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Cooperators overcome migration dilemma through synchronization
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Synchronization, cooperation, and chaos are ubiquitous phenomena in nature. In a population composed of
many distinct groups of individuals playing the prisoner’s dilemma game, there exists a migration dilemma:
No cooperator would migrate to a group playing the prisoner’s dilemma game lest it should be exploited by a
defector; but unless the migration takes place, there is no chance of the entire population’s cooperator fraction to
increase. Employing a randomly rewired coupled map lattice of chaotic replicator maps, modeling replication-
selection evolutionary game dynamics, we demonstrate that the cooperators—evolving in synchrony—overcome
the migration dilemma to proliferate across the population when altruism is mildly incentivized making few of
the demes play the leader game.
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I. INTRODUCTION

Cooperation has strong ethical, moral, philosophical, and
even theological implications for the human [1]. Its spa-
tiotemporal evolution in a structural arrangement of a finite
number of agents playing strategic games [2] is an insight-
ful phenomenon that exemplifies similar real-life phenomena
in social [3], economic [4,5], physical [6], and biological
[7] systems. There are many different mechanisms [8,9] of
imparting cooperation. In the network of agents, migration
[10–19] could be one such mechanism: Although success-
driven migration [10,13], aspiration-driven migration [12],
expectation-driven migration [16], risk-driven migration [17],
opportunistic migration [18], and migration following a satis-
fying dynamic [14] lead to cooperation; random or diffusive
migration of the agents is expected to suppress cooperation by
facilitating invasion by defectors [20,21].

Consider the following scenario: A population is divided
into a finite number of groups or demes wherein a very large
number of individuals—cooperator and defectors—are inter-
acting with each other to play the prisoner’s dilemma (PD)
game [22]. Furthermore, let there be migration of individuals
from one deme to the other. Effectively, what we have is a
network of demes. One expects that any structured network of
such demes where the network structure represents the migra-
tion from one deme to the other, should have the population
state with only the defectors as an evolutionarily stable state
which is resilient against invasion by the cooperators. Now
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suppose that all the demes with the PD have only defectors
left over time. With a view to establishing cooperation [23],
in some of the randomly selected demes one encourages al-
truism by rewarding additional payoff to the cooperators who
play against the defectors such that the PD transforms into
the leader game (LG) [24] in the selected demes. The LG
can be thought of as the modification of the PD such that
an altruistic behavior is rewarded, i.e., a cooperator playing
against a defector is given some additional payoff so that the
resultant payoff is greater than the payoff for mutual coop-
eration. Note that a similar idea [25] of punishing players
who defect against the cooperators transforms the PD to the
stag-hunt game. With random migration in action, can the LG
induce sustained cooperation in the PD at the other demes?

An interesting dilemma arises: In the population with some
demes having both the cooperators and the defectors playing
the LG and some having exclusively defectors playing the
PD, the cooperators would not want to migrate to the demes
playing the PD lest they should be exploited. However, if they
stay at the demes where the agents play the LG, the fraction of
the cooperators cannot increase throughout the population and
they would be surrounded by a lot of defectors present in the
other demes. This means that the cooperators would always
be at the risk of being exploited by a free rider. To refer to
this situation, we introduce the phrase, migration dilemma,
which is fundamentally different from other known social
dilemmas, such as the tragedy of commons (TOC) [26] and
agglomeration dilemma [14]. In view of this dilemma, it is
not obvious a priori whether the random migration helps in
increasing the cooperator fraction of the entire population.

The stylized game of the PD presents probably the sim-
plest possible abstraction and visualization of the problem
of emergence of cooperation: The players of the PD de-
fect to play the non-Pareto-optimal Nash equilibrium [27,28]
even though mutual cooperation would have fetched more
payoff. Thanks to the folk theorem [29,30] of the evo-
lutionary game theory, through similar games one can
also see how the game theoretic equilibria (e.g., Nash
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equilibrium) and the equilibria (e.g., fixed point) of cor-
responding dynamical systems—especially the paradigmatic
replicator equation [29,31–35]—are related. The real world,
however, is enormously more complex: The evolutionary dy-
namics have other outcomes, such as chaos [36–39] that
appears in the continuous replicator equation with more than
two strategies. Interestingly, chaotically changing payoffs [40]
may enhance cooperation; and in a turbulent aqueous envi-
ronment, chaotic flows induce migration that may facilitate
evolution of colonies via cooperation [41].

II. THE MODEL

In order to allow for rich dynamical complexities in our
paper and with a view to establishing the intriguing interplay
between the random migration and the chaos, we consider a
spatiotemporal model where in each deme a discrete replicator
dynamic (replicator map) is in action and the migration-
induced coupling between the demes presents us with a
coupled map lattice (CML) of the replicator maps. The CMLs
have been extensively studied [42,43] in the context of bio-
logical and computational networks, fluid dynamics, ecology,
chemical reactions, etc. It, however, is the most known for the
study of spatiotemporal chaos in spatially extended systems.
It is also natural that depending on the coupling strength
between the lattice sites of a CML, synchronized dynamics
[43,44] may appear so that all the lattice sites evolve in unison.

