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Unification of parton and coupled-wire approaches to quantum magnetism in two dimensions
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The fractionalization of microscopic degrees of freedom is a remarkable manifestation of strong interactions
in quantum many-body systems. Analytical studies of this phenomenon are primarily based on two distinct
frameworks: field theories of partons and emergent gauge fields, or coupled arrays of one-dimensional quantum
wires. We unify these approaches for two-dimensional spin systems. Via exact manipulations, we demonstrate
how parton gauge theories arise in microscopic wire arrays and explicitly relate spin operators to emergent
quasiparticles and gauge-field monopoles. This correspondence allows us to compute physical correlation
functions within both formulations and leads to a straightforward algorithm for constructing parent Hamiltonians
for a wide range of exotic phases. We exemplify this technique for several chiral and nonchiral quantum spin
liquids.
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I. INTRODUCTION

Determining the ground state of interacting spin systems
is a quintessential problem in quantum condensed matter
physics. Generic lattice Hamiltonians that are solely restricted
by symmetries and locality typically yield ground states that
spontaneously break one or more microscopic symmetries.
Moreover, these phases exhibit only short-range entanglement
and are therefore considered conventional. The tendency to-
ward triviality can be avoided when additional ingredients,
such as geometric frustration, prevent the formation of classi-
cal order and instead promote so-called quantum spin liquid
(QSL) ground states [1–5]. These phases of matter are not
characterized by any local order parameter. Instead, their prin-
cipal feature is the existence of low-energy excitations that
carry fractional quantum numbers and/or exhibit fractional
statistics. In the cases of gapped QSLs, this definition can
be sharpened into the notion of topological order [6], which
manifests itself in a universal nonlocal contribution to the
ground-state entanglement [7–9] and a ground-state degener-
acy on nontrivial manifolds.

Various solvable models have unambiguously demon-
strated the possibility of QSL ground states [10–14]. However,
the exact solution relies on rather fine-tuned interactions.
In more generic models, strong evidence of QSL ground
states has been found numerically using exact diagonalization
[15,16], quantum Monte Carlo [17–19], variational Monte
Carlo [20–25], and density matrix renormalization group
[26–33]. Finally, several recent experiments provide tantaliz-
ing evidence for QSLs. Notable examples include κ − ET2

[34–38], Pd(dmit)2 [38–41], herbertsmithite [42–44], and α −
RuCl3 [45,46].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

A major theoretical challenge toward studying QSL can-
didate Hamiltonians is the intrinsic nonlocality of their
fractional excitations. Well-known examples of such quasipar-
ticles are spinons, neutral spin- 1

2 excitation that may be bosons
or fermions. In conventional magnets, two such spinons can
only appear together and form spin-1 magnons. By contrast,
individual spinons become liberated in QSLs. Both the non-
locality of spinons and their ability to appear in isolation can
be encoded via an emergent gauge field under which they are
charged. Individual spinons are not gauge invariant and thus
not directly accessible to any (local) probe. Still, they may
constitute bona fide quasiparticles when the gauge field is in a
deconfined phase.

The primary workhorse for analytically describing
such phases is known as parton construction (see, e.g.,
Refs. [47,48]). Its starting point is a representation of lattice
spins in terms of parton creation operators ψ

†
�r,σ , e.g., S+

�r =
ψ

†
�r,↑ψ�r,↓. In a constrained Hilbert space with exactly one par-

ton per site, these operators can be used to faithfully represent
any microscopic spin Hamiltonian. However, the main utility
of this representation is the ability to determine possible long-
wavelength theories that may, as a matter of principle, emerge
from a lattice model with certain microscopic input, such as
symmetries. The parton construction amounts to temporarily
ignoring the constraint, which permits new mean-field An-
sätze that are highly nontrivial in terms of microscopic spins.
Refining the mean-field theory to include fluctuations reveals
the expected gauge structure. A key feature of this approach
is its versatility in capturing various gapped and gapless QSLs
as well as conventional phases. Its main drawback is an intrin-
sic difficulty to relate a given QSL phase to a specific spin
model. The most tangible connection between parton con-
structions and microscopic Hamiltonians is through projected
wave functions [49]. However, such analyses are biased by the
choice of mean field and are computationally expensive.

Over the past years, an alternative technique that shines
precisely at this Achilles’ heel of parton approaches
has gained in popularity. In “coupled-wire constructions,”
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microscopic parent Hamiltonians for strongly correlated
phases are constructed explicitly. Additionally, creation op-
erators of fractional quasiparticles are expressible in terms
of microscopic degrees of freedom. This approach was pio-
neered by Kane, Mukhopadhyay, and Lubensky for fractional
quantum Hall states [50]. Recently, it has been extended
to capture many other topological or strongly correlated
phases, including (i) a wider range of fractional quantum
Hall [51–59] and quantum spin Hall [60] states, (ii) Chern
insulators [61–63] and superconductors [64–69], (iii) ex-
otic surface states of symmetry-protected topological phases
[70,71], (iv) correlated states in twisted bilayer graphene [72],
(v) three-dimensional topological orders [73–78], (vi) Weyl
semimetals [79,80], and (vii) several QSLs [81–90]. Fur-
thermore, coupled-wire methods have been used to construct
anyon models [91,92], classify symmetry-protected topologi-
cal phases [93,94], and derive field-theoretic dualities in 2 + 1
dimensions [95,96]. For an introduction and overview of this
approach, see also Ref. [97].

A natural starting point for applying this technique to
QSLs is given by a spin system where all couplings in the
ŷ direction, say, have been switched off. The resulting model
may be profitably viewed as an array of one-dimensional spin
chains (i.e., wires) along the x̂ direction. Each spin chain
is then taken to form a gapless one-dimensional QSL. The
corresponding long-wavelength degrees of freedom form a
coarse-grained basis for reintroducing interwire couplings.
When these interactions are strongly relevant in the renormal-
ization group sense, they may drive the system into a bona
fide two-dimensional phase. Unfortunately, no general prin-
ciple for the construction of parent Hamiltonians within this
framework is known. Instead, it has to be done on a laborious
case-by-case basis. Consequently, only a limited number of
QSLs have been accessed in this manner [81–90].

We present a framework that unifies the two approaches
based on the well-known particle-vortex duality of bosons
in 2 + 1 dimensions [98–100]. Its recent implementation in
the coupled-wire formalism [96] allows us to transcribe field-
theoretic insights into explicit models and thereby achieve
the desired connection between parton and coupled-wire
methods. We find remarkably simple relationships between
microscopic degrees of freedom, such as the Néel vector �Ny(x)
or the valence-bond operator εy(x) and parton operators in a
suitable gauge. For example, we show that∑

ỹ

f †
ỹ,σ,χσ

fỹ−2,σ,χσ
+ H.c. =

∑
y

N+
y+1N−

y + H.c., (1)

∑
ỹ

f †
ỹ,σ,R fỹ,σ,L + H.c. =

∑
y

[
εy+1εy − Nz

y+1Nz
y

]
, (2)

where f †
ỹ,σ,χ creates a fermionic parton with chirality χ =

R/L and spin σ = ↑/↓ on the “dual” wire ỹ = y + 1/2. In the
first equation, χσ = R(L) for σ = ↑ (↓) and χσ = L (R) is
the opposite chirality. These relations are represented graphi-
cally in Fig. 1.

Crucially, any coupled-wire model that separately con-
serves the two parton species maps onto a local spin model.
Parent spin Hamiltonians for a wide range of nontrivial phases
can thus be generated by constructing weakly correlated two-
dimensional band insulators or superconductors of partons.

FIG. 1. Microscopic interwire processes and the fermionic-
parton counterparts onto which they map: (a) spin exchange between
neighboring wires translates to fermion hopping by two dual wires,
(b) the indicated combination of dimer-dimer and Ising interactions
translates to fermion umklapp scattering on the corresponding dual
wire.

An example of such a model is shown in Fig. 2, which
illustrates the spin Hamiltonian for a Z2 QSL obtained from a
superconductor of fermionic partons. Moreover, coupled-wire
models for various strongly correlated states of bosons and
fermions are also known in the literature [51,52,54–57,59–
64,66–71]. Each of these corresponds to a local spin model
as well. These models realize QSLs that are not describable
by a parton mean-field Ansatz but require a further fractional-
ization of the partons.

In addition to constructing parent Hamiltonians for spe-
cific gapped phases, we use the exact transformation between
spins and partons to derive the gauge theory for the latter.
We explicitly relate monopoles in the emergent gauge field
to spin operators and determine the action of microscopic

FIG. 2. The parent Hamiltonian of a Z2 spin liquid can be ob-
tained by translating the coupled-wire model that realizes a BCS
superconductor of fermionic partons. The gray and white diamonds
represent the indicated interaction between spins at their corners.
These terms are reminiscent of those realizing Kitaev’s toric code
[10]. However, the present model conserves Sz and realizes a phase
with dynamical matter fields. See Sec. V B 5 for the derivation and a
detailed discussion.
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symmetries. These properties demonstrate the desired unifi-
cation of partons and coupled wires. They, moreover, indicate
that the same approach may be extended to gapless states in
the future.

The rest of this paper is organized as follows: In Sec. II, we
briefly summarize some key elements of parton constructions.
In Sec. III, we review some well-known properties of spin-
1
2 chains and their description using bosonization. We then
describe how a two-dimensional easy-plane antiferromagnet
(AFM), valence bond solid (VBS), and Ising-AFM are real-
ized upon introducing interwire couplings and discuss their
topological defects. In Secs. IV and Sec. V, we introduce
bosonic and fermionic partons, respectively, as combinations
of the aforementioned defects. We derive the gauge theory
that results when the spin model is rewritten in terms of these
nonlocal degrees of freedom and tabulate their symmetries.
We then analyze several phases in both their spin and parton
representations, with particular attention to the fate of the
emergent gauge field in the latter. We conclude with a sum-
mary of our results and an outlook on possible extensions in
Sec. VI. Finally, the Appendices discuss nonuniversal terms
that are required for microscopically exact mappings but do
not affect long-distance properties. They also reproduce sev-
eral known properties of the pertinent gauge theories within
concrete wire-based calculations.

II. PARTON CONSTRUCTION

In this section, we briefly review partons in the context of
interacting spin systems. Two widely used parton construc-
tions are based on the Schwinger-boson or Abrikosov-fermion
representations of spin 1

2 , i.e.,

S+ = ψ
†
↑ψ↓, Sz = 1

2 (ψ†
↑ψ↑ − ψ

†
↓ψ↓). (3)

Here ψσ are either bosonic or fermionic annihilation opera-
tors subject to the constraint of a single parton per site, n̂ ≡∑

σ ψ†
σ ψσ = 1. The expression of spins through partons has

built-in redundancy, i.e., physical spin operators are invariant
under phase rotations ψσ → ψσ eiφ .

A. Mean-field theory

The representation (3) allows expressing generic Hamilto-
nians with Sz-conserving two-spin interactions as

H =
∑
r,r′

J⊥
r,r′ψ

†
↑,rψ↑,r′ψ

†
↓,r′ψ↓,r + H.c.

+
∑
r,r′

Jz
r,r′

∑
σ

ψ†
σ,rψσ,r′ψ

†
σ,r′ψσ,r. (4)

The absence of quadratic terms implies that n̂r on each site is
conserved, i.e., individual partons are immobile. Still, parton
hopping may emerge at low energies, which can be captured
by mean-field Ansätze such as 〈ψ†

σ,rψσ ′,r′ 〉 = χr,r′δσ,σ ′ . The
corresponding mean-field Hamiltonian is

HMF =
∑
r,r′,σ

(χr,r′ψ
†
σ,r′ψσ,r + H.c.) + μ

∑
r

n̂r, (5)

where J⊥
r,r′ and Jz

r,r′ were absorbed into the definition of
χr,r′ . We also included a chemical potential that enforces, on

average, the now-violated single-occupancy constraint. The
mean-field Hamiltonian also breaks the local redundancy: un-
der ψσ,r → ψσ,reiφr the mean-field parameter acquires a phase

χr,r′ → χr,r′ exp [−i(φr − φr′ )]. (6)

Both flaws can be remedied by allowing for local fluctuations
in χr,r′ and μ on top of the mean-field values.

B. Compact gauge fluctuations

The replacement χr,r′ → χr,r′ exp [−iar,r′] can restore the
redundancy if ar,r′ acquires a shift under phase rotations.
Specifically, it must transform like the spatial components
of a gauge field, i.e., ar,r′ → ar,r′ + φr − φr′ . Allowing fluc-
tuations of ar,r′ and encoding fluctuations of the chemical
potential via a temporal component μ → μ + ia0,r results in
the (Euclidean) action

Sparton =
∫

τ

∑
r,σ

ψ†
σ,r(∂τ − ia0,r − μ)ψσ,r

+
∫

τ

∑
r,r′,σ

(χr,r′ψ
†
σ,r′e−iar,r′ ψσ,r + H.c.). (7)

A crucial aspect of this theory is its periodicity in ar,r′ ,
which permits “monopole” events where the flux � × a
changes by 2π . The gauge field is thus compact [101]. Equiv-
alently, any induced Maxwell term generated by integrating
out ψ inherits the periodicity of the minimal coupling and is
of the form cos (� × a). By contrast, a bare Maxwell term
∝(� × a)2, which arises, e.g., in the particle-vortex duality
[98–100], would exclude isolated monopoles; for a recent
review including modern developments, see Ref. [102]. The
same conclusion may be reached after taking the continuum
limit by analyzing the microscopic operator that corresponds
to the emergent gauge flux. In the present case, it is given by
the scalar spin chirality [103]

�Sr1 · (�Sr2 × �Sr3

) −→
cont. limit

∇ × a, (8)

which is not conserved in most microscopic spin models. Con-
sequently, monopole events exist in the corresponding gauge
theory. By contrast, in particle-vortex duality, the gauge flux is
identified with the microscopically conserved boson density.
Monopoles are thus absent in that case, i.e., the gauge field is
noncompact.

To study compact gauge theories, it is often convenient to
separate the gauge field into a monopole-free part �a0 and a
singular part �aM that contains monopoles of strength 2πqi at
space-time points �ri = (τi, ri ), i.e.,

�∇ · ( �∇ × �aM) = 2π
∑

i

qiδ(�r − �ri ). (9)

This separation is useful, e.g., for assessing the relevance of
monopoles in the presence of matter fields ψ . The monopole-
monopole correlation function is

CM
�r1−�r2

=
∫
D
[
ψ, a0

μ

]
e−S[ψ,a0

μ+aMμ ]∫
D
[
ψ, a0

μ

]
e−S[ψ,a0

μ]
= 〈

eS[ψ,a0
μ]−S[ψ,a0

μ+aMμ ]
〉
0.

(10)
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TABLE I. Symmetry action on bosonized degrees of freedom,
with asterisks denoting antiunitary symmetries (i → −i).

Symmetry  �

U (α) U(1) spin rot.  + α �

�y π rot. around Sy − + π −�

Tx : x → x + 1 x translation  + π � + π

2
Ty : y → y + 1 y translation  + π � + π

2
Ix : x → −x x inversion (site)  −� + π

2
Iy : y → −y + 1 ỹ inversion  + π � + π

2
T ∗ : τ → −τ Time reversal (TR)  − π −�

T ′∗ ≡ Ty · T AFM-TR  −� − π

2

Here, the singular gauge field �aM must satisfy Eq. (9) with
two opposite monopoles q1 = −q2 = 1, but is otherwise arbi-
trary.

While conceptually straightforward, the evaluation of CM

based on this formula is a formidable task, only achievable in
specific limits. Extensive studies of compact gauge theories in
2 + 1 dimensions have found that their infrared behavior falls
into one of three categories:

(1) Confining: When all matter fields trivially gapped, the
low-energy theory is a pure gauge theory. There, monopoles
always proliferate and result in confinement [101].

(2) Gapped: Confinement is avoided when the gauge field
becomes massive due to the formation of a condensate (Higgs
mass) or a topologically nontrivial insulator (Chern-Simons
mass).

(3) Gapless: The presence of gapless matter, e.g., in the
form of a large number of Dirac-fermion species or a Fermi
surface, can render monopoles irrelevant. Such systems be-
have like noncompact gauge theories [104–106].

III. COUPLED-WIRE APPROACH

Consider a two-dimensional array of antiferromagnetic
spin- 1

2 chains (i.e., wires) with conserved Sz. The long-
wavelength properties of each chain, labeled by an integer
y and extending along x̂, can be efficiently described us-
ing Abelian bosonization [107,108]. This framework is,
moreover, convenient for including interwire couplings and
studying their effect. We thus introduce a pair of conjugate
variables �y(x),y(x) and describe the spin-chain array by
a Euclidean path integral Z = ∫

DD� e−S . The action S
contains both intrawire terms and couplings between differ-
ent chains; both will be specified below. In our convention,
smooth and staggered components of the microscopic spins
�Sr = �Jr + (−1)x+y �Nr are encoded as

Jz
r = 1

π
∂x�y, Nz

r ∼ sin(2�y),

J+
r ∼ eiy sin(2�y), N+

r ∼ eiy . (11)

The transformation of � and  under microscopic sym-
metries can be readily deduced from these expressions; we
summarize the ones pertinent to this work in Table I.

