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The potential energy landscape (PEL) formalism is a theoretical approach within statistical mechanics used
extensively in the past to study classical liquids and glasses. Here, we extend the PEL formalism to the case
of quantum liquids. As an example, we apply the PEL approach to study a family of quantum monatomic
liquids using path-integral Monte Carlo simulations. We focus on the energy (EIS) and pressure (PIS) of the
local minima of the PEL [inherent structures (IS)] explored by the liquids. It is found that, similar to the
classical case, the quantum liquids exhibit a PEL-independent regime at high temperatures and a PEL-influenced
regime at low temperatures, where the topography of the PEL plays a major role. Interestingly, the PEL of all
the quantum liquids studied is Gaussian, providing a simple expression for the configurational entropy of the
liquids. Remarkably, the ring-polymers representing the atoms of the quantum liquids are collapsed at the IS.
Accordingly, an IS of the quantum liquid, in its own PEL, is also an IS of the classical liquid in the classical liquid
PEL (CL-PEL). A pictorial interpretation of the behavior of quantum liquids using the CL-PEL (as opposite to
the quantum liquid PEL) is provided. In this view, the quantum liquid is represented by a pancakelike patch that
expands over multiple IS of the CL-PEL, changing shape with time while describing a fuzzy trajectory (on the
CL-PEL). The formalism described in this work is general and can, in principle, be extended to quantum systems
other than liquids.
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I. INTRODUCTION

As a liquid is supercooled toward its glass state, the liquid’s
dynamics slows down abruptly, with relaxation times increas-
ing by ≈10–15 orders of magnitude in a small temperature
range [1,2]. Understanding the behavior of liquids at low
temperature and the nature of the associated glass state has
been a fundamental problem in condensed-matter physics and
material science for decades [3–13], with numerous important
applications (see, e.g., Refs. [1,4]). In most of these studies,
the liquids of interest are classical. This is because in most
cases, the glass transition temperature is relatively high and/or
because the liquid is composed of heavy molecules/atoms.

Although the slowdown of most known supercooled liq-
uids approaching the glass state can be explained using
classical theories [e.g., mode coupling theory (MCT) [10]],
quantum effects can play a relevant role in the case of light
elements, including H2 and He [14,15]. Nuclear quantum
effects are known to occur even for the case of water [16–18];
for example, the glass transition temperature of H2O and
D2O differs by ≈10 K [17]. There are also systems that
are intrinsically quantum in nature that also exhibit slow or
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glassy dynamics and even a glass transition. Examples include
electronic [19] and magnetic (spin) systems [20]. It is not clear
how the laws of quantum mechanics may affect such systems
as they slowdown toward the glass state. In some cases, quan-
tum effects can lead to novel phenomena, such as the existence
of a “superglass” state [15,21,22], in which a system exhibits
superfluidity coexisting with dynamically arrested domains.
In other cases, it may be that quantum fluctuations destroy the
glass state [23].

At present, a unifying theory that explains the behavior
of quantum glass forming liquids is not available. Intuitively,
one would expect that the inclusion of quantum fluctua-
tions should suppress the glass state via, e.g., tunneling and
zero-point energy fluctuations, which may allow particles to
overcome energy barriers. Indeed, experiments in spin glasses
show that adding quantum fluctuations provides additional
paths to relaxation, lowering the glass transition tempera-
ture [20]. However, other studies on spin glasses and liquids
indicate that the addition of quantum fluctuations can have a
counterintuitive effect on the dynamics of the glass forming
system where the quantum system exhibits a slower dynamics
than its classical counterpart [24,25]. A microscopic dynami-
cal theory, based on the classical MCT, has been developed for
the description of quantum liquids as they approach the glass
state [26]. In particular, the resulting quantum MCT predicts
novel effects, such as the counterintuitive slowing down of
the liquid dynamical relaxation times with the inclusion of
quantum fluctuations.

In this work, we extend the potential energy landscape
(PEL) formalism, originally proposed to describe the behav-
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FIG. 1. (a) Schematic representation of the PEL of a classical monatomic liquid composed of N atoms. qα and qβ represent the 3N
generalized coordinates of the system, α, β = 1, 2, 3, 4, . . . , 3N , with α �= β; U (qα, qβ ) is the corresponding potential energy that defines the
PEL. Contour lines represent constant potential energy levels. The PEL is partitioned into basins; the associated local minima, i.e., the IS, are
indicated by dots. The system is represented by the red dot, and the corresponding trajectory (over time) is indicated by a red line. Adapted
from Ref. [42]. (b) Schematic representation of a quantum liquid composed of N atoms, represented by a (classical) ring-polymer system with
nb = 3 beads. In this case, the PEL of the classical liquid [CL-PEL, from (a)] is used. Each replica is represented by a different red dot, and
the corresponding trajectory is indicated by a red path on the CL-PEL. (c) Schematic representation of a quantum liquid composed of N atoms
in the limit nb → ∞. In this case, the system is represented by a pancakelike patch that spreads over many configurations of the CL-PEL. The
representative patch of the system evolves with time, changing shape and describing a fuzzy trajectory on the CL-PEL.

ior of classical low-temperature liquids and glasses, to the
case of quantum liquids. The PEL formalism is based solely
on statistical mechanics and it has been successfully applied
to the description of realistic (classical) liquids, including
water and silica [27,28], and glasses, such as amorphous
ice [29–32]. The PEL has also been used to study clusters
of atoms, biomolecules [33], and low-density condensed-
matter systems [34]. Applications of the PEL formalism are
also found in the study of out-of-equilibrium liquids [35]
and in the calculation of the equation of state of equilib-
rium systems [36–38]. We note that the PEL approach is
well-established with its original ideas traced back to the
work of Goldstein in the 1970s [39,40] (and others; see, e.g.,
Ref. [38]). It was Weber and Stillinger in the 1980s who set
the PEL formalism on firm theoretical grounds and showed
the power of this approach when combined with computer
simulations [41–43].

This article is organized as follows. In Sec. II, we provide a
brief introduction of the PEL formalism to the case of classical
systems, and we discuss the method followed to extend it to
quantum liquids. Section III includes the computational de-
tails and model liquids employed in this work. The results are
presented in Sec. IV. A summary and discussion are included
in Sec. V.

II. DEFINING A PEL FOR A QUANTUM SYSTEM

For a classical system composed of N particles in a
volume V = Lx × Ly × Lz, the PEL is the hypersurface in
(3N + 1)-dimensional space defined by the potential en-
ergy of the system as function of all 3N-coordinates,
U (�r1, �r2, . . . , �rN ) [37,39–43]; see Fig. 1(a). For simplicity,
we are considering here the particle positions �ri = (xi, yi, zi )
(i = 1, 2, . . . , N ; 0 � xi � Lx, 0 � yi � Ly, 0 � zi � Lz) to
characterize the state of the system, but any other set of

3N generalized coordinates can be used. The PEL of a
classical liquid is independent of temperature, and for a sys-
tem at constant N and V the PEL defines the system. At any
given time t , the system is represented by a single point on
the PEL given by the coordinates of the particles at time t ,
{�r1(t ), �r2(t ), . . . , �rN (t )}. Hence, as time goes on, the represen-
tative point of the system evolves, describing a trajectory on
the PEL [Fig. 1(a)]. At high temperatures, the representative
point of the system can move freely on the PEL overcoming
potential energy barriers and moving from one basin of the
PEL to another. As temperature decreases, it becomes more
difficult for the representative point of the system to overcome
certain potential energy barriers, hence the regions of the
PEL accessible to the system become limited. At very low
temperature, in the glass state, the system loses ergodicity and
it is able to move within single basins of the PEL.

