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Comment on “Magnetic circular dichroism versus orbital magnetization”
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In a recent article [Resta, Phys. Rev. Research 2, 023139 (2020)] it is argued, based on the dichroic sum rules
derived from the modern theory of orbital magnetization, that the x-ray magnetic circular dichroism (XMCD)
orbital magnetization sum rule is not providing an expectation value of the orbital angular momentum and of
the orbital part of the magnetic moment, but a different quantity, also related to the breakdown of time-reversal
invariance, but different. In this Comment, it is shown that this conclusion is incorrect, and that the XMCD sum
rule, within its assumptions, delivers an essentially exact expectation value of the orbital angular momentum and
of the orbital moment.
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I. INTRODUCTION

In a recent publication [1], an interesting discussion is pro-
vided about the relationship between the orbital sum rule for
XMCD (x-ray magnetic circular dichroism) [2,3], and the ex-
pression derived some years ago for the orbital magnetization
of an independent-electron solid (the so-called modern theory
of orbital magnetization) and some related sum rules [4]. This
is highly relevant, as both results had considerable impact,
well documented in the literature: the XMCD sum rule is very
often applied to x-ray dichroic spectra of ferro- and param-
agnetic systems, in order to extract element-specific orbital
magnetic information, hardly obtainable by other means; and
the modern theory of orbital magnetization is remarkable for
its deep connections to geometrical and topological aspects of
Bloch band theory.

It is, however, necessary, before proceeding to such discus-
sion, to recall the very different assumptions underlying these
two results, and the different nature of the sum rules.

The orbital XMCD sum rule is, apart from small correc-
tions, precisely quantified below, essentially exact for atomic
or ioniclike rotation invariant systems, in which the many-
electron energy eigenstates are eigenstates of the total angular
momentum and can be expanded as superpositions of Slater
determinants of one-electron orbitals, characterized by l2, lz
and corresponding spin quantum numbers. The spectral re-
gion to which the sum rule applies is limited to the region
where dipole transitions from the full set of core levels with
l2 = c(c + 1) to an incomplete d or f shell are allowed, and
yields, as stated before, a result for the expectation value of
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the orbital angular momentum of that final shell, accurate
to the order of a small dimensionless parameter: the ratio
of two energies, i.e., the overall spectral energy extent of
the region described above, determined by a convolution of
the core level spin-orbit splitting and the overall multiplet
spectral extension, on the one hand, and the average x-ray
transition photon energy (as an example, typically �30 eV
for the numerator and �700–850 eV for the Fe, Co, and Ni
L2,3 edges), on the other. It is important to underline that
all intra-atomic interactions (direct and exchange Coulomb
integrals) are included in this description, and that therefore
Hund’s rules (which are extremely important for the origin of
orbital moments) and atomic multiplet theory find full appli-
cation. This is therefore a sum rule for the optical intensities
of a specific and well delimited class of initial and final states,
and belongs to a class of sum rules which have been used in
atomic physics for some decades [5]. The character of these
sum rules is exact and relies on results of angular momen-
tum and spherical tensor theory; nonetheless, the single-ion
approach for a periodic solid can of course appear as a crude
approximation and can be invoked to explain discrepancies
with solid-state experiments (see, however, arguments to the
contrary in Ref. [6]). Within the single-ion limit, the expecta-
tion value of the magnetic moment m component along the
quantization axis is related to the spin and orbital angular
momenta by the well-known relation

〈m〉z = −μB(〈L〉z + 2〈S〉z ), (1)

where μB is the Bohr magneton, L and S are in units of h̄, and
the first addendum in parentheses corresponds to the orbital
magnetic moment.

The modern theory of orbital magnetization, on the other
hand, is by definition taking full account of the periodicity
of the solid, and also provides, in principle, exact statements,
but, in this case as well, only within a crucial assumption:
that the electronic ground state of the solid is described by
a single Slater determinant of Bloch functions, as for example
produced by application of Kohn-Sham density functional
theory. This is an assumption that is often extremely good
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to describe charge densities and bonding in solids, but that
has serious consequences for the description of magnetically
ordered phases; and in fact several attempts to reintroduce
short-range electronic correlations to improve agreement of
DFT calculations with experiments have taken place, based
on ad hoc orbital polarization functionals [7,8], LDA + U , or
DFT + DMFT calculations [9,10].

The single atom and the modern theory approaches are
therefore approximate descriptions that are, in a sense, com-
plementary; the marriage of localized correlations and of
itinerant aspects of electronic structure being one of the major
challenges of contemporary condensed matter physics. In the
rest of this Comment, it is argued that the results of Ref. [1]
have no bearing on the XMCD orbital sum rule, and, in
particular, the claim that the XMCD orbital sum rule does
not, even in principle, determine the orbital magnetization
(or, more precisely the ground state expectation value of the
orbital moment in an incomplete shell) is not valid. It is based
on the unjustified assumption that the XMCD sum rule is an
approximation to the dichroic sum rules, as given by Souza
and Vanderbilt, obtained by restricting the range of integration
to a finite interval, or by considering only the contribution of a
single band. It does not take into account the special selection
rules and ratios among matrix elements to different final states
implied by the spherical symmetry, which are crucial in the
proof of the XMCD orbital sum rule.