A. Decoupled spin- 1
2 chains

We describe the long-wavelength properties of each spin
chain by Lchain = LLL + L4π , where

LLL = i

π
∂x�y∂τy + vK

2π
(∂xy)2 + v

2πK
(∂x�y)2, (12)

L4π = g4π cos (4�y). (13)

The Luttinger-liquid Lagrangian LLL is perturbed by the non-
linear L4π , which introduces 4π phase slips into S+. Its
scaling dimension at the Gaussian fixed point �4π = 4K de-
termines the nature of the phase. For K > 1

2 phase slips are
irrelevant, and the ground state is gapless, with power-law
correlations in Sx,y,z and the VBS order parameter

εr = (−1)xS+
r S−

r+x̂ + H.c. ∼ (−1)y cos (2�y). (14)

An array of spin chains in this phase is easily destabilized
by various types of interwire couplings and will thus be our
starting point for accessing two-dimensional phases.

It is, however, useful to briefly review the opposite case
of relevant L4π . We begin by introducing a dimensionless
coupling constant, whose bare value at the microscopic length
d0 is g̃4π ≡ 16πKd2

0 g4π/v. For K < 1
2 it grows under renor-

malization and reaches order unity at a length d∗. For small
|g̃4π | and K , the scaling dimension of the cosine implies d∗ �
d0|g̃4π |1/(4K−2). Beyond this scale, each field �y becomes
trapped around a minimum of the cosine. To describe the
low-energy fluctuations we, therefore, expand the cosine to
quadratic order and write

L4π = g̃4πv

16πKd2
0

cos (4�y) → v

2πKd2∗

(
�y − �

(ny )
y,0

)2
. (15)

Here, �
(ny )
y,0 denote the minima of the cosines, labeled by the

integers ny. To identify the ground state, it is sufficient to

replace �y → �
(ny )
y,0 in all observables. For negative g̃4π , the

minima are at �
(ny )
y,0 = πny/2, and there is VBS order εr ∝

(−1)ny+y. For positive g̃4π we instead have �
(ny )
y,0 = πny/2 +

π/4 reflecting Ising-Néel order, i.e., Nz ∝ (−1)ny . We de-
note the two possible ground states, ny even and ny odd, by
VBS1(Ising1) and VBS2(Ising2), respectively. In both cases,
they are related by x translations (cf. Table I) and one is
selected spontaneously when that symmetry is broken. The
universal properties of these gapped phases are insensitive to
the value of d∗, which may be viewed as a new parameter that
replaces g̃4π .

Consider now a domain wall where the state of the y0th
wire is characterized by ny0 for x < x0 and by ny0 + 1 for
x > x0. Near the domain wall, �y changes smoothly by π/2
over a distance ∼d∗ to avoid incurring a large elastic energy
cost (see Fig. 3). The precise form of this interpolation is not
essential for our purposes; a sample function is δ�DW(x0) =
tan−1 [e(x−x0 )/d∗ ]. The total spin associated with introducing an
N-fold domain wall, �y0 (x) → �y0 (x) + Nδ�DW(x0), is

Sz
tot ≡ 1

π

∫
x

∑
y

∂x�y = N

π

∫
x
∂xδ�DW = N

2
. (16)

Crucially, this value is universal and only depends on the
asymptotic behavior of �. Moreover, the associated energy
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FIG. 3. (a) The fundamental quasiparticle excitations of a one-
dimensional VBS and an Ising AFM are domain walls between the
two degenerate ground states. In both cases, the bosonic variable
�(x) changes by π/2, from one minimum to the next, over a distance
set by the correlation length d∗. Consequently, such defects carry
spin 1

2 and cost a finite energy ∝1/d∗. When the correlation length
is comparable to the lattice spacing, the domain wall can be depicted
in terms of microscopic spins as shown in (b) for a VBS, and (c) for
an Ising AFM. The spin 1

2 associated with this excitation becomes
readily apparent in this limit.

cost takes a finite nonuniversal value proportional to d−1
∗ (see

Appendix A 1 for details). By contrast, a “half domain wall,”
i.e., N = 1

2 , which formally carries spin 1
4 , costs a finite energy

density for all x > x0. Consequently, the total energy diverges
linearly with the system size, i.e., such configurations are
confined.

B. Coupled spin-chain arrays

To describe two-dimensional phases, we initially neglect
4π phase slips in the action of the decoupled array

Sdecoupled =
∫

x,τ

∑
y

Lchain. (17)

Instead, we perturb Sdecoupled by interwire couplings that drive
the system to a new fixed point and analyze the effect of
4π phase slips there. The leading coupling terms between
neighboring wires that are compatible with the symmetries in
Table I are

Lt = gt cos (y+1 − y), (18a)

Lu = gu cos (2�y+1 + 2�y). (18b)

A third cosine, cos (2�y+1 − 2�y), has the same scaling
dimension at the decoupled fixed point as the one in Lu.
However, it can be obtained by combining the latter with
4π phase slips and thus need not be treated independently.
The cosines in Eq. (18) compete to drive the wire array into
different symmetry-broken states (see Fig. 4). Their topolog-
ical defects are crucial for relating spins to the bosonic or
fermionic partons. We, therefore, briefly discuss how their key
properties arise within the coupled-wire framework.

FIG. 4. The lowest-order coupling terms between neighboring
spin chains drive the two-dimensional array either into an easy-plane
AFM or into a gapless “sliding Ising/VBS” state. Phase slips are
irrelevant in the former, but strongly relevant in the latter, where they
lead to a fully gapped VBS phase.

1. Easy-plane antiferromagnet (AFM)

Consider K � 1 such that Lt of Eq. (18a) is strongly rel-
evant while Lu of Eq. (18b) flows to zero. As in Sec. III A,
we introduce a dimensionless coupling constant with bare
value g̃t ≡ πd2

0 gt/vK < 0. The flow of g̃t to strong coupling
permits us to replace

Lt = vKg̃t

πd2
0

cos (y+1 − y) → vK

2πd2∗
[�]2

ỹ, (19)

where �ỹ,y′ ≡ (δy+1,y′ − δy,y′ ) is the discrete y derivative,
naturally centered on a dual wire ỹ = y + 1

2 . The scaling di-
mension of the cosine at the decoupled fixed point implies
d∗ � d0|g̃t |1/(K−1−4) for small g̃t , but that is not essential for
our purposes.

On a finite array of Nw wires, only Nw − 1 of the differ-
ences � are linearly independent, and the system remains
gapless. The missing linear combination N−1

w

∑
y y cannot

be pinned due to the global U(1) spin-rotation symmetry (cf.
Table I). This property reflects the presence of a Goldstone
mode due to spontaneous U(1) symmetry breaking. The ef-
fective action

LSF = LLL + vK

2πd2∗
[�]2

ỹ (20)

can be brought to a more familiar form by performing the
Gaussian integral over �y. Additionally taking the continuum
limit d−1

∗ � → ∂y results in

SSF = K

2πv

∫
τ,x,y

[(∂τ)2 + v2(∇)2]. (21)

It is straightforward to verify that 4π phase slips are irrel-
evant at this new fixed point and that it exhibits Néel order
〈N+

r 〉 �= 0.
For the topological defects, the periodicity of Lt is

paramount. The number of domain walls in a given cosine
is Nỹ ≡ 1

2π

∫
x [�∂x]ỹ ∼ 1

2π

∮
�

dl · ∇, where � encloses
the plaquette containing ỹ. Consequently, Nỹ is precisely
the number of magnetic vortices contained within this
plaquette or, equivalently, on the dual wire. A sample con-
figuration that contains an isolated vortex is δvortex,ξ

y (x) =
arg [(x − x0)/ξ + i(y − ỹ0)]. According to Eq. (20), its energy
exhibits the familiar logarithmic divergence with system size
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FIG. 5. Two vortex configurations, shown in terms of the Néel
vector �N , may have significant differences in trial energies but
are topologically equivalent. For formal manipulations the precise
choice is unimportant, and the more anisotropic limit ξ → 0 turns
out to be the most convenient in the present case.

(see Appendix A 2). For the formal manipulations below, it
is convenient to use the ξ → 0 limit of the above expression,
i.e.,

δvortex
y (x) = π sgn(ỹ0 − y)H (x − x0), (22)

with H (x) the Heaviside step function. In this configuration,
all phase winding is concentrated along one-dimensional lines
rather than uniformly spread as in the isotropic one. A vortex
in the form of Eq. (22) is created by the operator

V †
ỹ0

(x0) ≡ exp

[
i
∑

y

sgn(y − ỹ0)�y(x0)

]
, (23)

which satisfies V †V =  + δvortex. The same form of this
vortex operator was used in Ref. [96] to implement dualities
between bosons and Dirac fermions on coupled-wire arrays.
Vortex configurations in both limits are illustrated in Fig. 5.

2. Intrawire valence bond solid (VBS)

For K � 1
4 , it is Lu of Eq. (18b) that is strongly relevant

while Lt of Eq. (18a) flows to zero. We focus on positive gu

and express it in terms of a dimensionless coupling constant.
To describe low energies, we replace

Lu = vg̃u

4πKd2
0

cos (2�ỹ+1 + 2�ỹ) → v

2πKd2∗

(
[S�]ỹ − π

2

)2

,

(24)

where Sỹ,y′ ≡ (δy+1,y′ + δy,y′ ) is naturally centered on a dual
wire. This Lagrangian is identical to Eq. (19) upon replacing
�y ↔ (−1)y(y + πy/2) and K ↔ K−1, which does not af-
fect the kinetic interwire terms. Consequently, the analysis of
the easy-plane AFM carries over.

The ground state exhibits Ising-Néel and/or VBS orders
according to

〈Nz〉 ∝ sin (2�0), 〈ε〉 ∝ cos (2�0), (25)

with a spontaneously chosen �0. Around a topological defect,
�0 winds smoothly by π . Such defects are illustrated in Fig. 6
and will be referred to as dislocations. Around them, the state
of the system changes from Ising1 first to VBS1, then to Ising2,
next to VBS2, and finally returns to the Ising1 configuration.1

The creation operator in the extreme vertically deformed

1These defects share several features with Z4 vortices in colum-
nar VBS states [119]. There, the two Ising phases are replaced by
interwire valence bond states VBS3,4 that arise as π/2 rotations of
the VBS1,2. The VBS3,4 configurations interchange under Ty and are
invariant under T ′, just like Ising1,2. However, their transformations
under Tx and T are different. Interwire VBS states in wire models are
described in Sec. IV B 3. Unfortunately, operators that would create
Z4 VBS vortices are not readily accessible in this framework.

FIG. 6. Four fundamental domain boundaries between VBS1, Ising1, VBS2, and Ising2 regions terminate in a dislocation that carries spin
1
2 . This topological property holds irrespective of the detailed configuration. It becomes apparent in the strongly anisotropic limits, where
either the Ising or the VBS phases extend only along a one-dimensional line. There, the properties of the dislocation can be inferred from
the one-dimensional domain walls illustrated in Fig. 3. In our formulation, bosonic partons in a specific gauge are introduced as the extreme
vertically deformed dislocations; they carry spin 1

2 and live on dual wires.

043437-6



UNIFICATION OF PARTON AND COUPLED-WIRE … PHYSICAL REVIEW RESEARCH 2, 043437 (2020)

limit is

b†
ỹ0

(x0) ≡ exp

[
i

2

∑
y

sgn(y − ỹ0)(−1)yy(x0)

]
, (26)

which satisfies b†�b = � − (−1)yδ�vortex with δ�vortex as in
Eq. (22).

At this fixed point (referred to as sliding Ising/VBS in
Fig. 4), the previously neglected 4π phase-slip term, Eq. (13),
is strongly relevant. Its flow to strong coupling eliminates the
zero-energy mode �y(x) → �y(x) + (−1)yα and results in a
gapped phase. As in the case of decoupled chains, a VBS is
realized for negative g4π , while positive g4π leads to an Ising-
AFM. In both phases, the energy cost of creating an isolated
dislocation diverges linearly with the system size (see Ap-
pendix A 3). Tightly bound dislocation-antidislocation pairs
are thus the fundamental low-energy excitations. When the
two are located on neighboring plaquettes, they form precisely
the staggered component of the microscopic spin operators

b†
y−1/2by+1/2 =

{
N+

y , y even

N−
y , y odd.

(27)

Notice the similarity to the parton decomposition S+ = ψ
†
↑ψ↓

in Eq. (3).2 To make this connection manifest, we introduce
the redundant label σ = ↑,↓ for odd and even ỹ, respectively.
We then define b†

ỹ,σ = eiϕỹ,σ and the associated dislocation

density ρỹ,σ = 1
π
∂xθỹ,σ with

ϕỹ,σ = 1

2

∑
y

sgn(y − ỹ)(−1)yy, (28a)

θỹ,σ = σ (�y+1 + �y). (28b)

The total number of bσ bosons (dislocations centered on
even or odd dual wires) is

Qσ ≡
∫

x

∑
ỹ

ρỹ,σ = 1

π

∫
x

∑
ỹ

∂xθỹ,σ = σSz
total, (29)

with Sz
total as defined in Eq. (16). Crucially, when Sz

total is
microscopically conserved, then the number of each of these
boson species is separately conserved.

To conclude the discussion of this phase, we want to point
out a close connection between dislocations and magnetic
vortices. Consider a vortex in bσ only, but not in bσ̄ . To

2There are also notable differences: (i) The dislocation operators
b↑(↓) reside on half the wires while Eq. (3) yields operators ψσ on
all wires. Nevertheless, since ψσ are constrained while bσ are un-
constrained, the number of degrees of freedom agrees. (ii) Interwire
hopping of bσ is represented by a local operator [cf. Eq. (31a)]
while for ψσ such hopping is absent on the lattice scale. There,
parton kinetic terms may emerge at long wavelengths, described by
fluctuations around a nontrivial saddle point. Dislocations should
thus be viewed as representing the low-energy progeny of the lattice
operators ψσ . (iii) The operators bσ are formally assigned to reside
between wires while ψσ live on the original lattice sites (different de-
compositions are of course possible, see, e.g., Ref. [120]). However,
since hopping of individual ψσ at the lattice scale is a mean-field
artifact [see also (i) and (ii)], this is not a significant difference.

construct its creation operator, one need only replace � → θσ

in Eq. (23). Explicitly, we introduce

ϕ̃σ,ỹ ≡
{−∑

ỹ′ even sgn(ỹ − ỹ′)θσ,ỹ′ , σ = ↓(ỹ odd)

−∑
ỹ′ odd sgn(ỹ − ỹ′)θσ,ỹ′ , σ = ↑(ỹ even).

(30)

Using Eqs. (23) and (28b) we find that V2ỹ = eiϕ̃↑,2ỹ and
V2ỹ+1 = eiϕ̃↓,2ỹ+1 . Dislocations are thus dual to magnetic vor-
tices in this precise sense.

IV. BOSONIC PARTONS FROM COUPLED WIRES

To access a wider range of phases, including QSLs, we
now develop a dual description of the coupled-wire model
in terms of the topological defects described above. Such a
reformulation of spin- 1

2 models in terms of magnetic vortices
has already been used in Ref. [109] to access, e.g., a puta-
tive “deconfined” quantum critical point between Néel and
VBS orders. To connect coupled-wire and parton techniques,
we instead focus on dislocations and argue that they form a
bosonic-parton representation of the microscopic spins.

As discussed at the end of the previous section, bσ

possesses several of the relevant bosonic-parton properties.
Moreover, while the combination b†

↑b↓ is local in terms of
microscopic operators, and carries spin 1, individual bσ are
nonlocal and do not have well-defined spin. This property
closely relates to the local gauge redundancy of conventional
parton decompositions discussed in Sec. II B. Even though bσ

are nonlocal, the interwire couplings introduced in Eq. (18) re-
main local under the mapping. Translating them via Eq. (28),
we find an intraspecies nearest-neighbor tunneling term and
an umklapp term

Lt = gt cos (ϕỹ+2,σ − ϕỹ,σ ) ∼ b†
ỹ+2,σ bỹ,σ + H.c., (31a)

Lu = gu cos (2θỹ,σ ) ∼ b†
ỹ,σ bỹ,σU (x), (31b)

where U (x) = U (x + 1) is a weak periodic potential (see,
e.g., Ref. [107]). The periodicity of Lu implies that bσ are both
at unit filling. Consequently, the densities of b↑ and b↓ are
the same as in conventional parton constructions (cf. Sec. II).
By contrast, the intrawire interactions of the microscopic spin
chains are nonlocal in bosonic-parton variables. They have a
natural interpretation in terms of an emergent gauge field, as
we will now explain.

