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We study the spin transport through a 1D quantum Ising-XY-Ising spin link that emulates a topological
superconducting-normal-superconducting structure via Jordan-Wigner (JW) transformation. We calculate, both
analytically and numerically, the spectrum of spin Andreev bound states and the resulting Z2 fractional spin
Josephson effect (JE) pertaining to the emerging Majorana JW fermions. Deep in the topological regime, we
identify an effective time-reversal symmetry that leads to Z4 fractional spin JE in the presence of interactions
within the junction. Moreover, we uncover a hidden inversion time-reversal symmetry that protects the Z4

periodicity in chains with an odd number of spins, even in the absence of interactions. We also analyze
the entanglement between pairs of spins by evaluating the concurrence in the presence of spin current and
highlight the effects of the JW Majorana states. We propose to use a microwave cavity setup for detecting the
aforementioned JEs by dispersive readout methods and show that, surprisingly, the Z2 periodicity is immune to
any local magnetic perturbations. Our results are relevant for a plethora of spin systems, such as trapped ions,
photonic lattices, electron spins in quantum dots, or magnetic impurities on surfaces.
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I. INTRODUCTION

Condensed-matter systems provide an endless playground
for emergent exotic phenomena and quasiparticles. In particu-
lar, the concept of topological phases associated with the band
structure of solids has seen tremendous developments over the
past decades [1]. Topological insulators and superconductors
are probably among the most scrutinized, notably because
they can host Majorana fermions, quasiparticles that are their
own antiparticle, which occur as excitations in such materials
[2–4]. Thanks to non-Abelian statistics, Majorana fermions
are crucial ingredients for a functional topological quantum
computer: a set of distant, noninteracting Majorana fermions
allow, through the process of braiding, to implement a cat-
egory of topologically protected gates, albeit not universal
[5–7].

Compounds hosting topological superconductivity are rare,
for example, Sr2RuO4 is believed to be one [8]. However,
material engineering of heterostructures composed of semi-
conducting and superconducting materials can lead to such
special superconductors, i.e., 1D nanowires and 2D topo-
logical insulators with strong spin-orbit interaction (SOI)
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proximitized with the conventional s-wave superconductor
[9–11]. On the other hand, quantum magnets can mimic elec-
tronic systems without the proximity requirements [12–14].
Specifically, a 1D quantum Ising model can emulate a
Kitaev p-wave superconductor, via the renowned Jordan-
Wigner transformation (JWT) [15–18]. In particular, the
topological phase transition and the occurrence of Majorana
fermions as low-energy modes are all mapped into the spin
system when the applied transverse magnetic field is varied,
where the ferromagnetic (paramagnetic) phase in the spin
chain corresponds to the topological (trivial) phase of the
fermionic system [19].

However, one should not be misled: Although there are
some analogies of low-energy excitations between fermionic
system and spin space, some topological properties will
be lost after transformation [20–22]. In the spin space,
Majorana fermions are not localized objects anymore, and
they can be mixed simply by a magnetic field along the Ising
axis, i.e., the parity of the ground state is fragile. Neverthe-
less, it is of crucial importance to investigate which of the
topological properties associated with Majorana fermions can
survive in the spin chain and provide experimental witnesses
of their manifestations. To achieve that, in this paper we
propose and study the spin transport through an Ising-XY-
Ising (IXI) inhomogeneous spin chain in which the Ising axes
are misalighned. Borrowing from the electronic description,
such a spin chain system emulates a phase-biased topologi-
cal superconducting-normal-superconducting (SNS) junction
that hosts Andreev bound states (ABSs), with a supercurrent
flowing through the normal part [23–26].
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The symmetries of a system play an essential role in
the topological phase classification. Nowadays, noninter-
acting fermionic systems are classified into ten classes
by means of three fundamental symmetries: time-reversal
symmetry (TRS), particle-hole symmetry (PHS), and sublat-
tice symmetry [27–30]. In addition, crystalline symmetries
(e.g., inversion symmetry) [31–34], as well as many-body
interactions [35,36], can also lead to different topological
classes, which, combined with magnetic impurities [37–39],
may result in various types of Josephson effects (JEs) in
superconducting junctions. Roughly speaking, periodicities of
JEs are 2π in the trivial phase, 4π in the topological phase,
and 8π in the topological phase with many-body interactions
or impurities (see Sec. V for rigorous descriptions). The latter
two cases are known as Z2 and Z4 fractional JEs pertaining to
contributions from Majoranas and parafermions, respectively
[39–41]. In this paper, we realize the spin chain-analogs of
these JEs and unveil an exotic dependence of the Z2 and Z4

fractional spin JEs on the parity of the number of sites. We
go on to find several symmetries in the spin chain that protect
the associated spin current from various types of spin-spin in-
teractions and demonstrate their robustness against fluctuating
magnetic fields.

One of the most counterintuitive characteristics in the
quantum world is entanglement whose nonlocality provides
another instructive insight to understand topological phases
[42]. Nowadays, there is still no universal way to quantify the
entanglement of a mixed state shared by arbitrary subsystems
[43]. However, one can compute the entanglement of a mixed
state in a bipartite spin-1/2 systems using concurrence [44].
The variation of the entanglement across the quantum phase
transition point has been investigated in the anisotropic XY
spin chain with periodic boundary conditions [45]. Here, we
evaluate the entanglement between spins and show that it can
be enhanced in the presence of a spin current owing to the
misaligned Ising axes. This effect, while present in the spin
chain, does not have a fermionic counterpart in topological
superconductors.

The experimental method of choice for detecting spin
current in insulating (quantum) magnets is via the inverse
spin-Hall effect in which a metal with strong SOI is coupled
to the insulating magnet. Spin current is injected into the
metal which is converted, via the SOI, into charge current
and can be measured by usual means [46]. While this method
is effective for large spin systems, the signal might be too
small for quantum spin chains. Thus, we propose detecting the
spin current by embedding our system in a cavity QED setup
wherein such a spin flow shifts both the cavity frequency and
the Q factor, which can then be detected by measuring the
spectral features of the cavity.

The paper is organized as follows. In Sec. II, we introduce
the spin system and the model Hamiltonian. There we perform
the mapping from spins to fermions via the JWT. In Sec. III we
analyze the symmetries of the two representations appearing
at the lattice level. In Sec. IV, we focus on the low-energy
sector using both a continuum theory as well as the full lattice
diagonalization to solve for the ABSs spectra analytically and
compare to those found numerically. In Sec. V, we discuss
different scenarios of fractional JEs regarding an effective
TRS in the continuum limit and an inversion TRS at the lattice
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FIG. 1. (a) Schematic of the IXI spin (blue ball) chain in the
transverse field (purple arrow): the middle part (green dashed box) is
the isotropic XY model, the left and right parts (red dashed boxes) are
the quasi-Ising model with the same anisotropy γ , whereas the right
part contains a different spin anisotropic angle φ (the orientation of
the orange arrow) from the left part. (b) After the JWT, the IXI em-
ulates a topological SNS structure, every fermion (blue box) is split
into two Majoranas (green dots). There can host Majorana couplings
(red dashed arrow) between the left and right p-wave superconduc-
tors. (c) The wave function (blue curve) of the JW Majorana bound
state lies in the gapped-gapless-gapped topological SNS structure.

level, respectively. In Sec. VI, we calculate the texture of the
spin entanglement in the presence of a spin supercurrent in the
XY sector. In Sec. VII, we propose and analyze the coupling
of the spin chain to a microwave cavity for readout of the spin
current and the periodicities of the JEs, along with examining
the robustness of the fractional JEs under perturbations of the
in-plane magnetic fields. Finally, in Sec. VIII we conclude
with an outlook on future directions.

II. MODEL HAMILTONIAN

The N-site anisotropic XY spin chain in a transverse field,
presented schematically in Fig. 1(a) with open boundary con-
ditions, is described by the Hamiltonian

ĤS
G = −J

∑
i
(ti + γi )σ̂

m
i σ̂ m

i+1 + (ti − γi )σ̂
n
i σ̂ n

i+1 + giσ̂
z
i , (1)

where σ̂
m(n)
i = σ̂ i · mi(ni ), σ̂ i = (σ̂ x

i , σ̂
y
i , σ̂ z

i ) is a spin vector
constructed by Pauli matrices at site i, mi = (cos φi, sin φi, 0),
ni = (− sin φi, cos φi, 0), φi is the spin anisotropic angle
with respect to the z axis, 0 � γi � 1 marks the degree of
anisotropy in the xy-plane, J > 0 is the spin exchange con-
stant, 0 � ti � 1 is the coupling strength, gi = g is the relative
magnitude of the global transverse field along the z axis.
Lengths are measured in units of the lattice spacing a.

By tuning the value of parameters, the chain is split
into three regions: Ising-XY-Ising, pertaining to the spin
Josephson junctions (JJs). The number of sites in the left,
middle, and right parts is NL, NM, NR, respectively. The mid-
dle chain and the left and right interfaces (xL = NL, xR =
NL + NM, respectively) are described by the isotropic XY
model by setting γi = φi = 0, ∀i ∈ [xL, xR]. The left and right
parts are misaligned, i.e., φi = φ in the right part and φi = 0
in the left part, quasi-Ising (anisotropic XY) spin chains such
that γi = γ �= 0. Although the coupling strength is set as
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ti = t in the bulk regions of the spin chain, the parameters
at the two interfaces are different: txL = txR = t. When t = t ,
the connection between different regions are perfect, while if
t = 0 they are decoupled from each other.

We perform the JWT, ĉ†
i = ∏i−1

j=1(−σ̂ z
j )σ̂+

i , σ̂±
i = (σ̂ x

i ±
iσ̂ y

i )/2, on Eq. (1) and obtain the fermionic Hamiltonian

ĤF
G = − 2J

∑
i
[(tiĉ

†
i ĉi+1 + γie

−2iφi ĉ†
i ĉ†

i+1 + H.c.)

