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Quantum self-learning Monte Carlo and quantum-inspired Fourier transform sampler
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The self-learning METROPOLIS-Hastings algorithm is a powerful Monte Carlo method that, with the help of
machine learning, adaptively generates an easy-to-sample probability distribution for approximating a given
hard-to-sample distribution. This paper provides a new self-learning Monte Carlo method that utilizes a quantum
computer to output a proposal distribution. In particular, we show a novel subclass of this general scheme based
on the quantum Fourier transform circuit; when the dimension of the input to QFT corresponding to the low-
frequency components is not large, this sampler is classically simulable while having a certain advantage over
conventional methods. The performance of this quantum-inspired algorithm is demonstrated by some numerical
simulations.
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I. INTRODUCTION

Monte Carlo (MC) simulation is a powerful statistical
method that is generically applicable to compute statistical
quantities of a given system by sampling random variables
from its underlying probability distribution. A particularly
efficient method is the METROPOLIS-Hastings (MH) algorithm
[1]; this realizes a fast sampling from a target distribution via
an appropriate acceptance/rejection filtering of the samples
generated from an alternative proposal distribution which is
easier to sample compared to the target one. Therefore the
most important task in this algorithm is to specify an ap-
propriate proposal distribution satisfying the following three
conditions; (i) it must be easy to sample, (ii) the corre-
sponding probability can be effectively computed for judging
acceptance/rejection of the sample, and (iii) it is rich in
representation, meaning that it may lie near the target distri-
bution. This is a long-standing challenging problem, but the
recent rapid progress of machine learning enables us to take
a circumventing pathway for the issue, the self-learning MC
[2–5], which introduces a parametrized proposal distribution
and updates the parameters during the sampling so that it
is going to mimic the target one. Despite of its potential
power thanks to the aid of machine learning, this approach
has been demonstrated only with a few physical models; for
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example in Ref. [2], for a target hard-to-sample Ising distribu-
tion, a parametrized proposal Ising distribution was applied to
demonstrate the effectiveness of self-learning MC approach.
To expand the scope of self-learning MC, we need a system-
atic method to design a parametrized proposal distribution that
is generically applicable to a wide class of target distribution.

Now we turn our attention to quantum regime, with the
hope that the quantum computing might provide us an effec-
tive means to attack the above-mentioned problem. In fact
the so-called quantum supremacy holds for sampling prob-
lems; that is, a (nonuniversal) quantum computer can generate
a probability distribution which is hard to sample via any
classical (i.e., nonquantum) computer. Especially, the Boson
sampling [6] and instantaneous quantum polynomial time
computations [7,8] are well known, the former of which is
now even within reach of experimental demonstration [9,10].
Moreover, a recent trend is to extend this idea to quantum
learning supremacy [11], meaning that a quantum circuit is
trained to learn a given target distribution faster than any
classical computer.

With the above background in mind, in this paper we study
a new type of self-learning MC that uses quantum computing
to generate a proposal distribution. In fact this scheme satis-
fies the above-described three conditions. First, (i) is already
fulfilled as an intrinsic nature of quantum computers. Second,
it is well known that the task (ii) can be effectively executed
using the amplitude estimation algorithm [12,13], which is
in fact twice as fast as the classical correspondence. Lastly
the above-described fact, the expressive power of quantum
computers for generating complex probability distributions,
might enable us to satisfy (iii) and mimic a target distribution
which is essentially hard to sample via any classical means.
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To realize the learning scheme in a quantum system, we take
the variational method, meaning that a parametrized quantum
circuit is trained so that its output probability distribution
approaches to the target distribution. This schematic itself is
also employed in the quantum generative modeling [14,15],
but application to MH might be of more practical use for
the following reason. That is, unlike the generative modeling
problem, MH need not generate a proposal distribution that
is very close to the target, but rather it requires only a rela-
tively high acceptance ratio and accordingly less demanding
quantum computers.

Of course the most difficult part is to design a parametrized
quantum circuit which may successfully generate a suitable
proposal distribution. Therefore, for the purpose of demon-
strating the proof-of-concept, in this work, we consider a
special type of quantum circuit composed of the quantum
Fourier transform (QFT), where the parameters to be learned
are assigned corresponding to some frequency components. In
fact, thanks to the expressive power of the Fourier transform in
representing or approximating various functions, the proposed
QFT sampler is expected to satisfy the condition (iii), in addi-
tion to (i) and (ii). We also emphasize that this QFT sampler
or its variant (e.g., with different parametrization to cover the
high-frequencies components) is a new type of circuit ansatz
in the quantum variational method and might be applicable to
other problems such as the quantum generative modeling.

Now we state our bonus theorem; when the dimension of
the input to QFT corresponding to the low-frequency compo-
nents is not large, the proposed QFT sampler can be efficiently
simulated with a classical means, using the adaptive measure-
ment technique [16]. This is exactly the direction to explore
a classical algorithm that fully makes use of quantum fea-
ture, i.e., a quantum-inspired algorithm such as in Ref. [17].
Actually we will show that this quantum-inspired sampler
has a certain advantage over some conventional methods, in
addition to the clear merit that the system with, e.g., hundreds
of qubits is simulable.

The rest of the paper is organized as follows. First, in
Sec. II, we describe the general idea of quantum self-learning
Monte Carlo. Then Sec. III gives the scheme of QFT sampler
and its classical implementation (i.e., the quantum-inspired
algorithm based on QFT) as a demonstration of the proof-
of-concept of the idea (Sec. III). Section IV is devoted to
show detailed numerical simulations of the QFT algorithm for
various target probability distributions. Lastly a summary and
some discussion for future prospect are given in Sec. V.

