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Shadowed triplet pairings in Hund’s metals with spin-orbit coupling
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Hund’s coupling in multiorbital systems allows for the possibility of even-parity orbital-antisymmetric
spin-triplet pairing, which can be stabilized by spin-orbit coupling (SOC). While this pairing expressed in
the orbital basis is uniform and spin-triplet, it appears in the band basis as a pseudospin-singlet, with the
momentum dependence determined by the SOC and the underlying triplet character remaining in the form
of interband pairing active away from the Fermi energy. Here, we examine the role of momentum-dependent
SOC in generating nontrivial pairing symmetries, as well as the hidden triplet nature associated with this
interorbital pairing, which we dub a “shadowed triplet.” Applying this concept to Sr2RuO4, we first derive
several forms of SOC with d-wave form factors from a microscopic model, and subsequently we show that for
a range of SOC parameters, a pairing state with s + idxy symmetry can be stabilized. Such a pairing state is
distinct from pure spin-singlet and -triplet pairings due to its unique character of pseudospin-energy locking. We
discuss experimental probes to differentiate the shadowed triplet pairing from conventional pseudospin-triplet
and -singlet pairings.
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I. INTRODUCTION

A key feature of superconductivity (SC) is the antisym-
metric wave function of the Cooper pair under the exchange
of two electrons. This has limited the focus to even-parity
spin-singlet and odd-parity spin-triplet pairings in a single
Fermi surface (FS) system. In multiorbital systems, additional
possibilities arise due to the orbital degree of freedom, such
as even-parity spin-triplet, or odd-parity spin-singlet pairings.
For example, it was shown earlier that Hund’s coupling in
multiorbital systems allows for an even-parity spin-triplet
pairing that is orbitally antisymmetric between two orbitals
[1–7]. The Hund’s coupling, significant in transition metal
systems, acts as an attractive pairing interaction [1]. Similar
to the attractive Hubbard model, the Hund’s coupling allows
a strong local Cooper pair to form between two orbitals with
spin-triplet character.

However, when the electron motion is introduced, i.e.,
the kinetic term in the Hamiltonian, the pairing is drasti-
cally weakened because the electrons comprising the Cooper
pair with momenta k and −k in different orbitals have dif-
ferent energies, due to the different electronic dispersions
of the orbitals. Thus, to stabilize such an orbital antisym-
metric pairing, significant orbital degeneracy is required
throughout momentum space near the FS [1,2]. Furthermore,
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hybridization between different orbitals can further weaken
interorbital pairings by splitting the degeneracy where it
occurs.

The story becomes more interesting when spin-orbit cou-
pling (SOC) is introduced. Note that with SOC, purely
spin-singlet and -triplet pairings are no longer well-defined,
since the spin and orbital degrees of freedom are coupled.
Thus one defines Cooper pairs in the total angular momen-
tum (pseudospin) basis. When the SOC is strong, this forms
the basis for SC in the heavy fermion superconductors, such
as UPt3, leading to odd-parity pseudospin-triplet SC [8,9].
When the SOC is intermediate, i.e., comparable to the orbital
degeneracy splitting terms, spin and orbital characters vary
continuously, and one can define the pairing in either the
orbital or band basis. Spin-orbital mixing then helps to sta-
bilize the interorbital pairing. It was shown that SOC indeed
enhances even-parity orbital-antisymmetric spin-triplet pair-
ing [3]. The SOC not only supports the orbital-antisymmetric
spin-triplet pairing, but it also transforms pure spin-triplet
pairing into “both” pseudospin-singlet and -triplet pairings in
the band basis.

Furthermore, the form of the SOC is not limited to atomic
SOC, i.e., Li · Si, where i is the site index, and the precise
form can determine the momentum dependence of the su-
perconducting state. For example, s-wave SC proximate to
a topological insulator or strong Rashba SOC with broken
inversion symmetry leads to an effective p + ip SC, which is
odd-parity and a spinless triplet [10–12]. For materials with
inversion symmetry, there is still the possibility of even-parity
momentum-dependent SOC [13] (k-SOC), which has been
discussed in the context of the unconventional superconductor
Sr2RuO4 [14–20]. Similar to a Rashba-SOC generated p + ip
SC, the inclusion of k-SOC in a microscopic model with
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s-wave pairing is reflected in an intraband pairing with the
same momentum character as the SOC.

Here we study a microscopic route to k-SOC and how
SOC transforms even-parity interorbital spin-triplet SC into
pseudospin-singlet and -triplet SC in a Hund’s metal, where
the multiorbital nature and strong Hund’s coupling are crucial.
We also illustrate how pseudospin-triplet interband pair-
ing remains, dubbed a “shadowed triplet” away from the
Fermi energy. While this SC behaves like a singlet in re-
sponse to low-energy excitations, its hidden identity shows
up at finite magnetic fields, and it can be tested when
the field strength reaches an appreciable percentage of the
superconducting gap size [21]. Applying the concept to
Sr2RuO4, we show that s + idxy pairing is stabilized in the t2g

orbitals.
The paper is organized as follows. We first introduce

the generic Hamiltonian that we will be concerned with
throughout in Sec. II. We then consider a simple but general
two-orbital model to show how even-parity spin-triplet pairing
arises in Sec. III. This includes the stability conditions and
how SOC transforms this pairing into a pseudospin-singlet
and -triplet in the Bloch band basis. The SOC in the shadowed
triplet not only plays an essential role in enhancing the pairing,
but it also determines the pairing symmetry. In Sec. IV we
investigate microscopic routes to several k-SOC terms with
d-wave symmetry, which can lead to various d-wave pairing
symmetries on the FS. In Sec. V, we apply the shadowed
triplet pairing scenario to the prominent unconventional su-
perconductor, Sr2RuO4 [14–17], for which the SOC has been
shown to be important [3,22–26], and we discuss the leading
instability toward s + idxy pairing within a three-orbital model
for a range of SOC parameters.