+ gi(ĉ
†
i ĉi − 1/2)] , (2)

where ĉ†
i (ĉi) is the creation (annihilation) operator of the JW

electron at site i. It turns out the IXI emulates a topologi-
cal superconducting-normal-superconducting (SNS) junction
[Fig. 1(b)]. Since Eq. (2) is quadratic, it can be expressed in
Bogoliubov-de Gennes (BdG) form ĤF

G = Ĉ†HF
GĈ/2 with

HF
G = − 2J

∑
i
{[(tiρz + iγie

−2iφiρzρy) ⊗ |i〉 〈i + 1|
+ H.c.] + giρz ⊗ |i〉 〈i|} , (3)

where Ĉ = (ĉ1, ĉ2, . . . , ĉN, ĉ†
1, ĉ†

2, . . . , ĉ†
N)T is a 2N-

dimensional spinor and |i〉 = (0, . . . , 1, 0, . . . )T is an
N-dimensional basis vector corresponding to the ith site
of the chain, and ρy and ρz are Pauli matrices acting on
the Nambu particle-hole space. By use of the Bogoliubov
quasiparticle D̂ = (d̂1, d̂2, . . . , d̂N, d̂†

1 , d̂†
2 , . . . , d̂†

N)T basis,
ĤF

G is diagonalized into
∑

n εn(d̂†
n d̂n − 1/2) with a set of

single-particle energy εn.
When the twisting angle φ of the right Ising part is

nonzero, there is a spin supercurrent flowing through the mid-
dle sector, whose coupling Hamiltonian is XY type, ĤXY =
−Jt (σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1). Hence, via evaluating the Heisenberg

equations of motion �Ĵz = Ĵout
z − Ĵ in

z = i[σ̂ z
i , ĤXY], we define

a z-component spin current operator as Ĵz ≡ Ĵout
z [47,48] or,

more explicitly [49],

Ĵz/(−2Jt ) = σ̂ x
i σ̂

y
i+1 − σ̂

y
i σ̂ x

i+1 = 2i(ĉ†
i ĉi+1 − ĉ†

i+1ĉi ) . (4)

In this paper, we only focus on Ĵz, since the expectation
values of Ĵx and Ĵy vanish, while Ĵz remains a constant ∀i ∈
(xL, xR ) in the middle part due to current conservation. Such
spin superfluidity is analogous to the superconductivity in the
presence of a phase bias: As charge conservation is broken
at the level of mean-field theory for superconductors, Ĵz is
not conserved in the Ising portions. Thus, the lattice, whose
dynamics are neglected in this paper, effectively acts as a
source and drain of spin.

III. LATTICE SYMMETRY ANALYSIS

The symmetries of a system are independent of representa-
tions, although they can be interpreted differently in the spin
and fermionic pictures. In the following subsections, we will
identify the symmetries occurring in the spin system and find
out their fermionic counterparts through the JWT. To be more
general, we introduce two types of interacting Hamiltonians:
the spin-spin interactions in the z direction (ZZ type),

ĤS
I = −J

∑
i
δiσ̂

z
i σ̂ z

i+1 , (5)

acting on the spin space, and the Coulomb interactions (NN
type),

ĤF
I = −4J

∑
i
χin̂in̂i+1 . (6)

Equations (5) and (6) are connected by the JWT up to global
renormalization of the magnetic field 4n̂in̂i+1 ⇔ 1 + σ̂ z

i +
σ̂ z

i+1 + σ̂ z
i σ̂ z

i+1 which, as we see below, will have significant
implications.

A. Spin Z2 symmetry

The spin chain has a Z2 symmetry since [ĤS
G, P̂S] = 0 with

P̂S = ∏
i σ̂

z
i , P̂2

S = +1, which acts on Pauli operators as

P̂Sσ̂
m(n)
i P̂−1

S = −σ̂
m(n)
i , P̂Sσ̂

z
i P̂−1

S = +σ̂ z
i . (7)

By the JWT, the corresponding operator in the fermionic sys-
tem is identified as a parity operator P̂F = ∏

i(2n̂i − 1), which
transforms fermionic operators as

P̂Fĉ†
i P̂−1

F = −ĉ†
i , P̂FĉiP̂

−1
F = −ĉi . (8)

Since Eq. (2) is a sum of terms containing an even number
of fermionic creation and annihilation operators, the system
is required to preserve the parity as [ĤF

G, P̂F] = 0 at any time,
although the number of fermions is not conserved. One can
easily verify that Z2 symmetry holds for the aforementioned
two types of interacting Hamiltonians in Eqs. (5) and (6).
Considering the pure Ising chain with δi = gi = 0 and γi = ti,
the spin ground states will simultaneously break above Z2

symmetry, which in turn gives two degenerate ground states
in the Kitaev model characterized by Majorana zero modes.

B. Real time-reversal symmetry

If gi = 0 globally, Eq. (1) contains real TRS (rTRS) with
[ĤS

G, T̂S] = 0 by the operator T̂S = ∏
i iσ̂ y

i K acting on the
Pauli operators as

T̂Sσ̂
α
i T̂ −1

S = −σ̂ α
i , α = m, n, z . (9)

where K is an antiunitary complex conjugate operator. Since
T̂ 2

S = (−1)N , according to Kramers theorem, all many-body
spectra must be at least doubly degenerate when N is odd.
Through the JWT, Eq. (2) fulfills [ĤF

G, T̂F] = 0 inherited from
the spin space, T̂F = ∏

i[ĉ
†
i + (−1)N+1+iĉi]K is a second-

quantized operator acting on Fock space as T̂FiT̂ −1
F = −i:

T̂Fĉ†
i T̂ −1

F = (−1)iĉi , T̂FĉiT̂
−1

F = (−1)iĉ†
i . (10)

This can be interpreted as the charge conjugation in the
fermionic language. Based on noninteracting Eq. (3), we can
rewrite T̂F in a first-quantized form

TF = ρxK ⊗
∑

i
(−1)i |i〉 〈i| , T 2

F = +1 , (11)

which renders [HF
G, TF] = 0. Note that Eq. (10) are more gen-

eral than Eq. (11) since they can accommodate interactions,
i.e., Eq. (6). We find [ĤF

I , T̂F] �= 0, yet the ZZ-type interac-
tions in Eq. (5) retain rTRS due to [ĤS

I , T̂S] = 0.
When N is odd, the twofold degeneracies in the many-body

spectrum are protected by the second-quantized rTRS oper-
ator with T̂ 2

F = −1, which enforces intrinsic zero modes in
the single-particle spectrum. Under the fermionic picture, as
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the coupling strength t increases, amplitudes of the intrinsic
zero modes in the middle part will exponentially leak into the
superconducting parts, and fully merge with Majorana zero
modes in the thermodynamic limit, whose wave functions are
well localized at the edges of the chain and cause no effect on
the in-gap spectrum.

C. Inversion time-reversal symmetry

Although the first-quantized rTRS operator T 2
F = +1 can-

not reflect any degenerate properties in the single-particle
spectrum, it gives us a hint to find out a hidden inversion TRS
(iTRS) which leads to an odd-even effect (see discussions in
Sec. V B). We first introduce a lattice inversion operator,

I =
∑

i
(−1)i(|i〉 〈N + 1 − i|) , I2 = (−1)N+1 , (12)

which will transform matrix elements of the nearest-
neighboring sites with an additional minus sign after applying
on the lattice space, e.g., t̃i ≡ tN−i → −ti whereas g̃i ≡
gN+1−i → gi, where we denote parameters with tilde are el-
ements inverted from original position. With the help of I, we
can define the iTRS operator

TI =
{

iρyK ⊗ I , for odd N
ρxK ⊗ I , for even N .

(13)

Applying TI to Eq. (3) as TIHF
GT −1

I , we obtain

− 2J
∑

i
{[(t̃iρz − (−1)N iγ̃ie

−2iφ̃iρzρy)

⊗ |i〉 〈i + 1| + H.c.] − g̃iρz ⊗ |i〉 〈i|} . (14)

By comparing Eqs. (3) and (14), it turns out that to retain
iTRS as [HF

G(φ), TI] = 0 in the IXI chain, not only should
we set g̃i = gi = 0, t̃i = ti, γ̃i = γi, but also φ is restricted to
the following values:

e−2iφ = (−1)N+1 ⇔ φ =
{

lπ , for odd N
π/2 + lπ , for even N,

(15)

with l ∈ Z. Note that T 2
I = −1 in both odd-even cases, ac-

cording to Kramers theorem, all single-particle states at above
specific φ should contain twofold degeneracy.

More generally, we rewrite Eq. (12) in a second-quantized
form acting on fermions as T̂IiT̂ −1

I = −i,

T̂Iĉ
†
i T̂ −1

I =
{+i(−1)iĉN+1−i , for odd N

(−1)iĉN+1−i , for even N,
(16)

and its actions on spins are T̂Iσ̂
z
i T̂ −1

I = −σ̂ z
N+1−i,

T̂Iσ̂
m(n)
i T̂ −1

I =
{+iP̂Sσ̂

m(n)
N+1−i , for odd N

±iP̂Sσ̂
n(m)
N+1−i , for even N,

(17)

which can be understood as the charge-parity symmetry.
Applying the rTRS operator to the ZZ-type interactions of
Eq. (5), we get

T̂I(−ĤS
I /J )T̂ −1

I =
∑

i
δ̃iσ̂

z
i σ̂ z

i+1 . (18)

Once δi = δ̃i are set symmetrically, the system Hamiltonian
always commutes with iTRS operator at specific φ illus-
trated in Eq. (15), which ensures twofold degeneracies of

many-body states in the interacting case. As for the NN-type
interactions in Eq. (6), we obtain

T̂I(−ĤF
I /4J )T̂ −1

I =
∑

i
χ̃iĉiĉ

†
i ĉi+1ĉ†

i+1 , (19)

and expand to
∑

i χ̃i(n̂in̂i+1 + 1 − ĉ†
i ĉi − ĉ†

i+1ĉi+1), whose
last three terms will break iTRS at any φ, even if we set
χi = χ̃i symmetrically. Such seemingly trivial local terms will
dramatically alter the periodicities of the spin JEs (see Fig. 3
and further discussions in Sec. V).