Notations. For a complex column vector a, the symbols a†

and a� represent its complex conjugate transpose and trans-
pose vectors, respectively. Also a∗ denotes the elementwise
complex column vector of a. Hence a† = (a∗)�.

II. GENERAL SCHEME OF QUANTUM SELF-LEARNING
MONTE CARLO METHOD

A. Classical MH algorithm

Let p(x) and q(x) be target and proposal probability dis-
tributions, respectively. To get a sample from p(x), the MH
algorithm instead samples from q(x) and accepts the result
with valid probability determined by the detailed balance

conditions. More specifically, assume that we have last ac-
cepted a sample r and now obtain a sample r̃ generated from
the proposal distribution q(x). Then, this sample r̃ is accepted
with probability

A(r, r̃) = min

{
1,

p(r̃)q(r)

p(r)q(r̃)

}
, (1)

which is called the acceptance ratio. Note that the value p(r)
is assumed to be easily computable for a given r, while its
sampling is hard. This procedure is repeated until the number
of samples becomes enough large; then these accepted sam-
ples are governed by the target distribution p(x) due to the
detailed balance conditions. Note that, if q(x) = p(x), then
the acceptance ratio is always exactly 1, which is maximally
efficient; but of course this does not happen because p(x) is
hard to sample while q(x) is assumed to be relatively easy to
sample.

In the context of self-learning MC, a parametric model
of the proposal distribution q(x; θ) is considered, with θ the
vector of parameters. The self-learning MC aims to learn the
parameters so that q(x; θ) moves toward the target p(x).

B. General form of the quantum self-learning MH algorithm

Here we describe the quantum sampler executing the self-
learning MH algorithm, in the general setting. First, for the
initial state |gN 〉 = |g〉⊗N with |g〉 = [1, 0]� a qubit state, we
apply the parametric unitary gate U (θ):

|�(θ)〉 = U (θ)|gN 〉,
where θ ∈ Cm are the parameters to be tuned. The reason of
taking the complex-valued parameters will be made clear in
the next section when specializing to the QFT circuit. This
state is measured in the computational basis, defining the
probability distribution

q(x; θ) = |〈x|�(θ)〉|2 = |〈x|U (θ)|gN 〉|2, (2)

where x is the multidimensional random variable represented
by binaries (an example is given in Appendix A). Equation (2)
is the proposal distribution of our MH algorithm. Hence, our
goal is to update θ so that q(x; θ) is going to approximate the
target distribution p(x). The learning process for updating θ

is executed via the standard gradient descent method of a loss
function, as described below.

First, for a fixed θ, we obtain samples r1, . . . , rB from
q(x; θ) by the computational-basis measurement. These sam-
ples are filtered according to the acceptance probability (1),
thus producing samples governed by p(x). Note now that, for a
given r, the value q(r) = |〈r|�(θ)〉|2 must be effectively com-
puted to do this filtering process (recall that the value of p(r)
is assumed to be easily obtained); this computability indeed
depends on the structure of U (θ), but in general we could
apply the quantum amplitude estimation algorithm [12,13] to
reduce the cost for executing this task. The samples r1, . . . , rB

are also used to calculate the gradient descent vector of the
loss function L(θ) for updating θ. Noting that L(θ) is real
while θ is complex, its infinitesimal change with respect to
θ is given by

δL =
(∂L

∂θ

)�
δθ +

( ∂L

∂θ∗
)�

δθ∗ =
(∂L

∂θ

)�
δθ +

(∂L

∂θ

)†
δθ∗.
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The gradient descent vector for updating the parameter from
θ to θ′ = θ + δθ is thus given by

θ′ = θ − α
(∂L(θ)

∂θ

)∗
, (3)

where α > 0 is the learning coefficient; in fact then δL =
−2α‖∂L/∂θ‖2 � 0. In this work, the loss function is set to
the following cross entropy between q(x; θ) and p(x):

L(θ) = −
∑

x

p(x) log q(x; θ), (4)

which is a standard measure for quantify the similarity of two
distributions. The gradient vector of L(θ) can be computed as
follows:

∂L(θ)

∂θ
= −

∑
x

p(x)

q(x; θ)

∂q(x; θ)

∂θ

= −
∑

x

q(x; θ)
p(x)

q(x; θ)2

∂q(x; θ)

∂θ

= lim
n→∞ −1

n

n∑
i=1

p(ri )

q(ri; θ)2

∂q(ri; θ)

∂θ

� − 1

B

B∑
i=1

p(ri )

q(ri; θ)2

∂q(ri; θ)

∂θ
. (5)

Note that

∂q(r; θ)

∂θ
=

[
|〈r|∂U (θ)

∂θ1
|gN 〉|2, . . . , |〈r|∂U (θ)

∂θm
|gN 〉|2

]

can be directly estimated when U (θ) is composed of Pauli op-
erators with the parameters {θi} corresponding to the rotation
angles [18].