II. GENERAL MICROSCOPIC HAMILTONIAN

We first introduce the generic Hamiltonian that we will
be considering throughout. The Hamiltonian consists of three
terms. The kinetic term, H0, denotes a tight-binding (TB)
model, for which we will discuss the precise form in the
subsequent sections. The SOC Hamiltonian, HSOC, refers to
the atomic SOC written in the basis of t2g orbitals and various
momentum-dependent terms, also specified later. The interac-
tion, Hint, has the form of the Kanamori interactions,

Hint = U

2

∑
i,a,σ �=σ ′

na,iσ na,iσ ′ + U ′

2

∑
i,a �=b,σσ ′

na,iσ nb,iσ ′

+ JH

2

∑
i,a �=b,σσ ′

c†
a,iσ c†

b,iσ ′ca,iσ ′cb,iσ

+ JH

2

∑
i,a �=b,σ �=σ ′

c†
a,iσ c†

a,iσ ′cb,iσ ′cb,iσ , (1)

where U and U ′ are the intra- and interorbital Hubbard
repulsions, JH is the Hund’s coupling, and c†

a,iσ is an elec-
tron operator creating an electron at site i in orbital a with
spin σ . Decoupling these interaction terms into even-parity
zero-momentum spin-singlet and spin-triplet order parameters

[3,7,20,21] gives

Hint = 4U

N

∑
a,kk′

�̂
s†
a,k�̂

s
a,k′

+ 2(U ′ − JH )

N

∑
{a �=b},kk′

d̂†
a/b,k · d̂a/b,k′

+ 4JH

N

∑
a �=b,kk′

�̂
s†
a,k�̂

s
b,k′

+ 2(U ′ + JH )

N

∑
a �=b,kk′

�̂
s†
a/b,k�̂

s
a/b,k′ , (2)

where N is the number of sites, and the spin-triplet and -singlet
order parameters are defined as

d̂a/b,k = 1

4

∑
σσ ′

[iσ yσ]σσ ′ (ca,kσ cb,−kσ ′ − cb,kσ ca,−kσ ′ ),

�̂s
a/b,k = 1

4

∑
σσ ′

[iσ y]σσ ′ (ca,kσ cb,−kσ ′ + cb,kσ ca,−kσ ′ ), (3)

�̂s
a,k = 1

4

∑
σσ ′

[iσ y]σσ ′ca,kσ ca,−kσ ′ ,

and {a �= b} represents a sum over the unique pairs of orbital
indices. An attractive interorbital spin-triplet, d̂a/b,k, channel
is present when JH > U ′, which will be our focus. While this
corresponds to a Hund’s coupling larger than the typical value
of ∼0.2U for Sr2RuO4 [26,27], this type of pairing instability
has also been found in several studies beyond mean-field (MF)
theory without such a requirement [4–6]. Furthermore, we
note that the interorbital, �̂s

a/b,k, and intraorbital, �̂s
a,k, spin-

singlet order parameters appear with repulsive interactions,
but they can be induced by the spin-triplet order parameters
through the SOC. Indeed, calculating the spin-singlet order
parameters within a MF spin-triplet pairing state shows that
they are generally one order of magnitude smaller than the
spin-triplet order parameters.

III. TWO-ORBITAL MODEL

To illustrate how the shadowed triplet pairing occurs, we
first consider a two-orbital MF Hamiltonian, HMF, consisting
of a generic TB model with a specific SOC and an even-parity
spin-triplet pairing term. The following model allows for a
systematic study of the microscopic components relevant to
such pairing in multiorbital systems and is generalized to sys-
tems with three orbitals. We use �

†
k = (ψ†

k , T ψT
k T −1), where

T indicates time-reversal and ψ
†
k = (c†

a,k↑, c†
b,k↑, c†

a,k↓, c†
b,k↓)

consists of electron operators creating an electron in one of
the two orbitals a, b with spin σ =↑,↓. We also introduce the
Pauli matrices plus identity matrix, ρi, σi, τi (i = 0, . . . , 3), in
the particle-hole, spin, and orbital spaces, respectively, where
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FIG. 1. Depiction of the gap on the FS in the upper quarter of the first Brillouin zone (BZ) in the two-orbital model, with the arrows
indicating the direction that the contours move in as the respective parameter is increased, and the dashed lines corresponding to the underlying
FS. All parameters are given in units of 2t1; see the main text for other parameter details. (a) The SOC and orbital polarization are set to zero
while the strength of the orbital hybridization, tab in tk = −4tab sin kx sin ky, is increased from 0 to 0.1. This shows that the pairing is decreased
by the orbital hybridization tab. (b) tab fixed at 0.1, and the strength of the orbital polarization, t− in ξ−

k = 2t−(cos kx − cos ky ), is increased
from 0 to 0.13, resulting in zero gap everywhere. The orbital polarization t− further weakens the pairing. Part (c) shows the revival of the
gap for tab = 0.1, t− = 0.13, as the atomic SOC λ0 is increased from 0 to 0.48 demonstrating that SOC drastically enhances the pairing. Part
(d) shows the same as (c) but with the d-wave SOC parameter λd in λk = λd (cos kx − cos ky ), instead of λ0, increased from 0 to 0.48. SOC not
only enhances the pairing, but also determines the momentum dependence.

the direct product between them is implied. HMF is given by

HMF =
∑

k

�
†
k

[
H0(k) + Hz

SOC(k) + Hpair(k)
]
�k,

H0(k) = ρ3

(
ξ+

k

2
σ0τ0 + ξ−

k

2
σ0τ3 + tkσ0τ1

)
,

Hz
SOC(k) = −λkρ3σ3τ2,

Hpair = −dz
a/bρ2σ3τ2,

(4)

where the TB contribution is given by the sum of the two
orbital dispersions, ξ+

k , and the difference between them,
ξ−

k , which are defined by ξ±
k = ξ a

k ± ξ b
k , as well as the

orbital hybridization of the two orbitals, tk. Here we con-
sider Hz

SOC, with the form λkLzSz, to illustrate the effects
of the SOC. Later, we derive several possible k-SOC from
a microscopic perspective in Sec. IV, which differ from
the LzSz form included here. The pairing Hamiltonian is
obtained through a MF decoupling of Hint and favors the
even-parity interorbital spin-triplet order parameter via Hz

SOC,
with the d-vector aligned along the z-direction, and thus dz

a/b is
given by

dz
a/b ≡ (U ′ − JH )