Thus, in the context of the migration dilemma, we con-
struct a CML—as schematically presented in Fig. 1—where
every lattice site is a deme in which the dynamics of the
fraction of the cooperators is governed by the replicator map
corresponding to either the PD or the LG. The replicator
map corresponding to the LG has chaotic dynamics implying
coexistence of the defectors and the cooperators. In the pres-
ence of the random migration, fashioned by temporal rewiring
[45] of the edges of the CML, we wonder if the LG induce
cooperation in the PD at other demes.

The one-dimensional replicator map [29,39,46–52],

xn+1 = f (xn) := xn + xn[(Axn)1 − (xn)T Axn], (1)

such that 0 � xn � 1 for all n, for the two-player–two-strategy
games is the simplest and most convenient test bed of our
idea because it models the Darwinian selection, its fixed
points correspond to Nash equilibria and evolutionarily sta-
ble states through the folk and related theorems, and it is
endowed with chaotic attractors. Here, subscript “1” denotes
the first component of vector Axn, n denotes the time step,
where A = [1 S

T 0] is the payoff matrix for a player in the
two-player–two-strategy symmetric game. S and T are real
numbers. x = (x, 1 − x) is the state of the population such that
x is the fraction of the cooperators and 1 − x is the fraction of
the defectors.

We consider a CML that is a one-dimensional linear
network with N nodes/lattice sites and periodic boundary
condition such that each lattice site or deme is connected to
its two nearest neighbors. In order to implement the random
migration in the system under investigation, we modify the
couplings in the CML. At every time step, any node can either
allow migration from its two nearest neighbors or from two
other demes picked uniformly randomly. The probability of

FIG. 1. Schematic of CML with dynamic random rewiring. We
see in the top row (a) the base CML with eight demes each having
cooperators (green individuals) and/or defectors (red individuals).
We exhibit only six representative individuals in each deme for illus-
trative purpose. Every deme has a game—say, the PD (square with
lock) or the LG (orange flag)—played by the individuals in it. The
arrowheads point towards the destinations of respective migration.
In the bottom row (b), as dynamic random rewiring is employed,
some of the directed edges (shown by blue arrows) of the base
CML are randomly broken (as shown by red arrows with scissors)
and new incoming edges (shown by green arrows) are created. The
dynamic random rewiring is employed at each step of the time
evolution—initial, intermediate, or final—helping in establishing
enhanced cooperation throughout the CML with time, even after
starting with a very small fraction of the cooperators at only one
deme.

remaining coupled to the nearest neighbors is 1 − p, where
p is called the dynamic rewiring probability; dynamic em-
phasizes that the rewiring is happening at every time step.
Mathematically, the mean-field equation for the CML with the
random coupling is given by

xi
n+1 = [

(1 + S)xi
n + (1 − 2S − T )xi

n
2 + (S + T − 1)xi

n
3]

× (1 − ε) + (1 − p)ε

2

(
xi−1

n + xi+1
n

) + pε

2

(
xξ

n + xη
n

)
,

(2)

where, the superscript i denotes the ith lattice site and ε is
the coupling strength measuring the rate of migration to the
ith node from the respective nodes. The coupling strength
ε is equivalent to a diffusion coefficient (see Appendix A).
Furthermore, ξ and η are the indices of the two randomly
chosen demes and are not equal to i − 1, i, or i + 1. We must
restrict ε between 0 to 1 so that xi

n does not become either
negative or greater than one and work with only those values
[50] of S and T for which 0 � xi

n � 1 for all values of i and n.
In our model with the same A at all the nodes—all the

demes having same game (say, the LG; see later)—there is
a possibility that the dynamics at all the demes may be com-
pletely synchronized to an interior fixed point, i.e., xi = x j =
x∗ for all i and j. One could do a linear stability analysis
[53,54] to find whether this synchronized state is at all stable
and, hence, attainable. As is shown in the next paragraph, such
a stable state, in fact, exists when ε � εcrit := [(|df /dx| −
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1)/(|df /dx| − 1 + p)]x∗ . A convenient way of quantifying the
extent to which the system is synchronized is to define, a
global order parameter [55], rG := | ∑N

i=1 exp(2π
√−1xi )|/N ,

that should be unity asymptotically once the system attains
complete synchrony. It is easy to note that for large N and
uniformly distributed xi in the interval [0,1], rG = 0. Hence,
any partially synchronized state has a nonzero value of rG that
is less than unity.

To find the critical coupling strength in the presence of
dynamic random rewiring, we perform the linear stability
analysis about a homogeneous fixed point by putting xi

n =
x∗ + δi

n in Eq. (2). Expanding the resulting expression up to
first order to arrive at

δi
n+1 = (1 − ε)[(1 + S) + 2(1 − 2S − T )x∗

+ 3(S + T − 1)x∗2]δi
n + (1 − p)ε

2

(
δi+1

n + δi−1
n

)

+ pε

2

(
δξ

n + δη
n

)
. (3)

As an approximation, we consider the term consisting of ran-
dom neighbors to be zero on average. This approximation is
valid for the interior fixed points as the perturbations about
them are equally likely to be either side of the fixed point and,
hence, average out to zero. (Although not necessary, smaller
values of p would further strengthen the approximation.)
Consequently, being interested in the average synchroniza-
tion level in an ensemble of different realizations of the
CML, we henceforth drop the last term—pε(δξ

n + δη
n )/2—

of Eq. (3) from our calculations. Subsequently, writing the
small perturbations as a sum of its Fourier components δi

n =∑
q δ̃

q
n exp(

√−1qi), we arrive at the following expression:

