas-
sical problem. Let Q = Q0 and Q̇ = P0 be the position and
momentum of a single oscillator just before the first pulse
is applied. The pulses do not change the displacement, but
introduce a sudden change in the momentum. For 0 < t < �,

2643-1564/2021/3(1)/013012(4) 013012-1 Published by the American Physical Society

https://orcid.org/0000-0002-5584-0248
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013012&domain=pdf&date_stamp=2021-01-07
https://doi.org/10.1103/PhysRevResearch.3.013012
https://creativecommons.org/licenses/by/4.0/


R. MERLIN AND A. BIANCHINI PHYSICAL REVIEW RESEARCH 3, 013012 (2021)

FIG. 1. Classical oscillators. Time dependence of
______
Q(t ) for a

Lorentzian distribution of frequencies, with �0 = 7.5 and γ =
0.5. The parametric force acting on the (undamped) oscillators is
−2g(t )Q, with g = μ1δ(t ) + μ2δ(t−�) (� = 10, μ1 = 5, and μ2 =
2.5), and the common initial conditions are Q0 = 25 and P0 = 10.
The echo is at t ≈ 2�. Inset: Results for the two-pulse force F =
�1δ(t ) + �2δ(t−�) with �1 = 1, �2 = −100, and � = 10. Pa-
rameters are Q0 = 25, P0 = 1, �0 = 10.0, and γ = 0.5.

Q(t ) = U (t ) where

U (t ) = Q0 cos �t + (P0 + 2μ1Q0)

�
sin �t (3)

and, for t > �,

Q(t ) = U (t ) + 2μ2U (�)

�
sin �(t − �). (4)

Consider now the behavior of Q̄, where the bar denotes the
mean over a particular inhomogeneous ensemble. Results for
a set of N0 oscillators with Lorentzian-distributed frequencies
are shown in Fig. 1 (their number per unit of frequency is
given by dN/dω = γ N0/π

(�−�0 )2+γ 2/4 ). The oscillators are assumed
to have all the same displacement and momentum at t = 0
(quantum mechanically, such a situation corresponds to oscil-
lators prepared in a coherent state before the arrival of the first
pulse). Following the initial excitation pulse, which adds the
same amount to the momentum of all the oscillators, Q̄ decays
with time as different oscillators move at different periods.
Mirroring the spin-echo problem [18], the second pulse, at
t = �, partially removes the inhomogeneous dephasing, and
the evolution rephases coherently to produce the Q̄ echo at
time 2�.

The results in Fig. 1 can be explained simply by rewriting
the second term of Eq. (4) as the sum of two terms of the
form sin(�t + α) and (the echo signal) sin[�(t − 2�) + α′],
where the phases depend on the frequency. As one inte-
grates over all frequencies, dephasing leads, respectively, to
the observed decaying oscillations with maxima at t = 0
and t = 2�. Moreover, the absence of a term of the form
sin[�(t−� + α′′)] explains the fact that the second pulse has
no effect on Q̄ at t ≈ �.

The (parametric) force acting on the oscillators is F =
2Q[μ1δ(t ) + μ2δ(t−�)]. To highlight the central role played
by the frequency nonlinearity, and for the purpose of com-
parison, we show in the inset results for F = �1δ(t ) +

t

Δ

2Δ

FIG. 2. Snapshots of an ensemble of 104 oscillators with a
Lorentzian distribution of frequencies. The pulses leading to the echo
at t = 2� strike at t = 0 and t = �. Conditions and parameters are
the same as in the main part of Fig. 1.

�2δ(t−�), that is, for a (linear) interaction term of the form
−QF (t ). Unlike the parametric case, the second pulse leads
to larger amplitude oscillations at t ≈ � and there is no echo
in the response.

The ensemble snapshots shown in Fig. 2 help us to under-
stand the rephasing property of the echo phenomenon. After
the response to the first pulse dies out, the second pulse, at
t = �, instantly transforms an ensemble that is (roughly) uni-
formly distributed in the circumference P2 + �2

0Q2 = P2
0 +

�2
0Q2

0 into one that is distributed in an ellipse whose axes are
rotated with respect to the �0Q−P axes. This ellipse rotates
and dephases, before echoing at t = 2� when it becomes
again a circle, but with a displaced origin.

For a thermal distribution of identical oscillators, Q̄T ≡ 0.
A simple calculation using Eqs. (3) and (4), together with
___

P2
T = �2

___

Q2
T = kBT , gives the thermal variance for t < �,

___

Q2
T = kBT

�2

[(
1 + 2μ2

1/�
2
) + 2μ1

�
sin 2�t − 2μ2

1

�2
cos 2�t

]
,

(5)

and the echo signal at t ≈ 2 �,
___

Q2
T = 2μ1μ

2
2

�5
kBT

[
sin 2�(t − 2�) + μ1

�
cos 2�(t − 2�)

]
.

(6)
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Here, kB is Boltzmann’s constant and T is the temperature.
According to Eq. (5), the duty cycle for classical squeezing,

that is, the fraction of the period for which
___

Q2
T < kBT/�2, is

largest for μ1 � � and goes to zero when μ1 → ∞. Because
of the classical-quantum correspondence, this also applies to
the squeezed vacuum state if one replaces kBT with h̄�/2.