1

2N

∑
k

〈
d̂ z

a/b,k

〉
. (5)

To understand the stability of the SC state, we consider the
relationship between the various components of our model
and their effects on the quasiparticle (QP) dispersion. The
gap on the FS is shown in Fig. 1 for various cases of ξ−

k , tk,
and λk. Here, ξ a

k = −2t1 cos ky − 2t2 cos kx − μ, and for ξ b
k

we take x ↔ y. The orbitals are coupled through the SOC,
for which we take two cases: the atomic SOC denoted by
λ0, and a d-wave SOC given by λk = λd (cos kx − cos ky),
as well as the orbital hybridization, which we take as tk =
−4tab sin kx sin ky. With these dispersions, ξ−

k = 2t−(cos kx −
cos ky), where t− = t1 − t2 and all parameters are given in
units of 2t1 = 1. The gap over the FS is shown for four cases:

(a) λ = 0, ξ−
k = 0, as tab is increased from zero to 0.1; (b)

keeping λ = 0, with tab = 0.1 as ξ−
k is increased by tuning t−

from zero to 0.13; (c) both tab and t− are kept the same as λ0

is increased from zero to 0.48; and (d) the same as (c) but with
the d-wave SOC, instead of λ0, increased by tuning λd from
zero to 0.48.

When the orbital dispersions are completely degenerate,
we see that the gap is nonzero everywhere over the two iden-
tical bands, as shown by the middle contour in Fig. 1(a). As
the strength of the hybridization, tk, is increased from zero,
the energy separation of the two-orbital dispersions increases
wherever tk �= 0 and the gap arising from interband pairing
disappears on the FS, except where tk vanishes along the
kx/y = 0 lines, where the two-orbital dispersions remain de-
generate. Starting from there with zero interband pairing over
most of the FS, Fig. 1(b) demonstrates the effect of ξ−

k in
further reducing the interband pairing to zero everywhere on
the FS, due to the absence of phase space for zero-momentum
pairing. Keeping the same parameters used in (b), Fig. 1(c)
reveals how the SOC revives the SC state by allowing for an
intraband pairing on the FS. As the SOC is increased from
zero, the intraband gap becomes nonzero over the entire FS.
Additionally, the sign of the gap function is opposite on the
two bands, matching the �s(k)τ̃3 dependence, which we will
show below in Eqs. (10) and (11), but uniform on each band
due to the lack of momentum dependence of the atomic SOC.
In contrast, Fig. 1(d) displays the d-wave dependence of the
gap arising from the d-wave SOC. Thus with the introduction
of tk, ξ−

k , and λk, the pairing on the FS is transformed from an
interband spin-triplet to a purely intraband pseudospin-singlet
with the same momentum dependence as the associated SOC,
while the pseudospin-triplet is active away from the Fermi
energy.

The above results can also be understood via the commu-
tation relations between the order parameter and other terms.
The pair-breaking effects are revealed by the commuting be-
havior with the pairing term [28–30]. Conversely, the SOC
anticommutes with the pairing term and generally enhances
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the pairing state. The anticommutators are given by{
ξ−

k

2
ρ3σ0τ3, Hpair

}
= ξ−

k dz
a/bρ1σ3τ1,

{tkρ3σ0τ1, Hpair} = −2tkdz
a/bρ1σ3τ3,

{−λkρ3σ3τ2, Hpair} = 0. (6)

These effects are reflected in the QP dispersion, given by

Ek = ± 1
2

[
ξ−2

k + ξ+2
k + 4

[
t2
k + (

dz
a/b

)2 + λ2
k

]
±2

√
ξ+2

k

[
ξ−2

k + 4t2
k + 4λ2

k

] + 4
(
dz

a/b

)2[
ξ−2

k + 4t2
k

]] 1
2 .

(7)

The general equation of the FS is ξ−2
k = ξ+2

k − 4(t2
k + λ2

k ),
from which it can be seen that if λk and tk = 0, and the orbitals
are degenerate, i.e., ξ−

k = 0, we recover the conventional BCS
result for the gap energy on the FS: ±dz

a/b. In the general case
in which these terms are nonzero, assuming dz

a/b is small, the
QP gap is

QP gapon FS ≈ ±

√√√√(
dz

a/b

)4 + 16λ2
k

(
dz

a/b

)2

4
[
ξ−2

k + 4
(
t2
k + λ2

k

)] . (8)

From this, it is clear that increasing ξ−
k and tk decreases

the overall gap size. The detrimental effects on the gap size,
signified by the commuting nature of both tk and ξ−

k with the
pairing Hamiltonian, are a result of shifting apart in energy
the bands being paired, resulting in the gap moving away from
the FS. However, turning on the SOC significantly enhances
the gap size [3], as shown in Fig. 1(c), and as the SOC strength
becomes larger than ξ−

k and tk, the gap can be restored to the
order of dz

a/b. Furthermore, if λk has a d-wave form factor such

as (cos kx − cos ky), the gap reflects the exact same d-wave
symmetry, as shown in Fig. 1(d). The enhancement of the
SC state is accomplished by providing a nonzero intraband
pseudospin-singlet pairing on the FS, as we show below in
the band basis.

With the aim to further understand the nature of the SC
state, we study how the pairing transforms to the Bloch
band basis, labeled by band indices α, β and pseudospin s =
(+,−). The transformation is given by(

ca,kσ

cb,kσ

)
=

(
ησ +1

2 fk − ησ −1
2 f ∗

k −gk

gk
ησ +1

2 f ∗
k − ησ −1

2 fk

)(
αk,s

βk,s

)
,

(9)

where ησ = +1 (−1) for σ =↑ (↓) and s = + (−). The
coefficients of the transformation are given by fk =
− γk

|γk|

√
1
2 (1 + ξ−

k√
ξ−2

k +4|γk|2 ) and gk = −
√

1
2 (1 − ξ−

k√
ξ−2

k +4|γk|2 ),

where fk is chosen to be complex with the same phase as
γk = tk + iλk, gk is real, and | fk|2 + g2

k = 1. Applying this
transformation on Hpair results in the pairing in the band basis,
where we have also defined the Pauli matrices ρ̃i, σ̃i, τ̃i in the
Nambu, pseudospin, and band spaces with the basis �

