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Motivated by recent progress of quantum technologies making small-scale programmable quantum computing
possible, here we study a discretized quantum adiabatic process for a one-dimensional free-fermion system
described by a variational wave function, i.e., a parametrized quantum circuit. The wave function is composed
of M layers of two elementary sets of time-evolution operators, each set being decomposed into commutable
local operators acting on neighboring sites. The evolution time of each time-evolution operator is treated as a
variational parameter so as to minimize the expectation value of the energy. We show that the exact ground
state is reached by applying the layers of time-evolution operators as many as a quarter of the system size,
implying that at least in this case, the state is exactly prepared in a quantum circuit with linear depth. This is the
minimum number MB of layers set by the limit of speed, i.e., the Lieb-Robinson bound, for propagating quantum
entanglement via the local time-evolution operators. Indeed, we show the mutual information of the variational
wave function that reveals a causality-cone-like structure in the propagation of quantum entanglement. Quantities
such as the energy E and the entanglement entropy S of the optimized variational wave function with the number
M of layers less than MB are independent of the system size L but fall into some universal functions of M,
indicating that the entanglement generated in this variational ansatz with a finite M is bounded, as in the case of
the matrix product states with a finite bond dimension. Furthermore, in this case, we find that these two quantities
behave asymptotically as E/L − ε∞ ∼ M−2 (ε∞: the exact ground-state energy per site in the thermodynamic
limit) and S ≈ 1

3 ln M. The development of the entanglement in the variational ansatz through the discretized
quantum adiabatic process is further manifested in the progressive propagation of single-particle orbitals in the
variational wave function. We also find that the optimized variational parameters converge systematically to
a smooth function of the discretized time, which provides the optimum scheduling function in the quantum
adiabatic process, with the effective total evolution time of the variational ansatz to the exact ground state being
proportional to the system size L. This is a drastic improvement compared to the evolution time proportional to
L2 for the continuous-time quantum adiabatic process with a linear scheduling and is attributed to diabaticity
of the discretized quantum adiabatic process represented in the variational ansatz. Finally, we investigate the
imaginary-time evolution counterpart of this variational wave function, where the causality relation is absent due
to the nonunitarity of the imaginary-time evolution operators, and thus the norm of the wave function is no longer
conserved. We find that the convergence to the exact ground state is exponentially fast, despite that the system
is at the critical point, suggesting that implementation of the nonunitary imaginary-time evolution in a quantum
circuit is highly promising to further shallow the circuit depth, provided that the local nonunitary operators are
represented with a reasonable amount of unitary operators.

DOI: 10.1103/PhysRevResearch.3.013004

I. INTRODUCTION

Currently realized and near-future-expected quantum com-
puting devices, called noisy intermediate-scale quantum
(NISQ) devices [1], suffer various noise due to the poor gate
fidelity and short coherent time so the number of quantum
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gates as well as qubits reliably available in quantum devices
is severely limited. Therefore, it is highly desirable to find
quantum algorithms working efficiently on such a limited
condition. One of the great challenges in quantum computing
is to demonstrate quantum supremacy for practical calcula-
tions in quantum devices that can outperform the classical
counterparts [1–3].

Quantum simulations of quantum many-body systems,
such as the Hubbard model and quantum chemistry systems,
have been anticipated to be the most promising applications
for quantum computers [4]. One of the prominent algorithms,
especially in the NISQ era, is the variational quantum eigen-
solver (VQE) [5,6], a quantum-classical hybrid algorithm, in
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which a variational wave function describing a quantum state
is represented by a quantum circuit composed of parametrized
quantum gates. In the VQE, the energy and often the deriva-
tives of the energy with respect to the variational parameters
are estimated on quantum computers and these quantities are
used to optimize the variational wave function by minimizing
the variational energy on classical computers.

In this regard, it has been pointed out that the barren plateau
phenomena occurs as a potentially serious issue in the VQE
method [7]: If a random circuit is used, the derivatives of
a VQE wave function with respect to the parameters vanish
as the number of qubits as well as quantum gates increases.
Although this might not necessarily occur in general for any
parametrized circuit, it is rather preferable to find a suitable
circuit structure and reduce the number of parametrized gates
necessary for representing a particular quantum state.

There have been several schemes proposed to improve
and go beyond the plain VQE algorithm for quantum sim-
ulations of quantum many-body systems on NISQ devices.
One of the strategies is to systematically reduce the number
of variational parameters in a parametrized quantum circuit,
keeping the accuracy of the variational wave function. For
example, the adaptive derivative-assembled pseudo-Trotter
ansatz variational quantum eigensolver (ADAPT-VQE) [8]
employs the unitary coupled cluster ansatz with generalized
single and double excitations from a single Slater determinant
reference, but the parametrized quantum gates are additively
selected, one at each iteration, in the collection of one- and
two-body operator pools by searching the appropriate gate
that gives the largest gradient, and hence the optimization
is performed only for the selectively accumulated quantum
gates. In a symmetry-adapted VQE scheme, the symme-
try of the Hamiltonian is imposed in the variational wave
function to reduce the number of parametrized gates at the
expense of introducing a nonunitary projection operator that
is treated partly as postprocessing on classical computers [9].
A nonorthogonal VQE scheme is a multireference version of
the VQE algorithm where a generalized eigenvalue problem
in a subspace spanned by a collection of the parametrized
variational wave functions is solved, in addition to optimizing
the variational parameters [10]. A similar idea of expanding
a quantum subspace within the VQE scheme is also proposed
in Refs. [11–14].

Another strategy is to employ the imaginary-time evolu-
tion that is nonunitary. Recently, Motta et al. proposed a
quantum imaginary-time evolution (QITE) algorithm [15] in
which a local infinitesimally small imaginary-time evolution
operator, including the normalization factor of the imaginary-
time evolved quantum state, is mapped to a nonlocal unitary
real-time evolution operator by solving a linear system of
equations on classical computers to properly parametrize the
nonlocal unitary operator that approximately reproduces the
local nonunitary imaginary-time evolution operator [15–18].
Note that the parameters in a nonlocal unitary operator here
are determined by solving a linear system of equations, not by
optimizing a cost function as in the VQE scheme. It is also in-
teresting to note that in Ref. [15] they used the QITE algorithm
to expand a quantum subspace by constructing nonorthogonal
Krylov-subspace basis states and proposed a quantum version
of a Lanczos-like algorithm. In this regard, an imaginary-time

evolution is not necessarily required to generate a Krylov
subspace, as demonstrated in Refs. [19,20] by using a real-
time evolution. Very recently, a quantum version of the power
method is proposed to generate a Krylov subspace [21].

Considering applications for the NISQ devices, it is crucial
to find a way, based on some guiding principle, of designing
a quantum circuit ansatz, ideally with linear depth or less,
that can efficiently represent a quantum state of interest. It
is easily shown mathematically that the imaginary-time evo-
lution can yield the exact solution of a ground state in the
limit of long-time evolution, provided that the imaginary-time
evolution is treated exactly. The Lanczos method also guaran-
tees to converge to a ground state with a desired accuracy as
the dimension of a Krylov subspace is increased. Although
these methods are well established classically, their quan-
tum versions are still under development, as described above.
There have been various circuit ansatzes proposed in the VQE
scheme such as a unitary coupled cluster ansatz for mostly
quantum chemistry application [5,6,22,23] and a hardware
efficient ansatz [24]. These ansatzes can represent any quan-
tum state, in principle, by increasing the number of gates and
thus the circuit depth [25], and have been implemented in the
NISQ devices with success, particularly for small molecules
[24,26–28].

Here, in this paper, we shall focus on a circuit ansatz
realized by discretizing a quantum adiabatic process from an
initial product state to a final state corresponding to a ground
state of a Hamiltonian to be solved [29–32]. This is inspired
by the quantum approximate optimization algorithm (QAOA)
for combinatorial optimization problems that are represented
as an Ising model [33]. In this paper, this circuit ansatz
is called a discretized quantum adiabatic process (DQAP)
ansatz. An advantage of a DQAP ansatz is the fact that a cir-
cuit constructed by the DQAP can yield the exact ground state
without any parametrization in the continuous circuit limit
because of the quantum adiabatic theorem [34–37]. However,
the convergence of a DQAP ansatz with the finite number
of discretization steps is unknown, in general, and this is the
main issue addressed in this paper.

We thereby study a DQAP ansatz for free fermions on a
one-dimensional lattice at half filling. This is an ideal system
to analyze a DQAP ansatz because a quantum state evolved
by the DQAP with an initial state described by a single
Slater determinant state can still be described by a single
Slater determinant state, and therefore one can keep track of
each occupied single-particle orbital in the Slater determinant
state during the DQAP. In the DQAP ansatz considered here,
we first prepare as the initial state a product state of local
bonding states formed on neighboring sites, which can be
described by a single Slater determinant state. We then let the
state evolve forward via the DQAP by repeatedly applying
layers of two elementary sets of local time-evolution oper-
ators (see Fig. 1), where the evolution time in each layer
of the time-evolution operators is treated as a variational
parameter so as to minimize the variational energy. We ex-
amine how the state described by the DQAP ansatz evolves
with increasing the number M of layers by monitoring the
variational energy, single-particle orbitals in the Slater de-
terminant state, the entanglement entropy, and the mutual
information.
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FIG. 1. Schematic representation of the discretized quantum adi-
abatic process (DQAP) ansatz |ψM (θ)〉, defined in Eq. (31), for the
one-dimensional free-fermion system. Horizontal black solid lines
indicate the local quantum states at sites x (i.e., qubits). Green blocks
denote the local time-evolution operators of the form exp[iθt (ĉ†

x ĉx′ +
ĉ†

x′ ĉx )]. The boundary terms (blocks connecting the top and bottom
black solid lines) involve generally nonlocal operations in the qubit
representation. However, they can be eliminated for the special cases
discussed in the text. The initial state |ψi〉 is given in Eq. (29). Light
yellow squares indicate the local bonding states (ĉ†

2x−1 + ĉ†
2x )|0〉/√2.

We find that the exact ground state is attained by applying
the layers of time-evolution operators as many as a quarter
of the system size, which is the minimum number MB of
layers necessary to entangle the entire system by the local
time-evolution operators, corresponding to the Lieb-Robinson
bound for the propagation of quantum information [38]. In
contrast, the DQAP ansatz with the number M of layers less
than MB, thus not describing the exact ground state, represents
another series of quantum states in that physical quantities
such as the energy and the entanglement entropy evaluated
for these states are independent of the system size but scale
with M, which indicates that the entanglement carried by the
DQAP ansatz with a finite number of layers is bounded, as
in the case of the matrix product states with a finite bond
dimension [39,40]. We also find that the optimized variational
parameters in the DQAP ansatz converge systematically to a
smooth function of the discretized time, which thus provides
the optimized scheduling function for the quantum adiabatic
process. Furthermore, we show that the effective total evolu-
tion time of the optimized DQAP ansatz with MB layers of
the local time-evolution operators, thus representing the exact
ground state, is proportional to the system size L. This is in
sharp contrast to the case of the continuous-time quantum
adiabatic process with a linear scheduling, where the total
evolution time necessary to reach the exact ground state with
a given accuracy is proportional to L2. Indeed, we find that
the intermediate states in the DQAP ansatz cannot represent
the ground state of the instantaneous Hamiltonian, suggesting
that diabaticity of the transition processes in the DQAP ansatz
is essential for the quadratic speedup of the total evolution
time. For comparison, we also investigate the imaginary-time
evolution of the DQAP ansatz, which can still be described
by a single Slater determinant state. We find that the conver-
gence to the ground state is exponentially fast with respect
to the number of layers of the local imaginary-time evolution
operators [41], despite that the system is at the critical point

where the one-particle density matrix decays algebraically
with distance.

The rest of this paper is organized as follows. We first
describe the free-fermion model and establish the notation
used throughout this paper in Sec. II A, and introduce the
DQAP ansatz in Sec. II B. We then provide the analytical for-
mulas for various quantities such as the one-particle density
matrix, entanglement entropy, and mutual information, and
also explain the optimization method in Secs. II C–II E. The
numerical results for the DQAP ansatz are given in Sec. III
and these results are compared with those for the imaginary-
time counterpart in Sec. IV. We then conclude the paper with
a brief discussion in Sec. V. To make our paper self-contained,
the details of the derivation for the free-fermion formulas
are provided in Appendix A. The numerical details of the
optimized parameters are discussed in Appendix B and details
of the entanglement entropy with respect to the one-particle
density matrix are explained in Appendix C. The continuous-
time quantum adiabatic process with a linear scheduling is
analyzed in Appendix D and a geometrically optimal schedul-
ing derived by the quantum adiabatic brachistochrone (QAB)
is discussed in Appendix E. Throughout the paper, we set the
reduced Planck’s constant h̄ = 1.

II. MODEL AND METHOD

In this section, we first define the free-fermion model with
matrix notation in Sec. II A, and introduce a DQAP to con-
struct a variational ansatz in Sec. II B. We then summarize
the analytical formulas for the variational ansatz in the free
fermion case in Sec. II C. The optimization method to opti-
mize the variational parameters is described in Sec. II D. To
discuss the entanglement property, we also derive the ana-
lytical formulas of the reduced density matrix, entanglement
entropy, and mutual information for a free-fermion wave func-
tion in Sec. II E.

A. Model

The free-fermion system considered in this paper is de-
scribed by the following Hamiltonian:

Ĥ =
L∑

x=1

L∑
x′=1

txx′ ĉ†
x ĉx′ , (1)

where ĉx (ĉ†
x ) denotes the annihilation (creation) operator of a

fermion at site x ∈ {1, 2, · · · , L}. For convenience, we repre-
sent the Hamiltonian in Eq. (1) as

Ĥ = ĉ†Tĉ, (2)

where ĉ† (ĉ) is an L-dimensional row (column) vector of the
fermion operators given by

ĉ† = (ĉ†
1 ĉ†

2 · · · ĉ†
L ), ĉ =

⎛
⎜⎜⎝

ĉ1

ĉ2
...

ĉL

⎞
⎟⎟⎠, (3)

and T is an L × L matrix whose elements are given by
[T ]xx′ = txx′ .
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Let U be an L × L unitary matrix that diagonalizes the
matrix T as

U†TU = E, (4)

where E is the L × L diagonal matrix whose diagonal ele-
ments are the eigenvalues of T : E = diag(E1, E2, · · · , EL ).
Here, we assume En (n = 1, 2, · · · , L) in ascending order,
i.e., E1 � E2 � · · · � EL. Using the unitary matrix U , one can
define the new fermion operators

â† = (â†
1 â†

2 · · · â†
L ), â =

⎛
⎜⎜⎝

â1

â2
...

âL

⎞
⎟⎟⎠ (5)

given by

â† = ĉ†U , â = U†ĉ, (6)

and the Hamiltonian Ĥ in Eq. (1) is represented as

Ĥ = â†Eâ =
L∑

n=1

Enâ†
nân. (7)

The ground state of the Hamiltonian Ĥ with N fermions
is a state with the lowest N energy levels in Eq. (7) being
occupied, i.e.,

|ψ〉 =
N∏

n=1

â†
n|0〉, (8)

where |0〉 is the vacuum of fermions. Using the original
fermion operator ĉ†, the ground state in Eq. (8) is now ex-
pressed as

|ψ〉 =
N∏

n=1

[ĉ†�]n|0〉, (9)

where � is an L × N matrix obtained by extracting the first
N columns from U . [ĉ†�]n indicates the nth element of the N
dimensional row vector ĉ†�.

It is important to note that the row index x of [�]xn in-
dicates the site index while the column index n is the index
labeling the single-particle state with the single-particle en-
ergy En obtained by diagonalizing the matrix T . [ĉ†�]n in
Eq. (9) thus corresponds to the nth single-particle orbital that
composes the Slater determinant state of the ground state |ψ〉.
Hereafter, we simply refer to the column vectors of � as
single-particle orbitals.