δ̃
q
n+1

δ̃
q
n

= (1 − ε)[(1 + S) + 2(1 − 2S − T )x∗

+ 3(S + T − 1)x∗2] + ε(1 − p) cos q. (4)

It is obvious that for the perturbations to die down, or in
other words, for the fixed point to be stable, the modulus of
the right-hand side of Eq. (4) has to be less than 1. Keeping
in mind that 0 � ε, p � 1, it means that if |(1 + S) + 2(1 −
2S − T )x∗ + 3(S + T − 1)x∗2| � 1, then for every ε between
0 to 1, the fixed point is stable; but if |(1 + S) + 2(1 − 2S −
T )x∗ + 3(S + T − 1)x∗2| > 1, then to ensure that the pertur-
bations die down, we require

(1 − ε)|(1 + S) + 2(1 − 2S − T )x∗ + 3(S + T − 1)x∗2|
+ ε(1 − p) < 1. (5)

A little rearrangement yields the critical coupling strength
(ε = εcrit), beyond which the fixed point must be stable, as

εcrit =
∣∣ df

dx (x∗)
∣∣ − 1

∣∣ df
dx (x∗)

∣∣ − 1 + p
, (6)

where df
dx (x∗) = (1 + S) + 2(1 − 2S − T )x∗ + 3(S + T −

1)x∗2.

III. MAIN RESULTS

First consider that the demes of the CML are all of same
type, i.e., same game is played at all the demes. For the
purpose of this paper, the LG is of particular interest to us.
Its payoff matrix is characterized by the inequality—T > S >

1 > 0 (compare with the PD where T > 1 > 0 > S). In par-
ticular, we choose T = 8 and S = 7 as these values lead to the
chaotic solutions [50] for the replicator map, given by Eq. (1),
corresponding to the LG. Also, all the homogeneous fixed
points, viz., xi = x∗ = 0, xi = x∗ = 0.5, and xi = x∗ = 1 (for
all i) are unstable under replicator map dynamics when dy-
namic rewiring is not employed. As the strength of migration
increases such that ε is more than εcrit (which is 0.75 for
p = 0.5), the chaotic maps synchronize and all the demes have
50% cooperators in them [see Fig. 2(a)].

In contrast with the above scenario, when the PD is being
exclusively played at all the demes, we note that it has two
only homogeneous fixed points, viz., xi = x∗ = 0 and xi =
x∗ = 1 for all i. The former one is stable and the latter one
is unstable when the dynamic rewiring is not in action. Fol-
lowing a closer inspection of Eq. (2), one may intuit dynamic
rewiring modeling random migration to have two effects:
reduced coupling strength (ε − pε) with nearest neighbors
and multiplicative noise of order pε. Therefore, almost any
initial condition of the CML is attracted towards the all-defect
state and as the corresponding phase trajectory approaches
xi = 0 (for all i), the noise becomes progressively weaker.
Thus, the synchronized state of the CML is the state where
none of the demes have even a single cooperator. If, however,
in some demes the PDs transform to the LGs, we have the
interesting situation where the CML has now mixed types of
demes. With random migration in play, can demes with the
LG induce cooperation in demes with the PD and, hence, help
in overcoming the migration dilemma?

In the CML with the two types of demes (i.e., A, and,
hence, S and T depend on i [56,57]), let the fraction of the
demes with the LG be denoted by φ. It is quite evident that
for any φ such that 0 < φ < 1, there should be competition
between the demes playing the LG and the ones playing
the PD in order to sustain cooperation. However, since the
dynamics is chaotic, there always must be some cooperator at
all times at all the demes even if to begin with the cooperators
were present only in the demes with the LG. The dynamics
would go towards a chaotic attractor that is being constantly
perturbed due to the small effective noise generated by the
dynamic random coupling. With the increase in the migration
rate or the coupling strength, it may be noted that the coopera-
tor fraction increases in the demes playing the PD, and beyond
the threshold εcrit , it increases synchronously so much so that
all the nodes of the CML have almost 50% of cooperators.
This is shown in Fig. 2; especially, Fig. 2(e) where one sees
that the probability density functions of cooperator fractions
for two arbitrary demes—one playing the PD and the other
the LG—almost merge as the coupling strength increases.
What is remarkable is the fact that even with low values of
φ [say, φ = 0.1; see Fig. 2(d)] and with no initial cooperators
in the demes playing the PD, random migration leads to strong
emergence of cooperation in all the demes. Without any loss
of generality, for the sake of concreteness, we have chosen
S = −0.1 and T = 1.1 for the PD.
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FIG. 2. Bifurcation diagrams: The demes with the LG induce
cooperation in the demes with the PD. We note in subplot (a) that
if all the demes are playing the LG after a critical value of coupling
strength ε = εcrit (vertical dashed line) all the 100 chaotic trajectories
(orange dots) synchronize onto the fixed point x∗ = 0.5 of the CML.
As we introduce the PD in some of the demes with no (or some)
cooperators, then the corresponding trajectories (blue dots) are pulled
onto the synchronized state x∗ ≈ 0.5 for all demes beyond εcrit as
exhibited in subplots (b)-(d) for the LG game fraction, φ = 0.7, 0.3,
and 0.1, respectively. In subplot (e), having φ = 0.2, we note how the
normalized the probability density function [P(x)] of the cooperator-
fraction (x) for two randomly selected demes—one with the LG
(solid lines) and the other the PD (dashed lines)—peak together near
x = 0.5 as ε increases.