†
k =

(φ†
k, T φT

k T −1) and φ
†
k = (α†

k+, β
†
k+, α

†
k−, β

†
k−). We obtain

H̃pair(k) = ρ̃2σ̃0
[−�s(k)τ̃3 − �s

α/β (k)τ̃1
]

− dz
α/β (k)ρ̃2σ̃3τ̃2, (10)

where �s(k) and �s
α/β (k) denote pseudospin-singlet intra-

band and interband pairings, respectively, and dz
α/β (k) is a

pseudospin-triplet interband pairing. The intraband and inter-
band nature of these pairings becomes more apparent from the
operator form

H̃pair(k) = i�s(k)[(α†
k,+α

†
−k,− − α

†
k,−α

†
−k,+) − (β†

k,+β
†
−k,− − β

†
k,−β

†
−k,+)] + i�s

α/β (k)[(α†
k,+β

†
−k,− − α

†
k,−β

†
−k,+)

+ (β†
k,+α

†
−k,− − β

†
k,−α

†
−k,+)] + dz

α/β (k)[(α†
k,+β

†
−k,− + α

†
k,−β

†
−k,+) − (β†

k,+α
†
−k,− + β

†
k,−α

†
−k,+)]. (11)

The above equation shows the sign change in the intraband
pairing between the two bands, as displayed in Figs. 1(c) and
1(d). This relative sign between the bands is similar to the
s+− gap structure [7], although it should be noted that here
for simplicity we have ignored the SOC-induced intraorbital
singlets [3,7,21,31] that would add to the gap on each band.
For small (JH − U ′) they are small compared to dz

a/b and they
do not affect the conclusions of this section. The pairings in
the band basis have the following form:

�s(k) = −2dz
a/bIm( fk )gk = − 2dz

a/bλk√
ξ−2

k + 4
(
t2
k + λ2

k

) ,

�s
α/β (k) = −dz

a/bIm
(

f 2
k

) = −2dz
a/b| fk|2 tkλk

t2
k + λ2

k

,

dz
α/β (k) = dz

a/b

[
g2

k + Re
(

f 2
k

)] = dz
a/b

(
g2

k + | fk|2 t2
k − λ2

k

t2
k + λ2

k

)
.

(12)

While the orbital order parameter is s-wave and contains no
explicit momentum dependence, transforming to the band
basis generates potentially complex momentum dependence
from SOC and orbital hybridization. The orbital spin-triplet
order parameter carries over to the interband pseudospin-
triplet, which, in the limit of zero SOC, becomes equal to dz

a/b,
while both the intraband and interband pseudospin-singlets
vanish. The interband pseudospin-singlet pairing also van-
ishes for tk = 0. However, an important feature for λk �= 0
is the presence of the intraband pseudospin-singlet pairing,
�s(k), which acquires the same symmetry dependence as a
function of momentum as λk, as shown in Fig. 1(d). While the
interband pseudospin-triplet is a signature of the fundamental
interorbital spin-triplet order parameter, it is the intraband
pseudospin-singlet that leads to a weak-coupling instability.
This is because the interband pairing contribution to the gap
will generally be negligible on the FS, such that the gap is
given by |�s|. Considering the QP dispersion in terms of the
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band pairings,

Ek = ±
⎡
⎣(

ξα
k

)2 + (
ξ

β

k

)2

2
+ (�s)2 + (

�s
α/β

)2 + (
dz

α/β

)2 ±
√[(

ξα
k

)2 − (
ξ

β

k

)2]2

4
+ (

ξα
k − ξ

β

k

)2[(
�s

α/β

)2 + (
dz

α/β

)2]⎤⎦
1
2

, (13)

and evaluating this on either the α or β FS, for only �s

intraband pairing, we obtain the gap energy ±|�s|. For either
only �s

α/β or dz
α/β interband pairing, a gap of ±�s

α/β or ±dz
α/β

forms where ξα
k = −ξ

β

k . This corresponds to an energy gap on
the FS only where ξα

k = ξ
β

k = 0, which is not a generic feature
but rather requires fine-tuning to achieve, otherwise the gap
formed will be away from the Fermi energy.

While the model introduced in this section is simple, its
generality gives insight into the role of the orbital degeneracy,
hybridization, and SOC for multiorbital systems in dictating
the stability of the even-parity spin-triplet SC state. It is
straightforward to extend to three-orbital descriptions. Fur-
thermore, we have seen that in the band basis, the intraband
pairing on the FS takes on the momentum dependence of
the SOC, allowing for a rich collection of pairing symme-
tries unexpected from the original s-wave order parameter
and in contrast to other forms of momentum-dependent SC
that arise from nonlocal interactions. However, the possible
pairing symmetries will depend on the forms of k-SOC that
can be obtained from microscopic considerations. Therefore,
we now turn to a study of how various forms of k-SOC can
arise microscopically.

IV. MICROSCOPIC ROUTE TO
MOMENTUM-DEPENDENT SOC

Here, we take as a specific microscopic example the lay-
ered perovskite Sr2RuO4, which has the tetragonal space
group I4/mmm and point group D4h, for which the Ru 4d t2g

orbitals are the relevant low-energy degrees of freedom. With
this, we study how the various forms of k-SOC with different
d-wave form factors such as (a) an in-plane dxy SOC in the B2g

representation, (b) in-plane dx2−y2 SOC in the B1g representa-
tion, and (c) interlayer {dxz, dyz} SOC in the Eg representation
can arise microscopically, going beyond a purely symmetry-
based analysis.

A. In-plane B2g

We begin by discussing the in-plane k-SOC in the B2g

representation, which contains (sin kx sin ky) momentum de-
pendence. This SOC is important since based on symmetry,
there will already be a finite H

B2g

SOC in the presence of the orbital
hybridization and atomic SOC. Since the orbital hybridization
for the system considered here will appear between the dxz and
dyz orbitals as Hab = −4tab

∑
kσ sin kx sin ky(c†

yz,kσ cxz,kσ +
H.c.), and transforms under the B2g representation, there
is a cubic coupling term in the free energy between the
atomic SOC (λ), transforming as A1g, orbital hybridiza-
tion and B2g SOC. This symmetry-allowed coupling ∼
〈HB2g

SOC〉〈HA1g

SOC〉〈Hab〉, where H
A1g

SOC denotes the atomic SOC,

ensures the presence of a nonzero B2g SOC in the presence
of both orbital hybridization and atomic SOC.