The local minima of the PEL are called “inherent struc-
tures” (IS), and they play a fundamental role in the PEL
formalism. For example, IS can be used to label the basins
of the PEL; a basin is the set of all points of the PEL that lead
to the same IS upon potential energy minimization [37]; see
Fig. 1(a). There are other properties of the IS explored by the
system at the given working condition that play a relevant role.
These include the average energy and pressure of the system
at the IS, EIS(T ) and PIS(T ), the distribution of IS energies
within the PEL, and the average curvature of the PEL at the
IS. The curvature of the PEL at a given IS can be quantified
by the so-called shape function SIS. SIS is a function of the
6N eigenvalues of the Hessian matrix evaluated at the IS of
interest [38]. It can be shown that, under simple assumptions,
the Helmholtz free energy of the system F (N,V, T ) can be
written in terms of the distribution of IS energies within the
PEL, EIS, PIS, and SIS, where again EIS, PIS, and SIS are aver-
age properties that depend on the IS explored by the system at
the working conditions, e.g., EIS = EIS(N,V, T ) [38].
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To make a connection between the PEL formalism, de-
fined for classical systems, and the thermodynamic/statistical
mechanics description of a quantum system, we consider the
path integral formulation of statistical mechanics. Within the
path integral approach, it can be shown that the canonical
partition function of a quantum system (e.g., liquid, solid) at
temperature T is identical to the canonical partition function
of a classical system composed of ring-polymers [44,45].
Specifically, each atom of the quantum system is replaced
by a ring-polymer composed of nb beads where nb → ∞.
The beads of a given ring-polymer are connected by springs
with T -dependent spring constant ksp ∝ (T/h)2, where h is
Planck’s constant (see Sec. III). At high T the spring con-
stants are very large, and hence the ring-polymers collapse
to a single point, i.e., the quantum/ring-polymer system re-
duces to a classical system of point particles. The beads of
a given ring-polymer are numbered n = 1, 2, 3, . . . , nb, and
in the path integral formalism of statistical mechanics, the
bead n of polymer A interacts only with bead n of polymer
B (bead n of polymer A does not interact with bead m �= n
of polymer B). Moreover, the interaction between beads n of
polymers A and B is given by the same formal expression of
the potential energy function of the quantum atoms (defined
by its Hamiltonian operator) but rescaled by a factor 1/nb (see
Sec. III).

It follows that one can apply the PEL formalism to the
classical ring-polymer system and then use this information to
describe the thermodynamic/statistical mechanical properties
of the corresponding quantum liquid. For example, one could
in principle be able to use the PEL formalism to obtain the
F (N,V, T ) of the ring-polymer system, and by doing so,
obtain the Helmholtz free energy of the quantum system.
After all, the free energies F (N,V, T ) of the quantum and
ring-polymer systems converge toward each other with in-
creasing nb and become identical in the limit nb → ∞ [44].
We note that the PEL formalism was originally proposed
to study low-temperature systems, including supercooled liq-
uids and glasses, and hence it is well-suited for the study of
quantum systems; quantum effects are usually relevant at low
temperatures. We also stress that the “isomorphism” between
the given quantum system at temperature T and its associ-
ated classical ring-polymer system with spring constant ksp ∝
(T/h)2 is limited to equilibrium conditions. Accordingly, one
may apply the PEL approach to study quantum systems in
equilibrium, metastable equilibrium, and quasiequilibrium.
This excludes the glass state. Yet, the ideas of the PEL for-
malism may open a door to understand how a quantum liquid
enters the glass state, and perhaps it can also provide insight
into the behavior of quantum glasses.

There is a subtle difference between classical liquids and
quantum liquids that one must take into consideration when
applying the PEL approach. In classical liquids, the PEL is
necessarily T -independent since, after all, the potential energy
of a classical system cannot depend on T . In the case of
a quantum liquid, this is not the case. At temperature T1,
the quantum liquid is isomorphic to the ring-polymer system
with spring constants k1

sp ∝ (T1/h)2, while at temperature T2

the quantum liquid is isomorphic to a different ring-polymer
system with spring constants k2

sp ∝ (T2/h)2. Accordingly,
the PEL associated with the quantum liquid is indeed

T -dependent. This has profound implications in the de-
scription of the quantum liquid using the PEL approach
since it implies that, e.g., potential energy barriers may
increase/decrease, and even vanish, depending on the T con-
sidered.

To explore the ideas presented above, in this work we
consider a monatomic quantum liquid. Our main goal is to
characterize the PEL of this ring-polymer/quantum system
at constant volume and explore the behavior of EIS and PIS

as the system gets colder and approaches the glass state.
In particular, by tuning the value of Planck’s constant, we
will describe how the PEL of the classical liquid (h = 0 or,
equivalently, ksp → ∞) evolves as the liquid becomes more
and more quantum (h > 0).

By definition, the PEL of the ring-polymer system is a
hypersurface in [3(N × nb) + 1]-dimensional space defined
by the potential energy of the ring-polymer system as a
function of the 3(N × nb) coordinates of the beads, {�ri,k};
here, i = 1, 2, . . . , N is the ring-polymer number and k =
1, 2, . . . , nb is the corresponding bead number. Again, the
ring-polymer system is represented by a single point in its
PEL. Qualitatively, the PEL of the ring-polymer system is
also given by Fig. 1(a) but with α, β = 1, 2, . . . , 3Nnb (α �=
β). Interestingly, it is also possible to consider the PEL of
the classical liquid to describe the behavior of the quantum
liquid/ring-polymer system. In the classical liquid PEL (CL-
PEL), the quantum liquid can be represented by nb points; see
Fig. 1(b). These nb points in the CL-PEL are given by the so-
called “replicas.” Specifically, replica k (k = 1, 2, 3, . . . , nb)
is defined by the set of 3N coordinates {�ri,k}, where i =
1, 2, . . . , N and k is fixed (alternatively, replica k is composed
of beads k of all N ring-polymers in the system). It follows
that, in the CL-PEL, the system is represented by a “cloud”
composed of nb points that move with time, describing collec-
tively a fuzzy path in the CL-PEL. In the limit nb → ∞, such
a “cloud” would represent a continuous pancakelike patch that
moves and changes shape with time; see Fig. 1(c). In most of
this work, we will describe the quantum system using the PEL
of the ring-polymer system (briefly, the “PEL” [Fig. 1(a)]). In
Sec. IV E, we will also interpret the results of our path-integral
Monte Carlo simulations in terms of the CL-PEL [Figs. 1(b)
and 1(c)] and show that this alternative PEL-based approach
can be very insightful to describe the behavior of the quantum
liquid at low temperatures.