B. Variational ansatz based on a discretized quantum
adiabatic process

The quantum adiabatic process is a quantum process fol-
lowing the quantum adiabatic theorem [34–37], in which a
slowly driving system in time from an initial eigenstate, the
ground state of Hamiltonian Ĥi, stays in the instantaneous
eigenstate of the time evolving Hamiltonian Ĥ(τ ) at time τ

and finally reaches to the ground state of Hamiltonian Ĥf .
Here the time evolving Hamiltonian Ĥ(τ ) is expressed as

Ĥ(τ ) = si(τ )Ĥi + sf (τ )Ĥf , (10)

with si(τ ) and sf (τ ) being the scheduling functions that are
smooth and satisfy the conditions

si(τi ) = sf (τf ) = 1,

si(τf ) = sf (τi ) = 0,
(11)

where τi and τf denote the initial and final times of the process,
respectively. The final state |ψ (τf )〉 at τ = τf after the time
evolution is thus given as

|ψ (τf )〉 = Û (τf , τi )|ψi〉, (12)

where Û (τ, τi ) is the time-evolution operator obtained by
solving the Schrödinger’s equation

i
∂

∂τ
Û (τ, τi ) = Ĥ(τ )Û (τ, τi ), (13)

with Û (τi, τi ) = 1 and |ψi〉 is the ground state of Ĥi.
It is well-known that for a sufficiently long time τf − τi, im-

plying a slow driving dynamics, the initial state |ψ (τi )〉 = |ψi〉
is adiabatically transformed into the ground state of the final
Hamiltonian Ĥf through this adiabatic process if there is a fi-
nite energy gap between the ground state and the excited states
of Ĥ(τ ) for all τ [42,43]. A quantum adiabatic process is
a real-time dynamics governed by the unitary time-evolution
operator in Eq. (12). This should be contrasted with the case
of the imaginary-time evolution where the imaginary-time
evolution operator is no longer unitary. Since all operations in
quantum computers are composed of unitary gate operations,
a quantum adiabatic process would be a natural principle to
follow in constructing a circuit ansatz for obtaining a ground
state of a Hamiltonian in a quantum circuit.

We shall now consider the case where the final Hamil-
tonian Ĥf in Eq. (10) is composed of a set of terms V̂p

(p = 1, 2, · · · , P),

Ĥf =
P∑

p=1

V̂p, (14)

such that, in general, [V̂p, V̂p′ ] 	= 0 when p 	= p′. Here, we
assume that each V̂p consists of a set of operators

V̂p =
Qp∑

q=1

Ô(p)
q , (15)

where all operators Ô(p)
q commute with each other for

given p: [
Ô(p)

q , Ô(p)
q′

] = 0. (16)

In addition, we assume that the initial Hamiltonian Ĥi in
Eq. (10) is given by one of V̂p’s in Ĥf and here we consider

Ĥi = V̂1. (17)

Then, the time-evolution operator is written in the follow-
ing form:

Û (τf , τi ) = Tτ e−i
∫ τf
τi

Ĥ(τ )dτ = lim
M→∞

1∏
m=M

Ûd(θm)

= lim
M→∞

Ûd(θM )Ûd(θM−1) · · · Ûd(θ1), (18)
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with

Ûd(θm) =
P∏

p=1

e−iθ (m)
p V̂p

= e−iθ (m)
1 V̂1 e−iθ (m)

2 V̂2 · · · e−iθ (m)
P V̂P , (19)

where θm = {θ (m)
p }P

p=1 should be chosen as

θ (m)
p =

{
[si(τm) + sf (τm)]δτ for p = 1
sf (τm)δτ for p 	= 1,

(20)

with

δτ = (τf − τi )/M, (21)

τm = τi + mδτ, (22)

to reproduce Û (τf , τi ) in the limit of M → ∞. This is the most
naive discretization procedure of time in the time-evolution
operator Û (τf , τi ) and the ground state of Ĥf is obtained by
operating Û (τf , τi ) to the initial state |ψi〉 as in Eq. (12).

The simplest scheduling functions si(τ ) and sf (τ ) that sat-
isfy the conditions given in Eqs. (11) are a linear scheduling,
i.e.,

si(τ ) = 1 − τ − τi

T
,

sf (τ ) = τ − τi

T
,

(23)

where T = τf − τi [43,44]. In this case,

θ (m)
p =

{
δτ for p = 1
m
M δτ for p 	= 1.

(24)

Inspired by the quantum adiabatic process described above,
here we instead consider, as a variational ansatz for the ground
state of Ĥf , the following state with a finite value of M:

|ψM (θ)〉 =
1∏

m=M

Ûd(θm)|ψi〉

= Ûd(θM )Ûd(θM−1) · · · Ûd(θ1)|ψi〉, (25)

where θ = {θm}M
m=1 are assumed to be variational parameters

determined by minimizing the variational energy. This vari-
ational state |ψM (θ)〉 in Eq. (25) is referred to as a DQAP
ansatz.

Let us now illustrate the DQAP ansatz for the free-fermion
system given in Eq. (1). For simplicity, we assume that the
system is one-dimensional and the final Hamiltonian Ĥf is
given by

Ĥf = −t
L−1∑
x=1

(ĉ†
x+1ĉx + ĉ†

x ĉx+1) − tγ (ĉ†
1ĉL + ĉ†

Lĉ1), (26)

where γ sets the boundary conditions: γ = 1 for the periodic
boundary conditions (PBCs) and γ = −1 for the antiperiodic
boundary conditions (APBCs). We also assume that the num-
ber L of sites is even and the number N of fermions is at half
filling, i.e., N = L/2. In what follows, we set t = 1 as a unit
of the energy.

For this system, V̂p (p = 1, 2) is given by

V̂1 = −t
L/2∑
x=1

(ĉ†
2xĉ2x−1 + ĉ†

2x−1ĉ2x ) (27)

and

V̂2 = − t
L/2−1∑

x=1

(ĉ†
2x+1ĉ2x + ĉ†

2xĉ2x+1)

− tγ (ĉ†
1ĉL + ĉ†

Lĉ1).

(28)

The initial state |ψi〉 is the ground state of V̂1 given by

|ψi〉 =
L/2∏
x=1

1√
2

(ĉ†
2x−1 + ĉ†

2x )|0〉. (29)

Here, the state

1√
2

(ĉ†
2x−1 + ĉ†

2x )|0〉 (30)

is the local bonding state formed between sites 2x − 1 and 2x.
The form of Eq. (29) suggests that the initial state |ψi〉 is a
product state of local states, as is expected from the assump-
tion in Eq. (15). Using Eqs. (27)–(29), the DQAP ansatz is
written as

|ψM (θ)〉 =
1∏

m=M

(
e−iθ (m)

1 V̂1 e−iθ (m)
2 V̂2

)|ψi〉. (31)

The schematic representation of this state is shown in Fig. 1.
We shall now discuss how this DQAP ansatz can be de-

scribed in the qubit representation for quantum computing.
First, a fermion system can always be mapped in the qubit
representation through, e.g., the Jordan-Wigner transforma-
tion [45],

ĉ†
x = σ̂+

x K̂ (x),

ĉx = K̂†(x)σ̂−
x ,

(32)

where

K̂ (x) = e−i π
2

∑
x′<x (Ẑx′+1), (33)

σ̂±
x = (X̂x ± iŶx )/2, and {X̂x, Ŷx, Ẑx} are the Pauli operators

(i.e., gates) at qubit x. Notice that [σ̂±
x , K̂ (†)(x)] = 0 and from

Eq. (32) ĉ†
x ĉx = 1

2 (Ẑx + 1). With this transformation, any lo-
cal fermion operator acting up to nearest-neighbor sites in a
one-dimensional system can be represented by Pauli operators
without introducing the sign factors due to the Jordan-Wigner
string K̂ (x), suggesting that the fermion representation is triv-
ially equivalent to the qubit representation, except for the
boundary terms. Indeed, the sign factors at the boundary are
also canceled if an APBC (PBC) is imposed when N is even
(odd).

In this case, the one-dimensional free-fermion system in
Eq. (26) under both PBCs and APBCs is mapped onto the
spin-1/2 XY model,

Ĥspin = −t
L∑

x=1

(σ̂+
x+1σ̂

−
x + σ̂−

x+1σ̂
+
x ), (34)
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FIG. 2. (a) Quantum circuit representing the local time-evolution
operator exp[iθt (σ̂+

x σ̂−
x′ + σ̂−

x′ σ̂
+
x )], composed of two CNOT gates

and six single-qubit unitary gates. Ŵ = eiπX̂/4, R̂X(h) = e−ihX̂, and
R̂Z(h) = e−ihẐ with h = θt . In the control-NOT gate Ĉx (X̂x′ ), a black
circle denotes the control qubit and an open plus circle indicates the
X̂ operation. (b) Preparation of the initial bonding state in a quantum
circuit.

with σ̂±
L+1 = σ̂±

1 (i.e., PBCs). Here, σ̂+
x (σ̂−

x ) represents the lo-
cal operator to flip the qubit state from |1〉x (|0〉x) to |0〉x (|1〉x),
but not the other way around, where |σ 〉x (σ = 0, 1) denotes
the local state at qubit x in the Pauli z basis. As shown in
Fig. 2(a), the local time-evolution operator exp[iθt (σ̂+

x σ̂−
x′ +

σ̂−
x′ σ̂

+
x )] can be implemented in a quantum circuit [46–48]. It

should also be noted that the condition of N being even (odd)
for APBCs (PBCs) corresponds to the closed shell condition
in the free-fermion system.

With the Jordan-Wigner transformation, the fermion vac-
uum state |0〉 is mapped to

∏L
x=1 |1〉x, and therefore the initial

state |ψi〉 in Eq. (29) can be mapped in the qubit representation
onto

L/2∏
x=1

1√
2

(|0〉2x−1|1〉2x + |1〉2x−1|0〉2x ), (35)

i.e., a product state of spin-triplet states. As shown in Fig. 2(b),
each spin-triplet state 1√

2
(|0〉2x−1|1〉2x + |1〉2x−1|0〉2x ) can be

generated as

Ĉ2x−1(X̂2x )Ĥ2x−1X̂2x|0〉2x−1|0〉2x. (36)

Here, Ĉx(X̂x′ ) denotes the control-NOT gate acting on qubit
x′ with the control qubit at qubit x, and Ĥx indicates the
Hadamard gate acting on qubit x.

Finally, we briefly note that for a more general fermion sys-
tem in higher spatial dimensions with a long-range hopping,
the phase factors due to the Jordan-Wigner strings cannot be
canceled and yield many-body interactions in the qubit rep-
resentation. In principle, these many-body interactions can be
treated as two-qubit operations by using, for example, the per-
turbative gadgets [49]. However, these techniques introduce
additional sources of errors. Therefore, we leave the general
cases for a future study and focus here on the one-dimensional
system.

C. Useful properties of the DQAP ansatz for free fermions

The DQAP ansatz for the free-fermion system introduced
in the previous section generally has the following form:

|ψ (θ)〉 =
1∏

k=K

e−iŴkθk |ψ0〉

=e−iŴK θK · · · e−iŴ2θ2 e−iŴ1θ1 |ψ0〉, (37)

where Ŵk (k = 1, 2, · · · , K) is a Hermitian single-particle
operator given by

Ŵk = ĉ†W k ĉ, (38)

and |ψ0〉 is a ground state of an N-fermion system defined by
the following single-particle Hamiltonian:

Ŵ0 = ĉ†W 0ĉ, (39)

thus representing a Slater determinant state of N fermions. We
can now easily show that |ψ (θ)〉 in Eq. (37) is more compactly
written as

|ψ (θ)〉 =
N∏

n=1

[ĉ†�K ]n|0〉, (40)

where

�K =
1∏

k=K

e−iθkW k �0, (41)

and �0 is an L × N matrix such that the nth column of �0

is the eigenstate of W 0 with the nth lowest eigenvalue. The
derivation of Eq. (40) is given in Appendix A. Equations
(40) and (41) imply that a state initially prepared as a single
Slater determinant state evolves in time, realized by repeatedly
applying the unitary time-evolution operators, into a state that
can still be represented as a single Slater determinant state.
Therefore, we can even discuss the time evolution of each
constituent single-particle orbital in the Slater determinant
state.

It is also readily shown that the overlap between two N-
fermion states |ψ〉 and |φ〉 is calculated as

〈ψ |φ〉 = det[�†�], (42)

where |ψ〉 is an N-fermion state given in Eq. (9) but for any
� and

|φ〉 =
N∏

n=1

[ĉ†�]n|0〉, (43)

with � being an L × N matrix. We can also show the follow-
ing useful formula:

Gxx′ = 〈ψ |ĉ†
x ĉx′ |φ〉

〈ψ |φ〉 = tr[�(�†�)−1�†δxx′]

= [�(�†�)−1�†]x′x, (44)

where tr[A] indicates the trace of a matrix A and δxx′ is an L ×
L matrix whose elements are given by [δxx′]x1x2

= δxx1δx′x2 . We
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can furthermore derive that, for example,

〈ψ |ĉ†
x ĉ†

y ĉy′ ĉx′ |φ〉
〈ψ |φ〉 = Gxx′Gyy′ − Gxy′Gyx′ , (45)

which is simply the Wick’s theorem.

D. Optimization method

In this paper, we employ the natural gradient method to
optimize the variational parameters in the variational wave
function. Here we briefly summarize this optimization method
for the DQAP ansatz.

The natural gradient method was originally introduced in
the context of machine learning [50,51]. However, essentially
the same method has also been independently proposed to
optimize a many-body variational wave function [52] and
has been successfully applied to various systems in quantum
chemistry and condensed-matter physics [53,54]. This method
has also been proposed recently in the context of quantum
computing as a way to optimize a parametrized quantum
circuit [55] and is nicely summarized in Ref. [56].

It is now well-known that there are several ways to derive
this optimization method [57]. A simple way is the formu-
lation based on an infinitesimal imaginary-time evolution in
the variational parameter space. In this case, we determine the
new variational parameters θnew = θ + δθ so as to satisfy

|ψ (θ + δθ)〉 ∝ (1 − δβĤ)|ψ (θ)〉, (46)

where |ψ (θ)〉 is given in Eq. (37) with K variational parame-
ters θ = {θ1, θ2, · · · , θK}, Ĥ is the Hamiltonian to be solved,
in our case, given in Eq. (1), and δβ is an infinitesimal real
number. Assuming that the variational parameters are all real,
δθ is then determined as

δθ = argmin
δθ

[d2(|ψ (θ + δθ)〉, (1 − δβĤ)|ψ (θ)〉)], (47)

where d (|ψ〉, |φ〉) is a distance between two quantum states
|ψ〉 and |φ〉 and is given by

d2(|ψ〉, |φ〉) = 1 − 〈ψ |φ〉〈φ|ψ〉
〈ψ |ψ〉〈φ|φ〉 , (48)

i.e., essentially the same as the fidelity, assuming that the two
states |ψ〉 and |φ〉 are not generally normalized.

Expanding d2(|ψ (θ + δθ)〉, (1 − δβĤ)|ψ (θ)〉) up to the
second order of δθ and δβ, we obtain the following quadratic
form:

d2(|ψ (θ + δθ)〉, (1 − δβĤ)|ψ (θ)〉)

≈ δθt Sδθ + δβ(δθt f + f †δθ) + δβ2Ē2, (49)

where δθ on the right-hand side is a K-dimensional column
vector with the kth element being δθk , S is a K × K matrix
given by

[S]kk′ = 〈∂kψ (θ)|∂k′ψ (θ)〉
〈ψ (θ)|ψ (θ)〉

− 〈∂kψ (θ)|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉

〈ψ (θ)|∂k′ψ (θ)〉
〈ψ (θ)|ψ (θ)〉 , (50)

with

∂k = ∂

∂θk
, (51)

f is a K-dimensional column vector given by

[ f ]k = 〈∂kψ (θ)|Ĥ|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉

− 〈∂kψ (θ)|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉

〈ψ (θ)|Ĥ|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉 ,

(52)

and Ē2 is the variance of the Hamiltonian Ĥ given by

Ē2 = 〈ψ (θ)|Ĥ2|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉 −

( 〈ψ (θ)|Ĥ|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉

)2

. (53)

Here, we assume that |ψ (θ)〉 is not normalized and thus these
formulas can be used in general cases. Note also that S is
Hermitian, i.e., S† = S.

The stationary point of the quadratic equation given in
Eq. (49) is now easily obtained by solving the following linear
equation:

(S + S∗)δθ = −δβ( f + f ∗). (54)

Notice that since S + S∗ and f + f ∗ are both real, the solu-
tion δθt = (δθ1, δθ2, · · · , δθK ) is guaranteed to also be real.
We can thereby obtain the new variational parameters θnew =
θ + δθ by solving the above linear equation, in which δβ is
learning rate and can be chosen properly.

We can now easily show that

δE = 〈ψ (θnew)|Ĥ|ψ (θnew)〉
〈ψ (θnew)|ψ (θnew)〉 − 〈ψ (θ)|Ĥ|ψ (θ)〉

〈ψ (θ)|ψ (θ)〉
≈

∑
k

δθk ([ f ]k + [ f ]∗k )

= − 1

δβ
δθt (S + S∗)δθ. (55)

Since S + S∗ = 2Re[S] is a positive semidefinite matrix [9],
δE � 0 as long as δβ > 0. We should also note that if we
expand the following quantity:

d2(|ψ (θ)〉, |ψ (θ + δθ)〉) = δθt Sδθ + O
(
δθ3

k

)
, (56)

the matrix S defined in Eq. (50) naturally appears. There-
fore, S can be regarded as a metric tensor for the distance
d (|ψ〉, |φ〉) in the parameter space θ.

