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Quantum illumination receiver using double homodyne detection
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A quantum receiver is an essential element of quantum illumination (QI), which outperforms its classical
counterpart, called classical illumination. However, there are only few proposals for realizable quantum receiver,
which exploits nonlinear effects leading to increasing the complexity of receiver setups. To compensate this, in
this paper, we design a quantum receiver with linear optical elements for Gaussian QI. Rather than exploiting
nonlinear effect, our receiver consists of a 50:50 beam splitter and homodyne detection. Using double homodyne
detection after the 50:50 beam splitter, we analyze the performance of the QI in different regimes of target
reflectivity, source power, and noise level. We show that our receiver has better signal-to-noise ratio and is more
robust against noise than the existing simple-structured receivers.
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I. INTRODUCTION

Superposition and entanglement are properties mainly ex-
ploited in quantum information processing protocols, such as
quantum communication [1,2] and quantum computing [3]. In
the protocols, it is a very crucial issue protecting these quan-
tum mechanical phenomena during the process, since they are
very fragile against decoherence. In 2008, Lloyd presented a
binary hypothesis testing protocol using entangled states in
a single-photon level, called quantum illumination (QI), to
improve a capability of target detection in an optical radar [4].
Different from other quantum information processing proto-
cols, it was shown that QI has advantages compared with its
classical counterpart, called classical illumination (CI), with
the same transmission energy under a decoherence channel,
even when entanglement is not left after passing through the
channel.

After its first proposal, there have been many studies
about QI [5–37]. Since thermal noise baths and an optical
entangled state generated from spontaneous parametric down-
conversion (SPDC) can be written in Gaussian state form, it is
more realistic to study Gaussian QI [6–9]. Under a very noisy
channel, it was shown that the Gaussian QI system outper-
forms the optimal CI exploiting a coherent state transmitter
under the same transmission energy. The QI was experimen-
tally demonstrated in laboratories [10–12]. Furthermore, to
exploit a more appropriate spectral region for a target de-
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tection protocol than optical wavelengths, microwave QI was
studied [13] and demonstrated [14,15] as well.

In the previous QI studies, it was shown whether the pres-
ence or absence of a target with very low reflectivity can be
more precisely discriminated using an entangled state than a
coherent state. The precision limit is determined by an error
probability of the hypothesis test problem, and it is upper
bounded by the quantum Chernoff bound [38–40]. Given a
probe state in a channel, we can derive the quantum Chernoff
bound, which is accompanied with the corresponding optimal
measurement setup.

There are few studies about quantum receivers for QI,
which are suboptimal while outperforming the CI. Guha and
Erkmen presented the optical parametric amplifier (OPA)
receiver and the phase conjugate (PC) receiver [34,35],
which were experimentally demonstrated at optical frequency
[11] and at microwave domain [15], respectively. A scheme
of feed-forward sum-frequency generation (FF-SFG) [36]
asymptotically approaches to the quantum Chernoff bound,
but it has not been demonstrated due to the hardness of its
implementation. Those quantum receivers are designed for
exploiting nonlinear effects in order to measure correlation
between two modes used in QI. By using the nonlinear effects,
a QI system with one of these receivers can outperform a
CI system in the hypothesis testing problem. However, many
incoming signals, which do not interact with nonlinear me-
dia are discarded, such that the inefficiency of the nonlinear
effect diminishes signal-to-noise ratio (SNR) of the entire QI
system.

In this paper, we propose a quantum receiver for Gaussian
QI that does not include a nonlinear optical element. Our
setup is constructed with a 50:50 beam splitter and homodyne
detection, which is widely used in quantum information pro-
cessing with continuous variables. Because of the absence of
nonlinear effect, our setup is simple to implement compared
with other receivers. Since a Gaussian state exploited in QI
has zero mean, mean-square values derived by homodyne
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detection, i.e., the second-order moments of the Gaussian
state, are used to discriminate the two hypotheses. We in-
vestigate the error probabilities of a QI system with various
receivers, choosing the best receiver among the three receivers
in various target reflectivity, source power, and noise level,
while the existing studies about a QI receiver considered a
fixed condition [34–36]. We show our receiver is more suit-
able for Gaussian QI with low-energy source in a very noisy
channel than the OPA and PC receiver. Also, we analyze SNR
of a QI system with our receiver, which can show better SNR
than the OPA and PC receivers.