In short, beyond the critical migration strength, once the
dynamics of demes are all almost synchronized and the aver-
age cooperation is about 50%, the cooperation is sustained at
all times. The final value of 〈x̄〉 ≈ 0.5 is an enormous increase
when compared with the initial value of 〈x̄〉 ∼ 10−5 used in
some of the runs of our simulations (see Appendix B). Here
the angular brackets denoting average over many realizations
of random migration and the overbar denoting the average
over demes. Thus, synchronization overcomes the migration
dilemma.

Since the level of cooperation can at most be 50%, the final
synchronized state achieved in the system—apart from render-
ing much needed emergence of the cooperators—establishes
the coexistence of strategies and, hence, promotes biodiver-
sity. In such states of the population modeled by the CML

FIG. 3. Numerically validated analytical estimation of coopera-
tion in the CML. The cooperation level—characterized by 〈x̄〉, the
average cooperator fraction at each deme averaged over realization—
in the statistically steady state of the CML is plotted against the
leader game fraction φ. The black solid line is the analytical esti-
mation given by Eq. (7), whereas the markers denote the numerically
calculated values; the cyan triangles, the magenta squares, and the
green circles, respectively, indicate the dynamic rewiring probabili-
ties p = 0.5, 0.75, and 0.9.

with the mixed types of demes, we can estimate the average
cooperator fraction. Since we are interested in a statistically
steady homogenous state, suppose that the average state of
each deme is by 〈x̄〉. Furthermore, let fLG and fPD denote the
replicator maps, respectively, corresponding to the LG and the
PD. Therefore, we expect that the effective replicator map for
any deme should be a weighted average of these maps, and,
hence, we expect

〈x̄〉 = φ fLG(〈x̄〉) + (1 − φ) fPD(〈x̄〉). (7)

On solving this equation, we get a nontrivial solution for 〈x̄〉
that is plotted in Fig. 3 as a function of the fraction φ of
demes playing the LG. We note that it remarkably matches
with the numerical simulations’ results performed at three
different dynamic rewiring probabilities—0.5, 0.75, and 0.9.
For the numerical simulations, we chose ε = 0.9 so that for
all the three aforementioned values of p, synchronization is
effected. It is interesting to note that the results are statistically
independent of the exact value of p.

IV. SYNCHRONIZATION SUPPRESSES MIGRATION
DILEMMA: A ROBUST MECHANISM

The way cooperators overcome migration dilemma
through synchronization is actually a very robust phe-
nomenon. With a view to justifying this claim, we show in
this section that how the phenomenon is independent of the
other payoff matrices (that lead to chaotic dynamics) and how
the phenomenon shows up even if we use an evolutionary
dynamic other than the replicator map.

A. Other payoff matrices

Two-player–two-strategy symmetric games can be classi-
fied into 12 distinct games [58] in terms of ordinality as shown
in Fig. 4. We are mainly interested in the anticoordination
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FIG. 4. Two-player–two-strategy symmetric games catagorized
into 12 games in S-T space. The gray shaded part of the picture
denotes the anticoordination games. Here PD; SD: snowdrift; LG;
BS: battle of sexes; SH: stag hunt; H1: harmony I; H2: harmony
II; D2: deadlock 2; C1: coordination I; C2: coordination II; D1:
deadlock I. The interior of the blue dashed curve denotes the allowed
range of parameters that lead to physical solutions for the replicator
map [50].

games (that consist of the leader game, the snowdrift/chicken
game, and the battle of sexes) as they are capable of giving
rise to chaotic dynamics [39,50] when used in the replicator
map. We recall that we have used the payoff matrix in the
form A = [1 S

T 0]. We used S = −0.1 and T = 1.1 for the PD
game. We rewarded the altruistic behavior in a fraction of the
lattice sites such that they are effectively involved in a leader
game. To check the robustness of our model against the nature
of the game, we have simulated our model with the two other

anticoordination games—the chicken game and the battle of
sexes.

We have used T = 8 and S = 7 for the leader game for
which the Lyapunov exponent λ = 1

n

∑n−1
i=0 ln| f ′(x)| is ap-

proximately 0.49 when used in replicator map. The positive
Lyapunov exponent indicates chaos. For the battle of sexes
game, we have used T = 6.45 and S = 6.60; the correspond-
ing λ ≈ 0.33. In order to get chaos in the chicken game, we
have taken a linear transformation of the payoff matrix—
A → γ A, such that it remains a chicken game but gives rises
to chaos. We have used T = 1.27, S = 0.27, and γ = 25 for
the chicken game [50] which then shows chaos as verified by
a positive value of the Lyapunov exponent (λ ≈ 0.35).