III. COMPUTER SIMULATIONS

We perform path-integral Monte Carlo (PIMC) simulations
of a monatomic system at a constant volume and a wide range
of temperatures. The Fermi-Jagla (FJ) pair potential UFJ(r)
is used to represent the interactions between atoms of the
quantum liquid. As shown in Fig. S1 of the Supplemental
Material (SM) [46], this is a core-softened pair-potential with
a hard-core radius r = a, an attractive part centered at r = b ≈
2a, and a soft-core part that extends approximately over the
range a < r < b; see also Ref. [47]. In PIMC simulations, the
beads of a given ring-polymer are connected by springs with
spring constant ksp = 4π2mnb/(hβ )2, where β = 1/kBT , and
kB is Boltzmann’s constant [44]. In addition, the pair potential
between an interacting pair of beads is given by the same
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pair-interaction potential included in the Hamiltonian of the
the original quantum system, UFJ(r), but rescaled by a factor
1/nb [i.e., in the case of our quantum Fermi-Jagla liquids, the
pair potential between interacting beads is given by UFJ(r)/nb,
where r is the corresponding bead-bead distance].

The FJ model can reproduce qualitatively many of wa-
ter’s anomalous properties in the liquid state as well as a
water glass-glass first-order-like phase transition at low tem-
peratures [47–53]. In addition, this model liquid exhibits
a liquid-liquid phase transition ending at a (liquid-liquid)
critical point, as it has been hypothesized for the case of super-
cooled water [54–57] and reported in computational studies of
a few classical water models [54,58]. In a previous work [51],
we studied the thermodynamic behavior of the Fermi-Jagla
liquid by performing PIMC simulations (nb = 10) with differ-
ent values of h. Changing h affects the value of ksp, resulting in
a family of quantum Fermi-Jagla (QFJ) liquids where the level
of “quantumness” increases with increasing h (the atoms’
mass is kept constant, m = 1). It was shown that, as the
liquids evolve from classical (h = 0) to increasingly quantum
(h > 0), the location of the liquid-liquid critical point (LLCP)
in the P-T plane shifts toward lower temperatures and larger
pressures until crystallization interferes at large h [51]. In
addition, the anomalous properties of the liquid and the liquid-
liquid phase transition (LLPT) can be drastically affected as
the atoms become more delocalized, i.e., as h increases [52].
Remarkably, the LLCP volume remains h-independent, equal
to the LLCP volume of the classical liquid, vc = Vc/N ≈
2.9 [51,52]. To avoid any LLPT upon cooling, all our sim-
ulations in this work are performed at v = 2.2 < vc. At this
volume, the system remains in the so-called high-density liq-
uid state at all temperatures. In particular, in the case of the
classical FJ liquid, the crystallization temperature reaches a
minimum at v ≈ 2.2–2.3. Hence, working at v = 2.2 allows
us to explore the liquid state at relatively low temperatures.
We note that MD simulations of the classical FJ liquid show
that, at v = 2.2, one can observe a mild two-step (α and β)
relaxation [50]. It is this ability to exhibit two-step relaxation
that motivates us to use the (monatomic, one-component)
FJ model liquid. This is unusual since in most monatomic
liquids, crystallization occurs so rapidly that a two-step re-
laxation, which is a feature of good glass formers, cannot be
observed. For example, in order to avoid crystallization in
Lennard-Jones (LJ) liquids, one needs to consider a binary
mixture of particles with different LJ parameters [5].

We use the same PIMC simulation techniques as in
Refs. [51,52] and refer the reader to these works for details.
Most of our PIMC simulations are performed with nb = 10;
simulations with nb = 5, 15, 20 are also performed to test the
sensitivity of our results to nb. Simulations are performed for
systems with N = 512 (nb = 15, 20) and N = 1000 atoms
(nb = 5, 10) in a cubic box. We use reduced units defined
by setting the particle mass m = 1 and kB = 1. Energies are
given in units of ε0 [see the definition of UFJ(r) in SM [46]];
distances are given in units of a. It follows that the units of h
are a(ε0m)1/2. The values of Planck’s constant studied in this
work are h0 = 0 (classical system with nb = 1), h1 = 0.2474,
h2 = 0.5150, h3 = 0.7948, and h4 = 1.7882. To understand
the level of quantumness of the resulting QFJ liquids, we
compare the corresponding de Broglie’s thermal wavelength,

λ = h/
√

2πkBmT , for the case of the light molecule H2 [51].
At T = 10 and 300 K, one gets (m = 2 × 1.008 g/mol) λ =
3.9 and 0.71 Å, respectively. Assuming that a is close to
the nearest-neighbors distance in H2 [59], a ≈ 3.2 Å, we get
λ = 1.22 and 0.22 in reduced units. In our PIMC simulations,
λPIMC = h/

√
2πT , where h and T are in reduced units and

λPIMC is in units of a. Since in our PIMC simulations T ≈
0.10, it follows that for h1 � h � h4, 0.31 � λPIMC � 2.25.
These values are comparable to the values of λ estimated for
H2 at T = 10–300 K. Similarly, one can estimate the value
of h in reduced units, i.e., h = 6.626 × 10−34 J s/[a(ε0m)1/2],
for the case of H2. An approximate pair interaction Lennard-
Jones potential has been proposed for the H2 molecular gas
based on thermodynamic calculations (see Ref. [59] and ref-
erences therein). This LJ potential has a potential energy
minimum depth of approximately 40.3 × 10−23 J. Using this
value for ε0 (and approximating a = 3.2 Å), we obtain that
h ≈ 1.78 in reduced units. This value is within the range
of h-values considered in this work and approximately the
same value of h4. Similarly, if one considers a system of
He atoms, one obtains h ≈ 4.57 (ε0 = 14.9 × 10−23 J and
a = 2.9 Å [59]). For comparison, in the SM [46], we also
include results for h4b = 3.5764, corresponding to λPIMD =
4.51 (T = 0.10).

PIMC simulations are performed for 106 steps during equi-
libration followed by another 106 steps for data analysis. In
one MC step, we first move all the nb × N beads, and then the
centroids of all N ring-polymers are displaced. As shown in
Sec. SI of the SM [46], this number of steps allows the sys-
tem to reach equilibrium at sufficiently low temperatures. We
consider that the system reaches equilibrium at a given tem-
perature if its self-intermediate scattering function F (k0, n), as
function of the number of PIMC simulation steps n, becomes
zero for n < 106; see Sec. I of the SM [46].

To calculate the PEL properties of the ring-polymer
system, we obtain the IS of selected configurations by min-
imization of the potential energy using the conjugate gradient
algorithm [50,60]. For given values of (h, T ), we select 100
IS obtained from configurations saved every 1000 MC steps
during the production runs. The average energy and pressure
of the system over the obtained 100 IS define EIS(T ) and
PIS(T ) (for the given value of h).