This paper is organized as follows. In Sec. II and Sec. III,
we introduce basic concepts of QI and tools for analyzing
performance of QI, respectively. In Sec. IV, we propose a re-
ceiver setup that is constructed with a 50:50 beam splitter and
homodyne detection. In Sec. V, we analyze the performance
of QI with various receivers in different conditions. Finally, it
is summarized with discussion in Sec. VI.

II. QUANTUM ILLUMINATION

The purpose of a target detection protocol is to discriminate
following two situations: a target is absent (hypothesis H0) or
present (hypothesis H1). In CI, a signal is sent to the target,
and the return signal is measured to discriminate the two
situations as shown in Fig. 1(a). In QI, an entangled state is
exploited, as shown in Fig. 1(b). QI takes advantages over CI
to detect a target in a lossy and noisy channel [4]. After this
study, QI described with Gaussian state, called Gaussian QI
was studied [6]. The Gaussian QI can provide more realistic
and exact statistics than the original one since thermal noise
baths are in Gaussian regime under Bose-Einstein statistics
and the entangled beams generated from continuous wave
SPDC are described with Gaussian states, e.g., a two-mode
squeezed vacuum (TMSV) state.

A TMSV state can be expressed in the photon number basis
as follows:

|TMSV〉 =
∞∑

n=0

√
Nn

S

(NS + 1)n+1
|n〉S |n〉I , (1)

where NS is the mean photon number per each mode, and
the subscripts S and I denote signal and idler modes. For
calculation of Gaussian states, it is convenient to describe the
state in quadrature representation. Since a TMSV state has
zero mean, its covariance matrix can be written as follows:

VTMSV =

⎛
⎜⎝

A 0 C 0
0 A 0 −C
C 0 A 0
0 −C 0 A

⎞
⎟⎠, (2)

where A = 2NS + 1, C = 2
√

NS (NS + 1).
In Gaussian QI, a signal is sent to a target with very low

reflectivity in a thermal noise background, and the idler is
kept intact. A schematic diagram of the proof-of-principle
QI model is drawn in Fig. 2. A target with low reflectivity
is realized with a beam splitter with low reflectivity, and the
signal is combined with a thermal noise at the beam splitter.
Finally, the return and idler beams are jointly measured at a re-
ceiver. Under the hypothesis H0, the return mode annihilation

FIG. 1. Schematic diagrams of CI and QI. (a) In CI, a signal
beam, is sent to the target, and the return beam is measured to
discriminate the presence and absence of the target. (b) In QI, an
entangled state is exploited to discriminate the two situations. The
signal beam is sent to the target, and the return beam is jointly
measured with the idler beam. By using joint measurement of the
two beams, QI can have better efficiency for the hypothesis test than
CI.

operator will be âR = âB, where âB is the annihilation operator
of thermal noise with the mean photon number NB. Under the
hypothesis H1, the return mode annihilation operator will be
âR = √

κ âS + √
1 − κ âB, where âS is the annihilation opera-

tor of the signal mode. The covariance matrix of the return
mode and the idler mode under the hypothesis H0 is

V0 =

⎛
⎜⎝

B 0 0 0
0 B 0 0
0 0 A 0
0 0 0 A

⎞
⎟⎠, (3)

where B = 2NB + 1. Since there is no correlation between the
return mode and the idler mode, Eq. (3) has null off-diagonal
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FIG. 2. A schematic diagram of proof-of-principle model for QI.
The signal beam of a TMSV state propagates to the beam splitter
whose reflectivity is κ . At the beam splitter, thermal noise is induced,
and the return beam and the idler beam are jointly measured at the
receiver.

terms. The covariance matrix under the hypothesis H1 is

V1 =

⎛
⎜⎜⎝

κA + (1 − κ )B 0 C
√

κ 0
0 κA + (1 − κ )B 0 −C

√
κ

C
√

κ 0 A 0
0 −C

√
κ 0 A

⎞
⎟⎟⎠,

(4)

which contains non-null off-diagonal terms since there is cor-
relation between the return mode and the idler mode.