Note that in the above proof all parameters are required to
hold strict inversion symmetry under NL = NR, thus the odd-
even effect only depends on NM. However, by the fact that the
ABSs decay exponentially in the two superconducting parts,
as long as their lengths are much larger than superconducting
coherence length, the degenerate properties are still robust
within the energy gap regardless of the parity and the equality
of NL and NR, which in turn underscores the dominance of
NM.

IV. LOW-ENERGY THEORY

In the following subsections, we will focus on the
low-energy sectors, with the aid of fermionic descriptions,
utilizing both a continuum theory and full lattice diagonal-
ization. Given translation symmetry under periodic boundary
conditions, the bulk spectrum of the isolated anisotropic XY
spin chain reads [16]

εk = 2J
√

(2t cos ka + g)2 + 4γ 2 sin2 ka, (20)

where k is the wave number after the Fourier transformation.
When γ �= 0, the spectrum is always gapped except at |g| = 2t
where the system undergoes a quantum phase transition. In the
case of |g| < 2t , the fermionic chain will be in a topological
phase where Majorana fermions appear at the edges if we
cut off the chain, and the corresponding topological invariant
is characterized by the topological winding number W = 1
(see Appendix A for details). However, if |g| > 2t such edge
modes will disappear, the chain enters the trivial phase, and
the value of the topological winding number goes to zero.
Figure 1(c) depicts the wave function of the JW Majorana
bound state (MBS) in the presence of a phase bias between
two superconducting parts. Note that the middle sector is
gapped in the trivial regime |g| > 2t , which hinders the oc-
currence of the supercurrent and makes the chain insulating.
Since we are interested in the JEs pertaining to the supercur-
rent, we will only focus on the topological regime in the whole
paper.

A. Near the critical point

On account of the long wavelength excitations dominating
the low-energy properties near the critical point [50], we can
replace the fermionic operators in Eq. (2) by a continuous
Fermi field operator ĉi = √

aψ̂ (x) and expand it to second
order in the spatial gradients to obtain the single-particle con-
tinuous Hamiltonian,

HC
G/2J = −(

2t + g + ta2∂2
x

)
ρz − 2iγiae−2iφiρzρy∂x, (21)
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where HC
G is a matrix in the BdG form and

ĤC
G = 1/2

∫
dx�̂(x)†HC

G�̂(x) with field spinor �̂(x) =
[ψ̂ (x), ψ̂†(x)]T. The coefficient in front of the second and
first derivative indicates the effective mass, m∗

i = h̄2/(4Jta2),
and velocity, respectively [19]. To mimic the imperfect
connections between different parts, we introduce a fictitious
potential λaδ(x − xL,R ) at two interfaces, x = xL,R, with
barrier strength λ. When λ → ∞, the three parts of the
chain are decoupled from each other. Through the S-matrix
approach [23,51], we obtain the solvability equation for the
ABSs spectrum,

Re
[
S2

0 ei(K+
M−K−

M )L − S2
1 ei(K+

M+K−
M )L

] = S2
2 cos(2φ), (22)

where K±
M = √

� ± �/ta are the middle wave numbers with
� = t (2t + g), � = tε/2J , and L = (NM + 1)a is the length
of the middle part, S0,1,2 are the entries of the S matrix, whose
explicit expressions are given in Appendix B 1, together with
the wave functions and the technical details. In the leading
order series expansion around zero energy, the spectrum E =
�/t is given by

E = 2
√

�
(π

2
∓ φ + nπ

)/[
L

a
+ t (λ − γ )2 + 2t�

2γ�

]
, (23)

which is plotted in Fig. 2(a) against the spectra from the exact
continuum theory and the lattice model.

B. Deep topological regime

In the deep topological regime g → 0, the energy gap
εgap = 2Jγ

√
4 − g2/(t2 − γ 2) → 4Jγ occurs around ±kF =

± arccos(−g/2t )/a ≈ ±π/2a with the proviso of γ � t .
Accordingly, we can expand the lattice fermionic oper-
ator around two Fermi points as ĉi/

√
a = e+ikFxψ̂R(x) +

e−ikFxψ̂L(x), where ψ̂R,L are right and left mover field op-
erators. We substitute the above transformation into Eq. (2),
expand it to the leading order in the spatial gradients and
neglect the fast oscillating terms. By defining a continuous
Fermi field spinor �̂(x) = [ψ̂R(x), ψ̂L(x), ψ̂†

L(x),−ψ̂
†
R(x)]T,

the deep topological Hamiltonian can be expressed in the BdG
form ĤD

G = 1/2
∫

dx�̂(x)†HD
G�̂(x) with matrix HD

G as

HD
G/2J = ϒ(−i∂x )ρzτz + �ie

−2iφiρzρx, (24)

where ϒ = 2ta sin(kFa) is the effective velocity, �i =
2γi sin(kFa) is the effective pairing potential [23], τx,y,z are
Pauli matrices acting on the mover space. Note that the phase
is globally shifted by π/4 to keep �i a real number. The above
Hamiltonian shares the same form with JJs created at the edge
of a quantum spin Hall (QSH) insulator [52–54]: our movers
ψ̂R,L in �τ space correspond to their two edge states living
in the spin space. Hence, the IXI chain emulates the QSH
JJs at low energies. The rTRS in the QSH JJ equates to an
effective TRS (eTRS) in the IXI chain with [HD

G(φ), TE] = 0,
TE = iτyK at φ = lπ/2, l ∈ Z [55]. Since T 2

E = −1, there
must be spectrum degeneracies at those specific phases due to
Kramers theorem. With the help of the S-matrix technique, we
obtain the transcendental equation for the ABSs in the deep
topological regime:

E L/ϒ + τφ = arccos(E/�) + nπ, n ∈ Z . (25)

0 = /2
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0

−0.6

+0.6

0 = /2

(b)

0

−1.2

+1.2

0 = /2
0

E

(c)

0

+0.3

+0.6

0 = /2
0

E

(d)

0

+0.6

+1.2

FIG. 2. Spectra of the IXI as a function of φ by evaluating
J = a = t = t = 1, γ = 0.3, λ = 0, NL = NR = 100, NM = 10 in
two regimes. (a) and (b) are the single-particle spectra near the
critical point g = −1.7 and in the deep topological regime g = 0,
respectively. (c) and (d) are their corresponding many-body spectra.
Black dots are solved numerically by the lattice model, blue lines
are obtained by solving the transcendental Eqs. (22) and (25) of
the low-energy continuum theory in two regimes, red dashed lines
are Majorana solutions calculated by the explicit Eqs. (23) and (26)
by setting n = −1 (n = 0) for upward (downward) branch, green
(dashed) lines are many-body spectra with even (odd) parity con-
structed by the single-particle energies, solid (dashed) circles are
crossings protected by the eTRS (PHS).

Under the low-energy leading approximation, the energy can
be expressed explicitly as

E = (π/2 − τφ + nπ )/(L/ϒ + 1/�), n ∈ Z , (26)

which is plotted in Fig. 2(b) against the exact continuum spec-
trum and the full lattice spectrum. The index τ indicates the
slope of the spectrum as a function of φ: τ = ±1 for the down-
ward (upward) branches respectively. In the case of the point
contact limit L → 0, Eq. (25) is reduced to E → τ� cos φ

[25]. In Appendix B 2, we present the explicit wave functions
and the technical details of the S matrix.

C. Lattice diagonalization

With the single-particle spectrum εn solved exactly from
the numerical lattice diagonalization, we can construct the
many-body spectrum En: The ground state is built with all the
negative-energy single-particles filled, the following excited
states are obtained by adding the corresponding quasiparticles
to the ground state, whose total number characterizes the par-
ity of the system. Note, however, we could only utilize a few
ABSs to create the many-body spectra from the continuum
theory.

Figure 2 displays the exact numerical single-particle and
the many-body spectra near the critical point and in the
deep topological regime, compared with results from two

013003-5



SHEN, HOFFMAN, AND TRIF PHYSICAL REVIEW RESEARCH 3, 013003 (2021)

low-energy continuum models, respectively. It is clear that
both continuum theories show great agreement with solu-
tions from the numerical lattice model in the single-particle
spectrum [Figs. 2(a) and 2(b)], which can be interpreted as
follows: When the spin chain is near the critical point � → 0
with � � �, the energy gap 2J|2t − |g|| will always happen
around k = 0, where the long wavelength continuum theory
dominates. While, if the chain is in a deep topological regime
with � � �, the spectrum is gapped with εgap ≈ 4Jγ near
the two Fermi points ±kF which is in agreement with the
deep topological continuum theory. From the perspective of
fermionic language, the superconducting coherence length is
defined as ξ = ϒ/� = ta/γ [23], while the continuum the-
ory requires the coherence length to be much larger than the
wave length, i.e., ξ � 2π/kF, which also leads to the validity
condition γ � t .

In spite of the excellent agreement between the numerical
and analytical results in the single-particle spectra [Figs. 2(a)
and 2(b)], there is only fair agreement between the numerical
and analytical results in the many-body spectra [Figs. 2(c) and
2(d)], where we have globally shifted the energies to make
the ground-state energy zero at φ = 0. Since the many-body
spectra of the low-energy continuum theory can only be con-
structed by a few single-particle energies of the ABSs in the
gap, the contributions from the propagating states outside the
gap will not be captured in the analytical continuum theory,
which could also lead to small discontinuities in slope at
φ = lπ , l ∈ Z. Yet, we note that the spectra near the critical
point match better than that in the deep topological regime due
to the weaker φ-dependence of the propagating state energies.