Furthermore, the in-plane k-SOC in the B2g representation
arises through several hopping channels, all utilizing interme-
diate p-orbitals, but different oxygen sites denoted by 1–5 in
Fig. 2, including only nearby sites. As most of these channels
occur in a single layer of Ru-O octahedra, this SOC should
be expected to be the leading contribution beyond the atomic
SOC, since we will see that the other two k-SOC always
require hopping to additional layers. Such an in-plane k-SOC
can be obtained through perturbation theory by considering
hopping between next-nearest-neighbor Ru atoms through the
various channels, via the oxygen sites as intermediate states,
and including the oxygen p-orbitals’ atomic SOC. This hop-
ping process results in an electron hopping from the dxy orbital
with spin σ to either a dxz or dyz orbital with spin −σ , where
the former case is shown in Fig. 2 by the black solid line. The
contributing channels are indicated by the numbering of the
intermediate oxygen sites, and only path 5 is shown explicitly
for clarity. The effective SOC Hamiltonian involving the next-
nearest-neighbor Ru sites is obtained by

H
B2g

SOC =
∑
p±

H0|p±〉〈p±|H0

Ed − Ep±
, (14)

FIG. 2. Hopping channels generating the in-plane B2g d-wave k-
SOC for the dxz and dxy orbitals (green and red), which consists of an
effective spin-flip hopping between next-nearest-neighbor sites. The
alternative process involving the dyz orbital is related by a C4 rotation,
and only the interlayer process is shown in detail for clarity. (a) The
intermediate oxygen sites for the contributing hopping channels are
indicated by the numbering (1–5), with the relevant p orbitals (yellow
and blue) and the intermediate hopping amplitudes shown by dashed
lines only for the fifth channel. The other channels involve the same
p-orbitals at sites 1–4. The top layer of the unit cell is also removed
for clarity. (b) Schematic top view of the hopping process, where the
bottom lobe of the pz orbital is shown.
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where H0 denotes the hopping Hamiltonian involving both d
and p orbitals. The sum runs over the intermediate oxygen
states for all channels, which are eigenstates of the oxygen
SOC | j, mj, r〉, with r the position of the oxygen site, and we
consider up to the second order of the perturbation theory for
this process.

For instance, considering a hopping process between a dxy

state with spin-↑ and a spin-↓ dxz state via the apical oxy-
gen site shown, we have |p+〉 = − 1√

6
(|px,↓〉 + i|py,↓〉) +

√
2√
3
|pz,↑〉 and |p−〉 = − 1√

3
(|px,↓〉 + i|py,↓〉) − 1√

3
|pz,↑〉.

The energy denominator is given for |p+〉 and |p−〉 by Epd +
λp

2 and Epd − λp, respectively, where Epd is the difference
in the on-site atomic potentials, and λp is the oxygen SOC
constant. Considering the hopping amplitude between the dxy

orbital with spin σ at site R denoted by |xy, σ, R〉 and the
opposite spin state of the dxz orbital at site R′, |xz,−σ, R′〉,
we obtain

〈xz,−σ, R′|HB2g

SOC|xy, σ, R〉

= ησ

λp(
Epd + λp

2

)(
Epd − λp

) ∑
i

t ai
pd,it

bi
pd,i, (15)

where the sum is over the contributing channels involving the
different oxygen sites indicated in Fig. 2, and ai, bi refer to
the orbitals in the intermediate hopping amplitudes. All of
these channels contain the hopping amplitudes between either
the dxy/px and dxz/pz, or dxy/pz and dxz/px orbitals. From
Fig. 2 it can be seen that the overall sign dependence of the
hopping channel will match that of the dxy orbital, since px

and dxz change sign identically under the yz and xz mirror
planes, while pz is even under them, leading to the sin kx sin ky

dependence. Furthermore, the presence of ησ in Eq. (15) gives
rise to σ y spin-dependence.

Taking into account the equivalent process between the dxy

and dyz orbitals, which is related by a C4 rotation, we obtain

H
B2g

SOC = 4iλB2g
∑
kσσ ′

sin kx sin kyσ
y
σσ ′c

†
xz,kσ cxy,kσ ′

− 4iλB2g
∑
kσσ ′

sin kx sin kyσ
x
σσ ′c†

yz,kσ cxy,kσ ′ + H.c.,

(16)

where λB2g = λp

(Epd + λp
2 )(Epd −λp)

∑
i t ai

pd,it
bi
pd,i, and i = 1, . . . , 5 in-

dicates the different p-orbital sites involved in Fig. 2.
Quantifying the value of λB2g in Sr2RuO4 will require fur-

ther studies to accurately include the additional effects of the
coupling between other microscopic parameters such as the
Ru on-site SOC and orbital hybridization, as discussed above.
Correlation effects have also been shown to be crucial for
the size of SOC, which is enhanced from the local-density
approximation SOC values [26]. The current work is to show a
microscopic route to generating k-SOC within a perturbation
theory approach, beyond a purely symmetry-based perspec-
tive. These considerations also apply to the other k-SOC
processes, to which we now turn.

FIG. 3. Hopping processes generating the in-plane B1g k-SOC,
which consists of an effective spin-flip hopping between nearest-
neighbor sites indicated by the solid line. (a) The relevant d and
p orbitals shown in the three-dimensional (3D) structure and the
dashed lines indicating the intermediate hopping processes. The
process involving the dyz orbital is shown as an example, with the
alternative process involving the dxz orbital related by a C4 rotation.
The px and py orbitals are separated for clarity. (b) Schematic picture
of the hopping process from a top view where only the lobe of the
pz wave function closest to the plane of the hopping is shown, and
the numbers indicate whether the orbital is on the apical oxygen site
(2) or bottom (1) layer. The px and py orbitals are also shown in two
separate squares for clarity.