A. Gauge theory

To derive the action governing the bosonic partons, we
invert the mapping in Eq. (28) and insert them into the
microscopic wire-array model in Eq. (17). It is convenient
to include, on top of Lchain, the symmetry-allowed quadratic
interwire couplings

Linter = uB

2π
[S∂x�]2

ỹ + uV

8π
[�∂x]2

ỹ . (32)

In the limit of weakly coupled wires, these arise as the leading
renormalizations of the kinetic energy due to Eq. (18), but in
generic cases, uB and uV should be viewed as independent
parameters.

While Lt , Lu, and Linter [Eqs. (18) and (32)] are local in
terms of partons, the intrawire interactions Lchain are highly
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nonlocal. This nonlocality can be encoded exactly through an
emergent gauge field �a, just as in the case of the boson-vortex
duality (see Appendix B for details) [96]. We express the re-
sulting gauge theory as Sb = ∫

x,τ

∑
ỹ [Lb + LMaxwell + Lint].

The first two contributions contain parton and gauge-field
kinetic terms as well as the coupling between the two, i.e.,

Lb = i

π
∂xθỹ,σ (∂τϕỹ,σ − a0,ỹ) + vB

2π
(∂xϕỹ,σ − a1,ỹ)2

+ uB

2π
(∂xθỹ,σ )2, (33)

LMaxwell = κ ṽ

4π
[�a1]2

y + κ

4π ṽ
[�a0]2

y . (34)

The parameters vB, uB, ṽ, and κ are nonuniversal. For their
expression in terms of microscopic spin-chain parameters, see
Appendix B. There, we also specify the last term Lint, which
contains exponentially decaying interwire density-density and
current-current interactions.

The gauge-field Lagrangian LMaxwell describes an
anisotropic Maxwell term in the a2 = 0 gauge but missing
the ∝(∂τ a1,ỹ − ∂xa0,ỹ)2 contribution. Such a term will be
generated upon integrating out matter fields at high energies.
We demonstrate this in Sec. IV B 1 for the case of trivially
gapped partons. Finally, it is instructive to express the
bosonized model in terms of bσ as

L′
b =b†

ỹ,σ (∂τ − ia0 − μ)bỹ,σ + vB

2ρ0
|(∂x − iax )bỹ,σ |2, (35)

where ρ0 = π is the boson density. This Lagrangian has the
expected structure for bosonic partons [cf. Eq. (7)].

1. Monopoles

The 4π phase slips in Eq. (13) are also nonlocal in bosonic-
parton variables. To interpret them, we introduce the operator

M̂r ≡ exp [2i(−1)y�y] = exp

[
i
∑

ỹ

sgn(y − ỹ)θỹ

]
= exp [−iϕ̃σ,ỹ − iϕ̃σ̄ ,ỹ−1]. (36)

For both bosonic partons, M̂r0 b†
σM̂†

r0
→ b†

σ eiα(r−r0 ), where
α(r) winds counterclockwise by 2π around the origin. M̂r

can thus be viewed as the insertion of a 2π monopole in the
emergent gauge field at position r. Since it is odd under lattice
translations (cf. Table I), 4π monopoles created by M̂2

r are
the minimal ones allowed by symmetries.

It is useful to disentangle the monopoles from the matter
fields. We, therefore, write M† = eiφM and replace Eq. (13)
by

L4π = g4π

2

[
M2

r + M2†
r

] − i

π
∂xλy(φM,y − ϕ̃σ,ỹ − ϕ̃σ̄ ,ỹ−1),

(37)

where λ is a Lagrange multiplier, and φM is now an indepen-
dent variable in the functional integral. A simple shift a0,ỹ →
a0,ỹ − ∑

y′ sgn(y′ − ỹ)λy decouples the Lagrange multiplier
from the matter fields and moves it into the gauge-field action.
Integrating it out then yields our final form of the monopole

TABLE II. The action of microscopic symmetries on bosonic
partons and their interpretation in the parton gauge theory. Antiu-
nitary symmetries (i → −i) are indicated by asterisks.

Microscopic Parton
symmetry b†

↑b↓ ρσ M interpretation

U (α) eiαb†
↑b↓ ρσ M Global Q↑ − Q↓

gauge transform.
�y −b†

↓b↑ −ρσ M† Particle hole (PH)
Tx : x → x + 1 −b†

↑b↓ ρσ −M x translation
Ty : ỹ → ỹ + 1 −b†

↑b↓ −ρσ̄ −M† PH + spin-flip
Ix : x → −x b†

↑b↓ −ρσ −M† x inversion
Iy : ỹ → −ỹ −b†

↑b↓ ρσ −M† ỹ inversion
T ∗ : τ → −τ −b†

↓b↑ −ρσ M PH∗

T ′∗ : τ → −τ b†
↓b↑ ρσ̄ −M† TR

Lagrangian

LM = gM
2

[
M2

�r + M2†
�r
] − κ

4π ṽ

[
�a0 − iṽ

κ
∂xφM

]2

y

, (38)

with parameters κ, ṽ as in Eq. (34) and where we have re-
labeled g4π → gM. For gM = 0, the Gaussian integral over
φM is a complete square and does not affect any gauge-
field or matter correlation function. Alternatively, the second
term in LM may be viewed as a “bare” kinetic energy
for the monopoles. Their interaction with the gauge field,
which is not of minimal coupling form, introduces additional
terms ∼(∂τφM)2 and ∼(�φM)2 upon integrating out short-
distance gauge fluctuations. The low-energy behavior of the
monopoles can, of course, be qualitatively different, depend-
ing on the phase of the gauge theory [see, e.g., Eq. (52)].

2. Symmetries

To complete the description of the parton-gauge theory, we
now specify how the microscopic symmetries of Table I are
implemented. The straightforward application of the mapping
between spins and partons leads to the symmetry properties
summarized in Table II. Additionally, we introduce an exter-
nal probing field �A that minimally couples to the conserved Sz

of the microscopic spins. In its presence, the theory for the de-
coupled spin chain is augmented to Lchain → Lchain + LA with

LA = − i

π
∂x�yA0,y − vK

π
∂xyA1,y + vK

2π
A2

1,y. (39)

Rederiving the bosonic-parton action with these terms (see
Appendix B) amounts, at lowest order in �, to replacing
aμ,ỹ → aμ,ỹ − 1

4 (−1)ỹ[SAμ]ỹ in Eqs. (33) and (35).

3. Alternative perspective

An alternative route to the parton gauge theory begins with
rewriting the wire array in terms of magnetic vortices [see
Eq. (23)]. On a lattice, these vortices experience an average
flux of π per plaquette [110,111]. Their band structure thus
exhibits two valleys, which amounts to two vortex flavors at
low energies. To see how this is reflected in the wire frame-
work, consider the interwire couplings of Eq. (18). The XY
spin exchange Lt translates into 2π phase slips for the vortex
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Vỹ while

Lu = guV
†

ỹ+2Vỹ + H.c. (40)

The wire-array model LLL + Lu + Lt can thus be equivalently
expressed in terms of two separately conserved vortex flavors
that reside on even or odd dual wires. Moreover, all vortices
are coupled to the same noncompact gauge field �avortex whose
flux represents the conserved Sz. (The derivation of this gauge
theory within the wire framework is identical to the one
performed above for bosonic partons.) Performing separate
dualities for the two vortex flavors results in two species of
bosonic partons (cf. the final paragraph of Sec. III B 2) cou-
pled to a single gauge field �a that is, likewise, noncompact.
Its flux corresponds to the difference between the numbers of
Veven and Vodd vortices. This difference ceases to be conserved
in the presence of the 4π phase slips. Indeed,

L4π = g4πV2ỹV2ỹV
†

2ỹ+1V
†

2ỹ+1 + H.c. (41)

allows vortex pairs to switch their flavor. Such processes
change the flux of the gauge field �a by 4π and, thereby, render
it compact.

B. Phases of bosonic partons and spins

To demonstrate the generality of the formalism developed
above, we now apply it to several concrete examples. In the
spirit of most parton constructions, we primarily consider
phases that are trivial at the mean-field level, i.e., in the ab-
sence of gauge fluctuations. These include Mott insulators,
superfluids, and integer quantum Hall states. Coupled-wire
models that realize such phases are either known in the lit-
erature or can be constructed relatively easily [51,55,70,93].
The mapping in Eq. (28) then immediately provides a corre-
sponding coupled-wire model in terms of the microscopic spin
variables. We carefully examine both representations of each
phase, in terms of partons and of spins, and demonstrate their
equivalence.

We analyze the parton models as follows: First, we de-
termine the ground state and excitations of Lb + δL at the
mean-field level, i.e., by treating �a as static. Second, we
reintroduce the gauge-field dynamics and determine how they
are affected by the matter fields. If the gauge field remains
massless, we analyze the effect of monopoles. Third, we
examine the quasiparticle content of the gauge theory. Fi-
nally, we perform a conventional analysis of the equivalent
coupled-wire model in terms of the microscopic spin variables
L = LLL + δL[,�], and verify that its properties match the
ones obtained from the parton gauge theory.

1. Mott insulator and intrawire VBS

Mean field. A trivial Mott insulator of partons forms when
the umklapp term of Eq. (31b) gaps the bosons on each wire
separately. This interaction does not contain ϕỹ,σ , which can,
therefore, be integrated out trivially. The parton Mott insulator
is thus described by

LMott = 1

2πvB
(∂τ θỹ,σ )2 + uB

2π
(∂xθỹ,σ )2 + gu cos (2θỹ,σ )

+ i

π
θỹ,σ (∂xa0,ỹ − ∂τ a1,ỹ). (42)

At sufficiently long length scales, each field θỹ,σ becomes
trapped around the minima of the cosine, as in Sec. III A.
Integrating out the massive fluctuations around these minima
yields Lind ∝ (∂τ a1,ỹ − ∂xa0,ỹ)2, which modifies the dielectric
constant of the (static) gauge field �a. The periodicity of the
cosine implies that θỹ,σ winds by π at a fundamental domain
wall. Such a configuration describes an isolated parton, cre-
ated by the operator b†

σ . At the mean-field level, these spin- 1
2

excitations are the elementary quasiparticles.
Gauge fluctuations. We now reinstate the dynamics of the

gauge field and supplement its bare action, Eq. (34), by Lind.
The effective Lagrangian is thus

LMW = κ

4π ṽ

{
[�a0]2

y + ṽ2[�a1]2
y + d2

∗ (∂xa0,ỹ − ∂τ a1,ỹ)2
}
,

(43)

where the nonuniversal length scale d∗ encodes the flow of
gu to strong coupling. Recall that in our formulation, �a is a
noncompact gauge field, and monopoles are included through
LM [cf. Eq. (38)]. In their absence, bosonic partons would
interact logarithmically via the gauge field. (The interaction
potential is readily obtained from 〈a0a0〉 at ω = 0.)

However, it is well known that compact U(1) gauge
theories may be unstable to monopole proliferation, i.e.,
confinement. The relevance of monopoles can be assessed
from their correlation function. For an isolated monopole-
antimonopole pair at locations Ri = (xi, d∗yi ) and equal time,
it is given by

CM
R1−R2

≡ 〈
M†

y1
(x1)My2 (x2)

〉
=

∫
D[a, φM]eiφM,y1 (x1 )−iφM,y2 (x2 )e−Sgauge−SM∫

D[a, φM]e−Sgauge−SM
. (44)

For gM = 0, the theory is Gaussian and performing the inte-
gral over φM yields

CM
R = exp

{
κd∗

4π2ṽ

∫
k,ω

cos (k · R) − 1

k2
x

[
1 − κd2

∗
2π ṽ

〈|ε2|2〉
]}

.

(45)

Here ε2 = �a0/d∗ is the y component of the emergent electric
field, 〈. . .〉 denotes the Gaussian average over �a, according
to LMW, and k = (kx, ky). The momentum ky is expressed in
units of d−1

∗ , i.e., the Fourier transform is defined as fy(x, τ ) =√
d∗

(2π )3/2

∫
k,ω

eik·R+iωτ F̃ (k, ω). Inserting the ε2 correlation func-

tion and evaluating the integral for large |R|, we find CM
R ∼

exp [ κd∗
2|R| ].

Since CM
R approaches a nonzero constant at long distances,

monopoles are strongly relevant. Beyond a length scale l∗, we
thus expand the cosine in LM to quadratic order. Integrating
out φM then results in a modified theory for �a given by

Lconfining = LMW + κ

4π ṽ
[�a0]y

1

l2∗∂2
x − 1

[�a0]y, (46)

with LMW as in Eq. (43). The corresponding analytically
continued gauge-field propagator has poles at real frequencies
ω = ±ṽ

√
k2

x + k2
y + l−2

∗ , i.e., there are no gapless gauge-field
modes for finite l∗.

Alternatively, CM
R can be obtained from LMW alone

via Eq. (10), i.e., by externally imposing the desired
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FIG. 7. A singular gauge-field configuration with monopoles of
opposite signs can be realized via two flux tubes that extend from
infinity at fixed τ and y. Each x-τ plane represents a dual wire at
coordinate ỹ = y + 1

2 , and monopoles are located at y, i.e., between
wires.

singularities on �a. For specificity, consider �aM such that
(∂τ aM

1 − ∂xaM
0 ) = �aM

1 = 0 and

�aM
0 = 2π [δy,0H (x) − δy,y0 H (x − x0)]δ(τ ). (47)

This configuration is depicted in Fig. 7. It describes two flux
tubes emanating from x = ∞ and extending, at fixed y = 0
and y0, to x = 0 and x0, respectively. Inserting this expression
into Eq. (10), with the gauge-field action of Eq. (43), we
reproduce CM

R in Eq. (45).
Quasiparticles. In the presence of a confining gauge field,

individual partons seize to be finite-energy quasiparticles. It
would be tempting, but incorrect, to compute their interaction
potential directly from the effective gauge theory in Eq. (46).
To obtain Lconfining, we expanded gM cos (2φM) around a spe-
cific minimum. This restriction to a single topological sector is
innocent in the special case of partons on the same dual wire.
There, only the trivial sector contributes, and we can indeed
use Lconfining to find

V (x) − V (0) ∼ ṽ

κd∗

∫
k

1 − cos (kxx)

k2
x

(
1 + l2∗k2

y

) ∼ ṽ

βd∗l∗
|x|. (48)

In the generic case, a careful sum over different sectors,
as performed in Appendix A 3, is required. The result is
linear confinement in all directions: It is impossible to iso-
late any excitation charged under the emergent gauge field
without incurring a diverging energy cost. Consequently,
finite-energy excitations can only be created as combinations
of the gauge-neutral quasiparticles b†

σ bσ , carrying spin 0, and
b†

σ bσ̄ carrying spin 1.
Spin model. There are two complementary routes to

identifying the microscopic phase: through symmetry con-
siderations and by direct translation to a microscopic model.
For the former, recall how monopoles transform under the
microscopic symmetries (see Table II). The nonzero expecta-
tion value acquired by M implies that x-translation symmetry
is reduced to translations by two sites. Furthermore, for
gM < 0, the site-centered x inversion is also broken, while
bond-centered inversion is preserved. Other symmetries, in
particular time reversal and U(1) spin rotations, remain in-

tact. These properties identify the microscopic phase as an
intrawire VBS. We arrive at the same conclusion by using
the transformation from parton to spin variables. The gauge
theory maps onto LLL + Lu, which we already analyzed in
Sec. III B 2. Its gapped ground state exhibits VBS order,
〈εr〉 �= 0, with integer-spin excitations, exactly as we found
in the gauge theory above.

2. Superfluid and easy-plane AFM

Mean field. Consider now a superfluid phase where both
partons condense. Recall that the parton number is separately
conserved for both species. The corresponding U(1) symme-
tries are spontaneously broken when the tunneling term of
Eq. (31a) flows to strong coupling. We proceed as before and
expand

Lt = vBg̃t

4πd2
0

cos (ϕỹ+2,σ − ϕỹ,σ ) → vB

8πd2∗
[�2ϕσ ]2

ỹ, (49)

where (�2)y,y′ = δy+2,y′ − δy,y′ . The field θỹ,σ does not enter
Lt and can thus be integrated out trivially. Additionally taking
the long-wavelength limit d−1

∗ �2 → 2∂y, we arrive at the
action SSF

b = ∫
τ,x,y

∑
σ LSF,σ , with

LSF,σ = vB

2π

[
1

c2
(∂τϕσ − a0)2 + (∇ϕσ − a)2

]
. (50)

This low-energy theory describes two fields that disperse lin-
early with velocity c = √

uBvB, Goldstone modes associated
with the two condensed parton species. Integrating out ϕσ

results in the familiar Meissner response

LMeissner = vB

2π
āμ

[
δμν − pμ pν

�p · �p
]

āν, (51)

where �p = ( ω
c , kx, ky) and �̄a = ( a0

c , a1, a2). Finally, the peri-
odicity of the original cosine in Eq. (49) permits 2π vortices
in either condensate, which are logarithmically confined as in
Sec. III B 1.