V. FRACTIONAL SPIN JOSEPHSON EFFECT

Historically, the original JE was used to describe the su-
percurrent through a weak link between the conventional
s-wave superconductors, following 2π periodicity of the sys-
tem Hamiltonian [26]. Nevertheless, JJs between topological
p-wave superconductors are predicted to exhibit a 4π -periodic
supercurrent, a hallmark manifestation for the existence of
MBSs [56–58]. Notably, a variety of JEs can be identified
by coupling the edges of QSH insulators to s-wave super-
conductors. Under the TRS and parity conservation, a dc
voltage bias gradually connects the in-gap states to the bulk of
scattering states, generating a 2π -periodic dissipative current.
Once the TRS is broken, the current becomes dissipationless
and evolves as 4π periodicity, as protected by the PHS stem-
ming from the MBSs [54]. Furthermore, given the TRS with
the Coulomb interactions [40] or the impurities [37–39], the
current can even be dissipationless with 8π periodicity, while
the sz-conserving interactions will lead to dissipation with
the original 2π periodicity (note that sz refers to the electron
spin at the QSH edge, instead of the spin in the IXI chain,
see Ref. [38]). Such 4π (8π ) periodicity is called Z2 (Z4)
fractional JE for the sake of e (e/2) electron charge being
transferred in 2π period of the system Hamiltonian, instead
of Cooper pairs 2e in the conventional superconductors. How-
ever, in Ref. [59] it was shown that such 8π periodicity can
be achieved without Coulomb interactions, based on a p-wave
superconductor lattice ring interrupted by one weakly coupled
normal site.

Before analyzing the spin JEs in our setup, we want to
make a key observation: The spin twisting angle φ has been
mapped into the superconducting phase 2φ, i.e., it was dou-
bled, which makes all periodicities of the fermionic JEs twice
as large as the spin JEs. Explicitly, the periodicities of trivial,
Z2, Z4 JEs become π , 2π , 4π in the spin chain, respectively,
compared with 2π , 4π , 8π in the fermionic systems. To avoid
confusion, in the following discussions, we will use trivial Z2,
Z4 terms to illustrate various JEs in the two representations.

Although the properties of fractional JEs in the fermionic
systems are well-studied, a question naturally arises: Except
for the alteration at the phase φ by a factor of 2, what are
the similarities and differences between fermionic JEs and
spin JEs? In the following subsections, we will investigate
various spin JEs from two perspectives: the continuum theory
and the lattice model. Moreover, to reveal the influence of the
many-body interactions on the spin fractional JEs, we will
add ZZ-type interactions [Eq. (5)] and NN-type interactions
[Eq. (6)] into Eqs. (1) and (2), respectively, both of which act
only within the middle sector. We note that these interactions,
which are quartic in fermionic operators, force us to apply a
brute-force diagonalization on a 2N × 2N matrix in spin space,
effectively limiting the number of sites, N , of the chain.

A. Continuum scenarios

In the low-energy continuum limit, both Eqs. (21) and
(24) obey PHS: {HC

G, CC} = 0, CC = ρxK near the critical
point and {HD

G, CD} = 0, CD = ρyτyK in the deep topological
regime, which guarantees the crossings of MBSs and switches
the parity of the ground state at φ = π/2 + lπ . Additionally,
as we have shown in Sec. IV, crossings at φ = lπ/2 are
protected by the eTRS of Eq. (24) in the deep topological
regime, which is indeed equivalent to JJs attached to the edge
of QSH insulators. Therefore, adiabatically advancing the spin
twisting angle φ will pump each ABS into the bulk and lead
to dissipative current with trivial periodicity, as displayed in
Figs. 2(b) and 2(d). Nonetheless, when the system is tuned
close to the critical point where the eTRS is broken, there
are anticrossings at φ = lπ/2 in Figs. 2(a) and 2(c), with
the exception of the low-energy crossings (dashed circles) at
φ = π/2 + lπ that are still protected by the Majorana PHS.
Under this circumstance, every ABS is detached from the
bulk and give rise to dissipationless spin current with Z2

periodicity.
In Fig. 3, we show the many-body spectra in the deep topo-

logical regime, taking into account interactions of ZZ type
[Eq. (5)] and NN type [Eq. (6)], respectively, both still with
the eTRS maintained. Compared with Fig. 2(d), prior fourfold
degeneracy at φ = π/2 is lifted via the Coulomb interactions
[indicated by the vertical arrows in Fig. 3(b)], a dissipationless
Z4 spin current occurs as expected [40]. Conversely, ZZ-type
interactions only shift crossings [indicated by the vertical ar-
rows in Fig. 3(a)]. Because the energy levels move into the
bulk as φ is increased, the spin current remains dissipative
with trivial periodicity as in the aforementioned noninter-
acting case. This phenomenon basically resembles QSH JJs
accompanied with sz-conserving interactions in Ref. [38]. Al-
though there are small gaps at φ = π caused by finite-size
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FIG. 3. Many-body spectra of the IXI varied as φ, calculated
by the exact diagonalization under J = t = t = 1, γ = 0.6, g = 0,
NL = NR = 9, NM = 6 after adding two types of interactions. (a) is
under ZZ-type (spin) interactions [Eq. (5)] with δ = 0.4, while
(b) includes NN-type (fermionic) interactions [Eq. (6)] with χ = 0.4.
Solid (dashed) lines indicate even (odd) parity supplemented with
original data (black dots), dashed circles are crossings protected by
the PHS, rectangles refer to crossings protected by the eTRS in
the continuum limit while broken by finite-size effects, gaps at the
arrows are lifted by interactions.

effects (e.g., slowly oscillatory umklapp or Friedel terms),
they can be fairly suppressed under the continuum limit [55].

B. Lattice odd-even effect

The eTRS in the continuum limit requires the transport
through JJs to be highly transparent, any imperfect connec-
tions t �= t are able to break such symmetry and open gaps
at the lattice level, which leads to the following odd-even
effects. As we have proven in Sec. III, there is an iTRS ap-
pearing at the lattice level when all parameters are set inverted
symmetrically, bringing about different crossing properties
for odd-even sites. In particular, for all single-particle states
illustrated in Figs. 4(a) and 4(b), there must be Kramers pairs
at φ = lπ for odd N and φ = π/2 + lπ for even N , according
to the conclusions of Eq. (15). By changing the parity of the
sites, crossings and anticrossings can be created or destroyed
at specific φ in the spectra, shown in Fig. 4. As a consequence,
adiabatically following the ground states will eventually lead
to Z2 (Z4) spin current for the even (odd) sites, pumping
different amounts of net spin between the left and right Ising
parts, as displayed in Figs. 4(e) and 4(f) calculated by Eq. (4)
[or Eq. (C2), see Appendix C for details]. Alternatively, be-
cause there are no many-body interactions, the spin current
can be analytically computed using 〈Ĵz〉n = −2∂En/∂φ, upon
applying a phase-shifted JWT ĉ†

i = e−iφ ∏i−1
j=1(−σ̂ z

j )σ̂+
i on

the right part and transforming φ into the right interface [20],
which gets along with conventional results for the fermionic
Josephson current [26]. To evaluate the full adiabatic spin cur-
rent in the presence of a time-dependent angle twist φ(t ), one
needs to account for the possible Berry phase contributions
to the current stemming from the velocity of the twist, φ̇(t )
which, however, is beyond the scope of this work [60].

In addition, our conclusion reveals the unusual Z4 frac-
tional JE in Ref. [59] is actually protected by the iTRS. In fact,
their model Hamiltonian is equivalent to ours for NM = 1 after
applying the phase-shifted JWT [61]. The reason why in their
case the Z4 periodicity cannot survive under the Coulomb
interactions is that NN-type interactions do not commute with
iTRS, whereas ZZ-type interactions do, as it happens in spin
chains [62]. Namely, the spectra may be shifted under ZZ-
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FIG. 4. The odd-even effect: spectra and spin supercurrent of the
IXI as a function of φ, solved numerically by the BdG matrix di-
agonalization under J = t = 1, t = 0.8, γ = 0.4, g = 0, NL = NR =
100 in both odd-even cases. (a) and (b) are the single-particle spectra
for NM = 10 and NM = 11, respectively. (c) and (d) are their corre-
sponding many-body spectra, whose single-particle occupations are
shown in plot labels. (e) and (f) are spin current of their lowest two
and four states evaluated from Eq. (4), where the variation of φ is
extended to full 4π period in (f), showing Z2 and Z4 periodicities,
respectively. Solid (dashed) lines in the single-particle spectra are
the energies of the particles (holes), solid (dashed) lines in the many-
body spectra refer to the even (odd) parity, solid (dashed) circles are
crossings protected by the iTRS (PHS), the gaps specified by the
arrows are lifted by the imperfect couplings t < t .

type interactions while crossings are still protected. Therefore,
Z4 spin current originating from iTRS does not depend on
whether there are ZZ-type interactions or not.

VI. TEXTURE OF SPIN ENTANGLEMENT

In this section, we evaluate various spin correlation func-
tions in the presence of the spin supercurrent carried by JW
Majoranas in the XY sector. Specifically, we are interested in
the single spin expectation value pα

i ≡ pα
i (φ) = 〈σ̂ α

i 〉, as well
as the spin-spin correlation function pαβ

i j ≡ pαβ
i j (φ) = 〈σ̂ α

i σ̂
β
j 〉

with α, β = x, y, z. This allows us to derive the reduced den-
sity matrices for an arbitrary single and pair of spins,

ρi(φ) = 1

2

3∑
α=0

pα
i σ̂

α
i , ρi j (φ) = 1

4

3∑
α,β=0

pαβσ̂ α
i σ̂

β
j , (27)

respectively. Since the Hamiltonian conserves the parity of
the system, we can readily infer that px

i = py
i = 0, thus the

spin texture has only one nonzero component pz
i , along the z

direction. Similarly for the two-spin correlators, several com-
ponents vanish: pxz

i j = pzx
i j = pyz

i j = pzy
i j = 0. It is clear from

the definition of spin current [Eq. (4)] that when there is a
finite spin supercurrent flowing through the middle part, pxy

i j

and pyx
i j must be nonzero. In this case, regular determinant

stratagems [16,19,45] cannot be used to find the correlator
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FIG. 5. Concurrences in the XY sector for ground states as a
function of φ, computed from the Pfaffian of the correlation matrices
under J = t = 1, t = 0.8, γ = 0.4, NL = NR = 100 in all subfigures.
(a) and (b) are nearest-neighbor concurrences in the deep topologi-
cal regime g = 0 for NM = 10 and NM = 11 separately, where the
variation of φ is extended to full 4π period in (b). While (c) and
(d) are nearest-neighbor and next-nearest-neighbor concurrences for
NM = 10 near the critical point g = −1.8, respectively.

between two arbitrary spins. However, such correlators,
together with nonzero pxx

i j and pyy
i j , can be obtained by

computing the Pfaffian of their corresponding 2k × 2k
skew-symmetric matrices [63,64], where k = |i − j| (see
Appendix C).