Now we have chaos for all these three games. In Fig. 5,
we can see how the order parameter 〈rG〉 and the average
cooperation 〈x̄〉 vary with the fraction φ corresponding to
the anticoordination game and the coupling strength ε. In
Figs. 5(a)–5(c), it is shown how the system gets synchro-
nized as the coupling strength is increased. The lower panel,
Figs. 5(d)–5(f), the average cooperation is shown for three
different games. We have calculated the critical coupling
strengths for the synchronization calculated in the case of the
CMLs with exclusively the anticoordination games under in-
vestigation. The critical coupling strengths are 0.73, 0.67, and
0.75 for the chicken game, the battle of sexes, and the leader
game, respectively. The interior fixed point corresponding to
these there games are 0.50, 0.55, and 0.50, respectively. So
one can see that beyond the critical coupling strength, the
average cooperation levels are fixed at the interior fixed point
of the chaotic game when the fraction φ is not very low.

B. Another evolutionary dynamics

The mechanism of synchronization overcoming migration
dilemma is not restricted to the replicator dynamics. It is far

FIG. 5. In the upper panel (a)–(c), the order parameter rG is shown as a function of the coupling strength ε, and the game fraction φ for the
chicken game, the battle of sexes, and the leader game, respectively. We have shown the corresponding average cooperation over all the demes
in the lower panel (d)–(f). Black dashed lines indicate the critical coupling strength when φ = 1. p = 0.5 in these simulations.
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FIG. 6. Discrete time i-logit map’s dependence on the myopic
rationality parameter β. S = 1.27 and T = 1.4 so that it corresponds
to a leader game. At low β, resemblance with a version of replicator
map xn+1 = xn(πC + k)/[xnπC + (1 − xn)πD + k] (where k is some
background fitness in the absence of any competition); and at higher
β, the resemblance with the best response dynamics xn+1 = H(πC −
πD ) (where H is the Heaviside step function) is quite obvious.

more general. To establish this claim it suits us to present our
studies with the imitative-logit (or i-logit) map [59,60]. For
two strategy games, the discrete-time i-logit dynamic is given
by the one-dimensional map,

xn+1 = g(xn) := xn

xn + (1 − xn)eβ(πD−πC )
, (8)

where β, πC, πD, and n are the rationality factor, expected
payoff for player using first strategy (cooperating), expected
payoff for the player using second strategy (defecting),
and time step, respectively. The expected payoffs for two
strategies πC and πD are given by xn + (1 − xn)S and T xn,
respectively, at the time-step n.

Our main reason for choosing this model is the fact that
the i-logit map has a parameter, the myopic rationality factor
β that when varied can mimic various dynamics ranging from
a version of the replicator map (β → 0) to the best-response
dynamics (β → ∞). This rationality factor models the ability
of a player to choose strategy in such a way that maximizes
her payoff. Higher β implies a lesser chance of mistake in
choosing the wrong strategy. Thus, it is not surprising that
high β corresponds to the best-response dynamics (myopi-
cally rational), whereas for low β i-logit somewhat follows
the replicator dynamics (low rationality) as shown in Fig. 6.

Now we use this dynamics at the each site of the CML. We
have mean-field equation for the ith site is given by

xn+1 = (1 − ε)g
(
xi

n

) + ε(1 − p)

2

(
xi+1

n + xi−1
n

)

+ εp

2

(
xξ

n + xη
n

)
, (9)

where p and ε are the rewiring probability and the coupling
strength, respectively. ξ and η are the randomly chosen node
index except i − 1, i, and i + 1. Using this i-logit model we

get similar outcome as the replicator dynamics. We use the
same parameters for the prisoner’s dilemma as used in the
replicator map. We find a set of parameters for the leader
game which put the dynamics of the i-logit map in the chaotic
regime: Consequently, we set T = 1.4, S = 1.27, and β = 13
so that it shows chaos in the absence of any coupling; the
Lyapunov exponent is found to be 0.37 (approximately).

We find the order parameter and the average cooperation
with the varying coupling strength ε and the fraction of the
leader game φ and exhibit them in Figs. 7(a) and 7(b), re-
spectively. Here again we can see that beyond a critical value
of coupling strength we have synchronization in cooperator
fractions at every deme. (The critical coupling strength for
φ = 1 which is εcrit ≈ 0.797.) As φ increases towards unity
the synchronized value is tending to the interior fixed point of
the leader game which is ≈0.76 in this case.

V. MIGRATION DILEMMA AND ITS SUPPRESSION
BY SYNCHRONIZATION: A CLOSER LOOK

The system we have studied in this paper may remind one
of the interdemic models specified by a migration pattern (is-
land model [61], stepping stone model [62], or a mixture of the
two), and a competition model (differential proliferation [63],
differential extinction [64], etc.) in the set of demes. However,
in the conventional studies, a deme has a finite number of
individuals and, hence, genetic drift [65] plays an important
role. By choosing to work with the deterministic dynamical
equation, we are effectively working with the set of demes
each having practically infinite number of individuals; hence,
the genetic drift is out of the consideration. Thus, we are able
to exclusively focus on the intriguing interplay between the
chaotic dynamics at the demes and the migration between the
demes.

Moreover, although the cooperators and the defectors can
have different rates of migration [11], we have kept the rates
the same in this paper. This simplifying assumption not only
reduces the number of parameters in the problem, but also
has the advantage that it neutralizes the effect of a possi-
ble mechanism of bringing forth cooperation in which the
cooperators outrun the defectors [66]. Moreover, we have
implemented symmetric migration, i.e., same migration rates
between different allowed pairs of demes; the asymmetric mi-
gration is mostly known to alter the stability and the resilience
of the population state [19]. Although models with the migra-
tion of defectors exploiting a population of cooperators have
been found to suppress cooperation in the overall population
[20,21], a model with success-driven migration of individuals
have shown to enhance cooperation in the overall population
[10]. In such models, either migration of only defectors occurs
(in the former), or individuals’ migration is voluntary (in the
latter). Our model employs random migration of individuals—
both cooperators and defectors—between any two arbitrarily
chosen demes, which leads to synchronization between all the
demes in the network thereby enhancing overall cooperation.