B. In-plane B1g

We now consider a microscopic route to obtaining an in-
plane k-SOC in the B1g representation, which has a dx2−y2

form factor. This requires a different layer of Ru-O octahedra,
but the same procedure. An example of this process is shown
in Fig. 3(a), for which the hopping between the dxy orbital with
a spin σ state and the opposite spin state of the dyz orbital
is indicated, where the overlap of the dxy orbital with both
the px and py orbitals is shown. The hopping amplitudes are
represented schematically in Fig. 3(b) for both the +x̂ or +ŷ
directions, where the pz lobe closest to the plane containing
the effective hopping is shown, and the px/py orbitals are
in separate squares for clarity. The numbering in Fig. 3(b)
indicates whether the orbital is on the apical oxygen site (2) or
the bottom (1) layer. We denote the hopping between the dxy

orbital and px (py) as t xy,x
pd (t xy,y

pd ), with both having magnitude
t xy
pd due to the C4 rotational symmetry. The hopping between

either of the dyz/dxz orbitals and pz is denoted by t z
pd , where

the two are also of equal magnitude.
Evaluating the sum over the possible intermediate states for

a given apical oxygen site, we obtain

〈yz,−σ, R′|HB1g

SOC|xy, σ, R〉

= − λp

2
(
Epd + λp

2

)
(Epd − λp)

∑
r

t z
pd

[
ησ t xy,x

pd + it xy,y
pd

]
.

(17)

Due to the mirror symmetry about the xz plane, where the
apical oxygen above the plane in the +x̂ + ŷ direction is
shown in Fig. 3, the imaginary term cancels after summing
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FIG. 4. Hopping process generating the Eg k-SOC and interlayer
hopping. (a) The relevant d and p orbitals shown in the 3D structure,
where the dashed lines indicate the intermediate hopping processes.
Only the process involving the dxz orbital hopping in the −ẑ direction
is shown for clarity. (b) A schematic picture of the hopping process
from a top view where the bottom lobes of the dxz orbital are shown
on top of the px orbital and the numbers indicate whether the orbital
is on the top (3), the bottom (1) layer, or the apical oxygen site (2).

over the two oxygen sites at ±ŷ, since t z
pdt xy,y

pd → −t z
pdt xy,y

pd ,
while the real term is invariant. Summing over both x- and
y-direction paths, we have

H
B1g

SOC = 2iλB1g
∑
kσσ ′

σ
y
σσ ′ (cos kx − cos ky)c†

yz,kσ cxy,kσ ′

+ 2iλB1g
∑
kσσ ′

σ x
σσ ′ (cos kx − cos ky)c†

xz,kσ cxy,kσ ′ + H.c.,

(18)

where λB1g = 2
t xy
pd t z

pd λp

(Epd + λp
2 )(Epd −λp)

and it can be noted that this

Hamiltonian is similar to λ(LxSx − LySy), but with λ replaced
with a dx2−y2 form factor.

C. Interlayer Eg

Here we consider an interlayer k-SOC as well as interlayer
hopping between the dxy and either of the dxz/dyz orbitals. The
k-SOC is the spin-dependent part of this process that occurs
between states with the same spin in adjacent layers, via the
apical oxygen sites as shown in Fig. 4(a), which displays the
hopping process for the dxz/dxy case. A schematic illustration
of the relevant hopping amplitudes is represented in Fig. 4(b),
where t xy,x

pd (t xy,y
pd ) is the hopping amplitude between the dxy

and px (py) orbitals in different layers with equal magnitudes,
t xy
pd . The hopping amplitude occurring purely in the ẑ direction

between the dxz orbital and the px at the apical oxygen site is
t xz,x
pd .

We have for the matrix element represented by Fig. 4,

〈xy, σ, R′|HEg

SOC + H
Eg

layer|xz, σ, R〉

= t xz,x
pd

2
(
Epd + λp

2

)
(Epd − λp)

[
t xy,x
pd (2Epd − λp) − iησλpt xy,y

pd

]
,

(19)

from which we see that the real part gives a spin-independent
hopping between the orbitals, and the imaginary part gives
a spin-dependent hopping. Both real and imaginary parts are
odd in z since t xz,x

pd is odd with respect to reflection about the
xy plane. Furthermore, since the real and imaginary parts are
proportional to t xy,x

pd and t xy,y
pd , respectively, the real part will be

even (odd) in x (y) with the opposite signs for the imaginary
part. A C4 rotation yields the equivalent result involving dyz,
but with an opposite even/odd sign dependence with respect
to the x, y directions. The result is an effective interlayer
hopping,

H
Eg

layer = −8tz
∑
kσ

cos
kx

2
sin

ky

2
sin

kz

2
c†

xy,kσ cxz,kσ

− 8tz
∑
kσ

sin
kx

2
cos

ky

2
sin

kz

2
c†

xy,kσ cyz,kσ + H.c.,

(20)

as well as the effective SOC,

H
Eg

SOC = −8iλEg
∑
kσσ ′

σ z
σσ ′ sin

kx

2
cos

ky

2
sin

kz

2
c†

xy,kσ cxz,kσ ′

+ 8iλEg
∑
kσσ ′

σ z
σσ ′ cos

kx

2
sin

ky

2
sin

kz

2
c†

xy,kσ cyz,kσ ′

+ H.c., (21)

where the effective hopping amplitudes are

tz = t xy
pdt xz,x

pd

2
(
Epd + λp

2

)
(Epd − λp)

(2Epd − λp),

λEg = −t xy
pdt xz,x

pd

2
(
Epd + λp

2

)
(Epd − λp)

λp. (22)

In summary, we have shown how three different k-SOC
terms with distinct symmetries can be generated within a
model consisting of the t2g orbitals and oxygen p-orbitals
with associated on-site SOC. A fit to the density-functional
theory (DFT) results of Ref. [25] was carried out within a
TB model including k-SOC in Ref. [20], for which the sizes
of the various k-SOC parameters were all determined to be
O(1 meV). However, as discussed in Ref. [20], through a
comparison with angle-resolved photoemission spectroscopy
(ARPES) measurements [26], it can be seen that the DFT
parameters do not accurately account for the size of the SOC,
which is enhanced through correlation effects [26]. Thus, as
mentioned previously, quantifying the values of k-SOC in
Sr2RuO4 requires future studies.