With all spin correlators at hand, we are able to establish
the reduced density matrices, and then evaluate the degree
of entanglement in the system. There are two simple sub-
systems in which one can easily calculate the entanglement
[45]: (1) a single site and the rest of the lattice and (2)
two arbitrary spins in the chain. For the former, the en-
tanglement can be calculated via the von Neumann entropy
Si(φ) = −tr[ρi(φ) log ρi(φ)], assuming the whole chain in a
pure state. For the two sites case in a mixed state, the amount
of entanglement shared between the spins is quantified by the
concurrence C. In particular, for two arbitrary spin-1/2 sites at
the positions i and j in the chain, the concurrence is given by
[44]

C(ρi j ) = max
[
0, λ1

i j − λ2
i j − λ3

i j − λ4
i j

]
, (28)

where the λk
i j are the eigenvalues of the Hermitian matrix

Ri j = √√
ρi j ρ̃i j

√
ρi j sorted in descending order with ρ̃i j =

(σ̂ y
i ⊗ σ̂

y
j )ρ∗

i j (σ̂
y
i ⊗ σ̂

y
j ). The concurrence increases from C =

0 for a separable state to C = 1 for a maximally entangled
state. Although the single-site entropy and the concurrence
between two arbitrary spins is known to peak at the quantum
phase transition [45], here we determine how the entan-
glement in the XY sector is affected by the presence of
spin supercurrent due to a finite twist between the Ising
directions.

In Fig. 5, we plot the texture of the spin concurrences as a
function of φ for odd-even cases in different regimes, follow-
ing the ground states in Fig. 4. It is apparent to see that there
are two different textures of spin entanglement for odd-even
cases depicted in Figs. 4(a) and 4(b), not only evolving with

two kinds of periodicities, but also taking peaks (nadirs) at
different φ. Such phenomena are due to the fact that through
increasing φ, the many-body levels have been shifted to higher
values, which makes them more susceptible to higher excited
states. Owing to finite-size effects with open boundary con-
ditions, the entanglement also oscillates with frequency ∼2kF

as a function of site index [65], which can be enhanced by
larger susceptibilities close to anticrossing points. Hence, one
can strongly control the entanglement between the spins in
the XY sector via the twisting angle, which could be utilized
to process quantum information.

Furthermore, by comparing Figs. 4(a) and 4(b) to 4(c) and
4(d), one might wonder why concurrences near the critical
point are less than that in the deep topological regime, since
the chain should be more entangled around quantum phase
transition. The reason is as follows: In the deep topologi-
cal regime, only nearest-neighbor concurrences are nonzero,
which means the entanglement is well confined in nearest-
neighbor spins; while as the system approaches the critical
point, the entanglement will be spread out into next-nearest-
neighbor (and so on) spins [45], which makes the initial
nearest-neighbor concurrence decrease.

VII. DETECTION AND ROBUSTNESS

In this section, we address the detection of the spin su-
percurrent pertaining to the JW Majoranas in the IXI spin
junction. While the method of choice for measuring spin
current is through the use of the spin Hall effect [46], in
which case a spin current is converted to a charge current
that can be measured by usual techniques, via the SOI in the
adjacent material, here we propose a less invasive method
based on microwave detection. Such an approach has been
found suitable for measuring both the statics and dynamics
of ABSs in electronic systems [66–68]. The idea is to couple
the field of a nearby resonator to various observables of the
system. The interaction between our chain and the resonator
can be written as

V̂ (t ) = βÔ(a† + a) , (29)

where a (a†) is the annihilation (creation) operator for the
photon in the resonator (assuming one mode only), while Ô
are the observables of the system, e.g., Ô = σ̂ α

i (or the sum
of a string of spins), with coupling strength β. This coupling
will alter the properties of the resonator, which in turn can
be measured in a dispersive readout. Following Ref. [69], we
can write the equation of motion for the cavity field in the
Heisenberg picture as

ȧ = i[Ĥph + V̂ (t ), a] − κ

2
a − √

κbin(t ) , (30)

where Ĥph = ω0a†a is the cavity Hamiltonian, κ quantifies the
decay rate of the cavity, and bin(t ) is the input field sent to
probe it. Note that the output field, exiting from the cavity
bout (t ), and the input one satisfy bout (t ) = bin(t ) + √

κa(t ),
which is used to infer the cavity response. In leading order
in the cavity-system coupling and in the frequency space, we
find [69]

a(ω) = −
√

κbin(ω) + iβ〈ÔI(ω)〉0

−i(ω − ω0) + κ/2 − i β2�Ô(ω0)
, (31)
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where a(ω) = ∫
dt e−iωt a(t ) and

�Ô(ω) = −i
∫ ∞

0
dt e−iωt 〈[ÔI(t ), ÔI(0)]〉0

=
′∑

m,n

|〈m|Ô|n〉|2(Fm − Fn)

Em − En − ω − iη
(32)

being the retarded correlation function associated with the
observable Ô over the stationary state of the system 〈. . . 〉0.
Above, |n〉 and En are the many-body eigenstates and eigenen-
ergies of the system, respectively, Fn is the many-body
occupation, while the ′ index selects only the states n �= m in
the summation. Note that all quantities are expressed in the
interaction picture, and 〈ÔI(ω)〉0 is the expectation value of
the observable Ô in the frequency space in the absence of the
cavity. Since the energies En, as well as the matrix elements
〈m|Ô|n〉 are functions of φ, the entire correlation function will
carry such a dependence too. In typical spectroscopic exper-
iments, the input field bin(ω) � 〈ÔI(ω)〉0 (large number of
photons are sent into the cavity), and we can neglect this term
in the following. Nevertheless, such contribution can become
relevant in out-of-equilibrium situations, when it affects the
photon number and photon statistics in the cavity. We will
not discuss such regimes here, but refer to Ref. [68] for some
details (along with the schematic of cQED setups). The effect
of the spins on the cavity photons results in changes in both
the resonance frequency ω0 and the quality factor (or Q factor)
of the cavity, which can be straightforwardly related to the
correlation function as follows:

δω0(φ) = β2Re�Ô(ω0, φ) , (33)

δQ(φ)

Q
= β2Im�Ô(ω0, φ)

ω0
, (34)

implying quadratic dependence on the coupling strength β

of these quantities. This coupling depends on the specific
implementation of our model, ranging from tens of Hz for
electron spins coupled directly to the magnetic component
of an electromagnetic cavity to tens of MHz in the case of
superconducting qubits (in which case the coupling occurs via
the electrical field of the cavity instead).

In this paper, we consider a capacitivelike coupling be-
tween the spin chain and the cavity magnetic field (through
the Zeeman coupling), following Ref. [68]. Moreover, we as-
sume the magnetic field of a microwave cavity couples to the
spins in the XY part over a length l < L, or Ô = Ŝl · n, with
Ŝl = ∑

i∈l σ̂ i. Here, n is the direction of the cavity magnetic
field at the position of the wire, which can be different from
the z direction, and the coupling is assumed to take place from
site l0 to site l0 + l − 1. The susceptibility can be written as
�S(ω) = �z

S(ω) + �⊥
S (ω), where the first and second terms

corresponding to the matrix element 〈m|Ŝz
l |n〉 (longitudinal)

and 〈m|Ŝl · n⊥|n〉 (transverse), respectively, with n⊥ = n −
ez. There are no cross terms between the z (parity preserving)
and x, y (parity flipping) spin components as all the states in
the system have a definite parity. The above susceptibilities
have a simple interpretation in the fermionic language: The
first contribution stems from the cavity probing particle num-
ber operator over the length l , while the second one effectively

represents electronic tunneling into the spin chain over the
same distance, thus accessing the transport properties of the
spin chain. However, as we see in the following discussions,
the analogy is only partial for the second coupling because of
the nonlocality of the JW string.

A. Longitudinal susceptibility

The longitudinal susceptibility can now be numerically
evaluated from the lattice model by including all possible
states. However, to understand the behavior, it is worth an-
alyzing the limit of small ω � � in which case the cavity
probes mostly the low-energy ABSs (truncated up to the 12th
state in calculation), including the MBSs. We transform the
spins into fermions in the lattice ĉi, and eventually in terms of
quasiparticles describing the Andreev states d̂n, with i and n
specifying the lattice and eigenenergy index, respectively. By
using ĉi = ∑

n[un(i)d̂n + v∗
n (i)d̂†

n ] with coefficients un(i) and
vn(i) found from wave functions of numerical diagonalization
(see Appendix A for details), we write down Ŝz

l in the form of
quasiparticles,

Ŝz
l =

∑
i∈l

∑
r,s

[b∗
r (i)d̂†

r − br (i)d̂r][a∗
s (i)d̂†

s + as(i)d̂s] , (35)

with as(i) = us(i) + vs(i), bs(i) = us(i) − vs(i), where r, s
are single-particle indices of their corresponding many-body
states in Eq. (32), given in the labels of Figs. 4(c) and 4(d).
There are two types of 〈m|Ŝz

l |n〉: quasiparticle conserving type
Sc

r,s and nonconserving type Sn
r,s, which are shown explicitly as

Sc
r,s =

∑
i∈l

[b∗
r (i)as(i) + bs(i)a

∗
r (i)] , (36)

Sn
r,s =

∑
i∈l

[br (i)as(i) − bs(i)ar (i)] . (37)

With single-particle occupation fs ≡ 〈d̂†
s d̂s〉, the longitudinal

susceptibility is written in the single-particle form:

�z
S(ω) =

′∑
r,s

[
( fr − fs)|Sc

r,s|2
εr − εs − ω − iη

+ ( fr − fs)|Sc
r,s|2

εr − εs + ω + iη

+ ( fr + fs − 1)|Sn
r,s|2

εr + εs − ω − iη
+ ( fr + fs − 1)|Sn

r,s|2
εr + εs + ω + iη

]
,

(38)

where the first (second) line accounts for the quasiparticle
conserving (nonconserving) contributions.