Using Eqs. (42) and (44), we can explicitly derive the forms
of S and f , respectively, for the variational state given in
Eq. (37) as

[S]kk′ = tr[(∂k�
†
K )(∂k′�K )] − tr[(∂k�

†
K )�K�†

K (∂k′�K )]
(57)

and

[ f ]k = tr[(∂k�
†
K )T�K ] − tr[(∂k�

†
K )�K�†

K T�K ], (58)

where we have used that �†
K�K = IN and IN is the N-

dimensional unit matrix. This condition corresponds to the
fact that the single-particle orbitals in �K are orthonormal-
ized, and the generalization to the case where they are not
orthonormalized is described in Sec. IV. ∂k�K is an L × N
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matrix defined as the first derivative of �K given in Eq. (41)
with respect to the kth variational parameter θk , i.e.,

∂k�K = −i

(
k+1∏
l=K

e−iθlW l

)
W k

(
1∏

l=k

e−iθlW l

)
�0. (59)

Finally, notice that the update formula given in Eq. (54) can
be regarded as an extension of the steepest descent algorithm
that corresponds to the case when the metric tensor S is
the unit matrix. This indicates that the optimization method
described here cannot exceed the limitation of the locality of
the search space in general. However, we find that this is not a
problem in our case since we can easily obtain the optimal
results without any difficulty. The details of this point are
found in Appendix B.

E. Entanglement entropy for free fermions

The entanglement von Neumann entropy is a measure to
quantify the quantum entanglement between a subspace and
its complement of a quantum state, and has been used to
characterize various quantum states. The formula is quite sim-
plified for free-fermion systems and here we briefly outline
how the entanglement entropy is calculated.

Let A = {x1, x2, · · · , xLA} be a subset of sites (the number
of sites in A being LA) that are picked out of the all sites
U = {1, 2, · · · , x, · · · , L}. Let B be the complementary sub-
space of A: B = A. We also assume that |ψ〉 is a normalized
quantum state and can be represented by using the basis on U .
The reduced density matrix ρ̂A of subspace A is given by

ρ̂A = TrB[|ψ〉〈ψ |], (60)

where TrB indicates the trace over all bases defined on sub-
space B. The entanglement entropy SA of subspace A is
defined by using this reduced density matrix ρ̂A as

SA = −TrAρ̂A ln ρ̂A, (61)

where TrA is the trace over all bases defined on subspace A.
Notice first that the expectation value of any physical quan-

tity ÔA defined on subspace A can be obtained by using the
reduced density matrix ρ̂A as

〈ψ |ÔA|ψ〉 = TrA[ρ̂AÔA]. (62)

For the fermion system, ÔA is generally composed of a
product of ĉx and ĉ†

x with x ∈ A. Therefore, when |ψ〉 is a
single-particle state, we can use the Wick’s theorem [see, for
example, Eq. (45)]. This implies that ρ̂A can be written as

ρ̂A = e−ĉ†
A�ĉA/TrA[e−ĉ†

A�ĉA ], (63)

where ĉ†
A and ĉA are similar to those in Eqs. (3) but the

elements here are fermion operators ĉ†
x and ĉx with x ∈ A, and

� is an LA × LA Hermitian matrix [58]. Indeed, one can derive
the matrix � directly from a given single Slater determinant
state |ψ〉 [58,59]. Here, we shall follow a different route [60].

Since the Wick’s theorem can decompose the expectation
value of any operator into a product of one-particle density
matrices, we can determine � by equating the expectation
values of the single-particle operator ĉ†

x ĉx′ , i.e., 〈ψ |ĉ†
x ĉx′ |ψ〉

with TrA[ρ̂Aĉ†
x ĉx′]. To this end, let us introduce the following

LA × LA one-particle density matrix:

DA = 〈ψ |ĉ∗
Aĉt

A|ψ〉, (64)

where ĉ∗
A (ĉt

A) is the matrix transpose of ĉ†
A (ĉA) and |ψ〉 is

a single Slater determinant state given by the form of Eq. (9).
Using Eq. (44), each element of DA can be obtained as

[DA]xx′ = tr[(�†�)−1�†δxx′�] = [�(�†�)−1�†]x′x (65)

for x, x′ ∈ A. Since DA is an LA × LA Hermitian matrix, we
can then diagonalize this matrix DA as

DA = V�V †, (66)

where V denotes the unitary matrix composed of the eigenvec-
tors of matrix DA and � is the diagonal matrix whose diagonal
elements correspond to the eigenvalues δl (l = 1, 2, · · · , LA)
of matrix DA: � = diag(δ1, δ2, · · · , δLA ).

Let us also define the following LA × LA matrix:

D′
A = TrA

[
ρ̂Aĉ∗

Aĉt
A

]
, (67)

assuming that ρ̂A is given in Eq. (63). We then obtain that

D′
A = U∗

A

(
ILA + e�

)−1
U t

A, (68)

where ILA is the LA-dimensional unit matrix, UA is the unitary
matrix composed of the eigenvectors of matrix �, and �

is the diagonal matrix whose diagonal elements correspond
to the eigenvalues λl (l = 1, 2, · · · , LA) of matrix �: � =
diag(λ1, λ2, · · · , λLA ). Because of Eq. (62), we now impose
that DA = D′

A. Comparing Eqs. (66) and (68), we obtain that

UA = V ∗ (69)

and

� = ln
(
ILA − �

) − ln �. (70)

Therefore, we finally find that

� = V ∗( ln
(
ILA − �

) − ln �
)
V t . (71)

Giving the form of the reduced density matrix ρ̂A in
Eq. (63), the entanglement entropy SA defined in Eq. (61) can
now be written as

SA = tr
[
�

(
ILA + e�

)−1 + ln
(
ILA + e−�

)]
. (72)

Using Eq. (70), we can show that the entanglement entropy
SA is simply given as

SA = −tr
[(
ILA − �

)
ln

(
ILA − �

) + � ln �
]
. (73)

Therefore, the entanglement entropy SA is determined solely
from the eigenvalues of the one-particle density matrix DA.
Note that the eigenvalues of DA are bounded as 0 � δl � 1. In
the context of quantum chemistry, the eigenvectors of DA are
called the natural orbitals and the eigenvalue δl corresponds to
the density of each natural orbital. Since the LA × LA matrices
inside the trace in Eq. (73) are all diagonal, we can discuss
separately the individual contribution of the natural orbitals to
the entanglement entropy SA. For example, the contribution
to SA is maximum when δl = 0.5, while it is minimum when
δl = 0 or δl = 1. This implies that when δl = 0.5, the cor-
responding natural orbital in subspace A is highly hybridized
with orbitals in subspace B, giving an intuition of the quantum
entanglement in the free-fermion system.
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As described above, the entanglement entropy SA is a mea-
sure to quantify the quantum entanglement between subspaces
A and B = A. Instead, it is often required to discuss how the
quantum state is entangled between a subspace A ⊂ U and
another subspace B ⊂ U with A ∩ B = ∅ and A ∪ B 	= U .
One of the quantities for this purpose is the mutual informa-
tion IA,B defined by

IA,B = SA + SB − SA∪B. (74)

We consider a special case when A = {x} and B = {x′}, and
the mutual information Ix,x′ for this special case is

Ix,x′ = S{x} + S{x′} − S{x,x′}. (75)

There are several remarks on Ix,x′ . First, D{x} = Dx =
〈ψ |ĉ†

x ĉx|ψ〉, which is the density of fermions at site x. There-
fore, if the system is homogenous, Dx is independent of x and
Dx = N/L. When the system is at half filling, Dx = 0.5 and
thus S{x} = ln 2, which is the maximum value of the entan-
glement entropy for a single site. Second, Ix,x′ is determined
by S{x,x′}, which can be calculated from the eigenvalues of the
one-particle density matrix:

D{x,x′} =
(〈ψ |ĉ†

x ĉx|ψ〉 〈ψ |ĉ†
x ĉx′ |ψ〉

〈ψ |ĉ†
x′ ĉx|ψ〉 〈ψ |ĉ†

x′ ĉx′ |ψ〉
)

. (76)

Since the diagonal term is 0.5 when the system is homogenous
at half filling, the off-diagonal elements determine the value of
Ix,x′ . For example, if |〈ψ |ĉ†

x ĉx′ |ψ〉| = 0.5, we find that S{x,x′} =
0 and thus Ix,x′ = 2 ln 2. In contrast, if 〈ψ |ĉ†

x ĉx′ |ψ〉 = 0, we
find that S{x,x′} = 2 ln 2 and thus Ix,x′ = 0.

III. NUMERICAL RESULTS

Here, we show the results of numerical simulations for the
one-dimensional free-fermion system described in Eq. (26)
and examine how the DQAP ansatz |ψM (θ)〉 given in Eq. (31)
approaches the exact ground state with increasing the number
M of layers of the local time-evolution operators (see Fig. 1).
We focus on the fermion density at half filling, i.e., N = L/2
and use the natural gradient method described in Sec. II D
to optimize the variational parameters θ in the DQAP ansatz
|ψM (θ)〉.

A. Convergence of ground-state energy

We optimize the variational parameters θ =
{θ (1)

1 , θ
(1)
2 , · · · , θ

(M )
1 , θ

(M )
2 } in the DQAP ansatz |ψM (θ)〉

given in Eq. (31) so as to minimize the variational energy

EM (L) = 〈ψM (θ)|Ĥ|ψM (θ)〉 (77)

for a given system size L. In order to check the convergence
of the variational energy, Fig. 3(a) shows the energy difference
�E = EM (L) − Eexact (L) from the exact energy Eexact (L) for
various system sizes L as a function of M. Here, we use
L = 4nL (nL: integer) with APBCs and thus the closed shell
condition is satisfied for the ground state (see Sec. II B).
As shown in Fig. 3(a), �E monotonically decreases with
increasing M and we obtain that �E = 0 within the machine
precision exactly at M = L/4 for all values of L studied [61].

To better understand this observation, let us examine
closely how the expectation value of the energy for the DQAP
ansatz |ψM (θ)〉 in Eq. (77) is evaluated. For this purpose,

FIG. 3. (a) Energy difference �E = EM (L) − Eexact (L) between
the variational energy EM (L) and the exact energy Eexact (L) as a
function of M/L for various system sizes L. (b) Energy difference
�ε = EM (L)/L − ε∞ as a function of M for various system sizes
L, where ε∞ = limL→∞ Eexact (L)/L = −2|t |/π is the exact energy
per site in the thermodynamic limit. Purple line indicates �εA =
Eexact (L)/L − ε∞ with L = 4M. Inset: Logarithmic plot of |�ε|. The
results are obtained under APBCs.

we should notice that the energy expectation value is essen-
tially given simply by the sum of terms 〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉
(and also 〈ψM (θ)|ĉ†

x+1ĉx|ψM (θ)〉 but it is basically the same
as 〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉 for the purpose of the discussion
here) over all x’s. Therefore, it is adequate to consider each
term separately. Because of the form of construction for
the DQAP ansatz |ψM (θ)〉, there are two different cases of
〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉: the operator ĉ†
x ĉx+1 acts (i) over two

neighboring local time-evolution operators eitθ (M )
1 (ĉ†

x−1 ĉx+ĉ†
x ĉx−1 )

and eitθ (M )
1 (ĉ†

x+1 ĉx+2+ĉ†
x+2 ĉx+1 ), as schematically shown in Fig. 4(a),

and acts (ii) only on a single local time-evolution operator
eitθ (M )

1 (ĉ†
x ĉx+1+ĉ†

x+1 ĉx ), as shown in Fig. 4(b).
Let us first consider case (i). In this case,

〈ψM (θ)|ĉ†
x ĉx+1|ψM (θ)〉

= 〈ψi|
M∏

m=1

(
eiθ (m)

2 V̂ (m)
2 eiθ (m)

1 V̂ (m)
1

)
ĉ†

x ĉx+1

×
1∏

m=M

(
e−iθ (m)

1 V̂ (m)
1 e−iθ (m)

2 V̂ (m)
2

)|ψi〉, (78)
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FIG. 4. Schematic figures of a causality structure for the propagation of quantum entanglement via the local unitary time-evolution
operators when 〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉 is evaluated. Each green block with H shape indicates the local unitary time-evolution operator and
light yellow objects at the left and right ends indicate the local bonding states composing the initial state |ψi〉. The operator ĉ†

x ĉx+1, indicated by
orange squares at the center, acts (a) over two neighboring local time-evolution operators and (b) only on a single local time-evolution operator.
The local unitary time-evolution operators in the shaded regions do not contribute to the expectation value because these unitary operators are
canceled when 〈ψM (θ)| and |ψM (θ)〉 are multiplied form the left and right sides, respectively. �i (�ii) is the number of sites (i.e., qubits) that are
relevant to the expectation value. �i = 16 in (a) and �ii = 14 in (b), where M = 3.

where

V̂ (m)
1 = −t

x+2(M−m)+1∑
y=x−2(M−m)−1

(ĉ†
y ĉy+1 + ĉ†

y+1ĉy) (79)

and

V̂ (m)
2 = −t

x+2(M−m)+2∑
y=x−2(M−m)−2

(ĉ†
y ĉy+1 + ĉ†

y+1ĉy), (80)

assuming that L � 4M + 2. Namely, one can eliminate many
of the local unitary time-evolution operators in the expec-
tation value due to the cancellations of the left and right
sides of the product, as illustrated in Fig. 4(a). The number
�i of sites (i.e., qubits) that contribute to the local expec-
tation value 〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉 is linearly dependent on
M: �i = 4M + 4 [62]. This implies that the propagation of
quantum entanglement via the local time-evolution operators
is bounded in space and this boundary forms a causality-cone-
like structure shown schematically in Fig. 4(a). This upper
limit on the propagation speed is known as the Lieb-Robinson
bound [38].

In case (ii), we can also evaluate the local expectation value
〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉 in the same manner as in Eq. (78)
except that now

V̂ (m)
1 = −t

x+2(M−m)∑
y=x−2(M−m)

(ĉ†
y ĉy+1 + ĉ†

y+1ĉy) (81)

and

V̂ (m)
2 = −t

x+2(M−m)+1∑
y=x−2(M−m)−1

(ĉ†
y ĉy+1 + ĉ†

y+1ĉy), (82)

assuming that L � 4M. Therefore, in this case, the num-
ber �ii of sites that contribute to the local expectation value
〈ψM (θ)|ĉ†

x ĉx+1|ψM (θ)〉 is also linearly dependent on M: �ii =
4M + 2 [62]. This sets the boundaries of a causality-cone-like

structure in Fig. 4(b), within which the quantum entanglement
is developed.

To reach the exact ground-state energy for a given system
size L, �i and �ii have to be equal to or exceed the system size
L, which corresponds to

M � �(L − 2)/4�, (83)

with �z� being the smallest integer greater than or equal to
z. This condition is independent of the boundary conditions
because Eqs. (78)–(82) do not depend on the boundary condi-
tions. The fact that the exact ground-state energy is obtained
exactly when M = L/4 found in Fig. 3(a) (recall that we
choose L = 4nL with nL integer, there) implies that the exact
ground state is constructed in the DQAP ansatz |ψM (θ)〉 with
the shortest possible depth MB = �(L − 2)/4� set by the Lieb-
Robinson bound. The same conclusion is also reached in the
case when the PBC is employed [61].