Gauge fluctuations. We reinstate the gauge-field dynamics,
governed by LMW + LM of Eqs. (34) and (38). The induced
Meissner term renders the gauge field massive and, thereby,
monopoles strongly irrelevant. We verify this explicitly by
integrating out �a to obtain the effective monopole Lagrangian.
In the limit of small frequencies and momenta, we find

LM,eff = ṽ

4πκ

[
1 + κc2d2

∗
2vBṽ

(
ω2

c2
+ k2

y

)]
k2

x |φM|2. (52)

The corresponding monopole-monopole correlation function
decays faster than exponentially, i.e.,

CM
R ∝

{
e−x2/ξ 2

1 , y = 0

e−L/ξ2 , y �= 0
(53)

where L is the wire length, and ξ1,2 are nonuniversal length
scales.

Quasiparticles. To determine the fate of the partons, we
focus on one species and integrate out the other. Recall that the
gauge field �a lives on all dual wires, while each parton species
resides on wires with a specific parity. We, therefore, integrate
out b↓ and the gauge field on even wires to obtain the effec-
tive gauge theory for b↑ on odd wires. The long-wavelength
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FIG. 8. When one species of bosonic partons condenses, the
gauge field acquires a Higgs mass. Moreover, the condensate renders
the second parton species local and identifies it with the microscopic
spin-raising operator. (a) Condensation of the second species results
in a magnetically ordered phase with 〈S+〉 �= 0. The corresponding
interwire terms are precisely the ones discussed for the easy-plane
AFM in Sec. III B 1. (b) When the second parton species forms a
Mott insulator, a nonmagnetic state arises. The parton theory that
realizes this phase maps onto the coupled-wire model of an interwire
VBS.

expansion of the gauge-field action reproduces the form of
LMeissner, in Eq. (51), with rescaled fields and momenta (see
Appendix D 1 for the exact wire-based calculation). Integrat-
ing out the massive gauge fluctuations does not qualitatively
change the low-energy theory for b↑. In the present case, it is
of the form LSF in Eq. (20), and vortices in the phase of b↑ are
logarithmically confined.

It is instructive to analyze the role of the external probing
field as introduced in Sec. IV A. At the mean-field level, the
partons couple to �A with charges (e↑, e↓) = ( 1

2 ,− 1
2 ). Conden-

sation of either species forces the flux of �A to be quantized
in units of 4π . However, in the gauge theory, a simple shift
aμ,ỹ → aμ,ỹ + 1

4 [SAμ]ỹ leads to (e↑, e↓) = (1, 0) and, conse-
quently, 2π quantization. This apparent ambiguity disappears
when gauge fluctuations are accounted for. Indeed, integrat-
ing out �a and b↓ in the presence of �A, we find an effective
field theory for b↑ with e↑ = 1. The same conclusion can be
reached by noting that, once b↓ has a non-zero expectation
value, b↑ is identified with the spin raising operator S+ [see
Fig. 8(a)]. Further integrating out the remaining parton b↑
yields a Meissner response in the form of Eq. (51) for �A (see
Appendix D 1 for details). Consequently, U(1) spin-rotation
symmetry is spontaneously broken.

Spin model. The microscopic phase breaks U(1) spin-
rotation as well as time-reversal symmetries (see Table II).
Moreover, the discrete translation symmetries in the x̂ and ŷ
directions are both reduced to steps of two. These properties
identify the microscopic phase as the easy-plane AFM de-

scribed in Sec. III B 1. Indeed, the parton gauge theory maps
onto LLL + Lt , which was studied there in detail. We found
the same gapless ground state, topological excitations, and,
implicitly, the same 2π quantization of flux.

3. Correlated Mott insultor and interwire VBS

Mean field. Consider now a superfluid phase of one
parton species and a Mott insulator of the other, i.e.,
δL = gt cos (ϕ2ỹ+2,↓ − ϕ2ỹ,↓) + gu cos (2θ2ỹ+1,↑). The mean-
field analysis is the same as in the two previous cases;
the low-energy theory contains the Goldstone mode of the
condensed b↓ and individual b↑ as finite-energy excitation.
Vortices in the b↓ condensate, created by Vodd ∼ e−iϕ̃↓ [cf.
Eq. (30)], are logarithmically confined.

Gauge fluctuations. As in the parton superfluid phase,
Sec. IV B 2, the gauge field acquires a Higgs mass through the
b↓ condensate. Consequently, monopoles can again be safely
discarded.

Quasiparticles. The effect of gauge fluctuations on the
mean-field excitation b↑ can be inferred, as in the last section,
by successively integrating out b↓ and �a. Exciting a single b↑
boson above the Mott gap thus corresponds microscopically
to a spin-1 excitation [see Fig. 8(b)]. In addition, vortex exci-
tations Vodd turn into local spin-0 quasiparticles. Formally, this
follows from the qualitatively different behavior of the corre-
lation function 〈[�2ϕ↓]2ỹ+1[�2ϕ↓]2ỹ′+1〉 at zero frequency: at
the mean-field level, it falls off quadratically with distance, but
in the gauge theory, it decays exponentially. (For an explicit
calculation of the vortex energy, see Appendix A 4.)

Spin model. In this phase, y-translation symmetry is bro-
ken, but ỹ inversion is preserved (cf. Table II). Moreover, U(1)
spin-rotation, time-reversal, and x-translation symmetries all
remain intact. These symmetry properties, along with the
quasiparticle content, imply an interwire VBS. To verify this
explicitly, we transcribe the cosines in δL to spin variables

δLinter-VBS = gt cos ([�]2ỹ+1) + gu cos (2[S�]2ỹ+1). (54)

One readily verifies that the arguments of the two cosines
commute. Consequently, the two terms can simultaneously
reach strong coupling. In the resulting fixed-point Hamilto-
nian, only pairs of wires are coupled. To characterize the
ground state, it is thus sufficient to analyze a two-leg ladder.

We diagonalize the interaction by introducing new conju-
gate variables ± = 1

2 (2 ± 1) and �± = (�2 ± �1). The
fields − and �+ get trapped around the minima of their
respective cosines, and small fluctuations are massive. Fun-
damental domain walls in the two are created by D+ = ei+

and D− = ei�− . The former is identified with the spin-raising
operator, i.e., D+ ∝ S+

1/2, with a proportionality factor deter-
mined by the pinned −. The latter similarly describes 2π

phase slips in S+, i.e., D− ∝ e∓2i�1,2 . Consequently, the two
types of defects carry spin 1 and spin 0, respectively. Alterna-
tively, the spin can be computed via the general expression

δSz
tot[D] =

∫
x

∑
y

〈
D
[
Sz

y, D†
]〉
. (55)

In the present case,
∑

y Sz
y = 1

π
∂x�+ and we again find

δSz
tot[D−] = 0 and δSz

tot[D+] = 1.
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4. Quantum Hall states and chiral spin liquids

Mean field. As the first example of a fractionalized phase,
consider a bilayer quantum Hall state of bosonic partons. At
filling factor ν = 2/n, it can be realized with the interwire
coupling

δLQH = gQH cos (ϕỹ+1,σ − ϕỹ−1,σ − 2nθỹ,σ̄ ). (56)

This wire construction was proposed in Ref. [51] for mi-
croscopic bosons eiϕ and analyzed in detail. Adapted to the
present context, the resulting phase hosts two species of
spin-1/2n excitations that are self-bosons but exhibit mutual
statistics π/n, i.e., the corresponding K matrix is n times the
Pauli matrix σx. To find K , we calculate the response to �a by
replacing δLQH with its quadratic expansion and integrating
out the matter fields (see Appendix D 2). The leading contri-
bution at long wavelength is

LCS = i

2πn
[Sa1]y[�a0]y ∼ i

2πn
εμνaμ∂yaν, (57)

where εμν is the antisymmetric tensor. Endowing �a with a
(redundant) spin label according to the dual-wire parity, the
induced action for �aσ takes the expected form. In the contin-
uum limit, we find

SCS = i

4π

∫
x,y,τ

∑
σ,σ ′

εμνκaμ,σ [K−1]σσ ′∂νaκ,σ ′ (58)

in the gauge a2 = 0 and with K = nσx.
Gauge fluctuations. We restore the status of �a as dynamical,

with fluctuations governed by the sum of the induced Chern-
Simons and bare Maxwell terms. The latter contains the
contribution ∝[�aμ]2, which translates into ∝(aμ,↑ − aμ,↓)2.
This term renders the antisymmetric combination of aμ,σ

massive, while the Chern-Simons term results in a gap for
the symmetric combination. Consequently, monopoles are
strongly irrelevant and can be safely discarded.

The Chern-Simons action, Eq. (57), implies that both mi-
croscopic and bosonic-parton time-reversal symmetries are
broken. To see the latter, it is convenient to compute the re-
sponse to the external probing field �A. Including it amounts to
replacing aμ,ỹ → aμ,ỹ − 1

4 (−1)ỹ[SAμ]ỹ in the induced action
(but not in the bare one). Integrating out the emergent gauge
field we find the response

LA-CS = − i

8πn
[SA1]ỹ[�A0]ỹ ∼ − i

8πn
εμνAμ∂yAν . (59)

Consequently, these phases are chiral and must exhibit topo-
logically protected edge states.

Quasiparticles. To identify the quasiparticles, we trans-
form the partons into new composite bosons. Specifically, we
attach to each parton n fluxes of the opposite one. On the
operator level, this procedure amounts to introducing bosons
βỹ,σ = e−iηỹ,σ with ηỹ,σ ≡ ϕỹ,σ + nϕ̃σ̄ ,ỹ. Such manipulations
often become more transparent in a schematic description that
specifies only the couplings between particle currents �jb,σ and
gauge fields. The bosonic-parton theory in Eqs. (33) and (34)
is then expressed as

Lb = i
∑

σ

�jb,σ ·
(

�a + σ

2
�A
)

+ · · ·, (60)

where the ellipsis denotes kinetic terms for partons and dy-
namical gauge fields as well as short-range interactions ( �A,
as always, is an external probing field). Attaching n mutual
fluxes amounts to replacing Lb → Lβ with

Lβ = i
∑

σ

�jβ,σ ·
(

�cσ + �a + σ

2
�A
)

− i

2πn
c↑dc↓. (61)

Finally, we shift �cσ → �cσ − �a to decouple �a from the matter
fields and integrate it out to obtain

L′
β = i

∑
σ

�jβ,σ ·
(

�cσ + σ

2
�A
)

+ i
(c↑ − c↓)d (c↑ − c↓)

8πn
.

(62)

In terms of composite bosons, the interwire coupling reads as
δLQH = gQH cos (ηỹ+1,σ − ηỹ−1,σ ), i.e., βσ form a superfluid.
At the mean-field level, the excitations are two flavors of
logarithmically confined vortices in the phases of βσ . In the
presence of the dynamical gauge fields �cσ , these turn into
finite-energy excitations subject to the constraint that (−2π )
flux of �cσ must be accompanied by σ/2n charge of each
boson, i.e.,

ρβ
σ = − 1

4πn
�∇ × �cσ + 1

4πn
�∇ × �cσ̄ . (63)

Since ρβ
σ is related to the physical spin [charge under �A, see

Eq. (62)] via Sz = (ρβ

↑ − ρ
β

↓ )/2, the composites carry a total
spin of 1/2n. Moreover, a clockwise exchange results in a
statistical phase π/2n.

Spin model. The response to the external probing field,
Eq. (59), implies that the microscopic phase is a chiral QSL
with topological edge states and fractionalized quasiparticles
in the bulk. Translating the interwire coupling in Eq. (56) to
microscopic variables we find

δLCSL = gQH cos ([�]ỹ + 2n[S�]ỹ). (64)

Precisely this coupling, with n = 1, was proposed
in Refs. [82,83], where it was shown to realize the
Kalmeyer-Laughlin chiral spin liquid; the generalization
to arbitrary integers n is straightforward. (The same coupling
term also describes a bosonic Laughlin state at filling factor
ν = 1/2n, see Ref. [51].) In particular, bulk quasiparticles
carry spin 1/2n and acquire phases π/2n upon (clockwise)
exchange.

5. Pair condensate/Z2 spin liquid

As the final example with bosonic partons, we construct
a time-reversal-invariant gapped QSL. Here, the emergent
gauge field must acquire a Higgs mass without condensation
of either of the two species (which would lead to a symmetry-
broken phase as discussed in Secs. IV B 2 and IV B 3). These
requirements are satisfied when composites with higher emer-
gent gauge charges, such as parton pairs, condense.

Mean field. In the coupled-wire framework, realizing such
a phase is straightforward. To form a superfluid of parton
pairs �2y ≡ b2ỹ,↓b2ỹ−1,↑ ≡ ei2ϕ+

2y , we introduce the interwire
coupling

δLpair = gp�
†
2y+2�2y + H.c. = gp cos (2[�2ϕ

+]2y+1). (65)
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Once this term flows to strong coupling, � spontaneously
acquires an expectation value (cf. Sec. IV B 2). Individual
partons, however, are not condensed. To describe their proper-
ties, we introduce ε2y = e−iϕ−

2y with ϕ−
2y ≡ (ϕ2ỹ,↓ − ϕ2ỹ−1,↑)/2.

The expectation value acquired by the pair field relates ε2y ∝
b2ỹ,↓ ∝ b†

2ỹ−1,↑. A gapped phase where neither bσ condense is
realized by including the interaction

δLMott ε = gq cos(2θ−
2y) = gq cos (2θ2ỹ,↓ − 2θ2ỹ−1,↑). (66)

Elementary domain walls in this cosine are created by individ-
ual partons, which constitute the fundamental quasiparticles at
the mean-field level. Vortices in the pair condensate, created
by m†

2y+1 ≡ ei(ϕ̃↑,2ỹ+1+ϕ̃↓,2ỹ )/2, are logarithmically confined.
Gauge fluctuations. We reinstate the gauge-field dynam-

ics and integrate out the matter fields. The pair condensate
leads to a Higgs mass for the emergent gauge field �a as
in Sec. IV B 2. Consequently, monopoles are again strongly
irrelevant and can be safely discarded.

Quasiparticles. The analysis of quasiparticle excitations
closely mirrors the one in Sec. IV B 3. Integrating out both
θ+, ϕ+ and the gauge field �a results, to lowest order in �, in

Leff
ε = i

π
∂xθ

−
2y

(
∂τϕ

−
2y + 1

2
A0,2y

)
+ v̄

2π

(
∂xϕ

−
2y + 1

2
A1,2y

)2

+ ū

2π
(∂xθ

−
2y)2 + gq cos(2θ−

2y), (67)

with renormalized parameters v̄ and ū. Consequently, ε ∼
〈b†

↑〉ϕ+,�a ∼ 〈b↓〉ϕ+,�a creates a deconfined bosonic spin- 1
2

excitation, as in the mean-field discussion. In addition, the dy-
namical gauge field liberates vortices m from their logarithmic
confinement as in Sec. IV B 3; they become bona fide spin-0
bosonic quasiparticles.

To infer the mutual statistics between the two quasiparti-
cles, consider the hopping of ε. It stems from the microscopic
term

N+
2y+1N−

2y = eiϕ+
2y+2−iϕ+

2yε
†
2yε2y+2 ≡ t2y,2y+2ε

†
2yε2y+2, (68)

i.e., the hopping amplitude is set by the pair condensate. In the
absence of vortices, t is uniform. For a static vortex-antivortex
pair, there is instead a branch cut connecting the two, across
which the phase of t jumps by π (see Fig. 9). For dynamical
quasiparticles m and ε, this property implies mutual semionic
statistics.

Spin model. The quantum numbers and braiding properties
of quasiparticles are characteristic of a Z2 QSL. Time-reversal
symmetry is preserved in this phase, but translation symmetry
in the ŷ direction is reduced to translations by two wires. To
analyze this phase in terms of microscopic spin variables, we
translate the intrawire couplings of Eqs. (65) and (66), finding

δLZ2 = gp cos (2y+2 − 22y+1 + 2y)

+ gq cos (2�2y+1 + 4�2y + 2�2y−1). (69)

The two cosines do not compete, and their arguments can thus
be pinned simultaneously. For an even number of wires with
periodic boundary conditions in the ŷ direction, there are as
many linearly independent pinned fields as there are wires.
Consequently, a fully gapped phase can form.