Here we discuss the notable feature and possible quantum
advantage of the quantum sampler for the MH algorithm, by
referring to the three conditions mentioned in Sec. I. First,
the condition (i) is indeed satisfied because now the sampler
is a quantum device that physically produces each measure-
ment result r according to the proposal probability distribution
q(x; θ), only in a few micro second in the case of supercon-
ducting devices. As for the condition (ii), it is in principle
possible to effectively compute the probability q(r; θ) for a
given r, as discussed above in this subsection. Lastly for the
condition (iii), q(x; θ) might be able to represent a wide class
of probability distribution, which is even hard to sample via
any classical means as mentioned in Sec. I. Realization of
this possible quantum advantage of course needs a clever
designing of the ansatz U (θ).

III. THE QUANTUM FOURIER TRANSFORM SAMPLER

To show the proof-of-concept of the quantum sampler for
self-learning MH algorithm, here we consider a special class
of circuit composed of QFT, called the QFT sampler. Impor-
tantly, as will be shown, the QFT sampler characterized by
a low dimensional parameter vector is classically simulable,
while it has an advantage over classical algorithms.

Before describing the scheme, we remark that, in the ma-
chine learning community, there have been proposed several

FIG. 1. Schematic illustration of the quantum Fourier transform
sampler.

Fourier-based neural networks (or neural networks with peri-
odic activation functions) [19–22]; these are in fact motivating
studies for why we take the QFT ansatz in this work.

A. One-dimensional QFT sampler

We begin with the one-dimensional QFT sampler; exten-
sion to the multidimensional case is discussed in Sec. III C.
As illustrated in Fig. 1, this sampler is composed of the QFT
operation applied to a N-qubits input state |in〉 = |ψ (θ)〉 ⊗
|gN−M〉, where

|ψ (θ)〉 = θ0|0〉 + θ1|1〉 + · · · + θ2M−1|2M − 1〉. (6)

{|0〉, |1〉, . . . , |2M − 1〉} is the set of computational basis states
in (C2)⊗M = C2M

, e.g., |0〉 = |gM〉. That is, the first M-qubits
state contains the parameters θ = [θ0, · · · , θ2M−1]� ∈ C2M

,
while the residual N − M qubits are set to |g〉 states. Note
that, if θ ∈ R2M

, then the proposal distribution (7) below is
limited to an even function, and thus θ must take complex
numbers. Also, the state (6) can be replaced by a parametrized
quantum state such as the output of the so-called hardware
efficient anzatz [23]. In this case, the state preparation is much
easier than to generate (6). Also, we find some studies that
demonstrated generating relatively large entangled state [24].
A concern on the use of hardware efficient anzatz is that the
representative power of this ansatz is less than (6); but, in the
MH setting, the proposal distribution is not required to be very
close to the target, implying that a less-expressive or even a
mixed input state might be acceptable.

The output of QFT is given by |�(θ)〉 = UQFT|in〉, where
UQFT is the QFT unitary operator whose matrix representation
is given by

〈k|UQFT| j〉 = 1√
2N

ei2πk j/2N
.

Now the measurement on |�(θ)〉 in the computational basis
yields the probability distribution

qQFT(x; θ) = |〈x|�(θ)〉|2 = |〈x|UQFT|in〉|2, (7)

where the random variable x is represented with binaries, i.e.,
x ∈ {0, 1, · · · , 2N − 1}.

Again, the task of self-learning MH is to update θ so that
the proposal distribution qQFT(x; θ) may approach to the target
distribution p(x). To compute the gradient vector (5), let us
express 〈x|UQFT|in〉 as

〈x|UQFT|in〉 = u�
x θ, (8)

where ux is the vector composed of the first 2M elements of
the x-th row vector of UQFT; hence the jth element of ux is
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given by

(ux ) j = 1√
2N

ei2πx j/2N
( j = 0, 1, · · · , 2M − 1).

Then the partial derivative of qQFT(x; θ) = (u�
x θ)∗(u�

x θ) =
(u†

xθ
∗)(u�

x θ) with respect to θ is given by

∂qQFT(x; θ)

∂θ
= (u†

xθ
∗)ux.

Hence, from Eq. (5), the gradient vector of the loss function
L(θ) can be calculated as follows:

(∂L(θ)

∂θ

)∗
� − 1

B

B∑
i=1

p(ri )

qQFT(ri; θ)2

(
u�

ri
θ
)
u∗

ri
, (9)

where {r1, r2, · · · , rB} are samples taken from the proposal
distribution qQFT(x; θ). Recall that we filter these samples via
the rule (1) and thereby obtain samples that are subjected to
the target distribution p(x). In this work, instead of the stan-
dard gradient update (3), we take the following momentum
gradient descent [25];

θ′ = θ − αm′, m′ = μm + (1 − μ)
(∂L(θ)

∂θ

)∗
, (10)

where α and μ are the learning coefficients; in general, the
momentum method offers a more efficient convergence than
the standard gradient method, thanks to the momentum effect
via m, which is the exponential moving average of the stochas-
tic gradient ∂L/∂θ. The updated vector θ′ is normalized and
substituted into Eq. (6) for the next learning stage. Note that
Eq. (10) is identical to the standard gradient descent when
μ = 0.

Here let us discuss how the basic conditions (i)–(iii) are
reasonably fulfilled by the QFT sampler. First, as mentioned
before, the QFT sampler enables us to obtain samples enough
fast, thanks to the feature of quantum devices, and thus it
satisfies the condition (i). Also the probability qQFT(r; θ) with
given r is obtained via estimating the inner product (8), and
thereby the condition (ii) is satisfied. As for the condition (iii),
in view of the fact that several Fourier-based neural networks
are employed in machine learning [19–22], we expect that
the QFT sampler may also be able to well approximate the
target p(x), hopefully better than any classical means due to
the sampling supremacy property [6–10].