IV. RESULTS

We first focus on two of the most relevant properties of
the PEL, namely EIS and PIS; see Sec. IV A. Our results are
consistent with the PEL of the QFJ liquids being Gaussian.
This allows us to obtain a general expression for the config-
urational entropy of the quantum liquids; see Sec. IV B. In
Sec. IV C, we show that the ring-polymers are collapsed at
the IS. The effects of varying nb on the PEL properties of
the QFJ liquids are discussed in Sec. IV D. A description
of the quantum liquids using the CL-PEL, as opposite to the
ring-polymer system PEL, is included in Sec. IV E.

A. Inherent structure energy and pressure

Figure 2(a) shows EIS(T ) for the QFJ liquids with h =
h0, h1, h2, h3, and h4 (nb = 10). Our values of EIS(T ) for
h = h0 (orange line) are fully consistent with the correspond-
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FIG. 2. (a) Inherent structure energy as a function of temperature
for the FJ liquids with Planck’s constant h0 = 0 (classical system),
h1 = 0.2474, h2 = 0.5150, h3 = 0.7948, h4 = 1.7882, and h∞ = ∞
(spring constants ksp = 0.0). Empty and solid symbols correspond
to equilibrium and out-of-equilibrium states, respectively. Also in-
cluded are results obtained from MD simulations for the classical FJ
liquid from Ref. [50] (blue line). The maroon line is obtained from
the classical EIS(T ) (h0 = 0, orange line) by rescaling T → T/nb. In
all cases, the number of beads per ring-polymer is nb = 10. A sudden
increase in EIS(T ) occurs for the case h = h4 at T < 0.07; at these
temperatures, results for h = h4 are sensitive to nb, and hence they
are not reliable (see text and Fig. 6). (b) Within error bars, the EIS(T )
curves for the different QFJ liquids collapse onto the classical EIS(T )
curve if the temperature is rescaled by T → γ T , where γ = γ (h).
Inset: EIS(T ), from the main panel, plotted as a function of 1/T . After
T -rescaling, EIS(T ) = a − b/T (a = −4.5782, b = 0.016 43) at low
temperatures (black dashed lines); see also Fig. 4.

ing values obtained in Ref. [50] for the classical FJ liquid
using molecular dynamics (MD) simulations (blue line). Also
included in Fig. 2(a) is the EIS(T ) for the QFJ liquid with h =
h∞ = ∞. In the case of h = h∞, the spring constants of the
ring-polymers vanish and the canonical partition function of
the system can be evaluated analytically. As shown in Sec. II
of the SM [46], the QFJ liquid with h = h∞ at temperature
T is thermodynamically identical to the classical FJ liquid

TABLE I. Scaling factor γ used in Figs. 2(b) and 3(b) to shift the
IS energy and pressure of the QFJ liquids along the temperature axis
(T → γ T ).

h [a(mε0 )1/2] γ

h1 1.09368
h2 1.43077
h3 2.04710
h4 2.13022

(h = h0) at temperature T ′ = nbT . Similarly, the PEL prop-
erties EIS(T ) and PIS(T ) of the quantum liquid with h = h∞
at temperature T are identical to the PEL of classical liquid at
temperature T ′ (see Sec. II of SM [46]). Accordingly, Fig. 2(a)
shows that the EIS(T ) of the QFJ liquid with h = h∞ (green
line), obtained from our PIMC simulations, is identical to the
EIS(T ) of the classical FJ liquid (orange line) after rescaling
the temperature T → T/nb (maroon line). We note that while
the qualitative behavior of EIS(T ) is similar for h � h3, the
case of h = h4 is anomalous. Specifically, in the case h = h4,
EIS(T ) increases dramatically at T < 0.07. As we discuss in
Sec. IV D, the results obtained at T < 0.07 for h = h4 are
sensitive to the number of beads per ring-polymer employed;
for h � h4 and T < 0.07, one must use a value nb > 10.

In the case of classical liquids, EIS(T ) is constant at high
temperatures in the so-called PEL-independent regime [61].
At these temperatures, the properties of the system are
not sensitive to the topography of the PEL; the system
has relatively large kinetic energy, and hence it can freely
explore the PEL. Instead, at low temperature, the thermo-
dynamic properties of the system are strongly correlated
with the topography of the PEL. This is the so-called PEL-
influenced regime [61] where EIS(T ) varies nonlinearly with
T . The crossover temperature between the PEL-independent
and PEL-influenced regimes occurs at the onset temperature
T0 [50,61]. The main point of Fig. 2(a) is that all QFJ liquids
exhibit PEL-independent and PEL-influenced regimes, same
as classical liquids. In particular, the onset temperature de-
creases as the quantumness of the liquids (as quantified by
h) increases and the atoms of the QFJ liquid become more
delocalized.

We note that at approximately T > 0.25, all QFJ liquids
are in the PEL-independent regime and exhibit similar val-
ues of EIS(T ) ≈ −4.65. This is not surprising since at high
temperatures, nuclear quantum effects become less relevant
and all QFJ liquids must approach the classical limit (h = h0,
orange line). What is remarkable is that the EIS(T ) for all the
QFJ liquids collapse onto a unique curve if one rescales the
temperature. This is shown in Fig. 2(b), where the EIS(T ) of
the QFJ liquids is plotted as a function of a rescaled temper-
ature (T → γ T , where γ depends only on h; see Table I).
This strongly suggests that the same physical description of
classical liquids, based on the PEL approach, as they approach
their glass-to-liquid transition, also applies to the case of the
quantum liquids. The effects of making the liquid more quan-
tum is to lower the vitrification temperature (at least for the
range of values of h considered).
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FIG. 3. (a) Inherent structure pressure as a function of tem-
perature for the FJ liquids with h0 = 0 (classical system),
h1, h2, h3, h4, h∞. Empty and solid symbols correspond to equilib-
rium and out-of-equilibrium states, respectively. Also included are
results obtained from MD simulations for the classical FJ liquid
(blue line). The maroon line is obtained from the classical PIS(T )
(h0 = 0, orange line) by rescaling the temperature T → T/nb. (b) At
approximately T < 0.15, all PIS(T ) curves collapse within error bars
onto the classical PIS(T ) if the temperature is rescaled as T → γ T ,
where γ (h) is obtained from Fig. 2(b) (Table I).

The nuclear quantum effects on PIS(T ) are shown in
Fig. 3(a). Compared to Fig. 2, the fluctuations of PIS(T ) over
the IS sampled by the system at a given T are more relevant
than in the case of EIS(T ). Nonetheless, it is apparent that the
values of PIS(T ) for all the QFJ liquids studied converge to
the classical IS pressures at high temperature, as expected.
At low temperatures and in equilibrium (open circles), PIS(T )
increases with increasing h. However, this trend is reversed
for h > h4 since at low temperatures, PIS(T ) decreases as h
increases from h = h4 to h = h∞. We also note that, as for
the case of EIS(T ), the IS pressures obtained from our PIMC
simulations for the case h = h∞ (ksp = 0; green line) are
identical to the PIS(T ) of the classical FJ liquid after rescaling
the temperature T → T/nb (maroon line); see Sec. II of the
SM [46].