FIG. 9. In the parton-pair condensate, a static configuration of
m quasiparticles modifies the hopping amplitudes of ε excitations.
An m quasiparticle-quasihole pair at x1 and x2 is connected by a
branch cut (wavy line), across which the phase of ε hopping changes
by π . Consequently, the ε quasiparticle acquires a minus sign upon
encircling m, i.e., the two are mutual semions.

The microscopically allowed operator ei2�2y increments the
arguments of two adjacent gp cosines by 2π , i.e., it creates a
pair of fundamental domain walls. Similarly, e−i2�2y+1 creates
a strength-2 domain wall in a single gp cosine. Consequently,
a domain wall and an antidomain wall on the wires 2y2 + 1
and 2y1 − 1 are created by

Om
2y1−1,2y2+1 ≡ exp

[
−2i

∑
2y1�y�2y2

�y

]
= exp

[
i�2y1−1

]
exp

[ − i�2y2+1
]
sm

2y1,2y2
. (70)

The string operator sm
2y1,2y2

is comprised solely of the
pinned combinations �2y+1 + 2�2y + �2y−1 and acquires a
nonzero expectation value. Domain walls are thus decon-
fined in the ŷ direction. Additionally, one readily verifies that
Om

2y1−1,2y2+1 ∝ m†
2y2−1m2y1+1 in the ground state. To move the

domain wall along the wire direction, one need only apply

Om
2y0−1(x1, x2) = e−i

∫ x2
x1

dx∂x�2y0−1 . These domain-wall excita-
tions are thus precisely the m quasiparticles discussed in the
gauge-theory analysis.

Similarly, we construct a second species of deconfined ex-
citations via the operator ei(−1)yy . A quasiparticle-quasihole
pair on wires 2y2 and 2y1 is created by

Oε
2y1,2y2

≡ exp

[
i

∑
2y1<y�2y2

(−1)yy

]

= exp

[
− i

2
2y1

]
exp

[
i

2
2y2

]
sε

2y1+1,2y2−1. (71)

The string operator sε
2y1+1,2y2−1 is also expressible in

terms of pinned fields only, specifically the combination
2y+2 − 22y+1 + 2y. Consequently, Oε

2y1,2y2
∝ ε

†
2y2

ε2y1 in
the ground state and ε is deconfined in the ŷ direction. Finally,

Oε
2y0

(x1, x2) = e
i
2

∫ x2
x1

dx∂x2y0 moves ε along x̂.
The spin of m and ε can be inferred from the operators

that terminate the strings in Om and Oε using Eq. (55). The
m quasiparticle is spinless while ε carries spin 1

2 . Finally, we
compute the exchange statistics of the quasiparticles. Since all
terms in Eq. (70) commute, m has trivial self-statistics, i.e., it
is a boson. The same holds for ε. Their mutual statistics can
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FIG. 10. Magnetic vortices and dislocations are dual to each
other, similar to bosons and vortices in a superfluid. Combinations
of the two defects, therefore, exhibit fermionic statistics. These com-
posite fermions inherit their species from the dislocation, i.e., σ = ↑
or σ = ↓ depending on the dual-wire parity. The relative orientation
of magnetic vortex and dislocation determines the chirality of the
fermion, as in the coupled-wire implementation of conventional flux
attachment [96].

be read off from

ei2α = U1U2U
†
1 U †

2 , (72)

where U1 = Om
2y0−1(x1, x2) and U2 = Oε

2y1,2y2
(x0). Braiding

occurs when the paths of ε and m interlink, i.e., for y0 ∈
[y1, y2] and x0 ∈ [x1, x2]. In that case, we find ei2α = −1,
which implies that the two quasiparticles are mutual semions.
Consequently, they can combine to form a fermion, schemat-
ically Oψ ∼ OεOm. We will see that these fermions exactly
coincide with the partons that are the focus of the next section.

V. FERMIONIC PARTONS FROM COUPLED WIRES

Above, we have seen that the topological defects in a VBS
form a bosonic-parton representation of spins. We now show
that fermionic partons can also be constructed from topolog-
ical defects, specifically as composites of magnetic vortices
and dislocations. This route to fermionic partons is closely
related to the well-known flux attachment [112,113] (see also
Refs. [102,114–116] for recent refinements). Recall that b†

↑
is dual to one flavor of magnetic vortices V↑ = eiϕ̃↑ , while b↓
is dual to the other V↓ = eiϕ̃↓ [see discussion near Eq. (30)].
Therefore, fermions can be constructed as fσ = bσVσ , i.e.,
by attaching 2πσ flux to the bosonic partons (see Fig. 10).
Schematically this transformation can be expressed as

i
∑

σ

�jb,σ · �a → i
∑

σ

�j f ,σ · (�cσ + �a) + σ

4π
cσ dcσ . (73)

Performing the shift cμ,σ → cμ,σ − aμ and integrating out aμ

yields the constraint �c↑ = �c↓ ≡ �c. The resulting theory has the
same structure as the bosonic one: two species of fermions
that are minimally coupled to an emergent gauge field �c,
which obeys Maxwell dynamics.

To implement these manipulations in the wire array, we
introduce new variables

ϕ f ,ỹ,σ = ϕỹ,σ + σ

2
(ϕ̃σ,ỹ+1 + ϕ̃σ,ỹ−1), (74a)

θ f ,ỹ,σ = θỹ,σ , (74b)

where ϕ̃σ was defined in Eq. (30). The linear combinations
φχ

σ = ϕσ + χθσ , with χ = R/L = +/−, satisfy[
φ

χ
ỹ,σ (x), φχ ′

ỹ′,σ ′ (x′)
] = iπδσσ ′ {χδχχ ′δỹỹ′sgn(x − x′)

+ σ sgn(ỹ′ − ỹ) + δỹỹ′εχχ ′ }, (75)

with the convention that sgn(0) = 0. These commutators im-
ply that the operators f †

ỹ,σ,χ ∼ eiφχ
ỹ,σ anticommute for equal σ .

The associated densities ρỹ,σ,χ ≡ χ

2π
∂xφỹ,σ,χ are chiral; they

describe right and left movers for χ = R and L, respectively.
Moreover, the total density on the ỹth dual wire, ρỹ,σ =
ρỹ,σ,R + ρỹ,σ,L = 1

π
∂xθ f ,ỹ,σ , is identical to that of bosonic par-

tons. Consequently, the particle number of each species Qσ

is separately conserved [cf. Eq. (29)] and particles created by
f↑ and f↓ are distinguishable. Their exchange phase, which
is trivial according to Eq. (75), is merely a gauge choice.3

Only phases acquired during full braiding processes carry
significance; in the present case, they are also trivial. These
properties identify fσ with the fermions obtained via the
schematic flux attachment described by Eq. (73).

To translate generic interwire couplings, the following
identities are useful:

ei(2�y+1+2�y ) =
{

f †
ỹ,↓,L fỹ,↓,R, ỹ even

f †
ỹ,↑,R fỹ,↑,L, ỹ odd

(76a)

ei(y+1−y ) =
{

f †
ỹ+1,↑,R fỹ−1,↑,L, ỹ even

f †
ỹ−1,↓,R fỹ+1,↓,L, ỹ odd.

(76b)

In particular, the interwire couplings in Eq. (18), which gener-
ate the AFM and VBS phases, become simple hopping terms
for the fermions∑

y

Lt = gt

∑
ỹ

f †
ỹ+σ,σ,R fỹ−σ,σ,L + H.c., (77a)

∑
y

Lu = gu

∑
ỹ

f †
ỹ,σ,R fỹ,σ,L + H.c. (77b)

As in the case of bosonic partons, trivial umklapp processes
are allowed, which implies unit filling. When it is the most
relevant term, Lu opens a band gap, as would be the case
for weakly interacting fermions. In the present case, such a
trivial phase can be avoided by several mechanisms: First, it
stands in competition with a quantum Hall insulator generated
by Lu. Second, interactions can render correlated processes
strongly relevant and drive the partons to a new fixed point
where umklapp processes are irrelevant. Lastly, in certain
microscopic spin models Lu, is altogether absent. This is the
case, e.g., on a triangular lattice due to geometric frustration
[117].

Finally, destroying a parton of spin ↓ and creating one with
spin ↑ yields the smooth component of the microscopic spin-
raising operators

f †
2ỹ+1,↑,R f2ỹ↓,R = J+

2y+1,R ≡ ei2y+1+2i�2y+1 , (78a)

f †
2ỹ−1,↑,L f2ỹ,↓,L = J+

2y,L ≡ ei2y−2i�2y , (78b)

3A redefinition f↑ → f↑eiπQ↓ results in the anticommutation of f↑
and f↓ without affecting the action or the full-braiding phase.
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similar to the parton decomposition of Eq. (3). The analogous
expression for bosonic partons instead gives the staggered
component of the spin. Of course, both contributions must
be encoded in either parton representation. The respective
missing ones are encoded nonlocally in monopole operators,
as we will see below.

A. Gauge theory

To derive the action for fermionic partons, we proceed
as we did for the bosons in Sec. IV A. We find S f =∫

x,τ

∑
ỹ [L f + LMaxwell + Lint] with

L f = i

π
∂xθ f ,ỹ,σ (∂τϕ f ,ỹ,σ − a0,ỹ)

+ vF

2π
(∂xϕ f ,ỹ,σ − a1,ỹ)2 + uF

2π
(∂xθ f ,ỹ,σ )2, (79)

LMaxwell = κ

8π ṽ
[�a0]2

y + κ ṽ

8π
[�a1]2

y . (80)

The final term Lint contains exponentially decaying inter-wire
terms (see Appendix C for a detailed derivation and expres-
sions for vF , κ , and ṽ). It is instructive to express L f in terms
of the nonchiral fermions fỹ,σ = fỹ,σ,ReikF x + fỹ,σ,Le−ikF x. We
find

L′
f = f †

ỹ,σ (∂τ − ia0 − μ) fỹ,σ + vF

2kF
|(∂x − ia1) fỹ,σ |2. (81)

To determine the chemical potential μ, notice that the value
of kF only carries significance relative to another length. In
the present case, this scale is given by the lattice spacing of
the underlying spin chain, which enters the fermionic theory
through Eq. (77).

1. Monopoles

The 4π phase-slip term of Eq. (13) is nonlocal in terms of
fermionic partons. In the discussion of bosonic partons, we
expressed phase slips through the operator M̂ [cf. Eq. (36)].
Since θσ = θ f ,σ , it again acts as the insertion of a fundamental
(2π ) monopole in the emergent gauge field �a. Microscop-
ically, monopoles encode the Néel vector through N+

y =
M̂yJ+

y,χ , with χ = (−1)y, and where J+ is expressed using
fermion operators in Eq. (78). The same procedure as for
bosonic partons (cf. Sec. IV A 1) leads to the monopole La-
grangian

LM = gM
2

[
M2

r + M2†
r

] − κ

8π ṽ

[
�a0 − i2ṽ

κ
∂xφM

]2

y

,

(82)

with parameters κ, ṽ as in Eq. (80). As before, when gM =
0, the monopole field φM does not affect any gauge-field or
matter correlation function.

2. Symmetries

We conclude the description of the parton gauge theory
by discussing how microscopic symmetries are encoded. One
significant difference from the case of bosonic partons is that
certain microscopic symmetries are realized nonlocally. This
property may be readily understood from the flux-attachment
interpretation of fermionic partons: Time-reversal flips the

TABLE III. The action of microscopic symmetries on the
fermionic partons, and their gauge-theory interpretation. Certain
symmetries such as time reversal act nonlocally as dualities,
i.e., transform fσ into dσ . As before, asterisks denote antiunitary
symmetries.

Microscopic Parton
symmetry f †

↑,R f↓,L f †
σ,R fσ,L interpretation

U (α) eiα f †
↑,R f↓,L f †

σ,R fσ,L Global Q↑ − Q↓
gauge transform.

T ∗ −d†
↑,Ld↓,R d†

σ,Ldσ,R Duality

�y − f †
↓,L f↑,R f †

σ,L fσ,R PH

Tx f †
↑,R f↓,L f †

σ,R fσ,L x translation

Ty d†
↓,Rd↑,L d†

σ̄ ,Rdσ̄ ,L TR + duality

T ′∗ f †
↓,L f↑,R f †

σ̄ ,L fσ̄ ,R TR

�yTyIx f †
↓,L f↑,R f †

σ̄ ,L fσ̄ ,R x inv. + spin flip

�yTyIy − f †
↓,R f↑,L f †

σ̄ ,R fσ̄ ,L ỹ inv. + spin flip

winding of dislocations (cf. Fig. 6), but not of magnetic vor-
tices. Consequently, it transforms fσ = bσVσ onto a dual set of
fermions dσ ≡ b†

σVσ . The same dual fermions also arise under
translation along ŷ, which takes bσ → σb†

σ̄ (cf. Table II).
We summarize the actions of all previously discussed mi-

croscopic symmetries on the fermionic partons in Table III.
As in the case of bosonic partons, it is convenient to keep
track of the U(1) spin-rotation symmetry by introducing the
appropriate external probing field �A [see Eq. (39)]. To lowest
order in �, it enters L f and L′

f by replacing aμ,ỹ → aμ,ỹ −
1
4 (−1)ỹ[SAμ]ỹ.

B. Phases of fermionic partons and spins

We now apply the formalism developed above to several
specific phases of the fermionic-parton gauge theory. Fol-
lowing the same steps as for bosonic partons in Sec. IV B,
we first study mean-field states without gauge-field dynam-
ics. We then include gauge fluctuations and determine the
quasiparticle content. Finally, we analyze the corresponding
microscopic model.

1. Trivial band insulator and intrawire VBS

The fermionic partons are at unit filling and can form a triv-
ial band insulator. To generate it, we perturb the parton gauge
theory with the umklapp term of Eq. (77b). The resulting
theory has the same form as the one describing Mott-gapped
bosonic partons (see Sec. IV B 1), and its analysis is identical.
In particular, we obtain the same microscopic model.

2. Spin Hall insulator and easy-plane AFM

Mean field. Consider a quantum spin Hall insulator of
partons realized by the interwire couplings

δLQSH = gQSH

∑
σ

f †
R,ỹ+σ,σ fL,ỹ−σ,σ + H.c., (83)

where spin σ = ↑(↓) fermions reside on odd (even) dual
wires. This model describes a fermionic band structure with
gap ∝gQSH. The induced Lagrangian for �a, to lowest order in
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FIG. 11. (a) Adiabatically threading magnetic flux generates an
electromotive force that creates an inward current of ↓ and an
outward current of ↑ partons. When 2π flux is introduced in this
manner, a single ↓ particle and ↑ hole are pulled in. (b) Accordingly,
fundamental monopoles become dressed by f †

↓ f↑ and carry spin
1. Their proliferation thus results in a phase with (spontaneously)
broken U(1) spin-rotation symmetry, i.e., magnetic order.

�2, is

Lind = i

4π
εμν

[
S2as

μ

]
2y

[
�2ac

ν

]
2y ∼ i

2π
εμνas

μ∂yac
ν, (84)

where (S2)y,y′ = δy+2,y′ + δy,y′ , and we have introduced the
“charge” and “spin” gauge fields �ac,s, which couple to ρc

2y+1 =
(ρ2ỹ+1,↑ + ρ2ỹ,↓) and ρs

2y+1 = (ρ2ỹ+1,↑ − ρ2ỹ,↓)/2, respec-
tively.

This response reflects the well-known property of quantum
spin Hall systems that a 2π flux is accompanied by a spin
1 [118]. To see this explicitly, consider a configuration of �a
that includes a single 2π -flux tube penetrating through the
plaquette delimited by ỹ0 and ỹ0 + 1 [see Fig. 11(a)]. In the
a2 = 0 gauge, such a configuration satisfies∮

plaquette
dl · ∇ × a =

∫
dx[�a1]y0+1 = −2π. (85)

Shifting ϕ f ,ỹ → ϕ f ,ỹ + ∫ x dx′a1,ỹ(x′) transfers a1 from the
kinetic term in Eq. (81) to Eq. (83). In bosonized form, the
latter becomes

δLQSH =
∑

σ

cos

(
2θ̄ỹ,σ + σ

∫ x

dx′�2a1,ỹ

)
, (86)

with θ̄ỹ,σ = (φR
ỹ+σ,σ − φL

ỹ−σ,σ )/2. During an adiabatic flux
insertion, the argument of the cosine remains locked to its
minimum and thus θ̄ỹ,σ → θ̄ỹ,σ − σ

∫ x dx′�2a1,ỹ/2. The re-
sulting change in the parton numbers is δQσ = σ ; recall Qσ

are the same as for bosonic partons and given by Eq. (29).
Inserting 2π flux thus pulls in an ↑ parton and a ↓ hole, which
together carry physical spin 1.