B. The quantum-inspired Fourier sampler

Now, one might think that the QFT sampler is still out of
reach, even in the case of medium-size quantum devices with,
e.g., N = 100 qubits. However, remarkably, the QFT sampler
can be realized in a classical digital computer as long as N2

and 2M are not too large (for example, 2M is polynomial size
of N); that is, in this regime, this is a quantum-inspired algo-
rithm that can deal with even a random variable on 2N = 2100

discrete elements. The trick relies on the use of the adaptive
measurement technique [16], which enables us to sample only
by applying O(2M + N ) operations on a classical computer;
see Appendix B for a detailed explanation. This means that,
therefore, the QFT sampler fulfills the condition (i), even as
a classical computer. Also we can immediately compute the
probability qQFT(r; θ) with given r by just calculating the inner

FIG. 2. Schematic illustration of the multistage QFT sampler,
where ML means machine learning.

product (8) which costs of the order O(2M ), and thereby the
condition (ii) is satisfied as long as 2M is not too large.

Finally, we discuss a possible advantage of our QFT sam-
pler, within a regime of classical sampling method. As a
classical Fourier-based proposal distribution, one might think
to employ the fast Fourier transform (FFT). However, to
deal with a variable with 2N discretized elements, FFT needs
O(N2N ) operations, while QFT can realize the same operation
only with O(N2) gates. As is well known, this does not mean
a quantum advantage in the typical application scene such
as signal processing, because all the amplitude of the QFT-
transformed state cannot be effectively determined [26]. On
the other hand, the presented scheme only requires sampling
and thus determining {qQFT(ri; θ)}i=1,...,B rather than all the
elements {qQFT(x; θ)}x=0,...,2N −1. Hence we could say that the
developed quantum-inspired algorithm has a solid computa-
tional advantage over the known classical algorithm, in the
problem of determining a Fourier-based proposal distribution
for the MH algorithm.

C. Multistage QFT sampler for multidimensional distributions

The QFT sampler discussed above is able to sample only
from a one-dimensional distribution. To deal with the multidi-
mensional distributions over D random variables x1, . . . , xD, a
straightforward way is to employ the D-dimensional QFT on
ND-qubits. In this case, the input state to the QFT part is the
product of MD-qubits state |ψ (θ)〉 and the trivial |gD(N−M )〉.
Then the adaptive measurement scheme is implemented by
repeatedly operating 2MD-dimensional matrices on the input
vector, which immediately becomes intractable by classical
computing even for small M and D such as (M, D) = (4, 10).
In other words, this is the situation where the quantum imple-
mentation of QFT circuit might serve as a genuine efficient
sampler.

On the other hand, for the proof-of-concept, in this paper
we develop a multistage QFT sampler composed of single
QFT samplers illustrated in Fig. 2. This scheme can be
implemented in a classical way as in the one-dimensional
case, based on the adaptive measurement technique shown
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in Sec. III B together with the classical hierarchical post-
processing (the machine learning part) to make correlations
between the variables. To see the idea, let us begin with the
case where the D random variables x1, . . . , xD are independent
with each other and subjected to the D-dimensional inde-
pendent target distribution p(x). In this case, the following
proposal distribution might work:

q(x; θ) =
D∏

k=1

qQFT(xk; θk ), (11)

where x = [x1, · · · , xD]� is the D-dimensional random vari-
able represented by binaries xk ∈ {0, 1, . . . , 2N − 1}. Here
qQFT(xk; θk ) is a one-dimensional QFT sampler parametrized
by the 2M-dimensional complex vector θk; we summarize
these vectors to θ = [θ�

1 , · · · , θ�
D]�.

Now based on Eq. (11) we construct the multistage QFT
sampler for dealing with a nonindependent multidimensional
proposal distribution. The point is that, as illustrated in
Fig. 2, the parameter vector θk specifying the kth one-
dimensional QFT sampler in Eq. (11) is replaced by a vector
of parametrized functions of random variables up to the (k −
1)th stage, i.e., f k (x1, · · · , xk−1; θk ), whose control parameter
θk is to be repeatedly modified through the learning process.
Hence the proposal distribution is given by

q(x; θ) =
D∏

k=1

qQFT(xk; f k (x1, · · · , xk−1; θk )). (12)

Note that this is simply a representation of the joint probability
distribution over the multidimensional random variables x =
[x1, · · · , xD]� via the series of conditional probabilities. The
gradient of the cross entropy (4) is derived in the same way as
the one-dimensional case;

(∂L(θ)

∂θk

)∗
� − 1

B

B∑
i=1

p(ri )

q(ri; θ)

(
u�

rk
f k

)
u∗

rk

qQFT(rk; f k )

∂ f k

∂θk
, (13)

where {r1, · · · , rB} are samples produced from the proposal
distribution q(x; θ). Note that each sample r = [r1, · · · , rD]�
is formed from rk produced from the kth one-dimensional
QFT sampler, as shown in Fig. 2. Also, as in the one-
dimensional case (8), the vector uxk is defined through
〈xk|UQFT|in〉 = u�

xk
f k (x1, · · · , xk−1; θk ). This gradient vector

(13) is used to update each parameter vector θk using the
momentum gradient descent (10), which is now of the form

θ′
k = θk − αm′

k, m′
k = μmk + (1 − μ)

(∂L(θ)

∂θk

)∗
,

where the learning coefficients (α,μ) do not depend on k for
simplicity. This eventually constitutes the total gradient de-
scent vector minimizing the loss function (4) and accordingly
move the proposal distribution (12) toward the target p(x).
Also recall that we use Eq. (1) to filter {r1, · · · , rB} to obtain
samples that are subjected to p(x).