A. Importance of random migration

The incorporation of the random migration is very crucial
for the results obtained in our paper. In order to explicitly
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FIG. 7. (a) Order parameter and (b) average cooperation are shown as a function of the coupling strength ε and the chaotic game fraction φ.
Here we have used the parameters S = 1.27 and T = 1.4 for the leader game, the rationality factor β = 13, and dynamic rewiring probability
p = 0.5.

show it, we present Fig. 8 where we have simulated the
evolution of the CML with demes playing either the LG or
the PD but with the nearest-neighbor migration only (i.e., no
random migration); mathematically, the evolution is governed
by Eq. (2) with p put to zero.

Figure 8 shows the cooperator fraction as a function of
the coupling strength ε in all the demes of our network at a
particular time step for given fractions (φ) of the demes with
the LG. We see that for both the low (φ = 0.1) and the high
(φ = 0.7) values of the fractions, a majority of demes have
fraction of cooperators way less than 0.5 for the entire range
of the coupling strength. In contrast when random migration
is present (refer to Fig. 2) the cooperation fraction of all the
demes converges towards 0.5 as ε is increased. This happens
because with random migration between the demes, the fixed
point x∗ = 0.5, becomes stable whereas the other two fixed
points—0 and 1—remain unstable. Thus, the random migra-
tion drives up the cooperator fraction from a low initial value
to approximately 0.5 in the deme playing the LG, which, in
turn, pulls up the cooperator fraction in the demes playing the
PD to approximately 0.5. Interestingly, this synchronization to
a fixed point is very robust, which does not get affected by all
the defectors coming in from the neighboring demes playing
the PD. The migration of cooperators from the deme with the

LG drives up the entire system’s overall cooperation fraction
to a higher level, starting from a low initial value; the system
needs to be beyond the critical coupling strength that leads to
the synchronization induced cooperator fraction’s sustenance
in all the demes to a value of around 0.5 for all time steps. This
synchronization mechanism is absent when the migration is
not random (recall Fig. 8).

At first glance, one may be tempted to conclude that in a
CML with both the LG and the PD, cooperation should triv-
ially be established based on the following argument: Given
that both cooperation and defection can be found long term in
the LG, but only defection in the PD, the defectors migrating
from a deme playing the PD into a deme playing the LG
would not threaten cooperation in the latter; on the other hand,
given that cooperation can be found transiently in the PD, a
continual arrival of cooperators from the LG to allow them to
be found long term on the PD sites. The immediately preced-
ing paragraph hints that it is not so straightforward because
the aforementioned argument does not take into account the
facts that how crucial the random nature of migration and
the synchronization beyond a critical coupling strength are
in the establishment and sustenance of cooperation in the
CML; any arbitrary kind of migration and unsynchronized
dynamics cannot result in sustenance of the non-negligible

FIG. 8. Bifurcation diagrams: Absence of synchronized cooperation in the CML with 100 lattice sites. Whether the fraction of LG is high
(a) φ = 0.7 or low (b) φ = 0.1, the chaotic evolution of the cooperator fraction at the demes with the LG (orange dots) is not settling down
into a stable synchronizied state with demes where the PD (blue dots) is being played. The rewiring probability is fixed to p = 0.5.
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cooperator fraction across all the demes at all times. Although
the continuous arrival of cooperators from the demes playing
the LG demes indeed allows them to be found long term on the
PD sites, we must appreciate that this continuous generation
of cooperators at the LG demes and their arrival of cooperators
in the demes playing the PD—thereby leading to the suste-
nance of cooperation—is achieved via synchronization that is
established only when random migration is in action.

B. Migration dilemma

In the population with some demes having both the coop-
erators and the defectors playing the LG and some having
exclusively defectors playing the PD, the cooperators would
not want to migrate to the demes playing the PD lest they
should be exploited. However, if they stay at the demes where
the agents play the LG, the fraction of the cooperators can
not increase throughout the population and they would be
surrounded by a lot of defectors present in the other demes.
This means that the cooperators would always be at the risk of
being exploited by a free rider. The term migration dilemma
has been introduced by us to refer to this situation. As we
discuss below, this is a very distinct kind of dilemma that has
not been investigated earlier. First we recall a few well-known
dilemmas.

The TOC [26] and its two-player version, arguably, the
prisoner’s dilemma [22], constitute the most well-known
dilemma. The dilemma arises when the players choose to
either cooperate (to various degrees) or defect with a plan
to exploit a finite public good. The players get the maxi-
mum combined payoff if they cooperatively and restrainedly
utilize the good. But if a player exploits (i.e., she defects
whereas others cooperate) the good without restraint, she
receives the maximum individual payoff. Therefore, all play-
ers would defect to lead to destruction of the public good.
Another dilemma of interest is the agglomeration dilemma
[14]. In the model that leads to the agglomeration dilemma
[14], the individuals in a network play the public goods game
(PGG) [11]. Some lattice points in the network are vacant
for individuals to migrate to if they are not satisfied with the
payoff received at their current locations. Now the dilemma
the individuals are facing is whether they should agglomerate
into large groups or not. This is because for a single PGG with
every individual’s contribution the benefit obtained decreases
with increased group size. The benefit of an individual in
large groups become more dependent on others’ contributions,
which is a risky proposition. Despite this risk, the potential for
higher benefits also increases in a large group as an individual
can get involved in more PGGs with its neighbors thereby
constituting a dilemma. The migration dilemma is different
from these dilemmas.