We should also note that, as indicated in Fig. 4,
the causality-cone-like structure of the local unitary time-
evolution operators contributing to the local expectation value
does not depend on system size L. As a consequence, we
expect that the optimized variational energy per site would
not depend on L as along as L > 4M + 2 (= �ii ). Indeed, as
shown in Fig. 3(b), the optimized variational energies per site
with a given value of M are exactly the same for different
values of L until M reaches the boundary at M = L/4 for
APBCs [63], where the variational energy abruptly changes to
the exact value for the system size L. Moreover, we find that
the optimized variational energy per site for M < (L − 2)/4
under PBCs is identical to that for the same M (but M < L/4)
under APBCs. We should note that a similar analysis for
the transverse-field Ising model has also been reported in
Ref. [30].
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B. Time-evolution of single-particle orbitals

We now explore how the DQAP ansatz |ψM (θ)〉 is evolved
by applying the local time-evolution operators. Following the
argument in Sec. II C, the DQAP ansatz |ψM (θ)〉 given in
Eq. (31) can be written as

|ψM (θ)〉 =
N∏

n=1

[ĉ†�M]n|0〉, (84)

where

�M =
1∏

m=M

(
e−iθ (m)

1 V 1 e−iθ (m)
2 V 2

)
�i. (85)

Here, V 1 and V 2 are L × L matrices representing V̂1 and V̂2

given in Eqs. (27) and (28), respectively, i.e.,

V̂1 = ĉ†V 1ĉ, V̂2 = ĉ†V 2ĉ, (86)

with

V 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −t 0 0 · · · 0 0
−t 0 0 0 · · · 0 0
0 0 0 −t · · · 0 0
0 0 −t 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 −t
0 0 0 0 · · · −t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(87)

and

V 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 −γ t
0 0 −t 0 · · · 0 0
0 −t 0 0 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0
−γ t 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (88)

and �i is the L × N matrix representing the initial state |ψi〉 in Eq. (29), i.e.,

|ψi〉 =
N∏

n=1

[ĉ†�i]n|0〉, (89)

with

�i = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(90)

and the number N of fermions being L/2.
It should be noted that since V 1 and V 2 are both block diagonal matrices with each block being a 2 × 2 matrix, these can

easily be exponentiated as

e−iθV 1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θt i sin θt 0 0 · · · 0 0
i sin θt cos θt 0 0 · · · 0 0

0 0 cos θt i sin θt · · · 0 0
0 0 i sin θt cos θt · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos θt i sin θt
0 0 0 0 · · · i sin θt cos θt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(91)
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and

e−iθV 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θt 0 0 0 · · · 0 iγ sin θt
0 cos θt i sin θt 0 · · · 0 0
0 i sin θt cos θt 0 · · · 0 0
0 0 0 cos θt · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos θt 0
iγ sin θt 0 0 0 · · · 0 cos θt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (92)

It is also apparent from Eq. (90) that each column vector in
�i corresponds to a single-particle orbital, representing the
local bonding state 1√

2
(ĉ†

2x−1 + ĉ†
2x )|0〉 in this case given in

Eq. (30), which constitutes the Slater determinant state |ψi〉
for N fermions. Therefore, we can now clearly understand that
the time-evolved state |ψM (θ)〉 from a state initially prepared
as a single Slater determinant state |ψi〉 can still be represented
as a single Slater determinant state, in which each single-
particle orbital is given by each column vector of �M . We
can thus examine the time evolution of each single-particle
orbital in the Slater determinant state, which is described by
Eqs. (85), (91), and (92).

For this purpose, we first introduce the following L × N
matrix:

�m =
1∏

m′=m

e−iθ (m′ )
1 V 1 e−iθ (m′ )

2 V 2�i (93)

for m = 0, 1, 2, · · · , M, where the variational parameters θ =
{θ (1)

1 , θ
(1)
2 , · · · , θ

(M )
1 , θ

(M )
2 } are determined so as to minimize

the variational energy for |ψM (θ)〉, and thus �M = �M . We
also set that �0 = �i. There are two elemental properties
of �m. First, the single-particle orbitals in �m are mutually
orthonormalized. This is simply because of the consequence
of the unitary evolution:

�†
m�m = �†

i �i = IN . (94)

Second, it is apparent by construction in Eq. (93) that, apart
from the phase factor due to the boundary conditions (i.e., in
the case of APBCs), a single-particle orbital in �m is trans-
formed to other single-particle orbitals by the translation of
two lattice spaces, i.e., [�m]x,n = [�m]x±2,n±1, where n = 0
and N + 1 correspond to N and 1, respectively. Therefore, the
single-particle orbitals in �m are associated with the Wannier
orbitals with a unit cell of two lattice spaces.

Let us now introduce the spatial extent dm (in unit of
lattice constant) of a single-particle orbital in �m, i.e., dm

being the number of consecutive nonzero elements in each
column of �m. It is obvious form Eq. (90) that d0 = 2 for
�0 = �i. Without knowing the explicit values of the vari-
ational parameters θ, we can readily show that the spatial
extent of a single-particle orbital increases by four each time
applying matrices e−iθ (m)

2 V 2 and e−iθ (m)
1 V 1 given in Eqs. (92) and

(91), respectively, i.e., dm = dm−1 + 4. Therefore, the spatial
extent of a single-particle orbital in �m is generally given as
dm = 4m + 2 for our initial matrix �0 = �i. Consequently,
the spatial extent dm of a single-particle orbital in �m exceeds
(reaches) the system size L at m = L/4 [m = (L − 2)/4] for
APBCs (PBCs), where we choose L = 4nL (L = 4nL + 2)

with nL integer. In other words, for the single-particle orbitals
in �M = �M to extend over the entire system, the smallest
number M of layers in �M is L/4 [(L − 2)/4] for APBCs
(PBCs), which is in good accordance with the results in Fig. 3
and the discussion in Sec. III A. This is understood because
the spatial extent dm of the single-particle orbitals essentially
sets the limit of the propagation of quantum entanglement in
the DQAP state.

Figure 5 shows the numerical results of the time evolution
of a single-particle orbital in �M of the DQAP ansatz |ψM (θ)〉,
for which the variational parameters θ are optimized for L =
90 with M = (L − 2)/4 under PBCs, thus representing the ex-
act ground state. Initially, the single-particle orbital is spatially
localized at sites x = 1 and 2 and propagates gradually in time
(i.e., increasing m) by splitting a wave into the two opposite
directions, finally reaching each other at m = M when the
spatial extent dm of the single-particle orbital becomes as large
as the system size L.

We should note here that the single-particle orbitals in �M

are not uniquely determined. Instead, an L × L matrix 	M

given by

	M = �M�†
M (95)

is invariant for all sets of single-particle orbitals which rep-
resent the exact ground state. The expectation value of any
physical operator evaluated for |ψM (θ)〉 is the same, despite
that �M is not uniquely determined, as long as 	M is the same
for different �M . This can be easily proved from Eq. (44)
because the single-particle orbitals are orthonormalized, i.e.,
�†

M�M = IN . It is also apparent that 	M is invariant under the
transformation

�M → �′
M = �MQ, (96)

where Q is an N × N unitary matrix. Starting with different
initial variational parameters, the numerical optimization of
the variational parameters in |ψM (θ)〉 might find different
sets of optimized variational parameters and thus different
�M’s. We indeed obtain several sets of single-particle orbitals
with different single-particle orbital shapes, which nonethe-
less constitute the exact ground state, and all of them give
the same value of 	M . However, we note that all these sets
of single-particle orbitals are time evolved as those shown in
Fig. 5, and they extend over the entire system at m = M =
(L − 2)/4 for PBCs.

We shall now consider the number of independent matrix
elements in an L × N complex matrix � when the exact
ground state is constructed in the form |ψ〉 = ∏N

n=1[ĉ†�]n|ψi〉
where |ψi〉 is given in Eq. (29). To be specific, we assume
that L = 4nL + 2 (nL: integer) with PBCs at half filling, i.e.,
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FIG. 5. Time evolution of the first single-particle orbital [�m]x1

at (a) m = 0, (b) m = (M + 2)/4, (c) m = M/2, (d) m = (3M −
2)/4, and (e) m = M. The DQAP ansatz |ψM (θ)〉 is optimized for
L = 90 and N = 45 under PBCs with M = (L − 2)/4, thus repre-
senting the exact ground state.

N = L/2. We should first recall that [�]x,n represents the
nth single-particle orbital at site x. Because a single-particle
orbital can be mapped to other single-particle orbitals by
the translation of two lattice spaces, i.e., [�]x,n = [�]x±2,n±1,
there are L independent complex elements in �. In addition,
there exists the reflection symmetry at the center of bond,
i.e., [�]x,n = [�]−x+4n−1,n, which reduces the number of in-
dependent complex elements in � down to L/2. Furthermore,
the orthonormality of the single-particle orbitals, i.e., �†� =
IN , yields nL + 1 independent equations and thus there are
3nL + 1 independent real elements in �.

Next, we shall consider the transformation of � by Q, i.e.,
� → �′ = �Q, as discussed above in Eq. (96). Assuming
that �′ has the same translational and reflection symmetries
as in �, we can show that the matrix elements of Q are
also related to each other, similar to the matrix elements of
�. Thus, the independent complex matrix elements in Q is
nL + 1. In addition, the unitarity of Q yields nL + 1 indepen-
dent equations and therefore there are nL + 1 independent real

FIG. 6. Entanglement entropy SA as a function of the number M
of layers in the DQAP ansatz |ψM (θ)〉 for different system sizes L
under APBCs at half filling. The bipartition is assumed to be the half
of the system. For comparison, the results for the case where L and
M are both varied with keeping the ratio L = 8M (i.e., LA = 4M)
are also shown. Black solid line indicates the entanglement entropy
of the exact ground state for the system size L, which is plotted at
M = L/4.

elements in Q. This suggests that, among 3nL + 1 independent
real elements in �, nL + 1 elements are redundant. There-
fore, there are 2nL = (L − 2)/2 independent real elements
that represent �. It is interesting to note that this number
coincides with the number of the variational parameters θ =
{θ (1)

1 , θ
(1)
2 , · · · , θ

(M )
1 , θ

(M )
2 } in the DQAP ansatz |ψM (θ)〉 with

M = (L − 2)/4, which corresponds to the shorted possible
depth of |ψM (θ)〉 to represent the exact ground state, as dis-
cussed in Sec. III A.

In the case of APBCs with L = 4nL, exactly the same
argument follows except that now there are nL independent
equations generated due to the orthonormality of the single-
particle orbitals in � and the unitary matrix Q contains nL

independent real elements. Therefore, there are 2nL = L/2
independent real elements in �. This number also coincides
with the minimum number of variational parameters θ in the
DQAP ansatz |ψM (θ)〉 with M = L/4 that can represent the
exact ground state.

C. Entanglement entropy

Next, we shall examine the entanglement property of the
DQAP ansatz |ψM (θ)〉. Figure 6 shows the entanglement en-
tropy SA of the optimized DQAP ansatz |ψM (θ)〉 as a function
of M for several different system sizes L under APBCs. Here,
the variational parameters θ are optimized for each M, and the
bipartition is assumed to be half of the system, namely,

A = {1, 2, · · · , L/2}, (97)

with size LA of subsystem A being L/2. For the bipartitioning,
we consider only the case where the system is divided into the
two subsystems by not breaking any local bonding state in the
initial state |ψi〉, as shown schematically in Fig. 7.
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FIG. 7. Two cases of partitioning the system: (a) subsystem A
is larger than or equal to 4M and (b) subsystem A is smaller than
4M. Red dashed lines indicate the partitioning boundaries of the
two subsystems, and green blocks with red outer frame indicate the
local time-evolution operators crossing the partitioning boundaries.
Orange solid lines denote halves of the causality cones, centered at
each partitioning boundary, within which the boundary effect can
be propagated via the local time-evolution operators. The difference
between cases (a) and (b) is captured by whether or not these two
causality cones overlap. In the examples shown here, L = 24, LA =
12, and M = 2 in (a) and M = 4 in (b).

As shown in Fig. 6, we find that the entanglement entropy
SA for 4M � LA is independent of the system size L and falls

into a smooth universal curve of M. On the other hand, the
entanglement entropy SA starts to deviate from this universal
curve for 4M > LA and approaches the exact value at M =
L/4 for APBCs [M = (L − 2)/4 for PBCs]. These features
are captured schematically in Fig. 7. The partitioning effect
can propagate via the local time-evolution operators into the
inside of subsystem A up to 2M lattice spaces (also taking
into account the entanglement of a local bonding state in |ψi〉)
from each boundary of the partitioning, and thus this maxi-
mum propagation limit forms a causality-cone line structure
centered at each partitioning boundary (see Fig. 7). The two
causality cones cross each other when 4M > LA and this is
when the entanglement entropy SA deviates from the universal
curve found in Fig. 6.

Let us discuss the results for 4M � LA. In this case, we
find that the entanglement entropy SA is exactly the same
for different system sizes L and thus different sizes LA of
subsystem A. This implies that the entanglement entropy SA
is independent of the size LA of subsystem A, as long as the
partitioning boundaries are separated long enough. In other
words, the entanglement carried by the DQAP ansatz |ψM (θ)〉
with a finite M is bounded, as in the matrix product states with
a finite bond dimension [64–66].

So far, we have assumed that the size LĀ of the complement
Ā of subsystem A is the same as the size LA of subsystem A.
However, we should note that the results of the entanglement
entropy SA for 4M � LA shown in Fig. 6 remain exactly the
same even when we enlarge the size of Ā, provided that
LA � LĀ. Thus, the entanglement entropy SA for 4M � LA

and LA � LĀ is determined solely by the number M of layers
in the DQAP ansatz |ψM (θ)〉. Note also that, considering
SA = SĀ, the smaller subsystem determines the value of M
until which the entanglement entropy follows the universal
curve.

We have performed similar calculations for the systems
under PBCs and found that, independent of system size L,
the entanglement entropy SA of the optimized DQAP ansatz
|ψM (θ)〉 for the system under PBCs is exactly the same as
that of the optimized DQAP ansatz |ψM (θ)〉 for the system
under APBCs, provided that (i) 4M � LA, (ii) LA � LĀ, and
(iii) the partitioning boundaries do not break any local bond-
ing state in the initial state |ψi〉. Namely, the entanglement
entropy SA falls into the universal curve of M shown in
Fig. 6, independent of system size L and boundary condi-
tions, as long as the three conditions above are satisfied.
This is similar to the observation of the optimized varia-
tional energy EM (L), where �ε = EM (L)/L − ε∞ falls into
the universal curve of M, as shown in Fig. 3(b), indepen-
dent of system size and boundary conditions, as long as
M < �(L − 2)/4�.

Let us now explore how these two quantities approach
asymptotically in the limit of M → ∞, which thus requires
us to take the limit of L → ∞ as well under the condition
that 4M � LA or M < �(L − 2)/4�. To this end, here we
calculate the exponents δS (M ) and δE (M ) by the following
formulas:

δS (M ) = 3
SM+1 − SM

ln(M + 1) − ln(M )
(98)
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FIG. 8. Exponents δS (M ) and δE (M ) for the optimized DQAP
ansatz |ψM (θ)〉 with 4M � LA and LA � LĀ for δS (M ) and with M <

L/4 for δE (M ). The dashed lines are guide for the eye.

and

δE (M ) = 1

2

ln �εM+1 − ln �εM

ln(M + 1) − ln(M )
. (99)

Here, SM is the entanglement entropy SA of the optimized
DQAP ansatz |ψM (θ)〉 with 4M � LA and LA � LĀ, and
�εM = EM (L)/L − ε∞ is the energy difference from the ex-
act ground-state energy ε∞ per site in the thermodynamic
limit, where the variational energy EM (L) is evaluated for
the optimized DQAP ansatz |ψM (θ)〉 with M < L/4 under
APBCs.

It is known [67] that the entanglement entropy Sexact (LA) of
the exact ground state for the size LA of subsystem A is given
as

Sexact (LA) ≈ 1
3 ln LA. (100)

Equation (98) is motivated by the assumption that LA is re-
placed as LA ∼ MδS , indicating that a finite M introduces a
finite correlation length, as does a finite bond dimension in
the matrix product states [64–66]. Similarly, it is also known
[68–70] that the finite size correction to the exact ground-state
energy per site is given as

�εexact (L) = C

L2
+ O(L−4), (101)

where C is a system size independent constant and �εexact (L)
is the energy difference between the exact ground-state energy
per site for the system size L and that in the thermody-
namic limit. Equation (99) is thus motivated by assuming that
L ∼ MδE .

We find in Fig. 8 that these two exponents δS (M ) and
δE (M ) approach one in the limit of M → ∞. Thus, the
asymptotic behaviors of the entanglement entropy SA and the
energy deviation of the variational energy EM (L)/L can be
simply described by the expressions in Eqs. (100) and (101),
respectively, with the LA and L dependence replaced by M,
i.e.,

SM ≈ 1
3 ln M (102)

and

�εM ∼ M−2. (103)

FIG. 9. Intensity plot of mutual information Ix,x′ of the DQAP
ansatz |ψM (θ)〉 with the variational parameters θ optimized for each
M to minimize the variational energy. The calculations are for L =
200 under APBCs at half filling i.e., N = L/2. We set x′ = L/2 in
Ix,x′ . For clarity, we add a small constant ε = 10−8 in drawing the
intensity plot of log10(Ix,x′ + ε).

Finally, we discuss the relation to the evolution of the
single-particle orbitals in |ψM (θ)〉 via the local time-evolution
operators. As discussed in Sec. III B, the spatial extent dM of
a single-particle orbital in the DQAP ansatz |ψM (θ)〉 with M
layers of the local time-evolution operators is dM = 4M + 2.
Therefore, when 4M � LA, for which we find that the en-
tanglement entropy SA of |ψM (θ)〉 is independent of L (see
Fig. 6), a single-particle orbital in |ψM (θ)〉 may cross one
of the partitioning boundaries but it cannot cross the other
partitioning boundary. Conversely, when 4M > LA, a single-
particle orbital (but not necessarily all the single-particle
orbitals) can cross both partitioning boundaries of the sub-
systems. Since the entanglement entropy of the free-fermion
system is determined by the hybridization between the two
subsystems, the observation here suggests that the contri-
bution of each partitioning boundary to the entanglement
entropy SA is indeed separable in the case for 4M � LA, i.e.,
SA ∼ S∂AI + S∂AII , where ∂AI(II) is the partitioning boundary
and S∂AI(II) implies the entanglement entropy from the bound-
ary ∂AI(II) (see Appendix C).