Gauge fluctuations. Upon reinstating the status of �a as
a dynamical gauge field, we find its universal long-distance
behavior to be unaffected by Lind. The field �as describes
modes near momentum q = π , which are massive according
to the bare Maxwell term LMaxwell, and thus do not affect
long-wavelength fluctuations. To lowest order in � and for
frequencies and x momenta small compared to the QSH gap,

�a is governed by

LMW = LMaxwell + 1

2πvF
[�a0]2

ỹ + uF

2π
[�a1]2

ỹ

+ κd2
∗

8π ṽ
(∂xa0,ỹ − ∂τ a1,ỹ )2. (87)

Here, LMaxwell is the bare gauge-field action of Eq. (81) and
d∗ is a nonuniversal length scale proportional to the inverse
QSH gap. While this effective action describes a propagating
photon, the monopole operator M is strongly irrelevant. Its
correlation function, according to Eq. (44), is

CM
R = exp

{
κd∗

8π2ṽ

∫
k,ω

cos (k · R) − 1

k2
x

[
1 − κd2

∗
4π ṽ

〈|ε2|2〉0

]}
,

(88)

with ε2 as in Sec. IV B 1 and R = (x, d∗y). The Gaussian
average 〈. . .〉0, with respect to LMW, is readily evaluated; we
find the asymptotic behavior of CM

R is as given in Eq. (53)
(see Appendix D 3 for details).

The reason for the rapid decay is that M attempts to
introduce a gauge flux without the accompanying spin dis-
cussed above. Consider instead the “dressed” monopole
Mdressed ∼ f †

↓ f↑M [see Fig. 11(b)]. Its correlation function
reproduces Eq. (45), i.e., approaches a nonzero constant at
long distances, and Mdressed spontaneously acquires an expec-
tation value. Notice, however, that a term of the form δL ∼
(Mn

dressed + H.c.) would explicitly break U(1) spin-rotation
symmetry for any n �= 0 and is therefore disallowed. The
gauge field thus remains gapless in this phase, unlike in the
trivial parton Mott insulator. For the details of these calcula-
tions, see Appendix D 3. In particular, the dressed monopole
correlation function coincides with the one obtained by eval-
uating Eq. (10) using the singular configuration introduced in
Sec. IV B 1.

Quasiparticles. The above analysis implies that, con-
versely, spin-s operators must be accompanied by 2πs gauge
flux. Since 2π is the fundamental monopole, there are no
low-energy excitations with half-odd integer spin. Spinless
excitations, such as f↑ f↓, are charged under the emergent
gauge field. They are thus subject to logarithmic confinement
(cf. Sec. IV B 1).

Spin model. The parton QSH breaks the microscopic time-
reversal symmetry as well as translations by a single site in the
x̂ or ŷ direction. It also exhibits spontaneous breaking of U(1)
spin-rotation symmetry and an associated linear spectrum, as
well as logarithmically confined neutral excitations. These
properties exactly match those of an easy-plane AFM. Indeed,∑

ỹ δLQSH maps onto
∑

y Lt , which generates the easy-plane
AFM described in Sec. III B 1.

3. Mixed insulators and interwire VBS

Mean field. Consider now an integer quantum Hall state
for one parton while the second forms a trivial band insulator.
This is achieved, e.g., by introducing

δLMI = gt f †
2ỹ+2,↓,L f2ỹ,↓,R + gu f †

2ỹ+1,↑,R f2ỹ+1,↑,L + H.c.
(89)
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At the mean-field level, the fermionic partons constitute
gapped spin- 1

2 quasiparticles. The induced action for the
gauge field �a is

LCS odd = i

4π
[S2a1]2ỹ+1[�2a0]2ỹ+1, (90)

as expected for a quantum Hall state at unit filling.
Gauge fluctuations. When the gauge field �a is promoted to

a dynamical variable, it acquires a mass through the Chern-
Simons term. Monopoles are thus strongly irrelevant and can
be safely discarded. The external probing field �A can be
included in Eq. (90) by replacing aμ,2ỹ → aμ,2ỹ + 1

4 [SAμ]2ỹ
(without modifying the bare Maxwell term). Integrating out
aμ does not result in a Chern-Simons term for �A, which raises
the possibility that the microscopic time-reversal symmetry
is preserved. Indeed, it translates into the combination of
fermionic time-reversal and y-translation symmetries (cf. Ta-
ble III), which is preserved by the parton band structure in
Eq. (89).

Quasiparticles. The Chern-Simons term in Eq. (90) at-
taches 2π emergent gauge flux to the fermionic mean-field
excitations, converting them into bosonic quasiparticles. The
way that �A enters in Eq. (90) (see above) implies that the
flux of �a carries physical spin 1

2 . There are, thus, two types
of bosonic quasiparticles, one with spin 1 and one with spin 0.

Spin model. The y-translation symmetry is broken, while
ỹ inversion is preserved (cf. Table II). Moreover, U(1)
spin-rotation, time-reversal, and x-translation symmetries all
remain intact. These symmetry properties, along with the
integer-spin quasiparticles, identify the phase as an interwire
VBS. Indeed, translating δLMI to the microscopic spin vari-
ables, we find the wire construction of Eq. (54), which realizes
an interwire VBS.

4. Generic Katrix and chiral spin liquid

Mean field. Consider now quantum Hall states character-
ized by a nonsingular 2 × 2 K matrix

K =
(

m↑ m0

m0 m↓

)
, (91)

where mσ are odd integers and det [K] �= 0. The correspond-
ing wire construction was worked out in Ref. [51] and is given
by

δLK = g̃ cos ([�2ϕ f ,σ ]ỹ − mσ [S2θ f ,σ ]ỹ − 2m0θ f ,ỹ,σ̄ ). (92)

For generic mσ , m0 such a state exhibits a quantum Hall ef-
fect (associated with the total charge), a spin quantum Hall
effect (associated with the relative charge), and a quantum
spin Hall effect that connects the total and relative charges.
In terms of qT = (1, 1) and sT = (1, −1)m, these are given
by νcc = qT K−1q, νss = sT K−1s, and νcs = qT K−1s, respec-
tively. Integrating out the matter field we find, at leading order
in �2,

LCS K = i

4π

∑
i, j=c/s

νi j
[
S2ai

0

]
2y+2

[
�2a j

1

]
2y+2, (93)

where we have introduced charge and spin gauge fields
�ac/s

2y+1 = (�a2ỹ+1 ± �a2ỹ)/2. The quasiparticles, at the mean-field
level, are anyons and carry fractional charges under �a. They

can be determined by a standard K-matrix analysis (see, e.g.,
Ref. [47]).

Gauge fluctuations. Upon reinstating the dynamics of �a,
governed by LMW + LCS K , we find two distinct cases. For
νcc = 0, the gauge field remains gapless, and monopoles
are important. The assumption of nonsingular K implies a
nonzero spin Hall response. Therefore, U(1) spin-rotation
symmetry is spontaneously broken, as in the special case
m0 = 0 and mσ = σ (cf. Sec. V B 2). By contrast, for nonzero
νcc, the gauge field is massive, and monopoles can be safely
discarded.

Recall that the microscopic time-reversal symmetry acts
as a duality transformation on the partons. Specifically, it
attaches −2πσ flux to the fermions (followed by particle-hole
transformation, see Sec. V). Therefore, K-matrix states for
the fσ fermions and for the dual dσ fermions are related
by −Kf = Kd − 2σ z. For non-zero νcc, the two K matri-
ces cannot coincide, and time-reversal symmetry is broken
explicitly. To obtain the physical response, we include the ex-
ternal probing field �A in Eq. (93), according to aμ,ỹ → aμ,ỹ −
1
4 (−1)ỹ[SAμ]ỹ. Integrating out the emergent gauge field we
obtain

LA CS = − i

8πn
[SA1]ỹ[�A0]ỹ ∼ − i

8πn
εμνAμ∂yAν, (94)

where n ≡ νcc det [K]/2. Consequently, the phase is chiral
with topologically protected edge states.

Quasiparticles. To characterize the quasiparticles for n �=
0, we adopt the strategy employed in Sec. IV B 4. To each
fermion, we attach mσ fluxes of their own species and m0

fluxes of the opposite one; on an operator level, we define
ηỹ,σ = ϕ f ,ỹ,σ − mσ

2 [S2ϕ̃ f ,σ ]ỹ − m0ϕ̃ f ,σ̄ ,ỹ. The corresponding
βσ = e−iησ particles are bosons; they are governed by the
schematic Lagrangian

Lβ = i
∑

σ

�jβσ ·
(

�cσ + σ

2
�A
)

− i
(c↑ − c↓)d (c↑ − c↓)

8πn
. (95)

Notice that this Lagrangian is the same as Eq. (62). The
quasiparticles thus carry spin 1/2n and acquire statistical
phases of π/2n upon clockwise exchange. The case n = 0
can be analyzed as in Sec. V B 2. In particular, these phases
feature linearly dispersing Goldstone modes associated with
the broken U(1) spin-rotation symmetry and logarithmically
confined topological excitations.

Spin model. The response to the external probing field,
Eq. (94), implies that the microscopic phase is a chiral QSL.
Translating the interwire coupling in Eq. (92) to microscopic
variables, we find

δL′
CSL = g̃ cos ([�]ỹ − 2m0[S�]ỹ + mỹ[S2S�]ỹ), (96)

with m2y±1/2 = m↑/↓ ∓ 1. For nonsingular K �= σ z, these inter-
wire couplings explicitly break time-reversal symmetry. The
arguments of all cosines in δL′

CSL commute and can flow to
strong coupling simultaneously. They are, moreover, linearly
independent and can thus generate a gapped phase for nonzero
n, i.e., mỹ + mỹ+1 �= 2m0. To identify its quasiparticles and
edge structure, we introduce chiral modes

φ̃χ,y = y + χ2n�y + 2my+1�y+1 − 2my�y−1, (97)
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which satisfy

[∂xφ̃χ,y, φ̃χ ′,y′ ] = iχ4πnδy,y′δχ,χ ′δ(x − x′). (98)

Crucially, this change of variables preserves the locality of
both the intrawire and interwire terms; the latter take the form
δL′

CSL = cos (φ̃R,y+1 − φ̃L,y). Domain walls in these cosines
carry spin 1/2n and acquire exchange phases of π/2n.

Finally, for n = 0 the system is gapless, which can be
seen by summing the arguments of all cosines in Eq. (96),
i.e.,

∑
y[φ̃R,y+1 − φ̃L,y] = 4n

∑
y �y. This particular linear

combination thus remains unpinned for n = 0. Its conjugate
describes the Goldstone mode associated with the sponta-
neously broken U(1) spin-rotation symmetry, precisely as in
Sec. III B 1.

5. BCS superconductor and Z2 spin liquid

Mean field. As a final example, consider now a BCS
superconductor of fermionic partons. To generate pairing,
we introduce interwire hopping for the Cooper-pair operator
� f -pair,2y+1 ≡ f2ỹ+1↑,R f2ỹ,↓,L, i.e.,

δL f -pair = g f -pair�
†
f -pair,2y+1� f -pair,2y−1 + H.c. (99)

When g f -pair flows to strong coupling, � f -pair sponta-
neously acquires an expectation value (cf. Sec. III B 1).
Vortices in the phase of this condensate, created by m2y =
e−i(ϕ̃ f ,↑,2ỹ+ϕ̃ f ,↓,2ỹ−1 )/2, are logarithmically confined. While
δL f -pair renders the umklapp term in Eq. (77b) irrelevant, the
backscattering term

δLbs = gbs f †
2ỹ+1,↑,R f2ỹ+1,↑,L f †

2ỹ,↓,L f2ỹ,↓,R + H.c. (100)

can flow to strong coupling. When it does, a fully gapped
phase with fermionic spin- 1

2 quasiparticles fσ obtains.
Gauge fluctuations. Since � f -pair carries emergent gauge

charge, its condensation leads to a Higgs mass. Monopoles
are, therefore, strongly suppressed and can be safely dis-
carded. Importantly, � f -pair is neutral under the external
probing field �A, so the microscopic U(1) spin-rotation sym-
metry is preserved. Indeed, the response to �A is, at leading
order in derivatives, described by a Maxwell action.

Quasiparticles. Gauge-field fluctuations that are rendered
massive by a Higgs term do not affect the status of fσ as
fermionic quasiparticles. They do, however, promote vortices
m to deconfined bosonic spin-0 quasiparticles. Being super-
conducting vortices, they are experienced as π flux by the
fermions, i.e., the two are mutual semions. Consequently, the
two can combine into ε = fχ,σ m†, a spin- 1

2 quasiparticle with
bosonic self-statistics.

Spin model. The quasiparticle content characterizes a Z2

spin liquid that is, moreover, nonchiral and spin-rotation
symmetric. Translating δL f -pair and δLbs to microscopic spin
variables, we find

δL′
Z2

= gbs cos(2[ST S�]2y−1)

+ g f -pair cos([�T �]2y + 2[ST S�]2y−1). (101)

The arguments of these cosines are linear combinations of
those in Eq. (69). Consequently, they lead to the same Z2

spin-liquid phase (see full analysis in Sec. IV B 5).

VI. SUMMARY AND DISCUSSION

We have introduced exact, nonlocal mappings between ar-
rays of spin- 1

2 chains and parton gauge theories. Any parton
model that separately conserves both species maps onto a
local spin Hamiltonian. The challenge of deriving spin models
that realize exotic ground states is thereby reduced to con-
structing parent Hamiltonians for simple phases of bosons
or fermions. Conversely, any Sz-conserving coupling between
spins transforms into a distinct interaction or hopping term for
partons. The latter are obtained without reference to a specific
mean-field Ansatz. They, therefore, retain not only informa-
tion about the symmetries of the underlying spin model, but
also about more subtle aspects, such as geometric frustration.
In its presence, some symmetry-allowed terms in the dual
parton description are absent. Geometric frustration may thus
take the form of an emergent symmetry and, thereby, stabilize
phases that would not readily form in more generic situations.

To demonstrate the versatility of this method, we showed
how to recover trivial states and access topologically ordered
ones. Relatively simple phases of partons already correspond
to fractionalized ground states. As a first example, we derived
parent Hamiltonians for Abelian chiral spin liquids. Here,
knowing wire models of bosonic integer quantum Hall states
was sufficient to immediately generate a parent Hamiltonian
of the Kalmeyer-Laughlin chiral spin liquid, previously con-
structing by different means in Refs. [82,83]. Similarly, we
obtained the wire model of a time-reversal-invariant Z2 spin
liquid as a simple s-wave BCS superconductor of fermionic
partons. If they instead form a topological superconductor,
such as px ± ipy, the resulting QSL will be non-Abelian.

When the partons themselves form nontrivial phases, an
even wider range of exotic microscopic ground states is re-
alized. The framework introduced here applies to such cases
with no additional difficulties, once a (coupled-wire) parent
Hamiltonian of the parton phase is known. We have illustrated
this capability by the example of a general 2 × 2 K-matrix
state of fermionic partons. Based on the known fermionic
wire constructions, we easily generated wire models for a
range of chiral spin liquid that were not previously available.
Explicit parent Hamiltonians for even more exotic states, such
as the non-Abelian Read-Rezayi sequence of fractional quan-
tum Hall states, are also known and can likewise be used to
generate concrete spin models.

We primarily focused on fully gapped states. However, the
dual description of spin-chain arrays in terms of fermions may
be able to capture exotic gapless phases and unconventional
quantum phase transitions as well. One example of the latter
arises at the transition between the easy-plane AFM and the
intrawire VBS. It maps onto a coupled-wire model of compact
QED3 with two boson or fermion species. This is precisely the
effective field theory that was derived using different methods
in Ref. [109]. Its fate in the infrared is thought to be con-
fining (and consequently the transition to be first order). A
stable gapless theory may instead arise in various ways: (i)
at a transition between different phases; (ii) in the presence
of emergent symmetries of the parton field theory that may
arise due to geometric frustration; (iii) when the emergent
fermions are doped to form a Fermi surface that suppresses
monopole events. All three scenarios feature nontrivial gauge-
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field dynamics, which places them beyond the capability
of conventional wire constructions. They should, however,
be amenable to exploration within the formalism developed
here.