The TOC anyway does not involve any migration to have
any direct resemblance with the migration dilemma. However,
the migration dilemma in intertwined with the TOC: In the
CML if the migration dilemma is not averted, the demes
playing the PD game will be exploited off its resources and
so a partial TOC will be effected in the demes. Random mi-
gration, assisted by synchronized dynamics, develops groups
of cooperators competing with the defectors at every deme so
that the TOC may be averted.

Although it involves migration of individuals in a network,
the agglomeration dilemma is fundamentally different from
the migration dilemma. Unlike the case with the latter, there
is no usage of chaos or synchronization in the formulation or
the resolution of the agglomeration dilemma. Migration is a
voluntary decision taken by an individual in the setup con-
stituting the agglomeration dilemma, and all individuals do
not need to migrate to form large groups. Whereas, migration
of individuals from all the demes is a built-in feature of the
setup showcasing the migration dilemma. Another essential
feature in our model is that the migration between the demes
is random (not based on any decision process). In the case
of agglomeration dilemma, the individuals can only migrate
to specific empty sites in a lattice that fall within a certain
predefined range from the individual’s current location.

Probably, the most appealing feature of the migration
dilemma is that it brings together the ideas of synchronization,
cooperation, and chaos in the context of evolutionary game
dynamics.

VI. CONCLUSIONS

Summarizing, we have provided a macroscopic description
of the emergence of cooperation owing to the synchro-
nization of chaos in a population split into a network of
demes having random migration among them. Specifically,
we find that, by inducing synchronization, the random mi-
gration can actually increase cooperation in such a structured
population. Interestingly, our model is seen bringing forth a
stable biodiversity in the form of a heterogenous population
(mixed cooperator-defector state) from an initially homoge-
neous population (all defector state) where some defectors in
a few select demes are incentivized to cooperate. This is a
demonstration of such constructive outcomes of chaos and
synchronization in the theory of evolutionary games. This
general mechanism is quite robust against the change in the
payoff matrix and the game dynamics as long as chaos is
observed and distinct from the other migration induced co-
operation models [10,11,19,66].

Another interesting angle is that the interconnected demes
exclusively with the PD players are subject to the (in)famous
social dilemma of the TOC [26]: Any common resource
therein would be exploited without restrain. Migration, even
when random, goes a long way to develop groups of coop-
erators, at every deme, competing with the defectors so that
the TOC may be averted. All it requires is that in a tiny
fraction of the demes, the cooperation is encouraged; and mi-
gration propagates the virtue across at every other deme. Thus,
whereas overcoming the migration dilemma, the cooperators
also simultaneously tackle the dilemma pertaining to the TOC.
In the light of the recent studies [67–69] on the TOC using
feedback included replicator equation with payoff matrices
from two different games (such as in this paper), we believe
that chaotic synchronization’s hitherto unexplored utility in
the TOC could be a useful future avenue of research.

ACKNOWLEDGMENTS

The authors are grateful to S. Keshavamurthy, A.
Mukhopadhyay, and S. Sengupta for helpful discussions and
invaluable suggestions.

013009-8



COOPERATORS OVERCOME MIGRATION DILEMMA … PHYSICAL REVIEW RESEARCH 3, 013009 (2021)

APPENDIX A: A NOTE ON THE COUPLING STRENGTH

The CML is a very useful Eulerian description of dynam-
ical systems to model a variety of phenomena in nonlinear
systems. A CML consists of a collection of maps (discrete-
time dynamics) that interacts with each other by means of
a network structure among them. This interaction was mod-
eled by simple diffusive coupling in the very early of its
history [70,71]. As the simplest nontrivial case, consider that
a particular map dynamics at a site of the lattice is given by
xn+1 = f (xn). Then the equation for the ith site that is coupled
to the two nearest neighbors through a diffusive coupling is
given by

xi
n+1 = f

(
xi

n

) + ε

2

(
xi+1

n − 2xi
n + xi−1

n

)
, (A1)

where ε is the coupling parameter. Although f (x) could be
any map and x could be any relevant physical quantity, for
the specific case of the replicator map used in our paper, x is
the population fraction. We immediately note that in the con-
tinuum limit, we can change our site index i to a continuous
spatial variable s and the time-index n to a continuous time
variable t to get the continuous equation,

∂x(s, t )

∂t
= f (x(s, t )) − x(s, t ) + ε

2

∂2x(s, t )

∂s2
. (A2)

From Eq. (A2), we can conclude that ε is a diffusion coef-
ficient which can, in general, take any value between 0 to
∞. Physically, larger the ε (i.e., diffusion coefficient), faster
the diffusion; mathematically, if one waits for infinite time,
x at a site will completely diffuse out to neighboring sites
irrespective of the value of the diffusion coefficient.