With a microscopic understanding of the origin of these
three forms of k-SOC, we next turn to incorporating them
into a three-orbital model, and we study the pairing instabil-
ities that arise in Sr2RuO4 when the on-site interactions are
included.

V. APPLICATION TO Sr2RuO4

We apply the shadowed triplet pairing scenario to the un-
conventional superconductor Sr2RuO4 [14–17] by performing
numerical calculations within MF theory for three t2g orbitals.
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This includes 18 spin-triplet order parameters, described in
Eq. (3), which are solved self-consistently at zero temperature.
Let us take a Hamiltonian, H = H0 + HSOC + Hpair, where the
kinetic term, H0, is given by

H0 =
∑
k,σ,a

εa
kc†

a,kσ ca,kσ +
∑
kσ

tkc†
yz,kσ cxz,kσ + H.c., (23)

with a the orbital index and orbital dispersions, ε
yz/xz
k =

−2t1 cos ky/x−2t2 cos kx/y−μ1d , εxy
k = − 2t3(cos kx+ cos ky) −

4t4 cos kx cos ky − μxy, and tk = −4tab sin kx sin ky + 4t ′
ab

sin kx
2 sin ky

2 cos kz

2 . The TB parameters, introduced
in Ref. [21], are (t1, t2, t3, t4, tab, t ′

ab, μ1d , μxy) =
(0.45, 0.05, 0.5, 0.2, 0.0025, 0.025, 0.54, 0.64), where all
parameters are in units of 2t3. The SOC Hamiltonian is

HSOC = H
A1g

SOC + H
B2g

SOC + H
Eg

SOC, (24)

where the atomic SOC in the basis of t2g orbitals is H
A1g

SOC =
iλ

∑
k,abc,σσ ′ εabcc†

a,kσ
cb,kσ ′σ c

σσ ′ , and εabc is the completely
antisymmetric tensor with a, b, c = (1, 2, 3) = (yz, xz, xy)
representing the t2g orbitals. The resulting TB model is capa-
ble of reproducing the experimental FS of Sr2RuO4 [26,32–
34], and the pairing term, Hpair, consists of the attractive
channel expressed in terms of the interorbital spin-triplet order
parameters in Eq. (2).

The MF results are obtained with JH − U ′ = 0.7, and the
atomic SOC is fixed to λ = 0.05. With λB2g = 0, we obtain a
purely s-wave solution with dx

xz/xy = dy
yz/xy > dz

yz/xz, as shown
in Ref. [3]. As λB2g reaches an appreciable percentage of λ, the
dxy component becomes nonzero, with orbital MFs dy

xz/xy =
dx

yz/xy. Also, there is a relative phase of π
2 compared to the

s-component of pairing. This solution is of the form s + idxy

in the band basis and has underlying triplet character with
a predominantly in-plane d-vector involving pairing mostly
between the dxz and dxy as well as dyz and dxy orbitals. For
λB2g ≈ −0.0305, the dxy and s components are approximately
equal in magnitude. The QP gap is found to be maximum
along the kx = ky line, with �max = 2.4 × 10−5 and �min =
1.1 × 10−6. The s + idxy pairing state exists for a range of λ

and λB2g values around this. Increasing λB2g will eventually
lead to a state with only the dxy component. We note that while

we have derived H
B2g

SOC through a perturbative process and λB2g

is therefore expected to be smaller than the SOC of oxygen,
λp ≈ 20 meV [35], there should be additional enhancement
of the B2g SOC through the coupling to the atomic SOC
and orbital hybridization, as well as correlations, which we
discussed earlier. We therefore treat λB2g as an effective param-
eter taking these effects into account, while yielding a FS in
agreement with angle-resolved photoemission spectroscopy.

We show the gap on the FS in Fig. 5, along with arrows
indicating the nature of the shadowed triplet at select k points
away from the Fermi energy. The SC gap is smallest on the
α band along the BZ boundaries, on the order of 1% of
the maximum gap or O(1 μeV), using 2t3 ≈ 700–800 meV
[36,37], and it can be even smaller as the MF gap is generally
overestimated. Furthermore, these deep minima in the gap are
robust to changes in the SOC parameters within the region
where the s + idxy solution is stabilized. The direction of the
arrows indicates the in-plane direction of the d-vector, with

FIG. 5. Gap at the FS at kz = 0 for a representative s + idxy

solution with λ = 0.05, λEg = 0.005, and λB2g = −0.0305, for which
the maximum gap over the FS is 2.4 × 10−5 and the minimum gap is
1.1 × 10−6, where all energies are in units of 2t3 (see the main text for
details). The direction of the arrows indicates the in-plane component
of the interorbital spin-triplet d-vector associated with the shadowed
triplet state, which transforms to intraband pseudospin-singlet pair-
ing on the FS. The length of the arrow indicates the magnitude of
the in-plane component; the shorter the arrow, the bigger the c-axis
component. The inset displays the magnitude of the gap over the FS
throughout the full BZ, with the sign of the dxy component of the gap
function shown.

the length indicating the magnitude of the in-plane compo-
nent; the shorter the arrow, the bigger the c-axis component.
Due to the dxy component vanishing along the a- and b-axis,
the pairing solution is composed of dx

xz/xy along the a-axis and
dy

yz/xy along the b-axis, leading to a d-vector that is parallel to
the respective axis. The vanishing of the dxy component of the
pairing along the kx/ky directions is illustrated in the inset of
Fig. 5.

Within a microscopic theory including Kanamori interac-
tions, the atomic SOC, and the B2g and Eg k-SOCs derived
in Sec. IV, it is possible to stabilize both order parameters
of the s + idxy or dxz + idyz type at the FS, depending on the
relative size of the Eg, B2g, and atomic SOC strengths. As
discussed in Sec. III, these order parameters will appear as
intraband pseudospin-singlets on the FS, but with underlying
interorbital triplet character originating from the orbital or-
der parameters, da/b. The atomic SOC will stabilize MFs of
the form dx

xz/xy = dy
yz/xy > dz

yz/xz [3,18,20,21]. The B2g SOC,
which is given by Eq. (16), will favor an order parameter that
appears with dxy symmetry and underlying dx

yz/xy and dy
xz/xy

triplet character. The Eg SOC, given by Eq. (21), will favor
a multicomponent order parameter that appears as dxz + idyz

[18,20] and have underlying dz
xz/xy and dz

yz/xy character. By
including both the atomic and B2g SOCs, a multicomponent
order parameter with s + idxy symmetry can be stabilized,
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where the relative size of the s and dxy components is deter-
mined by the relative sizes of λ and λB2g . By comparing the
ground-state energies, we find that the dxz + idyz solution be-
comes favorable over the purely s-wave solution when λEg ≈
0.015 and λB2g = 0. However, including the B2g SOC by fixing
λB2g = −0.0305, the critical value at which the dxz + idyz state
is stabilized remains approximately the same. Given that the
only contribution to the Eg SOC involves hopping between
different layers, it is reasonable that λB2g is larger than λEg ,
leading to a dominant s + idxy pairing state over dxz + idyz.