D. Mutual information

We shall now examine the evolution of the mutual informa-
tion Ix,x′ defined in Eq. (75) for the DQAP ansatz |ψM (θ)〉 with
increasing the number M of layers of the local time-evolution
operators. As discussed in Sec. II E, Ix,x′ is a measure to quan-
tify the entanglement between sites x and x′ for a quantum
state. Figure 9 shows the results for the DQAP ansatz |ψM (θ)〉
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FIG. 10. Schematic representations of two cases where the
DQAP ansatz gives (a) Ix,x′ = 0, i.e., no entanglement between sites
x and x′, and (b) Ix,x′ 	= 0, i.e., quantum entanglement developed
between sites x and x′. Black sold lines indicate causality cones
within which quantum entanglement can be propagated via the local
time-evolution operators from sites x and x′.

with the variational parameters θ optimized for each M to
minimize the variational energy.

We find in Fig. 9 that the mutual information Ix,x′ is exactly
zero, implying no entanglement, when |x − x′| > 4M + 1.
This is generally the case for any system size L. As il-
lustrated in Fig. 10, this entanglement feature reflects the
causality-cone-like structure of the propagation of quantum
entanglement via the local time-evolution operators in the
DQAP ansatz, which limits the propagation speed set by the
Lieb-Robinson bound. Two causality cones for the propaga-
tion of quantum entanglement from sites x and x′ are indicated
in Fig. 10. All the local unitary time-evolution operators inside
the causality cones are connected to the origin of the cone (i.e.,
x or x′), while those outside the causality cones are essentially
disconnected. When these two causality cones do not overlap
to each other, the mutual information Ix,x′ is zero. On the other
hand, if these two causality cones overlap, we obtain Ix,x′ 	= 0.
We should also note that although the mutual information Ix,x′

becomes nonzero for all values of x and x′ once the number
M of layers of the local time-evolution operators satisfies
L/2 � 4M + 1 (see Fig. 9), more layers of the local time-
evolution operators are required for the DQAP ansatz |ψM (θ)〉
to represent the exact ground state of the system, as discussed
in Sec. III A.

The feature of the mutual information found here can also
be understood on the basis of the single-particle orbitals in
the DQAP ansatz |ψM (θ)〉 discussed in Sec. III B. As already
described in Sec. II E, the mutual information Ix,x′ for the free
fermion system is fully determined by the one-particle density
matrix D{x,x′} given in Eq. (76). Since 〈ψM (θ)|ĉ†

x ĉx|ψM (θ)〉 =
0.5 in our system, Ix,x′ is determined solely by the off-diagonal
element 〈ψM (θ)|ĉ†

x ĉx′ |ψM (θ)〉. For example, as discussed in
Sec. II E, Ix,x′ = 0 when 〈ψM (θ)|ĉ†

x ĉx′ |ψM (θ)〉 = 0.

Let us now evaluate 〈ψM (θ)|ĉ†
x ĉx′ |ψM (θ)〉 using Eq. (44).

Considering that �†
M�M = IN , we obtain that

〈ψM (θ)|ĉ†
x ĉx′ |ψM (θ)〉 =

N∑
n=1

[�M]∗xn[�M]x′n. (104)

Because of the construction of |ψM (θ)〉 described in Sec. III B,
the nth single-particle orbital [�M]xn in |ψM (θ)〉 is finite
only in the region of sites x where 2n − 2M − 1 � x �
2n + 2M. Here, site 2n − 2M − 1 (2n + 2M) should be
read as mod(2n − 2M − 2, L) + 1 [mod(2n + 2M − 1, L) +
1]. Therefore, [�M]∗xn[�M]x′n = 0 when |x − x′| > 4M + 1,
which thus also explains that Ix,x′ = 0 when |x − x′| > 4M +
1 found in Fig. 9. Although Ix,x′ becomes finite for all dis-
tances |x − x′| when M satisfies 4M � L/2 − 1, it is not
sufficient for the DQAP ansatz |ψM (θ)〉 to represent the ex-
act ground state since the single-particle orbital [�M]xn does
not extend over the entire region of the system until dM =
4M + 2 � L.

E. Optimized variational parameters

We shall now discuss the optimized variational parameters
in the DQAP ansatz |ψM (θ)〉. The natural gradient method
described in Sec. II D is employed without any difficulty
to optimize the variational parameters in the DQAP ansatz
|ψM (θ)〉, which becomes the exact ground state of the system
for M = L/4 under APBCs and M = (L − 2)/4 under PBCs
at half filling. However, we find that the optimized variational
parameters are not unique and many different sets of op-
timized variational parameters give the same energy, as
discussed in Appendix B.

Among many sets of optimum solutions for the
variational parameters, we find a series of systematic
solutions by gradually increasing M for a fixed system
size L. Such a series is obtained as follows. We first
start with a small value of M, for which the optimized
variational parameters {θ (1)

p
∗
, θ (2)

p
∗
, · · · , θ (M )

p
∗}M in |ψM (θ)〉

can be uniquely determined for p = 1, 2. Then, we use
these optimized variational parameters as the initial
parameters {θ (1)

p , θ (2)
p , · · · , θ (M+1)

p }M+1 for |ψM+1(θ)〉,
i.e., {θ (1)

p , · · · , θ (M/2)
p , θ (M/2+1)

p , θ (M/2)+2
p , · · · θ (M+1)

p }M+1 ←
{θ (1)

p
∗
, · · · , θ (M/2)

p
∗
, 1

2 (θ (M/2)
p

∗ + θ (M/2+1)
p

∗
), θ (M/2+1)

p
∗
, · · · ,

θ (M )
p

∗}M and optimize the variational parameters in |ψM+1(θ)〉.
Here we assumed that M is even. When M is odd, M/2 should
be replaced with (M − 1)/2. With iteratively increasing M
by one in this procedure, we finally obtain the series of the
optimized variational parameters systematically, as shown in
Fig. 11.

The characteristic features of the optimized variational pa-
rameters are summarized as follows. First, θ (m)

2 monotonically
(rather almost linearly) increases with m, while θ

(m)
1 remains

almost constant, when (2m − 1)/2M is small. This depen-
dence of the parameters on m remarkably resembles the linear
scheduling of the scheduling function si(τ ) and sf (τ ) for the
quantum adiabatic approximation given in Eq. (24). Second,
the optimized variational parameters θ

(m)
1 and θ

(m)
2 are both

almost constant in the intermediate region of (2m − 1)/2M.
This is a part of the reason why the optimization procedure
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FIG. 11. Optimized variational parameters θ = {θ (m)
1 , θ

(m)
2 } in the

DQAP ansatz |ψM (θ)〉 for various values of M. The variational
parameters are optimized for each M to minimize the variational
energy of the system with L = 160 under APBCs at half filling, i.e.,
N = L/2. In this case, the DQAP ansatz |ψM (θ)〉 represents the exact
ground state at M = L/4.

of the variational parameters described above is successful.
Third, both parameters θ

(m)
1 and θ

(m)
2 finally decrease with

increasing m when (2m − 1)/2M approaches one. This might
be understood because at the last stage of the process, it would
be better for the DQAP to be determined by the time-evolution
operator e−iĤf t of the final system Ĥf as in the continuous
time quantum adiabatic process. To this end, the parameters
θ

(m)
1 and θ

(m)
2 should be small to reduce the Suzuki-Trotter

decomposition error due to the discretization of time [71,72].
Notice also that there is an abrupt change of the optimized

variational parameters between M = L/4 − 1 and M = L/4
(see the results for M = 39 and M = 40 in Fig. 11). As
already described in Sec. III A, the optimized DQAP ansatz
|ψM (θ)〉 with M = L/4 represents the exact ground state of
the system under APBCs. This abrupt change of the optimized
variational parameters is associated with that of the variational
energy found in Fig. 3. We also notice in Fig. 11 that the op-
timized variational parameters in |ψM (θ)〉 with M < L/4 for
a given system size L converges systematically to those with
M = L/4 − 1 as M increases, which are different from the
optimized variational parameters in |ψM (θ)〉 with M = L/4.
Furthermore, we find that the optimized variational parame-
ters in |ψM (θ)〉 with the given number M of layers remain
unchanged for different system sizes L, as long as M < L/4,

FIG. 12. Optimized variational parameters θ = {θ (m)
1 , θ

(m)
2 } in the

DQAP ansatz |ψM (θ)〉 with M = L/4 for various system sizes L.
The variational parameters are optimized for each system size L to
minimize the variational energy under APBCs at half filling, i.e.,
N = L/2, and thus the DQAP ansatz |ψM (θ)〉 here represents the
exact ground state.

which is associated with the observation that the variational
energy per site, EM (L)/L, is independent of L when M < L/4,
as shown in Fig. 3(b). We should also note that the optimized
variational parameters in |ψM (θ)〉 for the system under PBCs
are exactly the same as those in |ψM (θ)〉 for the system under
APBCs, e.g., shown in Fig. 11, independent of system size L,
as long as M < �(L − 2)/4� (also see Sec. III C).

Figure 12 summarizes the optimized variational parame-
ters in the DQAP ansatz |ψM (θ)〉 with M = L/4 for different
system sizes L under APBCs, for which |ψM (θ)〉 represents
the exact ground state. We find that the optimized variational
parameters θ = {θ (1)

1 , θ
(1)
2 , · · · , θ

(M )
1 , θ

(M )
2 } converge asymp-

totically to a smooth function of m for each θ (m)
p (p = 1, 2)

with increasing the system size L.
Let us now examine the effective total evolution time

Teff (L) of the DQAP given by

Teff (L) =
2∑

p=1

M∑
m=1

θ (m)
p , (105)

where the variational parameters θ (m)
p (p = 1, 2) in the DQAP

ansatz |ψM (θ)〉 are optimized for the system size L with M =
L/4 under APBCs, thus representing the exact ground state,
and are already shown in Fig. 12. It is highly interesting to
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FIG. 13. Effective total evolution time Teff (L) of the DQAP in
which the exact ground state of the final Hamiltonian is obtained (red
triangles). The DQAP ansatz |ψM (θ)〉 with M = L/4 is optimized for
the system size L under APBCs, thus representing the exact ground
state. For comparison, the total evolution time necessary to obtain the
ground state of the final Hamiltonian within a given accuracy in the
continuous-time quantum adiabatic process with a linear scheduling
(for details, see Appendix D) is also shown by gray squares. Inset:
Same plot but in the logarithmic scale. For comparison, functions
proportional to L and L2 are also plotted by blue and green solid
lines, respectively.

find in Fig. 13 that the effective total evolution time Teff (L)
is almost perfectly proportional to the system size L. Ac-
cording to the quantum adiabatic theorem, the evolution time
necessary to successfully converge to the ground state of the
final Hamiltonian in the continuous time quantum adiabatic
process is inversely proportional to the square of the minimum
energy gap during the process [35]. For the model studied
here, the minimum gap appears at the final Hamiltonian, i.e.,
the free-fermion model, and thus it is ∼1/L, suggesting that,
according to the adiabatic theorem, the evolution time to
successfully obtain the final state within a given accuracy is
proportional to L2, as shown in Fig. 13 (and also see Fig. 21
in Appendix D). The quadratic speed up found here in the
DQAP ansatz resembles that in the adiabatic quantum Grover
search algorithm [43] with the optimum scheduling function
[73,74].

One of the methods to find a optimum scheduling function
in the continuous-time quantum adiabatic process is QAB
[75], in which an optimum path of the quantum adiabatic
process is determined by solving the Euler-Lagrange equa-
tion derived so as to minimize the total transition probability
during the evolution. The outline of this theory is described
in Appendix E. To apply this theory, one has to assume adia-
baticity of the intermediate state: a quantum state remains to
be the ground state of the instantaneous Hamiltonian during
the time evolution, at least, approximately. On the other hand,
the variational parameters θ of the DQAP ansatz |ψM (θ)〉 are
determined so as to mimizize the expectation value of the final
Hamiltonian, and thus there is no guarantee that the optimized
DQAP ansatz follows the quantum adiabatic dynamics, al-
though the DQAP ansatz |ψM (θ)〉 itself is motivated by the
quantum adiabatic process. In the rest of this section, we
shall show numerically that adiabaticity in the sense described

above is indeed not satisfied in the optimized DQAP ansatz
|ψM (θ)〉.

For this purpose, here we determine an optimum schedul-
ing function χ∗

m to maximize the overlap between the
intermediate states of the optimized DQAP ansatz |ψM (θ)〉
representing the exact ground state of the final Hamiltonian
and the exact ground state of the instantaneous Hamiltonian,
i.e.,

(χ∗
m, α∗

m) = arg max
χ,α

[Fm(χ, α)]. (106)

Here, Fm(χ, α) is the state overlap given by

Fm(χ, α) = ∣∣〈χ ∣∣φ(m)
M (θ, α)

〉∣∣2
, (107)

where |χ〉 is the ground state of the following Hamiltonian:

Ĥ(χ ) = V̂1 + χ V̂2, (108)

with N fermions at half filling and V̂1 and V̂2 being given in
Eqs. (27) and (28), respectively, and∣∣φ(m)

M (θ, α)
〉 = e−iθ (m)

1 αV̂1 e−iθ (m)
2 V̂2

×
1∏

k=m−1

e−iθ (k)
1 V̂1 e−iθ (k)

2 V̂2 |ψi〉 (109)

is the mth intermediate state (m = 0, 1, 2, · · · , M) of the
DQAP ansatz |ψM (θ)〉 with the variational parameters θ =
{θ (1)

1 , θ
(1)
2 , · · · , θ

(M )
1 , θ

(M )
2 } optimized for M = L/4 under AP-

BCs and M = (L − 2)/4 under PBCs at half filling, thus
representing the exact ground state of the one-dimensional
free-fermion system described by the Hamiltonian in Eq. (26),
i.e., the Hamiltonian Ĥ(χ = 1) in Eq. (108). Here, we intro-
duce an additional parameter α to increase the state overlap
Fm(χ, α) and define |φ(0)

M (θ, α)〉 = |ψi〉.
Figures 14(a) and 14(c) show the optimum scheduling

function χ∗
m and the corresponding state overlap Fm(χ∗

m, α =
1), respectively, when the parameter α in Eq. (109) is set to
be 1. Although it is slightly concave, the optimum schedul-
ing function χ∗

m in Fig. 14(a) is somewhat closer to a linear
function of m, which is expected for the linear scheduling.
However, the state overlap Fm(χ∗

m, 1) becomes exponentially
small with increasing system size L, especially for m ≈ M/2.
Indeed, when m is away from 0 and M (i.e., the initial and final
states), the state overlap per site [Fm(χ∗

m, α = 1)]1/L shown
in Fig. 14(e) seems to converge to a value less than 1 in
the limit of L → ∞. Therefore, the intermediate states of the
optimized DQAP ansatz are rather far from the ground state
of the instantaneous Hamiltonian, suggesting that the dis-
cretized time evolution of the optimized DQAP ansatz is much
more different from a quantum adiabatic evolution, but closer
to a quantum diabatic evolution. This quantum diabaticlike
evolution, instead of a quantum adiabatic evolution, of the
optimized DQAP ansatz could explain the quadratic speedup
of the effective total evolution time Teff (L) found in Fig. 13,
but certainly more systematic analysis is highly required and
is left for a future study.

This feature does not alter even when the parameter α is
also optimized to maximize the state overlap. As shown in
Fig. 14(d), the optimization of α increases the state overlap
Fm(χ∗

m, α∗) significantly in orders of magnitude. More inter-
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FIG. 14. (a), (b) Optimum scheduling function χ∗
m, (c), (d) the state overlap Fm(χm, α), and (e), (f) the state overlap per site [Fm(χm, α)]1/L

for the one-dimensional free-fermion systems with various system sizes L and M = L/4 under APBCs at half filling. The parameter α is set to
be 1 in (a), (c), and (e), while it is optimized to maximize the state overlap in (b), (d), and (f). The optimized α for each intermediate state, α∗

m,
is shown in the inset of (b). For comparison, the optimum scheduling function χQAB(s) obtained by quantum adiabatic brachistochrone (QAB)
(for details, see Appendix E) is also shown by solid lines in (b).

estingly, the optimized values of α are neither 0 nor 1, but
approximately 0.5 for all values of m except for m = M, as
shown in the inset of Fig. 14(b). However, the state overlap
Fm(χ∗

m, α∗) still decreases exponentially with increasing the
system size L for the intermediate values of m, and the state
overlap per site shown in Fig. 14(f) seems to converge to a
value less than 1 in the limit of L → ∞ for these values of m.