In this work, we examine the following four models of the
parameterized function f k (x1, · · · , xk−1; θk ).

(1) Identity (Id) model:

f k (x1, · · · , xk−1; θk ) = Norm(θk ) = θk

‖θk‖ ,

FIG. 3. Fully connected neural network.

where ‖θ‖ =
√

θ†θ. The Norm function ensures the normal-
ization of |ψ(θ)〉. This leads to the independent proposal
distribution (11).

(2) Linear basis linear regression (LBLR) model:

f k (x1, · · · , xk−1; θk )

= Norm
(
w

(k)
1 x1 + · · · + w

(k)
k−1xk−1 + b(k)),

where in this case the parameters to be learned are
the collection of 2M-dimensional complex vectors, θk =
{w(k)

1 ,w
(k)
2 , · · · ,w

(k)
k−1, b(k)}. This model outputs a linear com-

bination of their input argument.
(3) Nonlinear basis linear regression (NBLR) model:

f k (x1, · · · , xk−1; θk )

= Norm

(
J∑

j=1

w
(k)
j φ

(k)
j (x1, · · · , xk−1) + b(k)

)
,

where θk = {w(k)
1 ,w

(k)
2 , · · · ,w

(k)
J , b(k)} are the collection of

2M-dimensional complex vectors to be learned, and {φ(k)
j (·)}

are fixed nonlinear basis functions. Different set of nonlinear
basis functions should be chosen for a different target distri-
bution.

(4) Neural network (NN) model:

f k (x1, · · · , xk−1; θk ) = Norm(h(y(k) )),

y(k) = g(k)
4 ◦ Sg ◦ g(k)

3 ◦ Sg ◦ g(k)
2 ◦ Sg ◦ g(k)

1 (x),

where ◦ denotes g1 ◦ g2(x) = g1(g2(x)). This is a fully
connected four-layer neural network with input x =
(x1, · · · , xk−1), shown in Fig. 3. Here g(k)

j (x) = W (k)
j x + b(k)

j

is a linear transformation between the layers; (W (k)
2 ,W (k)

3 )
are 256 × 256 real parameter matrices, and (W (k)

1 ,W (k)
4 )

are 256 × (k − 1) and 2M+1 × 256 real parameter matrices,
respectively; also (b(k)

1 , b(k)
2 , b(k)

3 ) are 256 dimensional real
parameter vectors, and b(k)

4 is a 2M+1 dimensional real param-
eter vector. Hence θk = (W (k)

1 , · · · ,W (k)
4 , b(k)

1 , · · · , b(k)
4 ) are

the parameters to be optimized. Sg(x) is the sigmoid function
whose 
th component is defined as 1/(1 + e−x
 ). Finally, for
the output vector y = [y�

1 , y�
2 ]�, where y1 and y2 are the 2M

real vectors, the function h acts on it and produces a complex
vector h(y) = y1 + iy2.
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IV. SIMULATION RESULTS

In this section, we numerically examine the performance
of the QFT sampler for several target distributions. For this
purpose, the following criteria are used for the evaluation.

First, the cross entropy (4) is employed to see if the pro-
posal distribution approaches toward the target. Note that in
general the cross entropy does not decrease to zero even in the
case when the proposal distribution coincides with the target.
Hence, to evaluate the distance between the two probability
distributions, we use the following Wasserstein distance:

W(P, Q) = sup
‖ f ‖L�1

{Ex∼P[ f (x)] − Ex∼Q[ f (x)]},

where the supremum is taken over f contained in the set of
functions satisfying the one-Lipschitz constraint. Note that
here the Kullback Leibler divergence is not used, because it
is applicable only when the supports of the two distributions
coincide.

We also use the average acceptance ratio to evaluate the
efficiency of the sampler. Mathematically it is defined as the
expectation value of Eq. (1), but in the simulation we simply
take the ratio of the number of accepted samples to the number
of all samples generated.

The source code for the simulation is available in the github
repository [27].

A. One-dimensional case

First we discuss the performance of the one-dimensional
QFT sampler. The QFT sampler is composed of N = 10
qubits wherein M = 4 qubits are used for parametrization;
see Fig. 1. The total learning step is 40 000, where in each
step B = 32 samples are used to compute the gradient vector
(9). The learning coefficients in the momentum update rule
(10) are chosen as α = 0.01 and μ = 0.9. In the upper panels
of Fig. 4, five types of target distributions (red broken lines)
and snapshots of proposal distributions in each 1000 steps
(black solid lines) as well as the convergent distributions (blue
solid lines) are plotted. In the lower three panels in each
subfigures, CE (Cross entropy), WA (Wasserstein distance),
and AC (Average acceptance ratio) are plotted, demonstrating
that in each case the proposal distribution qQFT(x; θ) is ap-
proaching to the target p(x), and accordingly AC increases.
Note that in the case D, a wavelike structure still remains in
the convergent proposal distribution, because of the absence
of qubits corresponding to the high-frequency components.
However, as mentioned in Sec. I, this is not a serious issue
in the framework of MH, which does not require a precise
approximation of the target distribution via the proposal one
but only needs a proposal distribution realizing relatively high
acceptance ratio. In fact the lower panel of D in Fig. 4 shows
about 30% improvement in the acceptance ratio.