There has been a growing body of evidence suggesting that
any viable order parameter must be a time-reversal symmetry
breaking (TRSB) multicomponent order parameter [38–41],
with an appropriate symmetry that will lead to a jump in
the c66 elastic modulus at Tc [42,43], and lead to a sub-
stantial reduction of the nuclear magnetic resonance (NMR)
Knight shift for an in-plane field [44,45]. Two even-parity
proposals are the multicomponent {dxz, dyz} order parame-
ter in the two-dimensional Eg representation [20,46] and the
dx2−y2 + igxy(x2−y2 ) order parameter, which relies on an acci-
dental degeneracy with components from both the B1g and
A2g representations [47]. The s + idxy state proposed here is a
combination of the A1g and B2g representations and generates
a sudden change in the shear c66 elastic modulus but not
(c11 − c12)/2, consistent with the ultrasound data. This is in
contrast to an order parameter in the Eg representation, leading
to a jump also in the (c11 − c12)/2 elastic modulus, which has
not been observed experimentally [42,43]. Since other pairing
solutions such as dy

xz/xy = −dx
yz/xy are also found as local min-

ima in MF theory, further experiments and theoretical studies
to pin down different order parameters are left for the future.

VI. SUMMARY AND DISCUSSION

In summary, we have studied the microscopic mechanisms
of k-SOC and its importance for even-parity spin-triplet pair-
ing in Hund’s metals. By taking a simple two-orbital model,
we show how a purely interorbital s-wave triplet pairing in the
orbital basis becomes an intraband pseudospin-singlet pairing
with nontrivial momentum dependence near the FS, as well
as pseudospin-singlet and -triplet interband pairings, which
also contain momentum dependence. In the process, we have
illustrated the effects of orbital hybridization and SOC on
the interorbital spin-triplet pairing state. Applying the idea to
Sr2RuO4, we have derived several forms of d-wave k-SOC in
the B1g, B2g, and Eg representations by including the SOC of
the oxygen sites within a model consisting of the t2g orbitals
and oxygen 2p orbitals. While determining the precise size of
the various k-SOC parameters in Sr2RuO4 will require future
study, the perturbative approach taken here is an important
step in understanding the microscopic origins of these terms
in Sr2RuO4 and other materials. For instance, based on this
analysis it is reasonable to expect that the dominant form
of k-SOC will likely be from the next-nearest-neighbor in-
plane B2g SOC, which will generate a dxy pairing component
in addition to the s-wave pairing stabilized by the atomic
SOC. Subsequently, we have demonstrated the viability of
the s + idxy multicomponent solution by including the atomic
SOC, B2g, and Eg SOCs with t2g orbitals. For a range of the
three SOC parameters, the existence of the s + idxy state with

a predominantly in-plane d-vector is generic and indepen-
dent of details, while competition with other shadowed triplet
pairing symmetries depends on the microscopic parameters.
The concept we have presented is also applicable to other
correlated Hund’s metals with significant SOC.

While the pairing solution we have found manifests as
a pseudospin-singlet on the FS, the shadowed triplet nature
with a predominantly in-plane d-vector will be apparent in
the presence of finite fields [48]. As discussed previously in
Ref. [21], these properties can be confirmed by NMR under
uniaxial strain, with an in-plane field applied along both the
direction of the strain and perpendicular to it. The s + idxy

state we have presented here has essentially the same property
that near the x/y directions, where there is mostly dxz/dyz

and dxy orbital character, the d-vector is parallel to the crystal
axes due to the s-wave component of pairing and the fact that
the dxy component vanishes along those directions. Therefore,
under uniaxial strain, there should be a rotation of the average
d-vector, leading to an anisotropic Knight shift between the x
and y directions when the field is a significant fraction of the
gap size. Interestingly, the low-field behavior is governed by
the pairing near the FS, leading to a more isotropic response
consistent with the Knight shift of NMR [21].

Going beyond the purely s-wave case, an s + idxy pairing
naturally explains experiments suggesting a multicomponent
order parameter with TRSB and the observed jump in the c66

elastic modulus but not the (c11 − c12)/2 modulus [38–43].
While dxz + idyz matches the jump in c66, the lack of an ob-
served jump in (c11 − c12)/2 is in favor of the s + idxy pairing
state over the dxz + idyz state. These two pairing states can
also be distinguished due to their different triplet character.
The leading order parameter for the dxz + idyz solution cor-
responds to an out-of-plane d-vector, which would yield no
rotation under uniaxial strain in contrast to the behavior of
the s + idxy state, as discussed above. Such an experiment
could provide a test of the s + idxy order parameter aris-
ing from the combination of local interactions and k-SOC
in light of the lack of many other viable multicomponent
alternatives.

In general, two order parameters from different representa-
tions with broken time-reversal symmetry imply the presence
of two transition temperatures. However, currently there are
conflicting experimental data under uniaxial strain regard-
ing this issue: specific heat measurements show no signs of
a second transition [49], while muon spin relaxation mea-
surements do indicate a splitting of Tc and the onset of
TRSB [41]. Therefore, future experiments under strain will
be an important test for a TRSB pairing state. Beyond the
experiments under uniaxial strain, it will be important go-
ing forward for future experiments to clarify whether the
putative gap nodes [50–55] are indeed nodes or deep gap
minima, which arise naturally in the pairing solution consid-
ered here, as well as the precise location in k-space of these
nodes.
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