Equation (A1), however, has a mathematical problem when
compared with its continuum version Eq. (A2): Since the
coupling part represents the average of the population flux to
site i from the connecting sites, it is reasonable to restrict ε

between zero to unity. Still one can have unbounded solutions
[72] for reasonable values of ε. Although this drawback of the
modeling is ignored often, but in doing so we lose touch with
the physical reality. One way [72] to recover the physical real-
ity is to separate the diffusive processes from the reproductive
process [ f (x)]. First, the new population in each cell is taken
to be x′i

n = f (xi
n), and this is followed by the diffusion process

between the sites so that at the next generation we get

xi
n+1 = x′i

n + ε

2

(
x′i+1

n − 2x′i
n + x′i−1

n

)
,

⇒ xi
n+1 = (1 − ε) f

(
xi

n

) + ε

2

[
f
(
xi+1

n

) + f
(
xi−1

n

)]
.

(A3)

Another way of enforcing physical solution is to slightly
modify Eq. (A1) as follows:

xi
n+1 = (1 − ε) f

(
xi

n

) + ε

2

(
xi+1

n + xi−1
n

)
. (A4)

We note that if ε lies between 0 and 1, the right-hand side of
Eq. (A4) is a convex combination of f (xi

n) and (xi+1
n + xi−1

n )/2
both of which are constrained to be between 0 and 1; and,
hence, xi

n+1 must also always remain between 0 to 1 to help
keep the solution always physical. Thus, the necessity of
keeping the coupling parameter between 0 to 1 is to enforce

physical reality, although in the continuum limit it can take
any real value.

It is worth pointing out that in the limit of weak selection
f (x) ≈ x and both forms Eqs. (A3) and (A4) are approxi-
mately the same.

APPENDIX B: DETAILS OF THE NUMERICAL
SIMULATIONS

This section describes the numerical methods used in pro-
ducing the results reported in this paper. We used a parallel
in-house C++ code and several libraries, such as “blitz++”
for array operations, “YAML” for inputs, and “MPI” for task
parallelism. Each deme/node/lattice site in the CML was an
object of our user-defined class.

1. Setup and initial conditions

The underlying game, e.g., the PD or the LG, within a
node was specified during the initialization of the system. We
marked two games the LG and the PD by two numbers—1 and
2, respectively. For a given fraction φ of the LG, we called
a random number r between 0 to 1 using a uniform random
number generator—drand48(). If r � φ, then we assigned the
game type value of the node as 1, i.e., the LG; otherwise,
game type was assigned 2, i.e., the PD. Subsequently, we set
the values for the payoff matrix, which is the attribute of a
node. This is how we distributed two game types among the
nodes for a given φ. For initial cooperator fraction in different
node was assigned randomly by choosing a random number
between 0 to 1 using a uniform random number generator. To
test the robustness of our results, we also used some special
initial conditions, e.g., zero cooperator fraction at nodes with
the PD and x = 0.001 at all other nodes.

2. Dynamic random rewiring

The CML used in this paper is dynamic, i.e., it is a network
such that its nodes’ in and out degrees are stochastically
changing over time. We began with a simple linear chain
network where every node was connected to its two nearest
neighbors with periodic boundary condition—in and out de-
grees of each node was two—effectively creating a simple
ring network. The incoming edges correspond to the immigra-
tion from the neighboring nodes. At the beginning of every
time step, we did the following rewiring of the simple ring
network: For every node i, we generated a uniform random
number ri between 0 to 1. If ri � p, then the corresponding ith
node was selected for rewiring; otherwise, the node remained
connected to its nearest neighbors. If a node was selected for
rewiring, then its incoming edges from its two nearest neigh-
bors were deleted, and new incoming edges were made with
two randomly chosen nodes other than itself and its nearest
neighbors. We repeated this process at every time step starting
from the simple ring network.

3. Probability distribution function calculation

In order to compute the probability distribution as pre-
sented in Fig. 2(e), we saved the cooperator-fraction xi at each
node for 12 000 time steps. Neglecting the first 2000 transient

013009-9



SADHUKHAN, CHATTOPADHYAY, AND CHAKRABORTY PHYSICAL REVIEW RESEARCH 3, 013009 (2021)

time steps, we computed the normalized probability distri-
bution using the data corresponding to the last 10 000 time
steps using PYTHON. For a presentation purpose, we chose two
nodes randomly, one playing the PD and the other playing the
LG. The probability distribution function P(x), where P(x)dx
is the probability of having the cooperator fraction between x
and x + dx for each node under study.

4. Parameters in numerical simulations

We used the CML with 100 demes for every simulation
and also checked for the robustness of the results with change

in the CML’s size. We varied the game fraction φ and the
coupling strength ε from 0 to 1 in steps of 0.01. For the PD,
the variable payoff matrix elements were fixed at T = 1.1 and
S = −0.1, and for the LG we chose T = 8 and S = 7. The
later shows chaotic dynamics in isolation. To verify that, we
computed the maximum Lyapunov exponent for the replicator
dynamics with the payoff matrix of the LG and got a positive
value as expected. We simulated the system for 2000 time
steps in order to get a statistically steady state. Furthermore, as
far as the cooperator-fraction and synchronization parameters
are concerned, we did an average over 64 different realizations
in parallel using the MPI.
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