Finally, we mention two possible generalizations of the
methods developed here. The first is to itinerant electron
systems. There, decomposing microscopic electron opera-
tors as cσ = b fσ allows exploration of many exotic ground
states. Extending our approach to wire arrays with both spin
and charge modes may allow well-controlled access to those
phases, and provide concrete model systems where they arise.
A second interesting direction is given by spin models that
do not conserve Sz, such as the celebrated Kitaev honeycomb
model [11]. Systems without U(1) symmetries are not readily
describable within Abelian bosonization. Instead, coupled-

wire techniques based on non-Abelian bosonization have been
used successfully in similar contexts [71,85]. Generalizing
our methods to these systems could provide a much-desired
bridge between fine-tuned solvable models and mean-field
studies of generic ones.
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APPENDIX A: ENERGY COST OF TOPOLOGICAL DEFECTS

1. Energy cost of domain walls in the VBS phase of a one-dimensional spin chain

To describe the VBS phase, consider the bosonized action of a U(1) spin chain given by

SVBS =
∫

x,τ

[
1

2πvK
(∂τ�)2 + v

2πK
(∂x�)2 + vg̃4π

16πKd2
0

cos (4�)

]
, (A1)

with K such that the dimensionless coupling constant g̃4π < 0 flows to strong coupling. The minima of the cosine potential,
�min = πn/2, correspond to different topological sectors, labeled by the integer n. On length scales larger than d∗, where g̃4π

has become of order unity, it is appropriate to expand the cosine in a single topological sector, i.e., replace vg̃4π

16πKd2
0

cos (4�) →
v

2πKd2∗
(� − πn/2)2. To find the energy cost of domain walls, we allow the system to transition between different topological

sectors as a function of space, i.e., n → nx and

Seff[n] = 1

2πvK

∫
x,τ

[
(∂τ�)2 + v2(∂x�)2 + v2

d2∗
�2 − πv2

d2∗
�nx + π2v2

4d2∗
n2

x

]
. (A2)

The energy cost of forcing the system into different topological sectors, relative to the uniform n = 0 vacuum, is given by

�E [n] = − lim
T →0

T log

(Z[n]

Z[0]

)
= − lim

T →0
T log〈eS[0]−S[n]〉0

= πv

8Kd2∗

∫
x

n2
x − v2

8K2d4∗

∫
x,x′

nxnx′ 〈�x�x′ 〉0

∣∣
ω=0 = v2

8K2d2∗

∫
x,x′

nxnx′ 〈∂x�x∂x′�x′ 〉0

∣∣
ω=0 , (A3)

where the last equality uses the specific form of the correlation function 〈�x�x′ 〉 according to Eq. (A2). For a generic
configuration of domain walls parametrized by n(x) = ∑

i αiH (x − xi ) with αi ∈ Z, the energy is given by

�E [{α}] = v2

8K2d2∗

∑
i, j

αiα j
〈
�xi�x j

〉
0

∣∣
ω=0 = πv

16Kd∗

∑
i, j

αiα je
−|xi−x j |/d∗ . (A4)

In particular, the energy cost of a single domain wall is given by the prefactor �EDW = πv
16Kd∗

.
The trial function provided in the main text, �DW(x) = tan−1 [e(x−x0 )/ξ ], produces a variational energy cost of �EDW[ξ ] =

v
4πK (1/ξ + ξ/d2

∗ ) for the renormalized action, i.e., Eq. (A1), with g̃4π → −d2
0 /d2

∗ . Its minimal value, attained for ξ = d∗, is
given by �EDW = v

2πKd∗
and is parametrically the same as the result of Eq. (A4). The somewhat smaller numerical value relative

to the previous calculation arises because there, the cosine was replaced by a parabolic potential centered around the nearest
minimum.

2. Energy cost of magnetic vortices in the easy-plane AFM

We follow the same strategy as for the one-dimensional VBS domain walls. Expanding the cosine of Eq. (18a) in topological
sectors, denoted by nx,y+1/2, we obtain

Seff[n] = K

2πv

∫
x,τ

∑
y

[
(∂τy)2 + v2(∂xy)2 + v2

d2∗

(
[�]y+ 1

2
− 2πnx,y+ 1

2

)2
]
, (A5)
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where d∗ is the length scale at which g̃t = 2πd2
0 gt/vK reaches order unity. In this case, n can be interpreted as counting

the magnetic flux tubes in an external probing field. Consider a magnetic field B(x) in the gauge A1 = 0, i.e., A2 = ∫
x B(x).

Incorporating the probing field via minimal coupling amounts to replacing � → � − A2 above, which identifies n =
1

2π

∫
x B(x). The energy cost for a given configuration n can be computed as in the one-dimensional case, i.e.,

�E [n] = 2v2K2d−2
∗

∫
x,x′

∑
y,y′

nx,y+ 1
2
nx′,y′+ 1

2
〈∂xx,y∂x′x′,y′ 〉0

∣∣
ω=0 . (A6)

Parametrizing n in terms of strength αi vortices at positions (xi, ỹi ), i.e., nx,y+ 1
2

= ∑
i αiδy,yi H (x − xi ), we arrive at the final

expression

�E [{α}] = 2v2K2d−2
∗

〈(∑
i

αixi,yi

)2〉
0

∣∣∣∣
ω=0

= vK

2πd∗

∑
i, j

αiα j

∫
kx,ky

cos [k · (Ri − R j )]

k2
x + |�ky |2

, (A7)

with Ri = (xi, d∗ỹi ) and k = (kx, ky). The y momentum ky is measured in units of d−1
∗ and �ky ≡ (eid∗ky − 1)/d∗. If the total

number of vortices Nv ≡ ∑
i αi �= 0, the energy diverges logarithmically with the size of the system. When Nv = 0, the energy

cost is finite; for a single vortex-antivortex pair we find

lim
|R1−R2|→∞

�ER1,R2 = 2vK

d∗
log

( |R1 − R2|
2d∗

)
. (A8)

Importantly, this calculation does not make any reference to a specific form of the vortex. Instead, it fixes the topological
properties and lets the functional integral over  find the optimal configuration. The same result can be obtained by considering
a “trial” configuration of the form

trial = arg [(x − x1)/ξ + i(y − ỹ1)] − arg [(x − x2)/ξ + i(y − ỹ2)], (A9)

where ξ is a variational parameter. Computing the corresponding energy at large vortex-antivortex separation, one finds

Etrial[ξ ] = K

2πv

∫
x

∑
y

[
v2(∂xtrial )

2 + v2

d2∗
[�trial]

2

]
= 2vK

d∗

d2
∗ + ξ 2

2ξd∗
log

( |Ri − R j |
2ξ

)
+ O(1), (A10)

with Ri = (xi, ξyi ). To optimize ξ within logarithmic accuracy, it is sufficient to focus on the prefactor of the logarithm; it is
minimized for ξ = d∗ where Eq. (A10) reduces to the result provided in Eq. (A8).

3. Energy cost of dislocations and bosonic partons in the intrawire VBS

To generate the two-dimensional VBS with dimers along the wire direction x̂, we introduce two different cosines per wire
pair. We introduce dimensionless coupling constants g̃u > 0 and g̃4π < 0, and write

δLintra VBS = − vg̃u

4πKd2
0

cos (2[��]y+1/2) + vg̃4π

16πKd2
0

cos (4�y), (A11)

where, for convenience, we have redefined �y → (−1)y(�y + πy/2). Beyond the length scales d∗ and l∗, where the coupling
constants renormalize to order unity, we expand the action in topological sectors. Labeling said sectors by integers n and p, we
obtain

Seff[n, p] = 1

2πvK

∫
x,τ

∑
y

[
(∂τ�y)2 + v2(∂x�y)2 + v2

d2∗

(
[��]y+ 1

2
− πnx,y+ 1

2

)2 + v2

l2∗

(
�y − π

2
px,y

)2
]
. (A12)

As before, we parametrize the integer functions n and p by the locations and strengths of topological defects, i.e., n =∑
i αiH (x − xi )δỹ,ỹi and p = ∑

i βiH (x − Xi )δy,Yi . The energy cost for a general configuration naturally decomposes into
a manifestly local, system-size-independent contribution, and a nonlocal one that may be IR divergent, i.e., �E [n, p] =
�Elocal[n, p] + �Enonlocal[n − 1

2�p] with

�Elocal = v2

2K2d2∗

∑
i, j

αiα j
〈
�xi,yi�x j ,y j

〉
0

∣∣
ω=0 + v2

8K2l2∗

∑
i, j

βiβ j
〈
�xi,yi�x j ,y j

〉
0

∣∣
ω=0, (A13)

�Enonlocal = v2

2K2d2∗ l2∗

∫
x,x′

∑
y,y′

(
nx,y+ 1

2
− 1

2
[�p]x,y+ 1

2

)(
nx′,y′+ 1

2
− 1

2
[�p]x′,y′+ 1

2

)
〈�x,y�x′,y′ 〉0

∣∣
ω=0. (A14)

A priori n and p are independent, and the lowest energy cost for a given n must be found by optimizing over all possible p.
Fortunately, this minimization can be avoided when the density of defects n is low; there, the optimal p can be inferred based on
general considerations.
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Consider a single dislocation-antidislocation pair defined by α1 = 1 and α2 = −1, i.e., nx,ỹ = H (x − x1)δỹ,ỹ1 −
H (x − x2)δỹ,ỹ2 . The corresponding p can be deduced as follows: (i) To avoid energies that diverge with system size, the
topological sectors must match asymptotically, i.e., limx→∞(nx,ỹ − [�p]x,ỹ/2) = 0. (ii) The minimal number of p defects within
this constraint has exactly one of strength βi = 2 for each wire Yi ∈ [ỹ1, ỹ2]. (iii) Their optimal locations are along the line
connecting r̃1 = (x1, ỹ1) and r̃2 = (x2, ỹ2). To determine the energy for distances much larger than l∗, we approximate

〈�x,y�x′,y′ 〉0|ω=0 = Kd∗
4πv

∫
kx,ky

cos[k · (R − R′)]
k2

x + |�ky |2 + l−2∗
≈ πKl2

∗
v

δ(x − x′)δy,y′ , (A15)

where R = (x, d∗y). [When appearing in discrete sums as in �E , δ(xi − x j ) is to be understood as d−1
0 δxi,x j , where the

microscopic length scale d0 acts as a UV cutoff.] In this limit we find simplified expressions for the local and nonlocal
contributions to the energy, which in case of a single dislocation-antidislocation pair give

�Elocal = πvl2
∗

2Kd0d2∗

∑
i

α2
i + πv

8Kd0

∑
i

β2
i = πvl2

∗
Kd0d2∗

+ πv

2Kd0
(ỹ2 − ỹ1), (A16)

�Enonlocal = πv

2Kd2∗

∫
x

∑
y

(
nx,y+ 1

2
− 1

2
[�p]x,y+ 1

2

)2

= πv

2Kd2∗

(x2 − x1)

1 + (ỹ2 − ỹ1)−1 . (A17)

Topological defects in the intrawire VBS phase are thus linearly confined. As for the case of magnetic vortices, the same
conclusion can be reached by studying appropriate trial states. For the Ising-AFM phase, the sign of g̃4π in Eq. (A11) is reversed,
but the analysis is otherwise identical, i.e., defects are also linearly confined.

4. Energy cost of bosonic-parton vortices in the correlated Mott insulator

In the correlated Mott insulator (cf. Sec. IV B 3), there are two cosines per wire pair, i.e.,

δL↓ + δL↑ = vBg̃u

πd2
0

cos ([�2ϕ↓]2ỹ+1) + uBg̃t

πd2
0

cos (2θ2ỹ+1,↑). (A18)

Beyond the length scales d∗ and l∗, where coupling constants renormalize to order unity, we expand the action in the topological
sectors. Labeling said sectors by the integer functions n and p, we write

Seff[n, p] = S0 +
∫

x,τ

∑
ỹ

[
2vB

d2∗

(
πn2

x,2ỹ+1 − [�2ϕ↓]2ỹ+1nx,2ỹ+1
) + 2uB

l2∗

(
π p2

x,2ỹ+1 − 2θ2ỹ+1,↑ px,2ỹ+1
)]

, (A19)

where S0 is the effective action of the trivial topological sector with n = p = 0. Vortex-antivortex pairs are encoded in n, so
we set p to zero. To evaluate the energy cost for a given n, we need the Green function of �ϕ↓ within the Gaussian theory
S0[ϕσ , θσ , a]. Its leading order in kx and �ky is

〈∣∣�2kyϕ↓
∣∣2〉∣∣

ω=0 = πα2

vBd2∗

1 + α2d2
∗
∣∣�ky

∣∣2
k2

x + ∣∣�ky

∣∣2 + α2

d2∗

, (A20)

where the dimensionless parameter α2 = 4vB
κ ṽ

encodes the ratio of boson and gauge-field velocities. For a single vortex-antivortex
pair at positions Ri = (xi, d∗ỹi ), with ỹi odd and |R1 − R2| � d∗ we find

�ER1,R2 = vB

2πd∗

∫
kx,ky

2 − 2 cos[k · (R1 − R2)]

k2
x + ∣∣�ky

∣∣2 + α2

d2∗

= 2vB

d∗
f (α2) − 2vB

d∗

√
πd∗

2α|R1 − R2|e−α|R1−R2|/d∗ . (A21)

Here, the dimensionless integral f (x) = 1
2

∫ π

−π
dθ 1√

x+2−2 cos(θ )
diverges logarithmically for x → 0 but is otherwise finite. The

energy required for creating an isolated vortex is thus vB/d∗ times a number of order unity.

APPENDIX B: DERIVATION OF THE BOSONIC-PARTON FIELD THEORY

The equivalence between the microscopic coupled-wire model described in Sec. III B and the gauge theory for bosonic
partons introduced in Sec. IV A can be shown using the methods of Refs. [95,96]. We begin with the gauge theory S =∫

x,τ

∑
y [Lb + LMaxwell + L′

b] in the a2 = 0 gauge, where

Lb = i

π
∂xθỹ(∂τϕỹ − a0,ỹ) + vB

2π
(∂xϕỹ − a1,ỹ)2 + uB

2π
(∂xθỹ)2, (B1)

LMaxwell = κ

4π ṽ
[�a0]2

y + κ ṽ

4π
[�a1]2

y . (B2)
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We here omit the redundant label σ = (−1)y+1 to lighten the notation. The final term L′
b contains exponentially decaying

interwire interactions. Specifically, density-density and current-current interactions

L′
b =

∑
y′

{[�∂xθ ]y(W1)y,y′ [�∂xθ ]y′ + [�∂xϕ]y(W2)y,y′ [�∂xϕ]y′ }, (B3)

where Wi decay exponentially with |y − y′|. Crucially, L′
b is short ranged in both parton and spin variables and thus does not

affect the structure of the gauge theory. Performing the Gaussian integrals over aμ and expressing ϕ, θ in terms of ,� using
Eq. (28), we find S = ∫

x,τ

∑
y [Lspins + L′

spins] with

Lspins = i

π
∂x�y∂τy + vK

2π
(∂xy)2 + v

2πK
(∂x�y)2 + uB

2π
[S∂x�]2

ỹ, (B4)

where K = κ
2

√
vB

vB+2κ ṽ
and v = 2ṽK/κ . The term L′

spins contains exponentially decaying interwire interactions, i.e.,

L′
spins = v2K2

2πvB

∑
ỹ′

[�∂x]ỹ

[
1 − vK

vB
�T �

]−1

ỹ,ỹ′
[�∂x]ỹ′ +

∑
y′

∂xy(PW2P)y,y′∂xy′ +
∑

y′
[ST S∂x�]y(PW1P)y,y′[ST S∂x�]y′ ,

(B5)

where Py,y′ = (−1)yδy,y′ . Since vK
vB

< 1
4 for any choice of parameters, all terms in L′

spins decay exponentially with |y − y′|; a
suitable choice of Wi in Eq. (B3) can thus be used to achieve L′

spins = 0. Alternatively, Wi can be chosen such that L′
spins =

uV
8π

[�∂x]2
ỹ , which is the result stated in the main text, i.e., Eqs. (12) and (32).

External probing field

Before concluding this Appendix, we include the external probing field �A that minimally couples to the conserved Sz of the
microscopic spins. Translating LA of Eq. (39) to bosonic-parton variables we find

LA = i

π
(−1)ỹ∂xθỹ[S−T A0]ỹ + vK

π
(−1)ỹ∂xϕỹ[SA1]ỹ + vK

2π
A2

1,y, (B6)

where S−T
ỹ,y is the inverse transpose of Sỹ,y. To cast the coupling into a more revealing form, we shift aμ according to

a0,ỹ → a0,ỹ − 1

4
(−1)ỹ[SA0]ỹ + (−1)ỹ[S−T A0]ỹ, (B7a)

a1,ỹ → a1,ỹ −
(

1

4
− vK

vB

)
(−1)ỹ[SA1]ỹ. (B7b)

This shift completely cancels LA; the external probing field instead appears in Lb of Eq. (B1) through the replacement aμ,ỹ →
aμ,ỹ − 1

4 (−1)ỹ[SAμ]ỹ and in higher-order couplings to the emergent gauge field given by

La−A = K

πv
(−1)y[�T �A0]y[�a0]y + vK

4π
(−1)y[�T �A1]y[�a1]y. (B8)

APPENDIX C: DERIVATION OF THE FERMIONIC-PARTON FIELD THEORY

To derive the gauge theory for the fermionic partons, we follow the same steps as for the bosonic partons. Specifically, we
consider the action S = ∫

x,τ

∑
y [L f + LMaxwell + L′

f + L′] with

L f = i

π
∂xθ f ,ỹ(∂τϕ f ,ỹ − a0,ỹ) + vF

2π
(∂xϕ f ,ỹ − a1,ỹ)2 + uF

2π
(∂xθ f ,ỹ )2, (C1)

LMaxwell = κ

8π ṽ
[�a0]2

y + κ ṽ

8π
[�a1]2

y . (C2)

The first “primed” term L′
f contains interwire interactions between fermion densities and currents, that decay exponentially with

the wire separation |y − y′|. This term is not essential for understanding the structure of the gauge theory. For completeness, we
still provide an explicit treatment below. The final term is

L′ = i

4π
α(−1)y[�a1]y[�a0]y. (C3)

It has an alternating sign and thus does not affect the long-distance behavior of the photon propagator (see Appendix D 3 below).
However, as we will see, it is essential for the microscopic time-reversal symmetry of the spin system. To understand its origin,
recall that the fermionic partons are obtained by attaching fluxes of opposite sign to the two bosonic-parton species. In the
schematic continuum manipulations described by Eq. (73), the two Chern-Simons terms that implement this flux attachment
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exactly cancel. By contrast, in the wire regularization, the two species of fermionic partons reside at different locations (even vs
odd dual wires). Consequently, the cancellation is imperfect, and a residual term LCS,even + LCS,odd ∝ L′ + (−1)ỹO(�4) remains.