We now add a discussion on the advantage of our self-
learning MC compared to two conventional MC methods,
in terms of the acceptance ratio (1) and the decay ratio of
autocorrelation function. The first conventional method is the
case where the proposal distribution is a uniform distribution
over the entire space; this realizes a trivial global update in
the sense that a sample r̃ is taken without respect to the last
accepted sample r. Hence, the autocorrelation between the

samples becomes almost zero only at one algorithm step in
all experiments, and this is the same for our self-learning
MC. However, the trivial global update strategy shows the
acceptance ratio with only 0.72 (a), 0.14 (b), 0.52 (c), 0.50
(d), and 0.53 (e), which is significantly lower than those of
our method where the acceptance ratio is bigger than 0.9 in
most experiments. Hence, our method outperforms this trivial
global update under the criterion of acceptance ratio. The
second conventional method is the case where the proposal
distribution is a Gaussian distribution centered at the last
accepted sample r; in this case, clearly, a new sample r̃ appears
around r, and hence this is a local update strategy of proposal
distribution. In this case, there is a trade-off between the
acceptance ratio and the decay rate of autocorrelation per ac-
ceptance step; that is, if the standard deviation of the Gaussian
distribution, σ , is small, then r̃ and r are close, meaning that
the autocorrelation does not change a lot whereas the accep-
tance ratio is large; also the opposite effect is observed when σ

is large. In this work, σ was chosen so that the acceptance ratio
is 0.9 in each experiment; then the numbers of adoptions such
that the decay ratio of autocorrelation function is less than e−1,
are 20 (a), 20 (b), 100 (c), 10 (d), and 300 (e), meaning that the
convergence of the proposal distribution to the target is much
slower than our method (where the autocorrelation is almost
zero). Therefore our method is superior to this standard local
update strategy, under the criterion of convergence speed.

B. Two-dimensional case

Next we study several two-dimensional (i.e., D = 2) target
distributions, which are shown in the top right panels from A
to G in Fig. 5. In this case, the proposal distribution (12) is of
the form

q(x; θ) = qQFT(x2, f 2(x1; θ2))qQFT(x1, f 1(θ1)), (14)

where f 1(θ1) is set to be f 1(θ1) = Norm(θ1). As for
f 2(x1; θ2), we study the four models described in Sec. III C;
i.e., Id, LBLR, NBLR, and NN models. The learning coeffi-
cients of the momentum gradient method are set to α = 0.01
and μ = 0.9 for all the cases, except that α = 0.001 is chosen
in the NN model for the cases from (a) to (f). Also the two
one-dimensional QFT samplers in Eq. (14) are both composed
of N = 10 and M = 4 qubits, for the cases from (a) to (f),
while N = 10 and M = 5 for the case (g). The basis functions
in the NBLR model f 2(x1; θ2) are chosen as follows:

φ1(x) = x̄, φ2(x) = x̄2, φ3(x) = x̄3, φ4(x) =
√

|x̄|,
where x̄ is defined as x̄ = 2x/(2N − 1) − 1. The total learning
step is 40 000 for the cases from (a) to (f) and 400 000 for
the case (g). Finally, for all cases, B = 32 samples are taken
to compute the gradient in each step. With this setting, the
proposal distributions at the final learning step corresponding
to the four models (Id, LBLR, NBLR, and NN models from
the left to right) are shown in the top panel of Fig. 5, and
the change of the figure of merits (CE, WA, and AC) are also
provided in the bottom panel.

First, as expected, the Id model can only approximate the
distribution having no correlation in the space dimension, i.e.,
the case of (c). On the other hand, the LBLR model acquires
a distribution close to the target, for the cases (b), (d), (e), (f),
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(a) (b)

(d) (e)

(c)

FIG. 4. Performance of the one-dimensional QFT samplers, for the five types of target distributions shown with the red dotted line in the
upper panel in each subfigures from (a) to (g). In the upper panel in each subfigure, some snapshots of the proposal distribution generated from
the QFT sampler are shown with solid lines. In the bottom three panels in each subfigure, the convergence trend of the three types of figure of
merits are shown.

in addition to (c). The figure of merits, CE, WA, and AC, also
reflect this fact. [The blue and orange lines in the cases (a) and
(c) almost coincide.] It is notable that the simple LBLR model
greatly improves the performance obtained with the Id model.

To further approach to the cases of (a) and (g), some
nonlinearities need to be introduced, as demonstrated by the
NBLR and NN models. In particular, for all the cases from
A to (g), the NBLR model shows almost the same level of
performance as the NN model, which is also supported by
the figure of merits. Considering the fact that there are some
jumps in WA and CE in the NN model, and the fact that the
NN model costs a lot in the learning process, our conclusion
is that the NBLR is the most efficient model in our case-study.