Motivated by Fig. 2(b), we explore if the PIS(T ) of the dif-
ferent QFJ liquids also fall onto a master curve after rescaling
the temperature. As shown in Fig. 3(b), the collapse of PIS for
different values of h is limited to low temperatures, approx-
imately T < 0.2 within error bars. This is slightly different
from Fig. 2(b), where the EIS(T ) of the different QFJ liquids
collapse onto the classical values for all T studied. We note
that in Fig. 3(b), the temperatures are rescaled by T → γ T ,
where γ (h) is the same parameter used for EIS(T ) in Fig. 2(b);
see Table I.

B. Gaussian potential energy landscape:
Configurational entropy

A PEL is Gaussian if the corresponding distribution of IS
energies eIS is given by

�(eis ) = 1√
2πσ

exp (αN ) exp [−(eis − E0)2/(2σ 2)], (1)

where α, E0, and σ depend only on the volume of the sys-
tem [37,38,61]. Equation (1) implies that, for a given N and
V , most of the IS in the PEL have an energy eIS ≈ E0, while
σ quantifies the spread of the IS energies about E0. The
Gaussian approximation for �(eis ) is the basis for random
energy models [62,63] proposed for the study of disordered
systems. In addition, numerical studies of so-called “fragile”
liquids are consistent with Eq. (1) [27,64,65]. In particular,
Eq. (1) is expected to hold for a system that can be considered
to be composed of independent subsystems, each with its own
independent IS energy [38].

As shown in Sec. III of the SM [46], in a Gaussian PEL,

EIS(T ) = E0 − σ 2/(kBT ) (2)

and

PIS(T ) = −dE0

dV
+ NkBT

dα

dV
+ 1

2kBT

dσ 2

dV
. (3)

A natural question is whether these equations apply to the
QFJ liquids studied, and hence if the corresponding PEL is
Gaussian. We find that, remarkably, this is indeed the case
at low temperatures, within the PEL-influenced regime. Fig-
ure 4(a) shows EIS(T ) and the best fit using Eq. (2) for all
the QFJ liquids considered. The fitting parameters used in
Eq. (2) are included in Table II. It follows from Table II
that the effect of including quantum nuclear effects on the
FJ liquid is to decrease σ while maintaining E0 practically
constant. In other words, the distribution of IS energies �(eis )
becomes more narrow with increasing h, i.e., as the atoms
become increasingly delocalized, while it remains centered at
a fixed energy eis (≈E0). As shown in the inset of Fig. 4(a),
σ decreases linearly with increasing h for h � h3. This linear
dependence seems to break down for h > h3; we estimate that
σ 2 = 0.000 15 for h = h4 and nb = 20 (see Sec. IV D).

The IS pressure of the QFJ liquids is shown in Fig. 4(b)
together with the best fit using Eq. (3). Again, the fitting of
PIS(T ) is limited to approximately T < 0.30 because this is
the temperature range corresponding to the PEL-influenced
regime for all QFJ studied [see Fig. 2(a)]. The fitting pa-
rameters used in Eq. (3) are given in Table III. Interestingly,
for all QFJ liquids, dE0/dV < 0 and dσ 2/dV < 0, i.e., upon
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FIG. 4. (a) Inherent structure energies from Fig. 2(a) plotted as
a function of 1/T . In the case of a Gaussian PEL, EIS(T ) = E0 −
σ 2/(kBT ) at low temperatures, where E0 and σ may depend only
on v. Our results support that the PEL of the QFJ liquids studied
is indeed Gaussian, at least for h � h3, where sufficient equilibrium
data are available (see the dashed lines). Inset: σ 2 as a function
of h. (b) Similarly, in a Gaussian PEL, PIS(T ) = A + BT + C/T ,
where A, B,C are quantities that depend only on v (see the text). The
behavior of PIS(T ) at low temperatures also indicates that the PEL
of the QFJ is Gaussian (see the dashed lines). (c) Configurational
entropy of the QFJ liquids studied. Curves for different values of h
are shifted along the y-axis by an arbitrary constant S0(h). As the
quantum nature of the liquids increases (i.e., h increases), Sconf(eIS )
becomes thinner, but it remains centered at the same energy, ≈ − 4.6.

TABLE II. Fitting parameters for EIS(T ) in Fig. 4(a) based on
Eq. (2), which holds for a Gaussian PEL.

h [a(mε0 )1/2] E0 (ε0) σ 2/kB

(
ε2

0/kB

)

Classical MD [50] −4.5736 0.017087
h0 −4.5793 0.016316
h1 −4.5913 0.013353
h2 −4.6043 0.008876
h3 −4.6042 0.0062829

compression (dV < 0) about the volume v = 2.2, the distri-
bution of IS available in the PEL [�(eis )] shifts toward larger
energy values and becomes wider.

Since the PEL of the QFJ liquids studied are Gaussian (h �
h4), one can easily compute the configurational entropy of
these liquids, Sconf = kB ln(�) [38,64]. It follows from Eq. (1)
that, for a Gaussian PEL, Sconf is a quadratic function of eIS,

Sconf/kB = α(V )N − [eIS − E0(V )]2

2σ 2(V )
− ln[

√
2πσ (V )], (4)

or equivalently,

Sconf/kB = S0(V, N ) − [eIS − E0(V )]2

2σ 2(V )
, (5)

where S0(V, N ) = α(V )N − ln[
√

2πσ (V )]. Although all our
simulations are performed at the same (N,V ), changing h may
affect α, and hence Eq. (5) provides Sconf for all QFJ liquids
up to a function of S0 = S0(h). Figure 4(c) shows Sconf(eIS) −
S0(h) for all the QFJ liquids studied. It follows that, as the
quantum nature of the liquid increases, Sconf(eIS) becomes
thinner and it remains centered at the same energy, ≈ − 4.6.
The quantity S0(h), and hence α(h), are indeed important,
but their calculation requires extensive additional work. These
properties define the Kauzmann temperature TK (h) of the QFJ
liquids, i.e., the temperature at which Sconf = 0, below which
the quantum system would get trapped in one IS (assuming
the isomorphism between the classical ring-polymer system
and the quantum liquid holds in this limit).

C. Collapse of the ring-polymers at the IS

In this section, we focus on the radius of gyration of
the ring-polymers associated with the QFJ liquids. The ra-
dius of gyrations is calculated in both (i) the instantaneous
configurations (obtained from the PIMC simulations) and
(ii) the corresponding IS. Additional structural properties
(bead-bead and centroid-centroid radial distribution func-
tions) are included in Sec. IV of the SM [46].