Although it is no longer appropriate to identify the op-
timum scheduling function χ∗

m determined here with an
effective scheduling function of the quantum adiabatic pro-
cess for the DQAP ansatz |ψM (θ)〉, it is highly interesting to
compare χ∗

m with the optimum scheduling function χQAB(s)
obtained by the QAB [75], which is outlined in Appendix
E. As shown in Fig. 14(b), we find that, assuming m/M is
a similar quantity to the normalized time s over the total evo-
lution time, the optimum scheduling function χ∗

m, optimized
along with the parameter α, is rather similar to the optimum
scheduling function χQAB(s) obtained by the QAB, which is
clearly distinct from the scheduling function expected for the
linear scheduling.

IV. IMAGINARY-TIME EVOLUTION: COMPARISON
WITH THE DQAP ANSATZ

Let us now consider an ansatz inspired by the imaginary-
time evolution, instead of the real-time evolution as in the
DQAP ansatz |ψM (θ)〉 discussed in the previous sections.
The imaginary-time counterpart |ϕM (τ)〉 of the DQAP ansatz
|ψM (θ)〉 defined in Eq. (31) for the free-fermion system is
given by

|ϕM (τ)〉 =
1∏

m=M

(
e−τ

(m)
1 V̂1 e−τ

(m)
2 V̂2

)|ψi〉, (110)

where the initial state |ψi〉 is a product state of the local bond-
ing states given in Eq. (29), i.e., the ground state of V̂1, and
the imaginary-time steps τ = {τ (1)

1 , τ
(1)
2 , · · · , τ

(M )
1 , τ

(M )
2 } are

considered as real variational parameters that are determined
so as to minimize the variational energy [76]. As in the DQAP
ansatz |ψM (θ)〉, |ϕM (τ)〉 is constructed by repeatedly applying
the local but now imaginary-time evolution operators e−τ

(m)
1 V̂1

and e−τ
(m)
2 V̂2 . Since these imaginary-time evolution operators

are not unitary, |ϕM (τ)〉 is no longer normalized.
We can follow exactly the same analysis in Sec. II for

the discretized imaginary-time evolution ansatz |ϕM (τ)〉 in
Eq. (110) and obtain that

|ϕM (τ)〉 =
N∏

n=1

[ĉ†GM]n|0〉, (111)

where GM is the L × N matrix given by

GM =
1∏

m=M

(
e−τ

(m)
1 V 1 e−τ

(m)
2 V 2

)
�i. (112)

Here, the L × L matrices V 1 and V 2 are defined in Eqs. (87)
and (88), respectively, and the L × N matrix �i is given in
Eq. (90) for the number N of fermions with N = L/2. Note
also that e−τV 1 and e−τV 2 are the same block diagonal matri-
ces of e−iθV 1 and e−iθV 2 in Eqs. (91) and (92), respectively,
except that θ is replaced with −iτ . It is now apparent that
the imaginary-time evolved state |ϕM (τ)〉 from a state initially
prepared as a single Slater determinant state |ψi〉 can still be
represented as a single Slater determinant state, in which each
single-particle orbital is given by each column vector of GM .
However, note that the imaginary-time evolved single-particle
orbitals are neither normalized nor orthogonal to each other,
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i.e., G†
MGM 	= IN , even though the initial single-particle or-

bitals are orthonormalized, i.e., �†
i �i = IN .

The natural gradient method described in Sec. II D is
straightforwardly extended to optimize the variational param-
eters τ = {τ (m)

1 , τ
(m)
2 } in |ϕM (τ)〉 by replacing S and f in

Eqs. (57) and (58), respectively, with

[S]kk′ = tr[F(∂kGM )(∂k′GM )]

− tr[F(∂kG†
M )GMFG†

M (∂k′GM )] (113)

and

[ f ]k = tr[F(∂kG†
M )TGM]

− tr[F(∂kG†
M )GMFG†

MTGM], (114)

where F = (G†
MGM )−1 and k, k′ = 1, 2, . . . , 2M labeling

the variational parameters {τ (m)
1 , τ

(m)
2 }M

m=1 as {τ1, τ2, . . . ,

τk, . . . , τ2M−1, τ2M} = {τ (1)
1 , τ

(1)
2 , . . . , τ (m)

p , . . . , τ
(M )
1 , τ

(M )
2 }.

∂kGM is an L × N matrix defined as the first derivative of GM

with respect to the kth variational parameter τk , i.e.,

∂kGM = −
(

k+1∏
l=2M

e−τlW l

)
W k

(
1∏

l=k

e−τlW l

)
�i, (115)

where {W 1,W 2,W 3, . . . ,W 2M} = {V 2,V 1,V 2, . . . ,V 1}.
Figures 15(a) and 15(b), respectively, show an error of the

optimized variational energy

�E = 〈ϕM (τ)|Ĥ|ϕM (τ)〉
〈ϕM (τ)|ϕM (τ)〉 − Eexact (L) (116)

and a distance defined through the fidelity

d (|ϕM (τ)〉, |ψexact〉) =
√

1 − |〈ϕM (τ)|ψexact〉|2
〈ϕM (τ)|ϕM (τ)〉 (117)

as a function of the system size L for three values of M. Here,
Eexact (L) and |ψexact〉 denote the exact ground-state energy
and the normalized exact ground state of the system with
system size L, respectively. Although the system considered
here is at the critical point where the expectation value of ĉ†

x ĉx′

decays algebraically with the distance |x − x′|, we find that the
variational energy of the discretized imaginary-time evolution
ansatz |ϕM (τ)〉 converges exponentially faster to the exact
energy with increasing M [41]. This is in sharp contrast to the
results for the discretized real-time evolution ansatz |ψM (θ)〉
shown in Fig. 3. For example, for L < 100, we obtain the
variational energy with accuracy �E as large as 2 × 10−5 or
less and the distance smaller than 10−2 by using only M = 3.
We should note that the exponentially fast convergence of the
discretized imaginary-time evolution ansatz has also been re-
ported for the transverse-field Ising model even at the critical
point [77].

We shall now discuss how the efficiency of the discretized
imaginary-time evolution ansatz |ϕM (τ)〉 occurs. First, we
should recognize that, although the discretized imaginary-
time evolution ansatz |ϕM (τ)〉 is composed of the local
imaginary-time evolution operators, there is no limit of
speed for propagating quantum entanglement via the local
imaginary-time evolution operators because these local oper-
ators are nonunitary. This is indeed easily understood if we

FIG. 15. (a) Energy difference �E between the variational en-
ergy and the exact energy, (b) distance d (|ϕM (τ )〉, |ψexact〉), and
(c) effective total evolution time β̄(L) for three values of M as a
function of the system size L. The variational parameters in the dis-
cretized imaginary-time evolution ansatz |ϕM (τ )〉 are optimized for
each M to minimize the variational energy of the system under PBCs
at half filling, i.e., N = L/2, satisfying the closed shell condition.

evaluate the local expectation value 〈ϕM (τ)|ĉ†
x ĉx+1|ϕM (τ)〉. In

this case, we have to treat all local imaginary-time evolution
operators in |ϕM (τ)〉, no matter how far a local imaginary-
time evolution operator etτ (m)

p (ĉ†
y ĉy+1+ĉ†

y+1 ĉy ) acting at sites y and
y + 1 is distant from site x. Because of the nonunitarity,
there is no cancellation of local imaginary-time evolution
operators on the left and right sides of the local expecta-
tion value 〈ϕM (τ)|ĉ†

x ĉx+1|ϕM (τ)〉, implying that there is no
causality-cone-like structure for the propagation of quantum
entanglement illustrated in Fig. 4.

Second, for the free-fermion system, we can understand
the efficiency of the discretized imaginary-time evolution
ansatz |ϕM (τ)〉 in terms of the imaginary-time evolution of the
single-particle orbitals in GM . For this purpose, we introduce
the following L × N matrix:

gm =
1∏

m′=m

(
e−τ

(m)
1 V 1 e−τ

(m)
2 V 2

)
�i (118)
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FIG. 16. Intensity plot of matrix elements for (a) g0 = �i, (b) g1,
(c) g2 = G2, (d) G†

2G2, (e) (G†
2G2)−1, and (f) G2(G†

2G2)−1G†
2 in the

discretized imaginary-time evolution ansatz |ϕM (τ)〉 with M = 2.
The matrix elements are all real. The variational parameters in
|ϕM (τ )〉 are optimized for L = 42 under PBCs at half filling, i.e.,
N = L/2. In (a)–(c), the vertical axis corresponds to the site index
x, while the horizontal axis corresponds to the single-particle orbital
index n. In (d) and (e), both vertical and horizontal axes correspond to
the single-particle orbital index n. In (f), both vertical and horizontal
axes correspond to the site index x.

for m = 0, 1, . . . , M with g0 = �i and gM = GM to
represent the single-particle orbitals at an intermediate
imaginary time. Here, the variational parameters
τ = {τ (1)

1 , τ
(1)
2 , . . . , τ

(M )
1 , τ

(M )
2 } are optimized for |ϕM (τ)〉

to minimize the variational energy and these parameters are
used to define the matrix gm in Eq. (118). Note that gm is an
analog to �m introduced in Eq. (93) for the DQAP ansatz
|ψM (θ)〉.

Figures 16(a)–16(c) show the discretized imaginary-time
evolution of all matrix elements in three matrices g0, g1, and
g2 = G2 when M = 2. As in the case of a single-particle
orbital in �m, we can readily find that a single-particle or-
bital in gm extends spatially four lattice spaces every time
the imaginary time m increases by one: the spatial extent d̄m

(in unit of lattice constant) of a single-particle orbital in gm
is d̄m = 4m + 2, exactly the same as the spatial extent dm

of a single-particle orbital in �m for the real-time evolution
(see Sec. III B). This is simply because the imaginary- and
real-time evolutions are both governed by the spatially local
evolution operators. Therefore, as in the case of the real-time
evolution ansatz |ψM (θ)〉, the single-particle orbitals in gm can
extend over the entire system only when d̄m reaches to the
system size L.

However, unlike the case of the real-time evolution ansatz,
the single-particle orbitals in gm are not orthonormalized, i.e.,
g†

mgm 	= IN for m > 0, as shown in Fig. 16(d). As a result,
(g†

mgm)−1 becomes nonlocal in the sense that [(g†
mgm)−1]xx′ 	=

0 even when sites x and x′ are distant from each other [see
Fig. 16(e)], although g†

mgm might be local. This has a sig-
nificant consequence when we evaluate the expectation value
〈ϕM (τ)|ĉ†

x ĉx′ |ϕM (τ)〉, taking also into account the normaliza-
tion of |ϕM (τ)〉. Using Eq. (44), we can show that

〈ϕM (τ)|ĉ†
x ĉx′ |ϕM (τ)〉

〈ϕM (τ)|ϕM (τ)〉 = tr[GM (G†
MGM )−1G†

Mδxx′]

= [GM (G†
MGM )−1G†

M]x′x. (119)

Because (G†
MGM )−1 is nonlocal, GM (G†

MGM )−1G†
M is also

nonlocal even for M � L, as shown in Fig. 16(f), implying
that the expectation value of ĉ†

x ĉx′ is nonzero even when sites
x and x′ are far apart. This should be contrasted with the case
of the the DQAP ansatz |ψM (θ)〉, where the corresponding
expectation value is given as

〈ψM (θ)|ĉ†
x ĉx′ |ψM (θ)〉 = tr[�M�†

Mδxx′] = [�M�†
M]x′x (120)

because the real-time evolution ansatz |ψM (θ)〉 is normalized,
i.e., �†

M�M = IN , and thus the expectation value of ĉ†
x ĉx′ is

zero when sites x and x′ are far apart, provided that M is not
large enough, as discussed in Sec. III D.

Consequently, the discretized imaginary-time evolution
ansatz |ϕM (τ)〉 acquires the global correlation with the ex-
tremely small number of M. Figure 17 shows the mutual
information Ix,x′ of the optimized |ϕM (τ)〉 with M = 1, 2, 3.
We find that, although Ix,x′ for M = 1 shows exponential de-
cay as a function of distance |x − x′|, it is drastically improved
with increasing M and the mutual information Ix,x′ evaluated
for M = 2 already almost coincides with the exact value,
despite that there are only four variational parameters for
M = 2. We should also emphasize that no causality-cone-like
structure is observed in the mutual information Ix,x′ of the
discretized imaginary-time evolution ansatz |ϕM (τ)〉, which is
in sharp contrast to the results for the discretized real-time
evolution ansatz |ψM (θ)〉 shown in Fig. 9.

Finally, we show in Fig. 15(c) the effective total evolu-
tion time β̄(L) of the imaginary-time evolution in |ϕM (τ)〉
defined by

β̄(L) = 1

2

M∑
m=1

2∑
p=1

τ (m)
p , (121)

where the variational parameters {τ (m)
p } are optimized for each

M to minimize the variational energy. First, it is noticed that
β̄(L) exhibits the system size dependence, which is different
from that found for the discretized real-time evolution ansatz
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FIG. 17. Mutual information Ix,x′ of the discretized imaginary-
time evolution ansatz |ϕM (τ )〉 with the variational parameters τ

optimized for each M to minimize the variational energy. The cal-
culations are for L = 90 under PBCs at half filling, i.e., N = L/2.
Gray squares indicate the mutual information Ix,x′ of the exact ground
state. We set x′ = 45. Note that Ix,x′ exhibits an oscillatory behavior
and is exactly zero at site x on the same sublattice of site x′ except
for x = x′.

|ψM (θ)〉 shown in Fig. 13. It is also important to note that
β̄(L) is not proportional to system size L. On one hand, one
would expect that a large τ (m)

p is preferable to reach the ground
state fast, i.e., with a fewer number of variational param-
eters, in a standard sense of the imaginary-time evolution.
On the other hand, a large τ (m)

p might introduce bias in ap-
proximating the continuous imaginary-time evolution by the
discretized evolution via the Suzuki-Trotter decomposition
[71,72]. Therefore, the optimized solution should be deter-
mined by compromising these two factors. The discretized
imaginary-time evolution ansatz |ψM (θ)〉 finds the best solu-
tion available within a given value of M.

V. SUMMARY AND DISCUSSION

As a quantum-classical hybrid algorithm to generate a de-
sired quantum state in a quantum circuit, we have studied the
DQAP ansatz |ψM (θ)〉 to represent the ground state of the one-
dimensional free-fermion system. The DQAP ansatz |ψM (θ)〉
considered here is inspired by the QAOA and is composed
of M layers of two elementary sets of local time-evolution
operators acting on neighboring sites (i.e., qubits), as illus-
trated in Fig. 1. By numerically optimizing the variational
parameters θ = {θ (1)

1 , θ
(1)
2 , . . . , θ

(M )
1 , θ

(M )
2 } so as to minimize

the variational energy, we have found that the exact ground
state can be attained by the DQAP ansatz |ψM (θ)〉 with the
number MB of layers as large as (L − 2)/4 for PBCs and
L/4 for APBCs, i.e., the minimum number of M set by the
Lieb-Robinson bound for the propagation of quantum entan-
glement via the local time-evolution operators (see Fig. 4).
Our results thus suggest that the DQAP ansatz |ψM (θ)〉 is
the ideal ansatz to represent the exact ground state based on
the quantum adiabatic process. Indeed, in the DQAP scheme,
the exact ground state is prepared by the shallowest quantum
circuit with linear depth, containing O(L2) single-qubit and

CNOT gates, where L is the number of sites in the system,
i.e., the number of qubits.

We have also found that the optimized DQAP ansatz
|ψM (θ)〉 with M less than MB exhibits another series of the
states that are independent of system size L. We have shown
that the entanglement entropy SA of subsystem A and the
variational energy EM (L)/L per site evaluated for these states
with 4M � LA and M < MB, respectively, fall into smooth
universal functions of M, independently of the system size
L and the boundary conditions. This implies that the en-
tanglement acquired by the DQAP ansatz |ψM (θ)〉 with a
finite M is bounded, as in the case of the matrix product
states with a finite bond dimension [39,40]. Moreover, we
have found that the entanglement entropy SA and the energy
difference between the variational energy and the exact one
�ε = EM (L)/L − ε∞ behave asymptotically as SA ≈ 1

3 ln M
and �ε ∼ M−2, respectively.