Lastly, we do the same discussion as that given at the
end of Sec. IV A, to compare our method to the trivial

global update strategy using the uniform proposal distribu-
tion and the standard local one using the Gaussian proposal
distribution. Again, the acceptance ratio and the number of
acceptances with autocorrelation functions below e−1, are
computed. Then, for the case of uniform distribution, although
the autocorrelation is less than e−1 at one acceptance step for
all simulations, the acceptance rates are 0.31 (a), 0.36 (b), 0.60
(c), 0.34 (d), 0.34 (e), 0.46 (f), and 0.23 (g), which are signif-
icantly less than the value of 0.9 achieved with our method.
Also, for the case of Gaussian distribution, the number of
acceptances with autocorrelation below e−1 is about 400 (a),
30 (b), 40 (c), 8000 (d), 50 (e), 10 (f), and 300 (g), when the
Gaussian shape is chosen so that the acceptance ratio is 0.9;
on the other hand, the autocorrelation of the proposed method
is less than e−1 at one acceptance step while the acceptance
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(a) (b)

(c) (d)

(e)

(g)

(f)

FIG. 5. Performance of the two-dimensional QFT samplers, for the five types of target distributions shown in the upper right panel in each
subfigures from (a) to (g). In the upper left four panels in each subfigure, the four proposal distributions generated from the QFT sampler at
the final step are shown. In the bottom three panels in each subfigure, the convergence trend of the three types of figure of merits are shown.

ratio is about 0.9 on average. To conclude, hence, the proposed
method is superior to those two conventional methods in terms
of the acceptance ratio and the convergence speed.

C. Application to a molecular simulation

The last case-study is focused on the stochastic dynamics
of two atoms obeying the Lennard-Jones (LJ) potential field,
which is often employed in the field of molecular simula-
tion. This problem requires sampling from the Boltzmann

distribution

p(r1, r2) ∝ exp{−βLJ(‖r1 − r2‖)},
where LJ(a) = a−12 − a−6 and β = 0.1 is the inverse tem-
perature. r1 = [r1x, r1y, r1z]� and r2 = [r2x, r2y, r2z]� are the
vectors of position variables of each atom. We apply the
six-stage QFT sampler to generate a proposal distribution for
approximating this target distribution.

The QFT sampler is configured by conditioning the sam-
ples in the order r1x → r2x → r1y → r2y → r1z → r2z; for in-
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FIG. 6. Convergence trend of the cross entropy (4) between the proposal distribution generated from the QFT sampler to the target six-
dimensional Boltzmann distribution (left) and the average acceptance ratio (1) (right).

stance, qQFT(r1y, f 1y(r1x, r2x; θ1y)) is conditioned on (r1x, r2x ).
The output of the QFT sampler, ri ∈ {0, 1, · · · , 2N − 1}, is
rescaled to ri/0.7(2N − 1). We again employ the four mod-
els (Id, LBLR, NBLR, and NN models) as the conditioning
functions, where f 1(θ1) is set to be f 1(θ1) = Norm(θ1). Each
QFT sampler is composed of N = 10 and M = 4 qubits, and
the total learning step is 10 000, whereas B = 1024 samples
are used to compute the gradient in each step. The learning
coefficient is α = 10 for the Id, LBLR, and NBLR models,
while α = 0.001 for the NN case; in each case, the momentum
method with μ = 0.9 is employed to update the parameters.
The basis functions {φ(k)

j (x1, x2, . . . , xk−1)} for constructing
the NBLR model are set to all the coefficients (except for
the constant) of the third-order polynomial function (1 + x̄1 +
x̄2 + · · · + x̄k−1)3 with x̄ = 2x/(2N − 1) − 1.

Figure 6 shows the change of CE and AC; WA was not
calculated due to its heavy computational cost. We then find
that, similar to the two-dimensional case, the NBLR and NN
models succeed in improving both CE and AC, although more
learning steps are necessary compared to the previous cases.
Note also that the Id and LBLR models are almost not up-
dated, implying the validity to introduce nonlinearities in the
model of QFT sampler.

V. CONCLUSION

This paper provided a new self-learning METROPOLIS-
Hastings algorithm based on quantum computing and an
important subclass of this sampler that uses the QFT. This
QFT sampler is shown to be classically simulable when the
dimension of the input to QFT corresponding to the low-
frequency components is not large. The effectiveness of this
quantum inspired method is supported by several numeri-
cal simulations. There are a lot of rooms to be investigated
more, such as the choice of the optimizer and the condition-
ing function for constructing the multistage QFT sampler. In
particular, in extending to the case of multidimensional dis-
tribution, a completely different schematic than the proposed
multistage QFT sampler may be necessary.

Although the QFT sampler offers a certain advantage over
some classical sampling schemes as discussed at the end of
Sec. III A, of course, this quantum inspired algorithm is not

what fully makes use of the true power of quantum computa-
tion. The real goal is to establish a genuine quantum sampler,
which may provide a faster sampling with higher acceptance
ratio than any conventional classical method. Such a direction
is in fact found in the literature [28,29], which are though far
beyond the reach of current available devices.