From the two covariance matrices, one discriminates the
two hypotheses based on the off-diagonal terms. To obtain the
off-diagonal elements from measurement results, it is neces-
sary to interfere the return mode with the idler mode before the
measurement. There are few studies about a QI receiver, such
as OPA receiver, PC receiver [34,35,37], and FF-SFG receiver
[36]. To interact the two modes, those receivers contain non-
linear optical elements leading to increasing the complexity
of receiver setups. Therefore, it seems to be necessary to
construct a QI receiver, which is simply implemented with
high SNR, excluding nonlinear effects.

III. SIGNAL-TO-NOISE RATIO IN QUANTUM
ILLUMINATION

In this section, we introduce the calculation of SNR for
Gaussian QI, which evaluates the performance of a Gaussian
QI system. Before we explain the calculation of SNR, we
defined the following notations for simplification:

Rx = Tr(M̂ρ̂x ), �Rx = Tr(M̂2ρ̂x ) − [Tr(M̂ρ̂x )]2, (5)

where ρ̂x denotes the density matrix corresponding to the
hypothesis Hx and M̂ denotes a measurement operator. For a
given density matrix, the two equations in Eq. (5) denote the
expectation value and the variance of a given measurement
operator. If we exploit K mode rather than a single mode, the
expectation value and the variance become KRx and K�Rx,
respectively.

SNR is derived from error probabilities of decision prob-
lem. For a binary hypothesis test, a threshold RTh should be

defined for a problem. Then, the problem can be decided
based on this threshold. For example, the hypothesis H0 is
considered as true when a result of Gaussian QI is above
RTh, and the hypothesis H1 is true when the result is below
RTh. However, there can be an error in the decision, such as
a false alarm or a miss detection. The false alarm is the case
that the decision is target presence even if there is no target,
and the miss detection means the case that the decision is
target absence even when the target presents. When the two
hypotheses are equally probable, the total error probability can
be written as follows:

PE = 1
2 P(1|0) + 1

2 P(0|1), (6)

where P(1|0) means the false alarm probability, and P(0|1)
does the miss detection probability. According to the above
description, the decision will be target presence for < RTh and
target absence for otherwise. Here, we consider a large num-
ber of independent signal-idler mode pairs, i.e., K � 1. Due
to the central limit theorem, the error probabilities approach
Gaussian distributions of which mean and variance are KRx

and K�Rx, respectively [34]. Each error probability can be
calculated from the following equations:

P(1|0) =
∫ RTh

−∞

dx√
2πK�R0

exp

[
−1

2

(
x − KR0√

K�R0

)2]
,

P(0|1) =
∫ ∞

RTh

dx√
2πK�R1

exp

[
−1

2

(
x − KR1√

K�R1

)2]
,

(7)

and the results are

P(1|0) = 1

2
erfc

[
KR0 − RTh√

2K�R0

]
,

P(0|1) = 1

2
erfc

[
RTh − KR1√

2K�R1

]
. (8)

From the definition of the complementary error function and
the relation R1 � RTh � R0, P(1|0) and P(0|1) are in the
tradeoff relation about RTh, and the total error probability
is minimized when the two error probabilities are the same.
Thus, the threshold of decision, which minimizes the total
error probability, is obtained from the following equation:

RTh = K (R0
√

�R1 + R1
√

�R0)√
�R0 + √

�R1
. (9)

With the threshold, the total error probability can be calculated
from the following equation [34,35]:

PE = 1

2
erfc

[ √
K (R0 − R1)√

2(
√

�R0 + √
�R1)

]

≈ exp[−SNR(K )]

2
√

πSNR(K )
, (10)

where SNR(K ) is an SNR and it is defined as follows:

SNR(K ) ≡ K (R0 − R1)2

2(
√

�R0 + √
�R1)2

, (11)

which is a conventional squared SNR equation when back-
ground bias exists [11,15]. The approximation in Eq. (10) is
true only when SNR(K ) � 1. From Eq. (10), we find that the
error probability becomes lower with increasing SNR(K ), i.e.,
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FIG. 3. A schematic diagram of the double HD. A return beam
and an idler beam are combined at 50:50 beam splitter, and then,
double HD are performed on each output port of the beam splitter.
In the port-1, HD on the position (θ = 0) is performed, and HD on
the momentum (θ = π/2) is performed in the other output port. The
setup in dashed lines denotes M̂ ′

dHD expressed in Eq. (13), and the
measurement operator of the whole setup in dot-dashed lines is M̂dHD

written in Eq. (14).

the higher SNR means the more accurate decision in Gaussian
QI.