TABLE III. Fitting parameters for PIS(T ) in Fig. 4(b) based on
Eq. (3), which holds for a Gaussian PEL.

h [a(mε0 )1/2] − dE0
dV [ε0/a3] NkB

dα

dV [kB/a3] 1
2kB

dσ 2

dV [ε2
0/a3kB]

MD simulations 0.49627 −0.43046 −0.0208576
h0 0.498387 −0.448131 −0.0217122
h1 0.626957 −0.778775 −0.0331937
h2 0.566953 −0.670497 −0.0230476
h3 0.515117 −0.612217 −0.0129385
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FIG. 5. (a) Radius of gyration Rg of the ring-polymers associated
with the QFJ liquids as a function of temperature (circles; empty
and solid symbols correspond to equilibrium and out-of-equilibrium
states, respectively). As the system becomes more quantum (h in-
creases), Rg(T ) increases, indicating that the atoms in the QFJ liquids
become more delocalized (as expected). Also included is the radius
of gyration of the ring-polymers at the IS, Rg,IS(T ), for the cases
h = h3 and h4 (triangles). For h � h3, Rg,IS(T ) ≈ 0 for all T , i.e., the
ring-polymers at the IS are collapsed; see, e.g., red triangles for h =
h3. For h = h4, Rg,IS(T ) ≈ 0 at T > 0.07, while at T < 0.07, Rg,IS(T )
grows rapidly (i.e., the ring-polymers at the IS do not collapse).
However, our results for h = h4 are reliable only at T > 0.07 (see
Sec. IV D). (b) Average square distance in configuration space, 
R2,
between the instantaneous configurations sampled by the system
and the corresponding IS. At all temperatures, the IS and instan-
taneous configurations of the QFJ liquids are different, 
R2 > 0,
even for the cases in which Rg(T ) ≈ Rg,IS(T ) ≈ 0.06–0.08 (h = h4

and T � 0.03).

We discuss first the average radius of gyration Rg(T ) of
the ring-polymers. Rg(T ) quantifies how spread the beads of
the ring-polymers are from the corresponding center of mass.
From the quantum mechanics perspective, R2

g(T ) is the (quan-
tum) uncertainty in the position of the atoms of the QFJ liquid.
As shown in Fig. 5(a), in equilibrium (open circles), Rg(T ) is
a monotonic decreasing function of T for all the QFJ liquids,
indicating that the atoms in the liquid become more localized
with increasing T (i.e., as the classical limit is approached).
This is expected since the spring constant of the ring-polymers

increases with increasing T . Figure 5(a) also shows the effects
of increasing the quantumness of the QFJ liquids (i.e., h) at a
given T . For h � h3, and for the equilibrated states (open cir-
cles), Rg(T ) increases with increasing h, as expected. After all,
increasing h at a constant temperature reduces the spring con-
stant of the ring-polymers, making the ring-polymers/atoms
of the QFJ liquid increasingly delocalized. The same trend
with T and h holds if we include the case h = h4 for T � 0.07.
Again, these are the temperatures at which results for h = h4

are insensitive to nb, and hence reliable; the results obtained
at T � 0.07 for h = h4 will be discussed in Sec. IV D. We
note that, for h � h3 in the equilibrium regime (open circles)
and for h = h4 at T > 0.07, Rg(T ) < 0.4, i.e., the atoms in
the QFJ liquids are somewhat delocalized with the associated
beads spreading for up to ≈40% the hard-core distance of the
FJ pair potential.

Perhaps the most surprising result regarding the ring-
polymers structure is their average radius of gyration at the
IS, Rg,IS(T ). We find that, for h � h3 and in the equilibrium
regime, the ring-polymers are collapsed at the IS. As an ex-
ample, included in Fig. 5(a) is Rg,IS(T ) for h3 (similar results
hold for h = h1, h2). In this case, Rg,IS(T ) = 0 for T � 0.06,
and only at very low temperature, in the out-of-equilibrium
domain (solid circles), does Rg,IS(T ) become non-negligible.
Still, even at these very low temperatures, Rg,IS < Rg, i.e.,
the ring-polymers partially contract at the IS, i.e., during the
potential energy minimization.

The case h = h4 deserves some clarification. Again, at
this level of quantumness, our results are nb-independent
only for T � 0.07. At these temperatures, we also find that
Rg,IS(T ) = 0, as found for h � h3; see the violet triangles in
Fig. 5(a). At T < 0.07, the Rg,IS(T ) increases rapidly upon
cooling, and at T � 0.02 it is found that Rg(T ) = Rg,IS(T ) ≈
0.6–0.8. At these conditions, the ring-polymers in the instan-
taneous configurations and in the IS are considerably spread.
However, as we will show in the next section, the sudden
increase in Rg,IS at T < 0.07 [which is also correlated to the
sudden increase in EIS(T ) in Fig. 2] shifts to lower T with
increasing nb. This suggests that for our atomistic systems,
Rg,IS(T ) = 0 also for h = h4. We note that even in the case
in which Rg(T ) = Rg,IS(T ) (T = 0.01–0.02 and h = h4), the
instantaneous and IS configurations are different. To show
this, we include in Fig. 5(b) the square of the distance (in
the [(3Nnb)-dimensional] configurational space of the ring-
polymer system) between (i) the instantaneous configuration
and (ii) the corresponding IS in configurational space 
R2

normalized by the number of beads in the system,


R2 ≡ 1

Nnb

i=N ;k=nb∑

i,k=1

(
�ri,k − �rIS

i,k

)2
. (6)

Here, �ri,k and �rIS
i,k are, respectively, the position of bead k

of ring-polymer i in the instantaneous configuration, and the
IS of the ring-polymer system. Equation (6) can also be in-
terpreted as the average distance in real (three-dimensional)
space between the position of the beads in the (i) instanta-
neous configuration and (ii) corresponding IS. It follows from
Fig. 5(b) that 
R > 0 at all temperatures and for all h � h4,
and hence the instantaneous and IS of the quantum/ring-
polymer systems are indeed different.
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D. Effects of varying the beads number on the PEL properties

Strictly speaking, in the path integral formulation of sta-
tistical mechanics, one must take nb → ∞. In computer
simulations, one usually considers a “large” value of nb, so
results from computer simulations do not change upon further
increasing nb. In this section, we explore whether (and how)
our results vary with nb for all degrees of quantumness (i.e.,
values of h) explored.

As shown in Sec. V of the SM [46], nb has minor or
no effects on our results obtained for h � h3. However, for
h = h4, the properties of the QFJ liquid change with nb at low
temperatures. Figures 6(a) and 6(b) show EIS(T ) and PIS(T )
for the QFJ liquid with h = h4 and for PIMC simulations
performed with nb = 5, 10, 15, 20 beads per ring-polymer. At
very low temperatures, EIS(T ) develops a very large anoma-
lous maximum, not observed at h � h3. The maxima in EIS(T )
are accompanied by a small maximum in PIS(T ). The main
point of Figs. 6(a) and 6(b) is that EIS(T ) and PIS(T ) are
nb-independent only at high temperatures. For example, the
values of EIS(T ) and PIS(T ) obtained for nb = 5 are reli-
able only down to T ∗ = 0.09, while for nb = 10, 15, 20 this
temperature shifts to T ∗ = 0.07, 0.06, 0.05, respectively. It
is apparent that increasing nb → ∞ would remove (or shift
to T → 0) the anomalous maxima in EIS(T ) and PIS(T ), and
hence, in this limit, the results obtained for the QFJ liquid
at h = h4 would be qualitatively similar to those obtained
at h � h3. We note that the conclusions from Fig. 6 are not
affected by the lack of equilibration, since increasing nb al-
lows the system to relax to equilibrium increasingly faster.
For example, as shown in Sec. V of the SM [46], the lowest
temperature at which the system reaches equilibrium for the
case h = h4 is T = 0.02 for nb = 10, while for nb = 20 the
system is in equilibrium at all temperatures studied, T � 0.01.