In Figs. 6(a) and 6(b), we show the real and the imaginary
parts of �z

S(ω) as a function of φ for odd and even cases, re-
spectively, evolving adiabatically in their initial ground states
at φ = 0, whose peaks indicate the resonances between the
cavity and the low-energy levels in Figs. 4(c) and 4(d). They
present different periodicities and reach peaks at different
φ, as a result of the odd-even effect. Particularly, one can
distinguish Z4 spin current from the Z2 case, by way of oppo-
site signs near φ = π in the imaginary parts. Moreover, even
taking into account the relaxation effects such that the system
always follows the ground state, the real part still exhibits a
singularity at φ = π in Fig. 6(c), which is again a signature
for Z4 crossing of the levels. We note that while the magnetic
coupling to each individual spin is typically small (a few Hz
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FIG. 6. Dependence of the longitudinal susceptibility on φ calcu-
lated by Eq. (38) with J = t = 1, t = 0.8, γ = 0.4, g = 0, η = 0.1ω,
NL = NR = 100, whose real (imaginary) parts are represented by blue
(red dashed) lines. In both (a) and (b), the cavity couples to five
spins starting from l0 = NL + 3. More specifically, (a) is Z2 case with
NM = 10, ω = 0.2, which shows negative peaks of the imaginary
parts around φ = π ; (b) is Z4 case with NM = 11, ω = 0.1, which
shows peaks of the imaginary parts around φ = π that have opposite
signs. In the presence of relaxation, for odd number of sites, the
susceptibility will return to Z2 periodicity as shown in the inset of
(a), which exhibits a singularity in the real part at φ = π .

in cQED setups), by coupling the cavity to many spins in the
chains Ŝl , the response function is enhanced by an order ∼l2

as compared to the single spin scenario.

B. Transverse susceptibility and spin noise

Borrowing from the fermionic parity-flipping picture due
to the quasiparticle poisoning, one may conjecture that the
transverse susceptibility �⊥

S (ω) has a nonzero value. Sur-
prisingly, we find out numerically that the matrix elements
of �⊥

S (ω) are exponentially reduced to zero as the length
of the Ising part increases, which makes transitions between
different parities impossible in the topological spin JJs. Such
phenomenon is because the local in-plane spin operators
σ̂ x

i , σ̂
y
i become highly nonlocal objects with the additional JW

string in the fermionic space—it is inevitable to alter the states
of external JW Majoranas, which in turn flips the parity back
to itself and thus forbids the transitions between them.

To verify this, we study the influences from two kinds of
in-plane perturbations within the middle part (xL, xR ):

ĤS
P =

∑
i∈M

[ηx
i σ̂

x
i + η

y
i σ̂

y
i ], (39)

ĤF
P =

∑
i∈M

[
ηx

i

i−1∏
j=1

( − σ̂ z
j

)
σ̂ x

i + η
y
i

i−1∏
j=1

( − σ̂ z
j

)
σ̂

y
i

]
, (40)

where ηx
i and η

y
i are perturbation strengths along x and y

directions, respectively, both set randomly site by site. Equa-
tion (40) indeed emulates the conventional local fermionic
perturbations from quasiparticle poisoning and breaks
Majorana crossings in Fig. 7(b) as expected. On the other

0 /2 = 3 /2 2
0

E

(a)

0

1

2

0 /2 = 3 /2 2
0

E

(b)

0

1

2

FIG. 7. Spectra of the IXI varied as φ under random perturba-
tions for a given realization, computed by exact diagonalization with
J = t = γ = 1, t = 0.8, g = −0.2, NL = NM = NR = 4. (a) is under
local spin perturbations [Eq. (39)] from the in-plane magnetic fields,
crossings are preserved albeit with lifted degeneracies. (b) suffers
local fermionic perturbations [Eq. (40)] from the quasiparticle poi-
soning, crossings are destroyed while each state still contains twofold
degeneracy. All perturbation strengths ηx

i and η
y
i are set randomly site

by site in the middle XY chain within the range of (0, 0.2).

hand, in Fig. 7(a) we see that the local spin perturbations
[Eq. (39)] only shift twofold degeneracy (from external JW
Majoranas) away and cannot destroy Z2 periodicity (even
when we extend the random perturbations to the whole spin
chain), in stark contrast to topological JJs in superconducting
systems.

VIII. CONCLUSIONS AND OUTLOOK

In this paper, we analyzed an Ising-XY-Ising spin link that
emulates a topological SNS structure, both analytically and
numerically. Our results are summarized in Table I and as
follows:

(i) Odd versus even. The iTRS gives rise to the odd-even
effect at the lattice level and protects Z4 (Z2) fractional spin
JE in chains with an odd (even) number of spins, irrespective
of ZZ-type interactions. The resulting texture of spin entan-
glement highlights the effects of the spin current carried by
JW Majoranas, whose periodicities can be detected by cQED
setup through dispersive readout methods.

(ii) Lattice versus continuum. By use of the low-energy
continuum theory, we analytically solve out the spectra of
ABSs and their fermionic wave functions. Nevertheless, the
aforementioned odd-even effect can only be observed in a
discrete lattice but not in the continuum theory.

(iii) Spin versus fermion. At the lattice level, we identi-
fied various symmetries emerging from the spin chain and
determine their electronic counterparts, demonstrating that
ZZ-type interactions and NN-type interactions affect differ-
ently the many-body spectra. One remarkable result is that
although Z2-periodic current can be broken by local fermionic
perturbations, spin Z2 JEs are robust to local spin perturba-
tions.

Our proposal could be implemented in a plethora of spin
systems, such as trapped ions [70], photonic lattices [71,72],
electron spins in quantum dots [73], and magnetic impuri-
ties on surfaces [74,75]. In addition, the spin JEs should
possibly be simulated and observed in the noisy intermediate-
scale quantum computer (e.g., the IBM Q quantum machines)
through measuring the correlation functions [76,77]. Since
Z2 fractional spin JEs are immune to any local perturbations
from arbitrary directions of magnetic field (as long as the
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TABLE I. A concise summary of conclusions, contrasted with the electronic counterpart.

Fractional Josephson effects

Continuum Lattice Entanglement Detection Robustness

SNS Z2 or Z4 Z2 or Z4 No counterpart Transport No
IXI Z2 Z2 or Z4 φ dependence (Z2 or Z4) cQED Yes

chain is still in the topological phase), the ground state can,
together with the first excited state, be used to set up a logical
qubit: advancing φ adiabatically by π realizes a quantum X
gate [20,78]. Alternatively, we can utilize such robustness for
quantum memory. In addition, the middle XY chain will be
gapped when |g| > 2t , which prohibits the transport of spin
supercurrent. Hence, one may use this feature to engineer a
quantum spin transistor based on the JEs [79].

There are several generalizations of our paper. First, it
would be interesting to consider dissipation [80] (due to, for
example, the presence of a magnetic substrate) and evalu-
ate its effects on the various fractional JEs, as well as on
the topology of the chain in general. Moreover, the cQED
setup proposed here could serve as an engineered environ-
ment that cannot only monitor the spin flow but also affect
and control it. Second, generalization to multijunction quan-
tum spin chains, similar to superconducting systems [81],
which could result in emulating various higher dimensional
topological structures. Third, generalization to more com-
plex insulating quantum spin systems, such as 2D quantum
(anti)ferromagnets insulators or even quantum spin liquids
[82], subject to dissipationless spin flows.
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APPENDIX A: GENERAL PROPERTIES
OF THE SPIN CHAIN

The generalized 1D anisotropic spin chain Hamiltonian in
a transverse field is given by

ĤS
G = − J

∑
i
[(ti + γi )σ̂

m
i σ̂ m

i+1 + (ti − γi )σ̂
n
i σ̂ n

i+1

+ δiσ̂
z
i σ̂ z

i+1 + giσ̂
z
i ] . (A1)

After the JWT, we obtain the generalized Hamiltonian in the
fermionic representation:

ĤF
G = − 2J

∑
i
[(tiĉ

†
i ĉi+1 + γie

−2iφ ĉ†
i ĉ†

i+1 + H.c.)