IV. DOUBLE HOMODYNE DETECTION

In this section, we describe the double HD as a tool of our
QI receiver. We denote a balanced HD as a HD that consists
of a 50:50 beam splitter, local oscillator (strong LASER) of
which intensity is at least 10000 times larger than the input
signal one [41], and two intensity detectors. An input signal
and a local oscillator are coherently impinged on the 50:50
beam splitter. Then we measure the intensity difference be-
tween the output ports repeatedly, resulting in an expectation
value of a quadrature operator as follows:

〈n̂a − n̂b〉 = |αL| 〈X̂ (θ )〉 = |αL|
〈

â†eiθ + âe−iθ

√
2

〉
, (12)

where n̂ represents a number operator, â and â† denote an-
nihilation and creation operators of the input mode, and the
subscripts a, b are labels of each intensity detector. θ is
controlled by a phase of the local oscillator, and αL is the am-
plitude of the local oscillator. If θ = 0, the HD setup measures
the position of the input mode, and if θ = π/2, it becomes
momentum measurement.

The schematic diagram of the double HD setup is described
in Fig. 3. The idler and return beams are mixed by using a
50:50 beam splitter. Subsequently we perform HD on each
output port, which we call double HD. One of the HD setups
measures position (θ = 0), and the other does momentum
(θ = π/2). Since zero-mean Gaussian states are exploited in
our Gaussian QI, the expectation value of the quadrature op-
erator is always zero. To obtain a nonzero expectation value,
we use squared outcomes of homodyne detection. Then, we
obtain an expectation value of a square quadrature operator

〈X̂ 2(θ )〉 = ∫ ∞
−∞ dxx2P(x, θ ), where the phase rotated proba-

bility distribution P(x, θ ) is obtained with 〈X̂ (θ )〉 by repeated
measurements. The square quadrature operators by the double
HD can be written as:

M̂ ′
dHD = [X̂1(0)]2 + [X̂2(π/2)]2, (13)

where the subscripts 1 and 2 denote labels of the output port of
the 50:50 beam splitter, as shown in Fig. 3. By taking a reverse
50:50 beam splitting operation, we can transform Eq. (13) into

M̂dHD = ÛBSM̂ ′
dHDÛ †

BS

= âRâ†
R − â†

Râ†
I − âRâI + â†

I âI ,
(14)

where ÛBS is the 50:50 beam splitting operator, which is
described in the following equation:(

â1

â2

)
= ÛBS

(
âR

âI

)
= 1√

2

(
1 1

−1 1

)(
âR

âI

)
. (15)

The measurement operator in Eq. (14) includes phase-
sensitive cross-correlation components, â†

Râ†
I + âRâI , of

which expectation value gives the off-diagonal term in the
covariance matrices written in Eqs. (3) and (4). Consequently,
we constructed the measurement setup, which can obtain a
correlation between the return and idler modes by using a
beam splitter and double HD, rather than by exploiting non-
linear optical elements.

The double HD operator of Eq. (14) is compared to the
measurement operators of the OPA and PC receivers. The
measurement operator of the OPA receiver is written in the
following equation:

M̂OPA = (G − 1)âRâ†
R

+
√

G(G − 1)(â†
Râ†

I + âRâI ) + Gâ†
I âI , (16)

where G is a gain of the OPA (G > 1). The measurement
operator of the PC receiver is:

M̂PC = ν(âRâI + â†
Râ†

I ) + μ(âI â
†
V + â†

I âV ), (17)

where âV is a vacuum state operator, and |μ|2 − |ν|2 =
1. Both receivers are constructed in order to measure
phase-sensitive cross-correlation components, â†

Râ†
I + âRâI .