We have also analyzed the evolution of the single-particle
orbitals in the DQAP ansatz |ψM (θ)〉 via the local time-
evolution operators and the mutual information of |ψM (θ)〉
to explore how quantum entanglement is developed in
the quantum state. The latter quantity also reveals the
causality-cone-like structure of the propagation of quantum
entanglement via the local time-evolution operators. Further-
more, we have found that the optimized variational parameters
θ = {θ (1)

1 , θ
(1)
2 , . . . , θ

(m)
1 , θ

(m)
2 , . . . , θ

(M )
1 , θ

(M )
2 } in the DQAP

ansatz |ψM (θ)〉 converge to a smooth function of m for
each θ (m)

p (p = 1, 2), which is quite different from the linear
scheduling functions expected when the quantum adiabatic
process is naively discretized in time. We have also found
that the effective total evolution time Teff (L) of the optimized
variational parameters θ in the DQAP ansatz |ψM (θ)〉 with
M = MB, thus representing the exact ground state, scales lin-
early with the system size L, as opposed to L2 expected in
the continuous-time quantum adiabatic process with the linear
scheduling. Moreover, we have found that the intermediate
state in the optimized DQAP ansatz representing the exact
ground state of the final Hamiltonian has an exponentially
small state overlap with the ground state of the instantaneous
Hamiltonian, implying that the discretized time evolution of
the DQAP ansatz is far from a quantum adiabatic evolution
but rather close to a quantum diabatic evolution, although
the DQAP ansatz itself is motivated by a quantum adiabatic
process. Nonetheless, we have also estimated the optimum
scheduling function by maximizing the state overlap between
the intermediate state of the DQAP ansatz and the ground
state of the instantaneous Hamiltonian and found that it is
rather similar to the optimum scheduling function obtained
by the QAB, if the additional parameter α is also optimized.
The quantum diabaticlike evolution of the optimized DQAP
ansatz could be responsible for the quadratic speedup of the
effective total evolution time Teff (T ) of the optimized DQAP
ansatz.

We have also explored the discretized imaginary-time
evolution ansatz |ϕM (τ)〉, an imaginary-time counterpart of
the DQAP ansatz |ψM (θ)〉, for the same free-fermion sys-
tem. Similarly to the DQAP ansatz |ψM (θ)〉, the discretized
imaginary-time evolution ansatz |ϕM (τ)〉 is composed of M
layers of two elementary sets of local imaginary-time evolu-
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tion operators acting on neighboring sites. We have found that
the convergence of |ϕM (τ)〉 to the exact ground state is expo-
nentially fast in terms of the number M of layers, as compared
to that of the DQAP ansatz |ψM (θ)〉, although both ansatzes
are composed of the local evolution operators. This difference
is attributed to the fact that the imaginary-time evolution op-
erator is not unitary and thus there is no limit of speed for the
propagation of quantum entanglement via the local nonuni-
tary imaginary-time evolution operators. In particular, for the
free-fermion system, we can show directly that the expec-
tation value 〈ϕM (τ)|ĉ†

x ĉx′ |ϕM (τ)〉/〈ϕM (τ)|ϕM (τ)〉 is nonlocal
even when M � L, regardless of the distance |x − x′|, be-
cause the discretized imaginary-time evolution ansatz |ϕM (τ)〉
is not normalized, i.e., 〈ϕM (τ)|ϕM (τ)〉 	= 1. This is in sharp
contrast to the case of the DQAP ansatz |ψM (θ)〉, in which
the corresponding expectation value 〈ψM (θ)|ĉ†

x ĉx′ |ψM (θ)〉 is
zero when the two causality cones set by the Lieb-Robinson
bound formed from the origins at sites x and x′ do not
overlap (see Fig. 10). Our result thus implies that if the
local non-unitary imaginary-time evolution operator can be
implemented in a quantum circuit by using O(1) local
single- and two-qubit unitary gates, one can prepare the
ground state in this scheme by a much shallower quantum
circuit with depth O(1). However, it is challenging to rep-
resent a local nonunitary operator by O(1) local single- and
two-qubit unitary gates, especially for a quantum state at
criticality.

The free-fermion system considered here is at the critical
point where the correlation function 〈ĉ†

x ĉx′ 〉 decays alge-
braically with |x − x′| and thus the correlation is extended
over the entire system. In a critical system, it is intuitively
understood that at least L2 local two-qubit unitary gates are
required in a quantum circuit to represent the quantum entan-
glement of the state for the system with L sites. Therefore, also
in this sense, the DQAP ansatz |ψM (θ)〉 is an ideally compact
form to represent the ground state of this system. However,
it is not trivial for more general cases such as an interacting
fermion system. It is thus valuable to consider a possible
improvement in the quantum adiabatic process, for example,
by introducing navigation proposed in the VanQver algorithm
[78], for reducing the complexity of quantum processes. It is
also an interesting extension to introduce a nonunitary pro-
cess by inserting measurements during the quantum adiabatic
process [79,80].

We have also found that the natural gradient method
can optimize the variational parameters in the DQAP ansatz
|ψM (θ)〉 without any difficulty. Even with randomly chosen
initial variational parameters, the optimization method can
eventually find sets of optimized variational parameters to
converge to the lowest variational energy (see Appendix B),
implying that there is no problem such as the barren plateaus
phenomena [7]. However, this could be due to the fact that for
the free-fermion system, the independent matrix elements in
the DQAP ansatz |ψM (θ)〉 can be significantly reduced (see
discussion in Sec. III B). Therefore, it is desirable to examine
the case for an interacting fermion system, for example, and
this is left for a future study.

The focus in this paper was limited to the free-fermion
system, where a time-evolved N-fermion state can still be

described by a single Slater determinant state, and therefore
any quantum advantage is expected in simulating this system
on a quantum computer. However, this system is one of the
ideal systems to test the operations of NISQ devices because
the quantum state described by the DQAP ansatz |ψM (θ)〉 is
highly entangled but can still be treated in large systems on a
classical computer.
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APPENDIX A: DERIVATION FOR THE
FREE-FERMION FORMULAS

In this Appendix, we derive Eqs. (40) and (111) by fol-
lowing Ref. [81]. To this end, let us first notice the following
commutation relation:

[Ŵk, ĉ†] = ĉ†W k, (A1)

namely,

[Ŵk, ĉ†
x ] =

L∑
x′=1

ĉ†
x′[W k]x′x, (A2)

where Ŵk and W k are, respectively, a single-particle operator
and the corresponding L × L matrix defined in Eq. (38) with
k = 1, 2, 3, . . .. Note that the matrix W k in Eq. (38) is as-
sumed to be Hermitian, but Eq. (A1) is satisfied for any L × L
matrix W k and the argument given below in this Appendix is
generally correct for any matrix W k .

Rearranging the terms in Eq. (A1), we obtain that

Ŵk ĉ† = ĉ†(W k + Ŵk ). (A3)

By sequentially using Eq. (A3), we can find that

(Ŵk )l ĉ† = ĉ†(W k + Ŵk )l (A4)

for integer l � 0. This formula can be extended to a general
function of a matrix and we can readily show that

e−zkŴk ĉ† = ĉ†e−zk (W k+Ŵk ) (A5)

for any complex number zk . Notice here that the single-
particle operator Ŵk is a scalar in the matrix-vector multipli-
cation and the L × L matrix W k is a c number in the operator
space. Therefore, Ŵk and W k commute with each other and
thus

e−zkŴk ĉ† = ĉ†e−zkW k e−zkŴk . (A6)
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By multiplying an L × N matrix �k−1 from the right side, we
obtain that

e−zkŴk ĉ†�k−1 = ĉ†�ke−zkŴk (A7)

with

�k ≡ e−zkW k �k−1 (A8)

and �0 = �0, where �0 is an L × N matrix.
Let us now introduce the initial state |ψ0〉 with N fermions

as

|ψ0〉 =
N∏

n=1

[ĉ†�0]n|0〉, (A9)

where |0〉 is the vacuum of fermions. Using Eq. (A7), we find
that

|φ1〉 ≡ e−z1Ŵ1 |ψ0〉
= e−z1Ŵ1 [ĉ†�0]1[ĉ†�0]2 . . . [ĉ†�0]N |0〉
= [ĉ†�1]1e−z1Ŵ1 [ĉ†�0]2 . . . [ĉ†�0]N |0〉
= [ĉ†�1]1[ĉ†�1]2e−z1Ŵ1 . . . [ĉ†�0]N |0〉
...

= [ĉ†�1]1[ĉ†�1]2 . . . [ĉ†�1]N e−z1Ŵ1 |0〉

=
N∏

n=1

[ĉ†�1]n|0〉, (A10)

and thus we obtain that

|φ1〉 =
N∏

n=1

[ĉ†�1]n|0〉 (A11)

with

�1 = e−z1W 1�0. (A12)

By repeating the same procedure, we finally arrive at the
following formula:

|φk〉 ≡ e−zkŴk e−zk−1Ŵk−1 . . . e−z1Ŵ1 |ψ0〉

=
N∏

n=1

[ĉ†�k]n|0〉 (A13)

with

�k = e−zkW k e−zk−1W k−1 . . . e−z1W 1�0. (A14)

Equations (A13) and (A14) yield Eq. (40) with zk = iθk and
k = 1, 2, . . . , K . Equation (111) is also shown similarly with
zk = τk .

APPENDIX B: ROBUSTNESS OF OPTIMIZATION

In this Appendix, we show that the optimization of the
variational parameters θ in the DQAP ansatz |ψM (θ)〉 is ro-
bust for the one-dimensional free-fermion system described in
Eq. (26). To this end, we start the optimization iteration with
randomly initialized variational parameters and examine how
the variational parameters as well as the variational energy are
eventually optimized.

Figure 18(a) shows the convergence of the variational en-
ergy as a function of the number of optimization iterations

FIG. 18. (a) Error of the variational energy, �E , as a function
of the number of optimization iterations, and (b), (c) optimized
variational parameters θ

(m)
2 and θ

(m)
1 , started with 50 different sets

of initial variational parameters that are chosen randomly within
0 � θ (m)

p � 0.01/t for m = 1, 2, . . . , M and p = 1, 2. The varia-
tional parameters in the DQAP ansatz |ψM (θ)〉 with M = L/4 are
optimized for L = 120 under APBCs at half filling, i.e., N = L/4,
and thus |ψM (θ)〉 can represent the exact ground state of the sys-
tem. Colors varying from yellow to red indicate the results for 50
different sets of initial parameters. Blue line in (a) and blue circles
in (b) and (c) denote the results for the DQAP ansatz |ψM (θ)〉 with
the variational parameters optimized in the procedure described in
Sec. III E.

starting with 50 different sets of initial variational parame-
ters that are chosen randomly within 0 � θ (m)

p � 0.01/t for
m = 1, 2, . . ., M and p = 1, 2. The vertical axis in Fig. 18(a)
is the energy difference �E between the variational en-
ergy at a give iteration and the exact energy. We set δβ =
0.01 for the learning rate in Eq. (54) to optimize the vari-
ational parameters in the DQAP ansatz |ψM (θ)〉 with M =
L/4 for L = 120 under APBCs at half filling, and thus
the DQAP ansatz |ψM (θ)〉 can represent the exact ground
state.

As shown in Fig. 18(a), while they are somewhat scat-
tered in the beginning of the iterations, all cases studied
with 50 different sets of randomly chosen initial variational
parameters finally converge to the exact energy exponen-
tially with increasing the number of iterations. However, the
convergence of the variational energy for the DQAP ansatz
|ψM (θ)〉 optimized systematically in the procedure described
in Sec. III E is at least one order of magnitude better than that
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for the DQAP ansatz |ψM (θ)〉 optimized with the randomly
chosen initial variational parameters.

More interestingly, we find in Figs. 18(b) and 18(c) that the
optimized sets of variational parameters are all different, al-
though these sets can reproduce the exact ground-state energy.
Note here that θ (m)

p has redundancy with a period of π/t [see
Eqs. (91) and (92)]. However, even if we take this redundancy
into account, these sets are clearly different. Consequently, the
single-particle orbitals in the optimized DQAP ansatz |ψM (θ)〉
have different shapes, depending on the variational parameters
θ(m)

p . However, this does not alter the conclusion discussed in
Sec. III B, qualitatively.

APPENDIX C: BOUNDARY CONTRIBUTION TO
ENTANGLEMENT ENTROPY

As described in Sec. III C, the entanglement entropy SA
of the optimized DQAP ansatz |ψM (θ)〉 is determined by the
number M of layers in the DQAP ansatz, independent of
system size L and boundary conditions, provided that 4M �
LA and LA � LĀ, where LA (LĀ) is the size of subsystem A
(complement of subsystem A) and L = LA + LĀ. This finding
suggests that the entanglement entropy SA is separable to the
contributions from the partitioning boundaries ∂AI and ∂AII

between the two subsystems, i.e., SA ∼ S∂AI + S∂AII , where
S∂AI(II) implies the entanglement entropy from the boundary
∂AI(II). Note that the partitioning boundaries are assumed not
to break any local bonding state in the initial state |ψi〉 (see
Fig. 7). Here, in this Appendix, we discuss more details of
this point through the one-particle density matrix DA defined
in Eq. (64).

Let us first introduce the one-particle density matrix DU of
the whole system U = A + Ā as

DU = 〈ψM (θ)|ĉ∗ĉt |ψM (θ)〉, (C1)

= �∗
M�t

M, (C2)

where ĉ∗ (ĉt ) is the matrix transpose of ĉ† (ĉ) in Eqs. (3) and
�M is given in Eq. (85). Note that we have used Eq. (44) to
derive Eq. (C2). Then, we can readily show that

D2
U = DU (C3)

because �†
M�M = IN . This implies that the eigenvalues of

DU are either 0 or 1. In the following, we assume that A =
{1, 2, 3, . . . , LA} and Ā = {LA + 1, LA + 2, LA + 3, . . . , L},
for simplicity.

Let us now write DU as

DU =
(

DAA DAĀ
DĀA DĀĀ

)
, (C4)

where DAA is an LA × LA matrix, corresponding to the one-
particle density matrix DA of subsystem A defined in Eq. (64),
and DĀĀ is an LĀ × LĀ matrix. Due to the idempotence of DU

in Eq. (C3), we find that

D2
AA + DAĀDĀA = DAA. (C5)

Considering the spatial extent dM = 4M + 2 of the single-
particle orbitals in the DQAP ansatz |ψM (θ)〉 discussed in
Sec. III B, we can show that, in general,

rank[DAĀ] = rank[DĀA] = min(LA, 4M ), (C6)

irrespectively of the values of the variational parameters in the
DQAP ansatz |ψM (θ)〉. Here, the spatial extent dM = 4M + 2
of the single-particle orbitals in �M suggests that DU =
�∗

M�t
M is a bandlike matrix with 8M + 2 nonzero elements in

each row and each column, while DAĀ has an opposite matrix
structure with nonzero elements appearing at the upper right
and lower left corners, and the apparent rank of DAĀ is 8M.
For example, when L = 16, N = 8, and M = 1, the matrix
structures of �∗

M�t
M = DU are schematically given as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 ∗
∗ ∗ 0 0 0 0 0 ∗
∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0
0 ∗ ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ 0 0 0
0 0 ∗ ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ ∗
∗ 0 0 0 0 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C7)

where * indicates a nonzero element and DAĀ is the upper
right quadrant of the matrix in the right-hand side. However,
due to the characteristic structure of �M , a single-particle
orbital being extended spatially by two lattice spaces in each
spatial direction every time the local time-evolution operators
are applied, we find that the Gaussian elimination eliminates
half of the nonzero row (or column) vectors in DAĀ, implying
that the nonzero row (or column) vectors in DAĀ are linearly
dependent and only the half of them are linearly indepen-
dent, which leads to Eq. (C6). Because DĀA = D†

AĀ
and thus

rank[DAĀDĀA] = rank[DAĀ], we finally obtain that

rank
[
D2
AA − DAA

] = min(LA, 4M ). (C8)

Equation (C8) immediately implies that, for the DQAP
ansatz |ψM (θ)〉 with 4M � LA, LA − 4M eigenvalues of DAA

(=DA) are either 0 or 1. As shown schematically in Fig. 7(a),
there are LA/2 − 2M single-particle orbitals in the DQAP
ansatz |ψM (θ)〉 that do not cross either side of the partition-
ing boundaries between the two subsystems and stay inside
subsystem A. These LA/2 − 2M single-particle orbitals con-
tribute to the eigenvalues of DA with δl = 1. Due to the
particle-hole symmetry, the eigenvalues of DA should ap-
pear symmetrically around 1/2 [82,83]. Therefore, there exist
LA/2 − 2M eigenvalues of DA with δl = 0, corresponding to
the unoccupied single-particle orbitals that stay inside sub-
system A without crossing the partitioning boundaries. The
remaining 4M eigenvalues of DA are neither 0 nor 1, i.e.,
0 < δl < 1. These contributions are due to the single-particle
orbitals (2M) in the DQAP ansatz |ψM (θ)〉 that cross either
side of the partitioning boundaries between the two subsys-
tems and the hole counterparts (2M) due to the particle-hole
symmetry. These eigenvalues of DA with 0 < δl < 1 con-
tribute to the nonzero entanglement entropy SA in Eq. (73).