Concerning the dynamics of Q2, we are particu-
larly interested in quantum states that have no classical
counterpart such as the squeezed vacuum [2]. Defining
�(t ) = 〈�|Q2|�〉, we get �̇ = −ih̄ + 2〈�|QP|�〉, �̈ =
2〈�|P2|�〉 − 2[�2 − 2g(t )]� and, finally,

˙̇�̇ + 4�̇[�2 − 2g(t )] − 4ġ(t )� = 0. (7)

Free of forces, � oscillates with frequency 2�. Impulsive
excitation leads to discontinuities in �̇ and �̈, but not in �.
If � = ζ , �̇ = ζ̇ , and �̈ = ζ̈ just before one of the pulses is
applied, immediately after the pulse we have � = ζ , �̇ = ζ̇ +
4μζ , and �̈ = ζ̈ + 4μζ̇ + 8μ2ζ . Assume that the oscillator is
in its ground state, �0, for t < 0. Then, for 0 < t < �, �(t ) =
�(t ) where

�(t )/�0 =
(

1 + 2μ2
1

�2

)
+ 2μ1

�
sin 2�t − 2μ2

1

�2
cos 2�t ;

(8)
�0 = 〈�0|Q2|�0〉 = h̄/2� is the variance of the zero-point
motion. It is worthwhile to point out that, after the pulse,
the oscillator finds itself instantly in the squeezed state
e−iμQ2/h̄�0. Also, note that 〈�|Q|�〉 = 0 at all times, so that
� is always equal to the variance.

For t > �, we get

�(t ) = �(t ) +
(

μ2�̇(�) + 2μ2
2�(�)

�2

)

+ 2μ2�(�)

�
sin 2�(t − �)

−
(

μ2�̇(�) + 2μ2
2�(�)

�2

)
cos 2�(t − �). (9)

Given that �(�) is of the form A sin(2�� + ϕ) + B, �(t )
will exhibit additional oscillations from t = � due to the
second pulse and, in addition, an echo at t ≈ 2�. Explicitly,
the echo signal is

�ECHO(t ) = 2μ1μ
2
2

�3
�0

[
sin 2�(t − 2�)

+ μ1

�
cos 2�(t − 2�)

]
. (10)

Other than for the constant factors, Eq. (8) and the above
expression are identical to the corresponding thermal expres-
sions, Eqs. (5) and (6) (thus, as anticipated, the previous
comment about the duty cycle applies to the quantum case).
Again, this is a manifestation of the fact that classical os-
cillators also obey Eq. (7) (as does 〈�|Q|�〉2, even though
〈�|Q2|�〉 
= 〈�|Q|�〉2). Reflecting the equivalence between
classical and quantum probability densities [30], we observe

that Eqs. (8) and (9) can be obtained if one takes
___

P2
0 = �2

___

Q2
0

and
______
P0Q0 = 0 after squaring Eqs. (3) and (4).

FIG. 3. Time dependence of the mean variance
______
�(t ) for a set

of quantum oscillators with Lorentzian distributed frequencies; see
Eqs. (8) and (9). The parameters of the distribution are �0 = 7.5 and
γ = 0.5. The oscillators are initially in the ground state and are acted
upon by the two-pulse force −2 g(t)Q with g = μ1δ(t ) + μ2δ(t−�)

(� = 10, μ1 = 5 and μ2 = 2.5). Inset: The variance
___

Q2 −(Q̄)2

vs time for classical oscillators with a Lorentzian distribution of
frequencies. The shared initial state is Q0 = 25 and P0 = 100. Pa-
rameters are the same as in the main figure except for μ1 = 2 and
μ2 = 5.

The results in Fig. 3 are for a set with a Lorentzian distribu-
tion of frequencies; each oscillator is initially in its quantum
ground state. The data show the decaying oscillations in the
averaged variance

______
�(t ) induced by the two pulses and, as

anticipated, rephasing leading to the coherent echo at t =
2�. The plot in the inset is for classical oscillators, all of
which have Q = Q0 and P = P0 just before the first pulse
(as mentioned earlier, the corresponding quantum state is a
coherent state with 〈�|Q|�〉 = Q0 and 〈�|P|�〉 = P0). The

echo here manifests itself as a dip in the variance
___

Q2 −(Q̄)2.
The overall behavior of Q̄ is identical to that in Fig. 1. A

simple analysis using Eqs. (3) and (4) indicates that
___

Q2 (or
the averaged 〈�|Q|�〉2) exhibits three sets of 2� oscilla-
tions starting at t = 0 and t = �, and peaking at t = 2�,
which originate, respectively, from the terms sin2(�t + α),
sin(�t + α) sin[�(t − 2�) + α′], and sin2[�(t − 2�) + α′].
The tail end of the oscillations induced by the second pulse
can be seen in the inset of Fig. 3, just before the echo. Note
that the evolution of the classical ensemble after the first pulse
mimics that of a coherent-squeezed quantum state [31,32].

In summary, we have shown that an inhomogeneous set
of parametrically driven harmonic oscillators, when impul-
sively excited, behave in a manner that is very similar to that
of aligned spins or few-level systems under resonant pulsed
electromagnetic excitation. As for the latter, the occurrence
of squeezed echoes holds promise for the development of
techniques to distinguish homogeneous from inhomogeneous
broadening in the decay of molecular vibrations, phonons,
magnons, and other bosons, as well as imaging methods sim-
ilar to those that rely on magnetic resonance.
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