To compare our receiver with feasible receivers, we choose the
parameter values of the receivers, which are experimentally
given or implementable. For the OPA receiver, the gain G
is experimentally obtained as G − 1 = 7.4 × 10−5 [11]. For
the PC receiver, the parameter values are implementable as
μ = √

2 and ν = 1 [34,35].
In the viewpoint of the measurement operators, we simply

infer that our double HD operator can provide us a higher SNR
than the operators of the OPA and PC receivers. There are two
reasons as follows: first, the coefficients of phase-sensitive
cross-correlation components are comparable to ones of the
other components in Eq. (14), whereas they are smaller than
the other terms in the Eqs. (16) and (17). Second, the coeffi-
cient of the return mode component âRâ†

R is also comparable
to the others in Eq. (14), whereas it is very small in Eq. (16)
and does not exist in Eq. (17). Based on the intuitive view, we
observe how the measurement operators work out in the next
section.
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FIG. 4. The regions, where one of the receivers outperforms the others, are shown with various target reflectivity κ and mean photon
number of the signal NS . Solid lines represent the boundaries that the two receivers provide the same SNR when they are adapted in a Gaussian
QI system. (a) The mean photon number of thermal noise NB is 30, and the number of modes K is 107. (b) The case that NB = 100 and K = 107.
The region that the double HD outperforms the other receivers becomes wider. “dHD” is abbreviation of double HD.

V. SIGNAL-TO-NOISE RATIO ANALYSIS

Using our double HD setup, we investigate the per-
formance of Gaussian QI in different regimes of target
reflectivity and source power, which is compared with the
OPA receiver and the PC receiver [34,35]. The detail expres-
sions of the corresponding SNRs are given in Appendix A.

In Fig. 4, the regions, where one of the receivers outper-
forms the others, are shown with various target reflectivity and
mean photon number of the signal NS . The regions are plotted
based on the SNR of a QI system using each receiver. As a
benchmark, SNR of a CI system is considered with a coherent
state having a mean photon number NS . The SNR is related
with the quantum Chernoff bound, which represents an upper
bound of the error probability of a quantum discrimination
problem for a given signal and channel [38–40]. Thus, to
claim that the QI system takes advantages over the CI, the
SNR of a QI system should be higher than that of the CI.

Figure 4(a) shows the region plot when the mean photon
number of thermal noise NB is 30 and the number of exploited
modes is 107. Our receiver, the double HD, can outperform
the other receivers at low reflectivity when NS is very small,
i.e., our receiver is the most suitable for a QI system with a
low-power source. The OPA and PC receivers need stronger
signal for target detection due to an efficiency of the nonlin-
ear optical effects included in their structure. In the plotted
regime, the CI cannot be the best strategy.

The plot of SNR in the more noisy situation, NB = 100
and K = 107, is shown in Fig. 4(b). The regions of the double
HD and the OPA receiver become wider, while that of the PC
receiver goes narrower. This effect can be explained based on
their measurement operator. As it was previously described
in Sec. IV, the measurement operators of the double HD and
the OPA receiver include the return mode component âRâ†

R of
which expectation value depends on NB, and thus, both nu-
merator and denominator of SNR increase with growing NB.
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FIG. 5. The plots of SNR(K ) of the double HD (red solid lines),
the PC receiver (blue dashed lines), the OPA receiver (orange dot-
dashed lines), and the coherent state CI (black dotted lines) at NS =
0.01 and K = 107. (a) and (b) show the SNR with NB = 30 and 100,
respectively.

However, since the measurement operator of the PC receiver
does not contain the return mode component, only the denom-
inator of SNR increases while the numerator is unchanged
with increasing NB. The CI cannot be the best in this regime
as well.

Figure 5 shows the SNR of Gaussian QI with the double
HD (red solid lines), the PC receiver (blue dashed lines), and
the OPA receiver (orange dot-dashed lines) at NS = 0.01. The
SNR of the coherent state CI is plotted as a benchmark as

well (black dotted lines). Since the SNR of a QI system using
single mode is extremely small, K should be large in order
to amplify the SNR. In the both plots, we define K = 107 to
obtain 120(∼20 dB) SNR at reflectivity 0.01. Based on the
experimental data [11,15], we choose an intermediate value
of K = 107, which is expected to be realizable. Figure 5(a)
shows the SNR at NB = 30. The SNR with the double HD be-
comes the largest with increasing reflectivity. At κ < 0.0009,
the PC receiver shows the best performance in the QI, as
shown in the inset. Figure 5(b) shows the SNR at NB = 100,
and it shows the same tendency with Fig. 5(a), except slightly
lower SNR due to the large thermal noise. Since the double
HD is less affected by the thermal noise than the PC receiver,
the PC receiver shows the best performance at the smaller
region κ < 0.0003.