A similar conclusion follows when one looks at Rg,IS(T )
for the QFJ with h = h4. As shown in Fig. 7, at T > T ∗(h),
Rg,IS(T ) = 0, independently of nb. Hence, as found for h �
h3, the ring-polymers are collapsed at the IS. The (anoma-
lous) sharp increase in Rg,IS(T ) at T < T ∗(h) is also strongly
dependent on nb. As for the case of EIS(T ) and PIS(T ), the
anomalous increase in Rg,IS(T ) is apparently suppressed in
the limit nb → ∞. We performed simulations with an even
larger Planck constant, h4b = 3.5764 > h4, and we found re-
sults similar to those presented in Figs. 6 and 7 for h = h4.
The corresponding results for h = h4b as well as h � h3 are
included in the SM [46].

E. A description of quantum liquids using the PEL of the
corresponding classical liquid

Since the ring-polymers collapse during the potential en-
ergy minimization, it follows that the IS obtained from the
equilibrium quantum liquids (h � h4) define a unique con-
figuration of the classical liquid. It also follows that such a
classical configuration must be an IS of the classical liquid. In
other words, an IS of the quantum liquid, in the ring-polymer
system PEL, is also an IS of the classical liquid PEL. This
IS is defined by the 3N coordinates of the ring-polymer beads
belonging to any of the nb replicas of the system (since the
ring-polymers collapse at the IS, all replicas are defined by
the same set of 3N bead coordinates). One may wonder, how
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FIG. 6. Average IS (a) energy and (b) pressure as function of
temperature for the QFJ liquid with Planck’s constant h = h4 and
simulated using different numbers of beads per ring-polymer nb. The
number of ring-polymers (atoms) in the system is N = 512 for nb =
15, 20, and N = 1000 for nb = 1, 5, 10. Results for (nb = 10, N =
1000) (violet) and (nb = 10, N = 512) (red) are practically identical,
suggesting that there are no finite-size effects. For comparison, also
shown are the results for h = h0 (classical case) and h = h∞ (spring
constant of the ring-polymers equal to zero). Empty (solid) symbols
in (a) indicate temperatures at which the system reaches (does not
reach) equilibrium. Increasing nb shifts the (anomalous) maximum
in EIS(T ) and the low-T maximum in PIS(T ) toward lower T .

do the IS of the QFJ liquids, in the CL-PEL, compare with
the IS sampled by the classical liquid in equilibrium (in the
CL-PEL)? Specifically, are the IS of the quantum liquids
also sampled by the classical liquid? Or, are there novel IS
accessible to the quantum liquid that, e.g., are never sampled
by the classical liquid? The collapse of the EIS(T ) and PIS(T )
curves of the QFJ liquids onto the classical liquid EIS(T ) and
PIS(T ) curves [Figs. 2(b) and 3(b)] strongly suggests that the
quantum and classical liquids explore similar, if not the same,
IS of the CL-PEL.

As discussed in the previous sections, in the case of the
nonequilibrium QFJ liquids with h � h3 and at T � 0.07 for
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FIG. 7. Radius of gyration of the ring-polymers Rg associated
with the QFJ liquids at the same conditions as in Fig. 6 (circles). For
comparison, we include the radius of gyration of the ring-polymers at
the corresponding IS (triangles). Increasing nb shifts the (anomalous)
maxima in Rg,IS(T ) toward lower T .

the case h = h4, potential energy minimization of the quantum
liquid does not necessarily lead to the collapse of the ring-
polymers [Fig. 5(a)]. In these cases, an IS of the quantum
liquid does not define an IS of the CL-PEL. Instead, after
the potential energy is minimized, each of the nb replicas
associated with the quantum liquid defines a distinct point of
the CL-PEL, which may or may not correspond to an IS of the
CL-PEL.

In general, the quantum liquid/ring-polymer system is rep-
resented by a set of nb points in the CL-PEL [Fig. 1(b)] and,
in the limit nb → ∞, this set of points would form a pan-
cakelike patch that spreads over the CL-PEL [Fig. 1(c)]. As
time evolves, this patch changes shape and moves, describing
a fuzzy trajectory on the CL-PEL. Interestingly, we find that
at all temperatures studied, such a representative “patch” of
the quantum liquid (h � h4) in the CL-PEL is distributed over
different neighboring basins of the CL-PEL. To show this, we
perform the following analysis (at a given h and T ). (i) First,
we select Nc = 10 instantaneous configurations of the target
quantum liquid. From each of these configurations, we obtain
the corresponding nb replicas; these replicas define nb points
in the CL-PEL. (ii) Each of these nb replicas is treated as an
independent classical liquid configuration, and it is subjected
to potential energy minimization. As a result, we obtain nb in-
herent structures of the CL-PEL. (iii) Finally, we calculate the
distance square in configurational space d2

k,k+1 (normalized by
N) between the IS of the CL-PEL obtained from replicas k and
k′ = k + 1 (where k = 1, 2, . . . , nb),

d2
k,k+1 = 1/N

i=N∑

i=1

(�ri,k − �ri,k+1)2, (7)

where �ri,k is the position of “particle” i = 1, 2, . . . , N of
replica k after potential energy minimization, and �ri,nb+1 ≡
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FIG. 8. Average distance between replicas k and k + 1 in the
CL-PEL as function of temperature, dk,k+1(T ). A ring-polymer con-
figuration associated with the quantum liquid at a given (T, h) defines
nb replicas (k = 1, 2, . . . , nb). These replicas define nb independent
points (i.e., classical liquid configurations) on the CL-PEL. The
solid lines represent dk,k+1(T ) from the replicas obtained directly
from the PIMC simulation; dashed lines represent dk,k+1(T ) after the
individual replicas are subjected to potential-energy minimization (in
the CL-PEL).

�ri,1. If the nb-replicas are in the same basin of the CL-PEL,
then they should converge to the same IS (of the CL-PEL)
after each of them is subjected to potential energy minimiza-
tion, i.e., dk,k+1 = 0 for all k. Instead, as shown in Fig. 8, we
find that dk,k+1 > 0 (dashed lines), indicating that the replicas
of a given quantum liquid/ring-polymer configuration occupy
different IS of the CL-PEL. Figure 8 also includes the values
of dk,k+1 obtained from the instantaneous configurations of
the replicas, before the minimization of the potential energy
(solid lines). Interestingly, we find that dk,k+1 increases after
potential energy minimization. This means that the replicas
spread even further on the CL-PEL after they reach the corre-
sponding IS of the CL-PEL. It follows that the collapse of the
ring-polymers at the IS of the PEL must be due to the springs
that keep the bead polymers together. This is because, without
the springs, the beads of the ring-polymers do not overlap after
potential energy minimization (dk,k+1 > 0).