In our scenario, the D-dimensional QFT sampler on ND-
qubits mentioned at the beginning of Sec. III C might be a
candidate for such a genuine quantum sampler. As discussed
there, the input state to the QFT part, |ψ (θ)〉, is generated
on MD-qubits, and then the classical simulation on 2MD-
dimensional matrices via the adaptive measurement technique
immediately becomes intractable. On the other hand, the re-
cent rapid advancement of quantum devices suggests that a
relatively large quantum device with, e.g., N × D = 10 × 100
qubits might be hopefully within reach within the next decade.
Note that this qubit size is much less demanding than the case
of Shor’s algorithm, which may need 20 million qubits for
the execution [30]. Of course the coherence time is a serious
issue in such large-size quantum devices. However, as men-
tioned in Sec. I, the point of our quantum Metropolis Hastings
algorithm is that it does not need to generate a proposal dis-
tribution very close to the target, but rather it requires only
a relatively high acceptance ratio; hence the algorithm with
a mixed state may still work, which will be investigated as a
future work. We here add a remark that the input state |ψ (θ)〉
can be realized as the output of a hardware efficient ansatz
over MD-qubits, meaning that the number of parameters of
|ψ (θ)〉 is the polynomial order of MD [usually O(MD) or
O(M2D2)]. Also in this framework the learning process does
not involve complex conditioning functions depicted in Fig. 2,
but it can be simply performed by, e.g., the gradient descent
of the cost. For these reasons, we consider that the proposed
quantum self-learning Monte Carlo method would be scalable
in dealing with multidimensional problems and thereby serve
as a useful tool for practical application in the future when a
large-scale real quantum device is available.
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APPENDIX A: QUANTUM CIRCUIT PRODUCING A
MULTIDIMENSIONAL PROBABILITY DISTRIBUTION

The multidimensional probability distribution of random
variables x = (x1, · · · , xn) is simply obtained by measur-
ing a state |�〉 ∈ ⊗n

i=1Hi in the computational basis |x〉 =
⊗n

i=1|xi〉, i.e., p(x) = |〈x|�〉|2. The following is an example
of two-dimensional probability distribution such that the joint
probability is explicitly represented via the conditional prob-
ability. Let |φ1〉 ⊗ |φ2〉 be an initial state on H1 ⊗ H2. We
consider a quantum circuit of the form U = ∑

x |x〉〈x| ⊗ Ux,
where |x〉 is a computational basis state of H1, and Ux is a uni-
tary operator conditioned on the value x; that is, U is a sum of
controlled unitaries. Then the output probability distribution
of the measurement result on the state |�〉 = U |φ1〉 ⊗ |φ2〉, in
the computational basis |x〉 = |x1〉|x2〉, is given by

p(x) = |〈x1|〈x2|U |φ1〉|φ2〉|2 = |〈x1|φ1〉|2|〈x2|Ux1 |φ1〉|2.
Thus, in this case, the joint probability p(x) = p(x1, x2) is
explicitly given as a product of the conditional probability
p(x2 | x1) = |〈x2|Ux1 |φ1〉|2 and p(x1) = |〈x1|φ1〉|2.

APPENDIX B: CLASSICAL SIMULATION OF THE QFT
SAMPLER VIA ADAPTIVE MEASUREMENT

It is known that the a variety class of quantum circuits com-
posed of the QFT can be simulated on a classical computer
[16]. This fact is indeed applied to our case, as described here.
The point is twofold; one is that the input state to QFT is now
of the form

|in〉 = |ψ (θ)〉 ⊗ |gN−M〉 = [θ0, . . . , θ2M−1, 0, . . . , 0]�,

where |ψ (θ)〉 = [θ0, . . . , θ2M−1]� is a relatively small quan-
tum state whose entries can be efficiently determined. The
other is that the circuit is terminated with the QFT part, mean-
ing that the QFT is immediately followed by the measurement
process.

Here we explain a detailed classical algorithm for simu-
lating our circuit in the case of N = 4 and M = 2; hence
|in〉 = |ψ (θ)〉 ⊗ |g〉 ⊗ |g〉 with |ψ (θ)〉 a two-qubits state. In
this case, the original quantum circuit to implement the QFT
sampler is shown in Fig. 7(a). The main body of this circuit
is QFT, which consists of the Hadamard gates denoted by H
and the controlled-Rn gates which rotate the target qubit by
acting Rn = exp [−i2πσz2−(n+1)] on it iff the control qubit is
|e〉 = [0, 1]�. The output of QFT is measured in the compu-
tational basis, producing the binary output sequence b1b2b3b4

(a)

(b)

(c)

FIG. 7. (a) Original circuit implementation of the QFT sampler
on a quantum computer. (b) Equivalent circuit implementation of the
QFT sampler, in which all the controlled rotation gates are replaced
with the feedforward operations. The solid and dashed lines denote
quantum and classical operations, respectively. (c) Equivalent circuit
representation of the circuit (b), emphasizing that the change of the
first two-qubit (possibly entangled) state |ψ (θ)〉 and the bottom two
|g〉 states can be separately and adaptively tracked.

with bi ∈ {0, 1}. To classically simulate this circuit, we utilize
the fact that, if the controlled rotation gate is immediately
followed by a measurement on a control qubit, this process is
replaced with the following feedforward type operation; that
is, the control qubit is first measured, and, if the measurement
result is “1” the rotating operation acts on the target qubit.
Repeating this replacement one by one from right to left in
the circuit shown in Fig. 7(a), we end up Fig. 7(b). That is,
all controlled-rotation gates are replaced with the one-qubit
rotation gate which depends on the antecedent measurement
results.

Using this classically controlled implementation, the QFT
sampler can be simulated on a classical computer as described
below. In the example considered here, the input |in〉 is di-
vided into at least three unentangled states {|ψ (θ)〉, |g〉, |g〉}.
Hence, these three parts can be tracked separately and adap-
tively, as shown in Fig. 7(c). In general, the change of states of
the QFT sampler can be computed by repeatedly multiplicat-
ing 2M-dimensional matrices on |ψ (θ)〉 and two-dimensional
matrices on |g〉 in the adaptive manner, leading that the total
computational cost is of the order O(2M + N ). Therefore the
QFT sampler can be classically simulated as long as 2M is not
too large.
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