We analyze the performance of a QI system using one of
the three receivers at >1% reflectivity as well. Figure 6 is a
region plot of the best receiver in all the reflectivity regime
and mean photon number of the signal 0 � NS � 1 at K =
107 and NB = 30. The PC receiver is the best choice at low
κ and large NS . The double HD can be the best at low κ and
small NS and at high κ and large NS . Examples of the boundary
reflectivity at NS = 0.01 and 0.001 are drawn in Fig. 6 as the
black horizontal lines. At NS = 0.01, a QI system using the
PC receiver is the best at κ < 0.0009, the coherent state CI
becomes the best at κ > 0.125, and the double HD is the best
in the middle range. In the case of NS = 0.0001, the double
HD can outperform the others at 0.0001 < κ < 0.022. If the
reflectivity is larger than 0.022, the CI becomes the best and
the OPA receiver is the best otherwise as it was previously
shown in Fig. 4(a).

VI. SUMMARY AND DISCUSSION

We proposed a receiver setup for Gaussian QI. Performing
double homodyne detection (HD) after combining the return
and idler modes by a 50:50 beam splitter, we measured the
mean square quadratures, 〈X̂ 2

1 (0) + X̂ 2
2 (π/2)〉. In compari-

son to the simple-structured receivers, such as the OPA and
PC receivers, the double HD exhibited the enhanced target

FIG. 6. The regions, where one of the receivers outperforms the others, are shown with various target reflectivity κ and mean photon
number of the signal NS at NB = 30 and K = 107. The two black horizontal lines denote the cases, NS = 0.01 and NS = 0.001.
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detection capability by the SNR. In low reflectivity regime
(� 0.01) with low-power source (mean photon number of
signal � 0.02), the double HD outperformed the other re-
ceivers mostly to detect the target. Also, due to its robustness
against noise, the double HD will enhance the performance of
a microwave QI system [13–15].

We analyzed these three receivers in various target reflec-
tivity, source power, and noise level, and we found that the
performance of a QI receiver depends on not only the structure
of the QI receiver, but also the conditions of source and chan-
nel. Thus, a QI receiver should be chosen based on properties
of the entire QI system such as power and bandwidth of the
source. Our results can be a reference for selection of a QI
receiver, which gives the best performance in the QI system.

The SNRs with the OPA and PC receivers in Fig. 5(a)
are not the same as the results in the previous study [34]
even under the same values of the parameters. The previous
study assumed the condition NB ≈ NB/(1 − κ ), representing

very noisy channel and very low reflectivity of the target,
whereas there is no assumption in our analysis. Nonetheless,
at extremely low reflectivity, the OPA and PC receivers in QI
outperform the coherent CI, satisfying the assumption.
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APPENDIX: SNR EQUATIONS

SNR can be calculated by using the measurement operators
of Eqs. (14), (16), (17) and the covariance matrices of Eqs. (3),
(4). In our noise channel, the SNR of QI with the dHD receiver
is

SNR(K )
dHD = K[κ (B − A) + 2C

√
κ]2

2[|A(1 + κ ) + B(1 − κ ) − 2C
√

κ| + |A + B|]2 , (A1)

and that with the PC receiver is

SNR(K )
PC = KκC2

[
√

κ (A2 − AB + C2) + A(B + 2) + 1 + √
A(B + 2) + 1]2

, (A2)

and that with the OPA receiver is

SNR(K )
OPA = K[κ (G − 1)(A − B) + 2C

√
κG(G − 1)]2

2(
√

D0 + √
D1)

2 , (A3)

where A = 2NS + 1, B = 2NB + 1, C = 2
√

NS (NS + 1), and

D0 = [AG + B(G − 1)]2 − 1,

D1 = A2[κ (G − 1) + G]2 − 2B(κ − 1)(G − 1)[A(κ (G − 1) + G) + 2C
√

κG(G − 1)]

+ 4AC
√

κG(G − 1)[κ (G − 1) + G] + B2(κ − 1)2(G − 1)2 + 4C2κ (G − 1)G − 1. (A4)

The SNR of CI is too messy to write down here. So it can be derived by using the quantum Chernoff bound of single-mode
Gaussian state [40].
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