+ δi(1/2 − ĉ†
i ĉi − ĉ†

i+1ĉi+1 + 2n̂in̂i+1)

+ gi(ĉ
†
i ĉi − 1/2)], (A2)

where the global spin anisotropic angle φ generating a global
gauge transformation ĉi → ĉieiφ . Starting from the nonin-
teracting case δi = 0, if all the parameters in Eq. (A2) are
invariant at every site, we can impose periodic boundary con-
ditions to yield translation symmetry, which does not affect
bulk properties. Through applying the Fourier transformation
ĉk = ∑

j ĉ je−ika j/
√

N , the Hamiltonian in the momentum
space reads

Ĥk
G = − 2J

∑
k
[(2t cos ka + g)ĉ†

k ĉk

+ γ sin ka(ie−2iφ ĉ†
k ĉ†

−k + H.c.) − g/2] , (A3)

where k = 2πn/(Na) is the wave number with n taking in the
range of (�−N/2�, �+N/2�]. Defining a momentum spinor
Ĉk = [ĉk, ĉ†

−k]T, we write down the BdG Hamiltonian Ĥk
G =

1/2
∑

k Ĉ†
kHk

GĈk with matrix

Hk
G/2J = −(2t cos ka + g) ρz + 2γ sin ka e−2iφρzρy . (A4)

Now Eq. (A3) can be readily diagonalized into Eq. (20)
as Ĥk

G = 1/2
∑

k D̂†
kεkρzD̂k = ∑

k εk (d̂†
k d̂k − 1/2), by

introducing the Bogoliubov quasiparticle D̂k = [d̂k, d̂†
−k]T

as d̂k = e+iφ sin(θk/2) ĉk − i e−iφ cos(θk/2) ĉ†
−k with

θk = arctan[2γ sin ka/(2t cos ka + g)]. We can use θk to
define the topological invariant by the winding number

W = 1

2π

∮
dθk = 1

2π

∫
BZ

dθk

dk
dk = �(2t − |g|) , (A5)

where � is the Heaviside step function. When g < |2t |, the
bulk is in the topological phase with W = 1, which means if
the chain was cut at a point, two unpaired Majorana modes
would appear at the ends of it. However, if W = 0 the bulk
will lie in the trivial phase and the edge modes disappear,
which is known as the bulk-edge correspondence.

When the spin chain consists of different parametric parts,
k is not a good quantum number anymore, we should come
back to the real space. Especially for the noninteracting case
δi = 0, Eq. (A2) is reduced into the single-particle form
HF

G shown in Eq. (3). By use of the PHS as {HF
G, CF} =

0, CF = ρxK, for every eigenvector �+
n = [un(1), . . . , un(N),

vn(1), . . . , vn(N)]T with positive energy +εn, there is a
corresponding eigenvector �−

n = CF�
+
n = [v∗

n (1), . . . ,
v∗

n (N), u∗
n(1), . . . , u∗

n(N)]T for the negative energy −εn.
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Therefore, HF
G can be diagonalized as ĤF

G = 1/2Ĉ†HF
GĈ =

1/2Ĉ†PEP†Ĉ = 1/2D̂†ED̂ = ∑
n εn(d̂†

n d̂n − 1/2) by the
Bogoliubov quasiparticle D̂ = (d̂1, d̂2, . . . , d̂N, d̂†

1 , d̂†
2 , . . . ,

d̂†
N)T, where E = ∑

n ρz ⊗ εn |n〉 〈n|, and P ≡ [�+
1 , . . . ,

�+
N,�−

1 , . . . , �−
N] is constructed by their corresponding

eigenvectors, whose column vectors and row vectors should
be orthonormal:∑

i
[u∗

m(i)un(i) + v∗
m(i)vn(i)] = δm,n ,∑

n
[u∗

n(i)un( j) + vn(i)v∗
n ( j)] = δi, j . (A6)

Since D̂ = P†Ĉ, Ĉ = PD̂, the transformation between quasi-
particles and fermions is given by

d̂n =
∑

i
[u∗

n(i)ĉi + v∗
n (i)ĉ†

i ],

ĉi =
∑

n
[un(i)d̂n + v∗

n (i)d̂†
n ] . (A7)

If there are interacting terms δi �= 0 in Eq. (A2), the above
single-particle method fails since the Hamiltonian will not
be quadratic anymore. Under this circumstance, we have to
stay in the spin space and apply brute-force diagonalization
on a 2N × 2N matrix of Eq. (A1) to solve out the many-body
spectrum directly.

APPENDIX B: LOW-ENERGY CONTINUUM THEORY

1. Wave functions near the critical point

We can diagonalize the low-energy continuous Eq. (21) as
HC

G�(x) = ε�(x) by solving out differential equations of the
two-component wave function �(x) = [u(x), v(x)]T, whose
generalized expressions are shown as

u(x) = e−iφ (+C1 cos U e+K+x + C2 sin V e+K−x

+ C3 cos U e−K+x + C4 sin V e−K−x ) ,

v(x) = e+iφ (−C1 cos V e+K+x − C2 sin U e+K−x

+ C3 cos V e−K+x + C4 sin U e−K−x ) , (B1)

where K± = √
� − � ± �/ta, U = arccos[(� − �)/�]/2,

V = arccos[(� + �)/�]/2, � = √
�2 + �2 − 2��,

� = 2γ 2, � = t (2t + g), � = tε/2J are introduced
for simplicity. Additionally, K+ = 2γ cos U cos V/ta,
K− = 2γ sin U sin V/ta. Applying infinite boundary
conditions on Eqs. (B1), the right part of the wave
functions are defined by setting C1 = C2 = 0, and the
left part of the wave functions are obtained by setting
C3 = C4 = φ = 0. The middle part is a special case of
φ = γ = 0; one could reduce K± → i

√
� ∓ �/ta ≡ iK∓

M
and find K+

M = 2γ sin U cos V/ta, K−
M = 2γ cos U sin V/ta

after taking the limit γ → 0. We are only interested in
the ABSs, whose eigenvalues lie within the gap, i.e.,
|ε| < 2J (2t + g) ⇔ |�| < �, which ensures K±

M to be
real. By introducing a new set of coefficients C5, C6, C7, C8

in the middle region, the explicit wave functions are shown as

uM(x) = 1/

√
K+

M × (C5e+iK+
Mx + C6e−iK+

Mx ) ,

vM(x) = 1/

√
K−

M × (C7e+iK−
Mx + C8e−iK−

Mx ) . (B2)

The above wave functions have been normalized by the
square root of wave numbers to maintain the quasiparticle
current [24]. Through imposing continuity and current con-
servation conditions at two interfaces presented in Appendix
B 3, we obtain the left- and right-scattering matrices SC

L =
S (−1, 0),SC

R = S (+1, φ) with

S (τ, φ) = 1

S∗
0

[
S1 iτe−2iφS2

iτe+2iφS2 S∗
1

]
, (B3)

and the entries are defined as

S0 = sin β(1 + ζ 2 − 2ζeiβ ) − 2ieiβ (sin2 α − sin2 β ) ,

S1 = − sin β[1 + ζ 2 − 2ζ (cos β + i sin α)] ,

S2 = 2 sin α

√
sin2 α − sin2 β ,

where α = U + V, β = U − V, ζ = λ/γ . The waves at the
two interfaces only contain different factors caused by the
middle wave number K±

M = √
� ± �/ta, which is described

by scattering matrix SC
M = exp(iρzK

ρz

ML). Notice that such
a wave function factor will be canceled out due to An-
dreev reflection after traveling for one loop, which enforces
det(1 − SC

MSC
RSC

MSC
L ) = 0 and gives the energy transcenden-

tal Eq. (22) for the ABSs. The wave-function coefficients
are then determined by normalization condition

∫ |un(x)|2 +
|vn(x)|2dx = 1, and the Hamiltonian is diagonalized into∑

n εn(d̂†
n d̂n − 1/2) by Bogoliubon d̂n, whose transformation

with field operator is given by

d̂n =
∫

dx �†
n(x)�̂(x), �̂(x) =

∑
n
�n(x)d̂n. (B4)

Recall Eq. (21) holds the PHS as {HC
G, CC} = 0 by the oper-

ator CC = ρxK, thus CC�n(x) = [v∗
n (x), u∗

n(x)]T ≡ �−n(x) is
the wave function for −εn ≡ ε−n. It is worthwhile to point
out that it is the branch cut of V on the Riemann surface
that takes great effect on the quantum phase transition, i.e.,
V → − arccos[(� + �)/�]/2 with an additional minus sign
across the critical point, which prohibits the zero-mode solu-
tion of Majoranas.

2. Wave functions in the deep topological regime

Owing to [HD
G, τz] = 0, it is more convenient for

us to decompose the Hilbert space in two τz eigen-
sectors τ = ±1 and solve out Eq. (24) as HD

G�τ (x) =
ετ�τ (x) with their corresponding eigenfunctions �+(x) =
[u+(x), 0, v+(x), 0]T,�−(x) = [0, u−(x), 0, v−(x)]T, whose
explicit expressions are shown as

uτ (x) = e−iφ (C1 e−iWe+τKx + C2 e+iWe−τKx ) ,

vτ (x) = e+iφ (C1 e+iWe+τKx + C2 e−iWe−τKx ) , (B5)

where K = √
�2 − E2/ϒ , W = arccos(E/�)/2, E = ε/2J

are introduced for simplicity. The wave functions of the
left and right parts only contain the exponential decay-
ing branches due to infinite boundary conditions, while the
middle part is the case of φ = γ = 0, where K = iE/ϒ ≡
iKM. Since εgap → 4Jγ ,� → 2γ in the deep topologi-
cal regime, |E| < � will be always valid for the ABSs.
The explicit middle wave functions are shown as uτ

M(x) =
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C3 exp (+iτKMx), vτ
M(x) = C4 exp (−iτKMx) with two new

coefficients. Applying continuity conditions at two inter-
faces xL,R on the wave functions of each eigensector, we
can obtain the left- and right-scattering matrices SD

L =
exp(−2iW)ρx, SD

R = exp(−2iW)e−2iφρzρx, where we denote
W = arccos(E/�)/2, E = ε/2J . The scattering matrix of the
middle part is only determined by the middle wave num-
ber KM = E/ϒ as SD

M = exp(iKML)eikFρz . The solvability
equation det(1 − SD

MSD
RSD

MSD
L ) = 0 of the Andreev reflection

gives the energy transcendental Eq. (25) for the ABSs. By
use of the normalization condition, the full normalized wave
functions for the whole chain are expressed as

uτ
n (x) = An (−1)n e−K|x−l (x)|e+iτKMl (x) ,

vτ
n (x) = An e+iφ × e−K|x−l (x)|e−iτKMl (x) , (B6)

where An = 1/
√

2(L + 1/K) is the normalization factor,
l (x) = x for x � |L/2| and sgn(x)L/2 for x > |L/2|. Using
the PHS as {HD