Figure 19 shows the numerical results of the eigenvalues
of DA for the optimized DQAP ansatz |ψM (θ)〉 with M = 5
and two different system sizes L = 40 and 80, assuming that
LA = L/2 and thus 4M � LA. First, we can notice that the
eigenvalues are all symmetric around 1/2, as expected due
to the particle-hole symmetry. Second, we can confirm that all
the eigenvalues are neither 0 nor 1 for L = 40. Third, there
are LA/2 − 2M = 10 eigenvalues with δl = 1 as well as 10
eigenvalues with δl = 0 for L = 80. In addition, we can find

that other eigenvalues different from 0 or 1 for L = 80 are
identical to the eigenvalues of DA found for L = 40. These
eigenvalues δl with 0 < δl < 1 contribute to the entanglement
entropy SA, and therefore this finding is in good agreement
with the result that the entanglement entropy SA of the opti-
mized DQAP ansatz |ψM (θ)〉 with 4M � LA is independent
of system size L (see Fig. 6). Fourth, the eigenvalues δl with
0 < δl < 1 are pairwise degenerate. Considering that only
these 4M eigenvalues δl with 0 < δl < 1 contribute to the
entanglement entropy SA and these eigenvalues correspond
to the single-particle orbitals in the DQAP ansatz |ψM (θ)〉
that cross either side of the partitioning boundaries and the
hole counterparts, we interpret the pairwise degeneracy as a
fingerprint that the contribution to the entanglement entropy
SA can be separated from the two partitioning boundaries ∂AI

FIG. 19. Eigenvalues δl of the one-particle density matrix DA for
the optimized DQAP ansatz |ψM (θ)〉 with M = 5. The variational
parameters are optimized for L = 40 and 80 under APBCs at half
filling, i.e., N = L/2. We assume that the size of subsystem A is
LA = L/2 and thus 4M � LA. Insets: Enlarged plots around δl = 0
and δl = 1. Notice that (i) all eigenvalues are symmetric around 1/2,
(ii) all eigenvalues for L = 40 are neither 0 nor 1, (iii) all eigenvalues
(except for the eigenvalues being either 0 or 1) for L = 80 are
identical to those for L = 40, and (iv) all eigenvalues with 0 < δl < 1
are pairwise degenerate.
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FIG. 20. Same as Fig. 19 but for L = 40 with M = 6, i.e., 4M >

LA. For comparison, the same results for L = 40 with M = 5 shown
in Fig. 19 are also plotted.

and ∂AII, i.e., SA ∼ S∂AI + S∂AII . Indeed, as shown in Fig. 20,
the pairwise degeneracy disappears once 4M > LA [84].

APPENDIX D: EVOLUTION TIME IN A
CONTINUOUS-TIME QUANTUM ADIABATIC PROCESS

To make a comparison with the effective total evolution
time Teff (L) of the DQAP discussed in Fig. 13, here we esti-
mate the total evolution time necessary to obtain the ground
state within a given accuracy in the continuous-time quantum
adiabatic process with a linear scheduling.

According to the quantum adiabatic theorem [85], the
transition amplitude at time τ to the excited state |φα (τ )〉
(α = 1, 2, . . .) is generally given by

|〈φα (τ )|�(τ )〉| ∼ |〈φα (τ )|∂τ Ĥ(τ )|φ0(τ )〉|
(�α (τ ) − �0(τ ))2

, (D1)

where |φα (τ )〉 is the αth eigenstate of the instantaneous
Hamiltonian Ĥ(τ ) at time τ with the eigenvalue �α (τ ),
and |φ0(τ )〉 is the ground state of Ĥ(τ ) with its eigenvalue
�0(τ ) (< �α (τ )). |�(τ )〉 is the time-evolving state at time τ

via the time-dependent Schrödinger equation from the initial
state |�(0)〉 = |φ0(0)〉 at time τ = 0. ∂τ Ĥ(τ ) indicates the
time derivative of Ĥ(τ ).

For the one-dimensional free-fermion system in Eq. (26),
the time-dependent Hamiltonian Ĥ(τ ) is given as

Ĥ(τ ) = V̂1 + (τ/T )V̂2, (D2)

where V̂1 and V̂2 are defined in Eqs. (27) and (28), respec-
tively, and the linear scheduling is assumed with the total
evolution time T , i.e., the initial time τi = 0 and the final
time τf = T in Eqs. (23). In this case, the derivative of the
time-dependent Hamiltonian Ĥ(τ ) is simply

∂τ Ĥ(τ ) = 1

T
V̂2. (D3)

An upper bound of the numerator in Eq. (D1) is given by the
operator norm [86], i.e.,

|〈φα (τ )|∂τ Ĥ(τ )|φ0(τ )〉|

� max
|ψ〉 with 〈ψ |ψ〉=1

|〈ψ |∂τ Ĥ(τ )|ψ〉| = Lt

2T
. (D4)

The last equality follows from the fact that V̂2 is a direct sum
of L/2 two-qubit XY Hamiltonians acting on every distinct
pair of adjacent qubits. However, as shown in the following,
we find that the upper bound given in Eq. (D4) overestimates
by a factor of O(L).

Let us first represent Ĥ(τ ) in the matrix form

Ĥ(τ ) = ĉ†T (τ )ĉ (D5)

with

T (τ ) = V 1 + (τ/T )V 2, (D6)

where ĉ† and ĉ are defined in Eqs. (3). We then diagonalize
the L × L matrix T (τ ) by a unitary matrix U (τ ) as

T (τ ) = U†(τ )E(τ )U (τ ), (D7)

where E(τ ) = diag(E1(τ ), E2(τ ), . . . , EL(τ )) is the diagonal
matrix with the diagonal elements being the eigenvalues of the
matrix T (τ ). The Hamiltonian Ĥ(τ ) is then represented as

Ĥ(τ ) = â†(τ )E(τ )â(τ ) =
L∑

n=1

En(τ )â†
n(τ )ân(τ ), (D8)

where â†(τ ) and â(τ ) are the fermion operators given by

â†(τ ) = ĉ†U (τ ), â(τ ) = U†(τ )ĉ. (D9)

It is important to notice here that, since the Hamiltonian Ĥ(τ )
is nonlocal for τ > 0, the operator â†

n(τ ) representing the nth
single-particle orbital is no longer local and the weight at each
site can be approximated by 1/

√
L, i.e., |Uxn(τ )| ∼ 1/

√
L,

where [U (τ )]xn = Uxn(τ ).
The ground state |φ0(τ )〉 of the Hamiltonian Ĥ(τ ) at time

τ with N fermions is given as

|φ0(τ )〉 =
N∏

n=1

â†
n(τ )|0〉, (D10)

with �0(τ ) = ∑N
n=1 En(τ ), assuming that E1(τ ) � E2(τ ) �

. . . � EL(τ ). Since ∂τ Ĥ(τ ) is a single-particle operator, the
possible excitations are restricted to particle-hole excitations,
i.e.,

|φα (τ )〉 = â†
n1

(τ )ân2 (τ )|φ0(τ )〉, (D11)

where n1 > N and n2 � N . We then find that

〈φα (τ )|∂τ Ĥ|φ0(τ )〉

= 1

T

L/2∑
x=1

[V 2]2x,2x+1U
∗
2x,n1

(τ )U2x+1,n2 (τ )

+ 1

T

L/2∑
x=1

[V 2]2x+1,2xU
∗
2x+1,n1

(τ )U2x,n2 (τ ), (D12)

and hence

|〈φα (τ )|∂τ Ĥ|φ0(τ )〉| ∼ L0t

T
, (D13)

where [V 2]2x,2x+1 for x = L/2 is assumed to be [V 2]L,1. Not-
ing that the minimum of the spectral gap �α (τ ) − �0(τ )
is realized at τ = τ f and is proportional to t/L for the
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one-dimensional free-fermion system, one can estimate the
maximum of the transition amplitude as

|〈φα (τ )|∂τ Ĥ(τ )|φ0(τ )〉|
(�α (τ ) − �0(τ ))2

∣∣∣∣
τ=τf

∼ L2

tT
. (D14)

Therefore, the evolution time T has to be at least as large
as T ∼ L2 for the time-evolving state |�(τ )〉 to follow the
quantum dynamics adiabatically.

Next, we confirm this analysis directly by numerically
solving the time-dependent Schrödinger equation in Eqs. (12)
and (13). In the numerical simulation, the time evolution op-
erator Û (τ, τi ) is treated as

Û (τ, τi ) =
1∏

m=M

Û (τm, τm−1) (D15)

and

Û (τm, τm−1) = Tτ e−i
∫ τm
τm−1

Ĥ(τ )dτ
, (D16)

where τm (m = 0, 1, 2, . . . , M) is the discretized time

τm = mδτM , (D17)

with the small time step

δτM = T/M, (D18)

and Tτ is the time-ordered operator. Following the Magnus
expansion [87], the time-evolution operator Û (τm, τm−1) for
the small time step δτM can be expressed as

Û (τm, τm−1) = exp[F̂ (τm, τm−1)], (D19)

where F̂ (τm, τm−1) is expanded in the order of the perturba-
tion,

F̂ (τm, τm−1) =
∑
μ=1

F̂μ(τm, τm−1), (D20)

and the μth order term F̂μ(τm, τm−1) is anti-Hermitian, i.e.,

[F̂μ(τm, τm−1)]
† = −F̂μ(τm, τm−1). Therefore, unitarity of the

time evolution operator Û (τm, τm−1) is guaranteed even when
the expansion of F̂ (τm, τm−1) in Eq. (D20) is terminated at a
finite order.

The first- and second-order terms in F̂ (τm, τm−1) are given,
respectively, as

F̂1(τm, τm−1) = − iδτM

2
(Ĥ(τm) + Ĥ(τm−1)) (D21)

and

F̂2(τm, τm−1) = − (iδτM )2

6
[Ĥ(τm), Ĥ(τm−1)]. (D22)

Note that for any single-particle operators

Â = ĉ†Aĉ (D23)

and

B̂ = ĉ†Bĉ, (D24)

with A and B being L × L matrices, the commutator of these
single-particle operators,

[Â, B̂] = ĉ†[A, B]ĉ, (D25)

FIG. 21. (a) Error ε = √
2 − 2|〈�exact|�(T )〉| in fidelity between

the final state |�(T )〉 in the continuous-time quantum adiabatic pro-
cess with the linear scheduling and the exact ground state |�exact〉
of the final Hamiltonian. The results are obtained by the numerical
simulation for the one-dimensional free-fermion system described in
Eq. (D2) with the total evolution time T and various system sizes L
under PBCs at half filling. (b) System-size dependence of the total
evolution time Tε necessary to obtain the ground state of the final
Hamiltonian within the accuracy of error ε = 0.01 indicated by gray
dashed line in (a). For comparison, a function proportional to L2 is
also plotted by green solid line.

is still a single-particle operator. Therefore, as in the case
of the free-fermion system described by the time-dependent
Hamiltonian Ĥ(τ ) with the linear scheduling in Eq. (D2), all
order terms F̂μ(τm, τm−1), including the higher order terms,
in the Magnus expansion remain in the form of single-particle
operators. Thus, we can use the algebra for free fermions
without any difficulty.

We perform the numerical simulation with keeping δτM =
0.01/t , for which we find that the result by using the time-
evolution operator with only the first-order expansion is
essentially unchanged even when we use the time-evolution
operator expanded up to second order, suggesting that the
results are well converged. Figure 21(a) shows the error ε in
fidelity between the final state |�(T )〉 and the exact ground
state |�exact〉 of the final Hamiltonian,

ε =
√

2 − 2|〈�exact|�(T )〉|, (D26)

plotted as a function of the total evolution time T . We find
that the error decreases asymptotically as ε ∼ 1/T for a give
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system size L (� 10). This is understood because the leading
term of the error ε is proportional to the transition amplitude
given in Eq. (D14). Figure 21(b) shows the system-size de-
pendence of the total evolution time Tε necessary to obtain
the ground state of the final Hamiltonian within the accuracy
of error ε = 0.01. We indeed find that Tε is proportional to
L2, except for small values of L, which is in good agreement
with the analytical result in Eq. (D14). We thus conclude
that the total evolution time necessary to obtain the ground
state within a given accuracy in the continuous-time quantum
adiabatic process with the linear scheduling is proportional to
L2. This is in sharp contrast to the case of the DQAP where the
effective total evolution time Teff (L) necessary for the DQAP
ansatz |ψM (θ)〉 to converge to the exact ground state of the
final Hamiltonian is proportional to L, as shown in Fig. 13.

APPENDIX E: OPTIMUM SCHEDULING BY QUANTUM
ADIABATIC BRACHISTOCHRONE

QAB [75] is a method to find an optimum scheduling
function for the quantum adiabatic process. To illustrate this
method, here we consider the system described by the follow-
ing Hamiltonian:

Ĥ[χ] =
P∑

p=1

χpV̂p, (E1)

where V̂p is time independent and the quantum dynamics
of the system is controlled through a set of parameters
χ = {χ1, χ2, . . . , χP}. Namely, these parameters are varied
as a function of time τ , i.e., χ = χ(τ ). For simplicity, we
reparametrize this function via a dimensionless parameter
s(τ ) with s(0) = 0 at the initial time τi = 0 and s(T ) = 1
at the final time τf = T (i.e., the total evolution time T ), for
instance, by rescaling s(τ ) = τ/T .

In the QAB, the functional to be optimized is

T [χ̇,χ] =
∫ 1

0
dsL[χ̇,χ], (E2)

where the Lagrangian L[χ̇,χ] is given by

L[χ̇,χ] =
∥∥ ∑P

p=1 χ̇pV̂p

∥∥2

�4[χ(s)]
. (E3)

Here, ‖Â‖ denotes the Hilbert-Schmidt norm, i.e., ‖Â‖ =√
Tr[Â†Â], �[χ(s)] is the minimum gap between the ground

state and the first excited state for the Hamiltonian Ĥ[χ] at
time s, and χ̇p = dχp

ds . Note that the Lagrangian

‖ ˙̂H‖2

�4(s)
(E4)

corresponds to the upper bound of the transition probability
at a given s. Therefore, the QAB determines the optimum
path for χ so as to minimize the total transition probabil-
ity by solving the Euler-Lagrange equation for T [χ̇,χ] in

FIG. 22. The optimum scheduling function χQAB(s) obtained
by the quantum adiabatic brachistochrone (QAB) for the one-
dimensional free-fermion system for various system sizes L at half
filling.

Eq. (E2):

d

ds

(
∂L
∂χ̇p

)
− ∂L

∂χp
= 0. (E5)

Inserting the explicit form of the Lagrangian L[χ̇,χ] given
in Eq. (E3) into the Euler-Lagrange equation, we obtain the
following equation:

χ̈p +
∑
i, j

�
p
i jχ̇iχ̇ j = 0, (E6)

where

�
p
i j = 2

�

(
[C]i j

∑
q

[C−1]pq
∂�

∂χq
− δpi

∂�

∂χ j
− δp j

∂�

∂χi

)
, (E7)

with

[C]i j = Tr[V̂iV̂ j]. (E8)

We shall now apply this theory to the one-dimensional free-
fermion system described by the Hamiltonian in Eq. (26). To
facilitate an analytical treatment, we consider the following
parametrization:

Ĥ[χ ] = V̂1 + χ V̂2, (E9)

where V̂1 and V̂2 are given in Eqs. (27) and (28), respectively.
Assuming that the system size is L, the minimum gap �(χ )
in this case is

�(χ ) = 2t
√

(χ − cos(2π/L))2 + sin2(2π/L) (E10)

for both PBCs and APBCs with the closed shell condition at
half filling. By inserting these into the Euler-Lagrange equa-
tion in Eq. (E5), we obtain the following differential equation
for parameter χ :

χ̈ − 2
χ − cos(2π/L)

(χ − cos(2π/L))2 + sin2(2π/L)
χ̇2 = 0. (E11)
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The solution χQAB(s) of this differential equation under the
conditions χ (0) = 0 and χ (1) = 1 is readily found as

χQAB(s) = cos(2π/L) − sin(2π/L) tan(as + b), (E12)

with

a = − arctan

(
sin 2π/L

1 − cos 2π/L

)
(E13)

and

b = arctan

(
cos 2π/L

sin 2π/L

)
. (E14)

Figure 22 shows χQAB(s) for several values of L. The result
indicates that the curvature of χQAB(s) becomes flatter as one
approaches the final time at s = 1 because the minimum gap
becomes smaller.
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