II. XMCD ORBITAL SUM RULE AND DICHROIC SUM
RULES OF THE MODERN THEORY OF ORBITAL

MAGNETIZATION

Since the 1920s a set of sum rules for the optical properties
of electronic matter have been established, the best known
of which is the f-sum rule of Thomas, Reiche, and Kuhn
[11]. These sum rules are (a) very general, as they can be
derived using the basic commutation relations between canon-
ical observables, and the completeness of the eigenstates of
self-adjoint operators; or, alternatively, using the Kramers-
Kronig dispersion relations for the optical constants, based on
the principle of causality; (b) they are formulated in terms of
integrals over the whole range (from 0 to ∞) of frequencies,
which, incidentally, makes their actual experimental applica-
tion very difficult; we shall refer to them as “dispersion sum
rules.” A result of this kind is obtained within the modern
theory of orbital magnetization (for independent electrons) by
Souza and Vanderbilt [4]. The modern theory cleverly avoids
divergent integrals and ill-defined quantities, and, within the
independent electron approximation formulates the main re-
sults in the following way:∫ ∞

0
σ (2)

x,y (ω)dω = γ
∑
i,occ

∑
j,unocc

(〈i|r| j〉 × 〈 j|v|i〉)z, (2)

where γ is a combination of the normalization volume and
fundamental constants, v is the velocity operator, the sum-
mation over i is restricted to the one-electron wave functions
occupied in the ground state, and that over j to unoccupied
ones. The expectation value of the orbital angular momentum,
on the other hand, is given by

〈Lz〉 = γ
∑
i,occ

∑
j

(〈i|r| j〉 × 〈 j|v|i〉)z, (3)

where j runs over all states, whether occupied in the ground
state or not.

So, if we consider this sum rule, one is perfectly correct
in saying that the dispersion MCD sum rules do not add up
to the expectation value of the orbital angular momentum
(or the orbital moment), but to a different quantity; and that
restricting the range of integration does not help to recover
the orbital momentum, in the general case. But as we argue
below, this does not rule out particular cases, and has nothing
to say on the XMCD orbital sum rule and its validity (while
indeed the expression “XMCD” and all reference to x rays is
avoided in Ref. [1], statements in the introduction and in the
conclusions of the paper point to strong implications for the
XMCD sum rule).

To clarify this point, let us now turn to the “atomic” sum
rules, such as the orbital XMCD sum rule, or, for example,
the sum rule derived in the Appendix of Ref. [5]. A brief
inspection of the statement and of the derivation of this dif-
ferent kind of sum rules shall explain why the conclusions
drawn in Ref. [1] are not applicable. Starace’s sum rule states
that the sum of the square of the dipole matrix elements
(averaged over polarization, as in a gas-phase experiment)
for an ion in one of the initial states |I〉 of the configuration
[(nili )4li+2(n f l f )N ] to all final states |F 〉 of the configuration
[(nili )4li+1(n f l f )N+1] is given by

Av(q)
∑

F

∣∣∣∣∣〈I|
∑

j

r jC
(1)
q (� j )|F 〉

∣∣∣∣∣
2

= 〈nili|r|n f l f 〉2(li‖C(1)‖l f )2

3(2l f + 1)
(4l f + 2 − N ). (4)

Here, Av(q) denotes the average over the polarization di-
rection, the numerator of the fraction on the right-hand side
contains the radial matrix element and the reduced matrix
element (in the sense of the Wigner-Eckart theorem [12]) of
the l = 1 spherical harmonics, and the other quantities are
parameters of the incomplete shell.

Since the algebra leading to Eq. (4) can be checked as
an exercise in angular momentum theory, it would not be
correct to argue that the equation is invalid because it cannot
be derived by considering the general form of the f -sum
rule and restricting its range of summation or integration. It
is absolutely crucial to use the spherical symmetry of the
atomic Hamiltonian to define the eigenstates as angular mo-
mentum eigenfunctions, which is not the case in the most
general expression of the f -sum rule. The same holds for the
XMCD orbital sum rule, and in addition, following one simple
derivation [3], it is important to underline that there is a nor-
malization of the integrated dichroic spectrum by the integral
of the isotropic polarization case absorption [essentially three
times the right-hand side of Eq. (4)], in order to get rid of the
radial matrix elements, so that the XMCD sum rule reads

I1 − I−1

I1 + I0 + I−1
= −〈0|Lz|0〉

l f (4l + 2 − N )
, (5)

where Iq, with q = −1, 0, 1, denotes the oscillator strength
sum over all dipole transitions from the initial core shell to the
final shell (n f l f )N for polarization q. So the very structure of
the sum rule (not a sum over oscillator strengths, but the ratio
of two different sums) prevents one from considering it as a

048001-2



COMMENTS PHYSICAL REVIEW RESEARCH 2, 048001 (2020)

component or as an approximation (on a reduced frequency
interval) of a dispersion sum rule.

Therefore, one can perhaps argue that the atomic approx-
imation is an inadequate approach for solids, but certainly

not that the XMCD sum rule, as usually applied to ana-
lyze experimental x-ray data, produces a quantity that is
different from the orbital angular momentum and the orbital
moment.
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