G, CD} = 0, CD = ρyτyK, Eq. (24) is diagonal-
ized into

∑
n,τ ετ

n (d̂τ†
n d̂τ

n − 1/2) with

d̂τ
n =

∫
dx �τ†

n (x)�̂(x) , �̂(x) =
∑
n,τ

�τ
n (x)d̂τ

n . (B7)

3. Boundary conditions near the critical point

We can add a fictitious barrier potential λaδ(x − x±) into
Eq. (21) to emulate the imperfect connections between differ-
ent parts (we denote +,− for R, L respectively, to generalize
the expressions of two junction sites in the following state-
ments). Around two interfaces, the stationary Schrödinger
equation requires

HC
G�(x) = − 2J{[2t + g + λaδ(x − x±) + ta2∂2

x ]ρz

+ iγ a[�(±x ∓ x±), ∂x]+ρy}�(x) = ε�(x) ,

where phase φ is absorbed in γ temperately, the anticom-
mutator parentheses [�(±x ∓ x±), ∂x]+ can be calculated
into 2�(±x ∓ x±)∂x ± δ(x − x±). Moving the second-order
derivative term to the left-hand side and integrating the whole
equation around the junction sites by an infinitesimal parame-
ter, we find

ta

[+u′
±(x±) − u′

M(x±)
−v′

±(x±) + v′
M(x±)

]
=

[∓λuM(x±) − γ u±(x±)
±λvM(x±) + γ v±(x±)

]
. (B8)

Replacing subscript +,− back into R, L and specifying the
value of γ , φ in different parts (releasing φ from γ ), we obtain
the current conservation conditions:

ta u′
M(xL) + λuM(xL) = ta u′

L(xL) + γ vL(xL) ,

ta v′
M(xL) + λvM(xL) = ta v′

L(xL) + γ uL(xL) ,

ta u′
M(xR) − λuM(xR) = ta u′

R(xR) + γ e−2iφvR(xR) ,

ta v′
M(xR) − λvM(xR) = ta v′

R(xR) + γ e+2iφuR(xR) , (B9)

together with four trivial wave function continuity condi-
tions uL(xL) = uM(xL), vL(xL) = vM(xL), uR(xR) = uM(xR),
vR(xR) = vM(xR). When λ = 0, Eqs. (B9) impose perfect cou-
pling boundary conditions while if λ → ∞ the three parts
in our chain system are independent, and the φ dependence
will be suppressed. One could use λ ∼ (t − t)/t as a fitting

function for the mapping between the lattice and the contin-
uum model, while the explicit formula is varied with different
parameter ranges, which is beyond the scope of this paper.

APPENDIX C: SPIN CORRELATION FUNCTIONS

By use of transformation Eqs. (A7) and orthonormality
conditions of wave functions Eqs. (A6), we define two op-
erators,

Âi = ĉ†
i + ĉi =

∑
n
[a∗

n(i)d̂†
n + an(i)d̂n] ,

B̂i = ĉ†
i − ĉi =

∑
n
[b∗

n(i)d̂†
n − bn(i)d̂n] , (C1)

with an(i) = un(i) + vn(i), bn(i) = un(i) − vn(i), and their
the expectation values by pairs Mi, j ≡ 〈ÂiÂ j〉, Ni, j ≡ 〈B̂iB̂ j〉,
Gi, j ≡ 〈B̂iÂ j〉 are calculated as

Mi, j = +δi j + 2i Im
∑

n
[un(i)a∗

n( j) + a∗
n(i)an( j) fn] ,

Ni, j = −δi j − 2i Im
∑

n
[un(i)b∗

n( j) + b∗
n(i)bn( j) fn] ,

Gi, j = +δi j − 2 Re
∑

n
[un(i)a∗

n( j) − b∗
n(i)an( j) fn] ,

where fn ≡ 〈d̂†
n d̂n〉 is the occupation number of quasiparticles.

These expressions are different from Refs. [16,19,45] as a
result of the imaginary parts of the wave functions stemming
from the spin supercurrent in Eq. (4):

〈Ĵz〉 /(−2Jt ) = Im[Ni,i+1 − Mi,i+1] . (C2)

It is easy to find 〈B̂iÂ j〉 = − 〈Â j B̂i〉, 〈ÂiÂ j〉 = 〈Â j Âi〉∗,
〈B̂iB̂ j〉 = 〈B̂ j B̂i〉∗ and obtain 〈σ̂ z

i 〉 = 〈B̂iÂi〉 = Gi,i , 〈σ̂ z
i σ̂ z

j 〉 =
〈B̂iÂiB̂ j Â j〉 = Gi,iG j, j − Gi, jG j,i − Ni, jMi, j . However, it is
not so straightforward to obtain the following correlators at
arbitrary length k = |i − j|:

〈σ̂ x
i σ̂ x

j 〉 = + 〈B̂iÂi+1B̂i+1 · · · Â j−1B̂ j−1Â j〉 ,

〈σ̂ y
i σ̂

y
j 〉 = − 〈ÂiÂi+1B̂i+1 · · · Â j−1B̂ j−1B̂ j〉 ,

〈σ̂ x
i σ̂

y
j 〉 = −i 〈B̂iÂi+1B̂i+1 · · · Â j−1B̂ j−1B̂ j〉 ,

〈σ̂ y
i σ̂ x

j 〉 = −i 〈ÂiÂi+1B̂i+1 · · · Â j−1B̂ j−1Â j〉 , (C3)

which will be expanded into (2k − 1)!! terms according to
Wick theorem. Those correlators are found to be systemati-
cally expressed as the Pfaffian

〈σ̂ x
i σ̂ x

j 〉 = + (−1)k(k−1)/2 pf(Qxx
i j ) ,

〈σ̂ y
i σ̂

y
j 〉 = + (−1)k(k−1)/2 pf(Qyy

i j ) ,

〈σ̂ x
i σ̂

y
j 〉 = −i(−1)k(k−1)/2 pf(Qxy

i j ) ,

〈σ̂ y
i σ̂ x

j 〉 = +i(−1)k(k−1)/2 pf(Qyx
i j ) , (C4)

of the following well-organized 2k × 2k skew-symmetric ma-
trices [63,64]:

Qxx
i j =

[ N xx
i j Gxx

i j

−Gxx
i j

T Mxx
i j

]
, Qyy

i j =
[ Myy

i j Gyy
i j

−Gyy
i j

T N yy
i j

]
,
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with their corresponding blocks

Gxx
i j =

⎡
⎢⎢⎣

Gi,i+1 · · · Gi, j−1 Gi, j

Gi+1,i+1 · · · Gi+1, j−1 Gi+1, j
...

. . .
...

...

Gj−1,i+1 · · · Gj−1, j−1 Gj−1, j

⎤
⎥⎥⎦ , Gyy

i j =

⎡
⎢⎢⎣

Gi+1,i · · · Gj−1,i G j,i

Gi+1,i+1 · · · Gj−1,i+1 Gj,i+1
...

. . .
...

...

Gi+1, j−1 · · · Gj−1,i−1 Gj, j−1

⎤
⎥⎥⎦ ,

Mxx
i j =

⎡
⎢⎢⎢⎣

0 Mi+1,i+2 · · · Mi+1, j

−Mi+1,i+2 0 . . .
...

...
. . . 0 Mj−1, j

−Mi+1, j · · · Mj−1, j 0

⎤
⎥⎥⎥⎦ , Myy

i j =

⎡
⎢⎢⎢⎣

0 Mi,i+1 · · · Mi, j−1

−Mi,i+1 0 . . .
...

...
. . . 0 Mj−2, j−1

−Mi, j−1 · · · Mj−2, j−1 0

⎤
⎥⎥⎥⎦ ,

N xx
i j =

⎡
⎢⎢⎢⎣

0 Ni,i+1 · · · Ni, j−1

−Ni,i+1 0 . . .
...

...
. . . 0 Nj−2, j−1

−Ni, j−1 · · · Nj−2, j−1 0

⎤
⎥⎥⎥⎦ , N yy

i j =

⎡
⎢⎢⎢⎣

0 Ni+1,i+2 · · · Ni+1, j

−Ni+1,i+2 0 . . .
...

...
. . . 0 Nj−1, j

−Ni+1, j · · · Nj−1, j 0

⎤
⎥⎥⎥⎦ .

Through observing Eq. (C3), the correlators of 〈σ̂ x
i σ̂

y
j 〉, 〈σ̂ y

i σ̂ x
j 〉 only differ on the last operator from 〈σ̂ x

i σ̂ x
j 〉, 〈σ̂ y

i σ̂
y
j 〉, hence

we can calculate Qxy
i j , Qyx

i j by replacing the last column and its corresponding transpose row · · · of Qxx
i j , Qyy

i j , respectively:

Qxx
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · Gi, j

· · · Gi+1, j

· · · ...

· · · Gj−1, j

· · · Mi+1, j

· · · ...

· · · Mj−1, j

GM 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · Ni, j

· · · Ni+1, j

· · · ...

· · · Nj−1, j

· · · −Gj,i+1

· · · ...

· · · −Gj, j−1

NG 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Qxy
i j ; Qyy

i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · Gj,i

· · · Gj,i+1

· · · ...

· · · Gj, j−1

· · · Ni+1, j

· · · ...

· · · Nj−1, j

GN 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· · · Mj,i

· · · Mj,i+1

· · · ...

· · · Mj, j−1

· · · Gi+1, j

· · · ...

· · · Gj−1, j

MG 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Qyx
i j .

When the twisting angle is zero, the spin supercurrent vanishes with 〈σ̂ x
i σ̂

y
j 〉 = 〈σ̂ y

i σ̂ x
j 〉 = 0. Furthermore, block-diagonal

terms in Qxx
i j , Qyy

i j are also found to be zero. In this special case, 〈σ̂ x
i σ̂ x

j 〉 and 〈σ̂ y
i σ̂

y
j 〉 are reduced into det(Gxx

i j ) and det(Gyy
i j ),

respectively, which agree with previous formulas used in Refs. [16,19,45].
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i−1ĉi ), whose expectation value

is the same as Ĵout
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