V. SUMMARY AND DISCUSSION

In this work, we extended the PEL formalism, origi-
nally proposed to study classical liquids and glasses, to the
case of quantum liquids. This was done by exploiting the
isomorphism between (i) quantum liquids and (ii) classical
ring-polymer systems that follows from the path-integral sta-
tistical mechanics formulation for quantum systems [44]. In
the case of an atomistic classical/quantum liquid, the sys-
tem is represented by a single point in the corresponding
PEL; see Fig. 1(a). In the classical case, the PEL resides
in a (3N + 1)-dimensional space where the generalized co-
ordinates q [axes in Fig. 1(a)] are the atoms’ coordinates.
In the case of the quantum liquid, the PEL is defined by
the isomorphic ring-polymer system. If the ring-polymers are
composed of nb beads each, then the (quantum liquid) PEL
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resides in a (3Nnb + 1)-dimensional space where the gener-
alized coordinates q [axes in Fig. 1(a)] are the coordinates of
the ring-polymers beads. It follows that the same picture used
extensively to describe the behavior of classical liquids can
be extended to quantum liquids. Specifically, at high tempera-
tures, the representative point of the quantum/classical liquid
is able to explore wide regions of the PEL (PEL-independent
regime). As temperature decreases, the representative point
of the system is unable to overcome large potential energy
barriers, and hence the system is able to explore increas-
ingly limited regions of the PEL. The isomorphism between
quantum liquids and ring-polymer systems holds only in equi-
librium. Yet, it is tempting to extrapolate these ideas to the
out-of-equilibrium glass state. If so, the liquid-to-glass transi-
tion of the quantum liquid, within the PEL formalism, would
not be different from the classical case. Specifically, at very
low temperatures, in the glass state, the representative point
of the quantum/classical liquid is trapped within one basin of
the PEL, and only vibrational motion is possible. The ideas
presented above are relatively easy to visualize when nb is
finite, as is always the case with PIMD/PIMC computer sim-
ulations. We note, however, that in theory, nb → ∞ implying
that the PEL of a quantum liquid is indeed a hypersurface in a
(3Nnb + 1) → ∞-dimensional space.

Our PIMC simulations indicate that, in the PEL-
independent regime, EIS(T ) and PIS(T ) are constant and hence
independent of the topography of the PEL. Instead, in the
PEL-influenced regime, EIS(T ) and PIS(T ) vary with T . The
crossover temperature separating the PEL-independent and
PEL-influenced regimes is well-defined. The effect of increas-
ing the quantumness of the liquid, i.e., increasing the value of
Planck’s constant, is to lower this crossover temperature. This
means that, at the conditions explored, the glass transition
temperature of the liquid decreases as the atoms become more
delocalized.

The values of h considered correspond to quantum liquids
that exhibit relevant quantum behavior. Specifically, the de
Broglie thermal wavelength of these liquids at T = 0.10 is
comparable to the de Broglie thermal wavelength of H2 at T =
10–300 K. Indeed, we observed that atoms in our computer
simulation can be mildly delocalized. Depending on temper-
ature, the beads of the ring-polymer system can be as far as
≈40% of the hard-core radius from the corresponding ring-
polymer center of mass. In the context of the PEL, this means
that the representative point of the system is always defined
by ring-polymers that are spread in real (three-dimensional)
space. Remarkably, we also find that during potential-energy
minimization, all the ring-polymers of the system collapse.
Accordingly, when the representative point of the system is at
an IS of the PEL, all ring-polymers are effectively point parti-
cles. Thus, the quantum configuration of the system becomes
a classical liquid configuration (defined by 3N-coordinates);
see below.

Our simulations are based on the Fermi-Jagla model liquid.
In this case, the classical liquid was found to be characterized
by a Gaussian PEL. In particular, it was found that increasing
h, i.e., making the liquid increasingly quantum, does not affect
the nature of the PEL, i.e., all quantum liquids studied are also
characterized by a Gaussian PEL. The PEL of the quantum
and classical liquids are all centered at the same IS energy E0.

The effect of increasing h is to make the distribution of IS
energies narrower (i.e., all IS structures of the PEL become
closer to E0). These conclusions have a direct impact on the
configurational entropy of the system; see Fig. 4.

The extension of the PEL approach to quantum systems
provides a tool to understand the behavior of low-temperature
quantum liquids at low temperatures and the liquid-to-glass
transition. From a more applied point of view, the PEL for-
malism can be used to obtain the Helmholtz free energy of the
system F (N,V, T ) in terms of PEL properties, such as Sconf

and EIS. This is particularly useful in the context of computer
simulations at temperatures where the required timescales are
not accessible, the case of computational studies of super-
cooled water being a relevant example [66]. Calculations of
F (N,V, T ) at very low temperatures using the PEL approach
are possible if the PEL of the system of interest is harmonic
and Gaussian. Hence, it is particularly encouraging that the
PEL of all our quantum liquids are indeed Gaussian.

The PEL approach described above for quantum liquids
is a literal application of the PEL formalism for classical
liquids. Specifically, both quantum and classical liquids can
be described by a representative point moving on a PEL,
as shown in Fig. 1(a). In this work, we also discussed an
alternative PEL-based description of the quantum liquid using
the classical liquid PEL (CL-PEL), as opposed to the PEL of
the associated ring-polymer system. The basic idea is summa-
rized in Figs. 1(b) and 1(c). Briefly, if the ring-polymers are
composed of nb-beads, the system is represented by nb points
in the CL-PEL. As time evolves, the nb-points representing
the system (replicas) move, describing nb trajectories on the
PEL [Fig. 1(b)]. In the limit nb → ∞, the nb-points in the CL-
PEL representing the quantum liquid become, collectively, a
pancakelike patch [Fig. 1(c)]. The representative patch of the
system travels with time, changing shape, and tracing a fuzzy
trajectory on the CL-PEL. It follows that, at high tempera-
tures, the quantum liquid is able to explore wide regions of the
PEL (PEL-independent regime). As temperature decreases,
the representative patch of the system is unable to overcome
large potential energy barriers, and hence the system is able to
explore limited regions of the PEL. At the lowest temperatures
studied, we find that the representative patch of the quantum
liquids spreads over a few IS of the CL-PEL. We note that
one advantage of the CL-PEL relative to the ring-polymer
system PEL is that the number of generalized coordinates in
the CL-PEL is finite, 3N . Instead, the number of dimensions
of the ring-polymer system PEL → ∞ since nb → ∞. In
addition, while the CL-PEL is temperature-independent, the
ring-polymer PEL is not. This may make the description of
the quantum liquid based on the CL-PEL more intuitive.
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