To map the gauge theory to spin variables, we perform the Gaussian integrals over aμ and express ϕ f , θ f in terms of , �

using

ϕ f ,ỹ = −(−1)ỹ[S−T ]ỹ + 2[�−T �]ỹ − [��]ỹ, (C4)

θ f ,ỹ = −(−1)ỹ[S�]ỹ, (C5)

with (�−T )ỹ,y′ the inverse transpose of �ỹ,y′ . We find S = ∫
x,τ

∑
y [Lspins + L′

spins + L′′
spins], where

Lspins = i

π
∂x�y∂τy + vK

2π
(∂xy)2 + v

2πK
(∂x�y)2 + uV

4π
[�∂x]ỹ + uF

2π
[S∂x�]2

ỹ, (C6)

with parameters K = α
2κ

√
κvF

κvF +(α2+κ2 )ṽ , v = 2ṽκK/α, uV = vF ( αṽ
2αṽ+κvF

)
2
, and uF = uF + 4vK . The term L′

spins contains expo-

nentially decaying interwire terms whose explicit form is provided below. Crucially, a suitable choice of the L′
parton results in

L′
spins = 0, and can additionally be used to tune the parameters uV and uF in Eq. (C6). The final term

L′′
spins = v

2π
(−1)y∂x�y∂xy, (C7)

with v = 4vK ( 2α
α2+κ2 − 1), cannot be eliminated by any choice of L′

parton, which contains only higher orders in �. Moreover, it
violates the microscopic time-reversal symmetry. To preserve this symmetry, we must, therefore, choose α in the gauge theory
of Eq. (C3) such that v = 0, namely, α = 1 ± √

1 − κ2 ≡ α0. Having eliminated L′
spins and L′′

spins, the action matches Eqs. (12)
and (32) with the parameters specified above.

1. Explicit form of short-range interactions

We include generic short-range density-density, current-current, and density-current interactions for the fermionic parton in
the form

L′
parton =

∑
ỹ′

{[�∂xθ f ]y(W1)y,y′ [�∂xθ f ]y′ + [ST �∂xϕ f ]ỹ(W2)ỹ,ỹ′ [ST �∂xϕ f ]ỹ′ + [�∂xθ f ]y(W3)y,y′ [P�∂xϕ f ]y′ }, (C8)

where Wi decay exponentially with |y − y′|. It is straightforward to express these in terms of ,� and combine them with the
exponentially decaying interactions stemming from the Gaussian integrals over aμ. We find

L′
spin = vF

2π

∑
ỹ′

{[S∂x�]ỹ(W̃1)ỹ,ỹ′ [S∂x�]ỹ′ + [�∂x]ỹ(W̃2)ỹ,ỹ′ [�∂x]ỹ′ − [S∂x�]ỹ(W̃3)ỹ,ỹ′ [P�∂x]ỹ′ }, (C9)

with exponentially decaying W̃i. We are interested in v = 0, for which these kernels are given by

W̃1 = S(V2 − �T W2� + PW1P + PW3P)ST + 4W2 − 2PW3P − 4g, (C10)

W̃2 = V1 + PW2P, (C11)

W̃3 = 2
[
V2 + (2 − �T �)W2 + 1

2 PW3P
]
, (C12)

where g = vK
vF

, V1 = g3�T [1 − g�T �]−1
�, and V2 = g

1−4g[1 + g
1−4g�

T �]−1. A choice of exponentially decaying Wi that results
in L′

spins = 0 is given by

W1 = 2g

(
1 − 2g − 2g2 + g2�T � − 1

2
g2�T ��T �

)
[1 − g�T �]−1, (C13)

W2 = − g3

1 − 4g
ST S

[
1 + g

1 − 4g
�T �

]−1

, (C14)

W3 = −2g[1 + g2�T �(2 − �T �)][1 − g�T �]−1. (C15)

2. External probing field

Before concluding the derivation, we also include an external probing field �A that minimally couples to the conserved Sz of
the microscopic spins. We thus supplement the action of the gauge theory action by LA as given in Eq. (39). In terms of the
fermionic-parton variables

LA = i

π
(−1)ỹ∂xθ f ,ỹ[S−T A0]ỹ + vK

π
(−1)ỹ∂xϕ f ,ỹ[SA1]ỹ − vK

π
∂xθ f ,ỹ[(2 − �T �)�−T A1]ỹ + vK

2π
A2

1,y. (C16)
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To cast this into a more revealing form, we shift aμ according to

a0,ỹ → a0,ỹ − 1

4
(−1)ỹ[SA0]ỹ + (−1)ỹ[S−T A0]ỹ + ivK[(2 − �T �)�−T A1]ỹ, (C17a)

a1,ỹ → a1,ỹ −
(

1

4
− vK

vF

)
(−1)ỹ[SA1]ỹ. (C17b)

This completely cancels LA; the external probing field instead appears in L f of Eq. (C1) through the replacement aμ,ỹ →
aμ,ỹ − 1

4 (−1)ỹ[SAμ]ỹ and in higher-order couplings to the emergent gauge field given by

La−A = −K (2 − α)(−1)y

8πv
[�T a0]y[�T �A0]y − vK (2 + α)(−1)y

8π
[�T a1]y[�T �A1]y

− iK2

4π
[�T a0]y[�T �A1]y + iα

16π
[�T a1]y[�T �A0]y. (C18)

APPENDIX D: GAUGE-THEORY CALCULATIONS

1. Bosonic-parton superfluid

To analyze the implications of a condensed bosonic parton, first recall that the gauge theory is of the form L =∑
σ Lσ [bσ , aσ + σ

2 Aσ ] + LMaxwell[a↑, a↓], where �Aỹ ≡ ( �Aỹ−1/2 + �Aỹ+1/2)/2 and we have endowed �a and �A with the (redundant)
spin label corresponding to the dual-wire parity. The two species couple only through the Maxwell term

LMaxwell = κ

4π

{
1

ṽ
[(a0,2ỹ,↓ − a0,2ỹ−1,↑)2 + (a0,2ỹ+1,↑ − a0,2ỹ,↓)2] + ṽ[(a1,2ỹ,↓ − a1,2ỹ−1,↑)2 + (a1,2ỹ+1,↑ − a1,2ỹ,↓)2]

}
. (D1)

(Additional short-range interactions between opposite species can always be subsumed by adding higher-order derivatives to the
Maxwell term.) Condensation of b↓ corresponds to δL↓ = gt cos (ϕ2ỹ+2,↓ − ϕ2ỹ,↓) reaching strong coupling first. We introduce
a dimensionless coupling constant with bare value g̃t = πd2

0 gt/vB and replace

δL↓ = vBg̃t

πd2
0

cos ([�2ϕ↓]2ỹ+1) → vB

2πd2∗
[�2ϕ↓]2

2ỹ+1. (D2)

Here, d∗ is the length scale at which the coupling constant renormalized to order unity. Upon integrating out θ↓ the Lagrangian
governing ϕ↓ is given by

L↓ + δL↓ = 1

2πuB

∣∣∣∣iωϕ↓ − a0,↓ + 1

2
A0,↓

∣∣∣∣2 + vB

2π

∣∣∣∣ikxϕ↓ − a1,↓ + 1

2
A1,↓

∣∣∣∣2 + vB

2π
|�kyϕ↓|2, (D3)

where we have Fourier transformed using a two-wire unit cell. Further performing the Gaussian integral over ϕ↓ we obtain
Lind[a↓ − 1

2 A↓] = 1
2π

(a∗
↓ − 1

2 A∗
↓)μ�ind

μν (a↓ − 1
2 A↓)ν with

�ind = 1

ω2 + uBvBk2
x + uBvB

∣∣�ky

∣∣2
(

vBk2
x + vB

∣∣�ky

∣∣2 −vBωkx

−vBωkx vBω2 + uBv2
B

∣∣�ky

∣∣2
)

. (D4)

This induced action supplements the bare LMaxwell, which in Fourier space reads as

LMaxwell = κ

4π

[
1

ṽ
(|a0,↓ − e−id0ky a0,↑|2 + |a0,↑ − a0,↓|2) + ṽ(|a1,↓ − e−id0ky a1,↑|2 + |a1,↑ − a1,↓|2)

]
. (D5)

We now shift aμ,σ → aμ,σ + 1
2 Aμ,↓ such that Aμ,↓ is eliminated from Lind. It instead enters L↑ and, at subleading order

|�ky |2Aμ,↓, the Maxwell term LMaxwell. Finally, performing the integral over aμ,↓ and retaining only the leading orders in �ky we

arrive at the effective action Leff = L↑[b↑, a↑ + A↑+A↓
2 ] + 1

2π
γμa∗

μ,↑[�(0) + �(2)]μνγνaν,↑ with

�(0) = 1

ω2 + c2
xk2

x + c2
y

∣∣�ky

∣∣2
(

c2
xk2

x + c2
y

∣∣�ky

∣∣2 −cxkxω

−cxkxω c2
y

∣∣�ky

∣∣2 + ω2

)
, (D6)

�(2) =
∣∣�ky

∣∣2
4
[
ω2 + c2

1k2
x + c2

2

∣∣�ky

∣∣2]
⎛⎝ κuB

ṽ

[
c2

1k2
x + c2

2

∣∣�ky

∣∣2 + ũB+ṽ
κuB

ω2
]

c1kxω

c1kxω
κ ṽ
vB

[
vB+κ ṽ

κ ṽ
c2

1k2
x + c2

2

∣∣�ky

∣∣2 + ω2
]⎞⎠, (D7)

where c2
x = vB ṽ(κuB+ṽ)

vB+κ ṽ
, γ0 =

√
κ

(κuB+ṽ) , c2
y = vB

γ 2
0

, and γ1 = γ0cx. The analytically continued gauge-field propagator has poles at

real frequencies ω = ±
√

ṽ2k2
x + vBuB|�ky |2 + 4vB ṽ

κd2∗
. For any finite d∗, the gauge field �a↑ is gapped; integrating it out results in
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L↑[b↑, 1
2 A↑ + 1

2 A↓], up to renormalization of parameters and short-range interactions. Crucially, b↑ now couples to the external
probing field with unit charge, i.e., carries spin 1.

Finally, consider the case where the second parton also condenses, i.e., where δL↑ ∼ cos (ϕ2ỹ+1,↑ − ϕ2ỹ−1,↑) flows to strong
coupling as well. Treating δL↑ in the same way as δL↓ and integrating out b↑, we find

LMeissner = vB

2π
Āμ

[
δμν − pμ pν

�p · �p
]

Āν + O(p2), (D8)

where �̄A = (A0
1√

uBvB
, A) and �p = ( ω√

vBuB
, kx, ky). This response to the probing field �A implies that the U(1) spin-rotation

symmetry is spontaneously broken.

2. Bosonic-parton quantum Hall state

The Lagrangian for the quantum Hall state of bosonic partons, described in Sec. IV B 4, is

LQH = i

π
∂xθỹ(∂τϕỹ − a0,ỹ) + vB

2π
(∂xϕỹ − a1,ỹ)2 + uB

2π
(∂xθỹ)2 + gQH cos

(
ST �ϕỹ − 2nθỹ

) + LMaxwell, (D9)

with LMaxwell = κ
4π ṽ

[�a0]2
y + κ ṽ

4π
[�a1]2

y . To integrate out the bosonic partons, we introduce new conjugate variables that
diagonalize the interwire interaction, i.e., θ̄ỹ = 1

2 (ST �ϕỹ) + nθỹ and ϕ̄ỹ = 1
nϕỹ. In terms of θ̄ and ϕ̄, the Lagrangian is

LQH = i

π
∂x θ̄ỹ(∂τ ϕ̄ỹ − a0,ỹ) + vB

2π
(n∂xϕ̄ỹ − a1,ỹ)2 + uB

2πn2
(∂x θ̄ỹ)2 + gQH cos (2θ̄ỹ)

+ i

2π
ST �∂xϕ̄ỹa0,ỹ + uB

8π
(ST �∂xϕ̄ỹ)2 − uB

2πn
∂x θ̄ỹST �∂xϕ̄ỹ + LMaxwell. (D10)

We introduce the dimensionless coupling constant g̃QH = 8πd2
0 gQH/vB and replace vBg̃QH

8πd2
0

cos (2θ̄ỹ) → vB
2πd2∗

θ̄2
ỹ , where d∗ is the

length scale at which it renormalizes to order unity. Performing the Gaussian integral over ϕ̄ we find, to lowest order in
derivatives,

L′
QH = i

πn
θ̄ỹ(∂xa0,ỹ − ∂τ a1,ỹ) + vB

2πd2∗
θ̄2

ỹ + i

2πn
[Sa1]y[�a0]y + 1

2πvBn2
[�a0]2

y + uB

2πn2
[�a1]2

y . (D11)

Finally, we perform the integral over θ̄ and obtain the effective gauge theory

Lgauge = i

2πn
[Sa1]y[�a0]y +

(
κ

4π ṽ
+ 1

2πvBn2

)
[�a0]2

y +
(

κ ṽ

4π
+ uB

2πn2

)
[�a1]2

y + d2
∗

2πvBn2
(∂xa0,ỹ − ∂τ a1,ỹ)2. (D12)

3. Fermionic-parton QSH

To assess the relevance of monopoles in the QSH phase of fermionic partons we compute their correlation function within the
monopole-free theory. The corresponding Lagrangian was introduced in Sec. V B 2; it is given by LQSH = Lmatter + Lgauge with

Lmatter = i

π
∂xθ f ,ỹ,σ (∂τϕ f ,ỹ,σ − a0,ỹ) + vF

2π
(∂xϕ f ,ỹ,σ − a1,ỹ)2 + uF

2π
(∂xθ f ,ỹ,σ )2 + ṽ

8πκd2∗
[S2θ f ,σ − P�2ϕ f ,σ ]2

ỹ, (D13)

Lgauge = κ

8π ṽ
[�a0]2

y + κ ṽ

8π
[�a1]2

y + i

4π
α(−1)y[�a1]y[�a0]y, (D14)

where, as usual, d∗ is the length scale beyond which the quadratic approximation of the cosine is appropriate. (For the last term
in Lgauge, cf. Appendix C.) It is straightforward to integrate out the matter fields and obtain the induced gauge-field action. Upon

expanding in frequencies and x momenta small compared to the QSH gap, EQSH ≡
√

4ṽvF
κd2∗

, we find

Lind = 1

8πvF
[�2a0]2

ỹ + uF

8π
[�2a1]2

ỹ + κd2
∗

8π ṽ
(∂xa0,ỹ − ∂τ a1,ỹ)2 + i

4π
(−1)ỹ[S2a1]ỹ[�2a0]ỹ + L′

ind. (D15)

Here L′
ind contains terms suppressed by at least two additional powers of �2. These contributions can easily be retained but

do not affect any long-wavelength properties; we, therefore, discard them. In the absence of oscillatory terms ∼(−1)ỹ in the
total gauge-field action Lgauge + Lind, we approximate �2 = 2� + �2 ≈ 2� for describing long-wavelength properties. We
thus obtain the effective gauge-field action

Leff
gauge = κ

8π

{
1

ṽ
γ 2[�a0]2

y + ṽη2[�a1]2
y + d2

∗
1

ṽ
(∂xa0,ỹ − ∂τ a1,ỹ)2

}
, (D16)
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where γ 2 = 1 + 4ṽ
κvF

and η2 = 1 + 4uF
κ ṽ

. Oscillatory terms ∼(−1)ỹ couple gauge fields at y momenta ky and ky + π/d∗. We obtain
the long-wavelength action in that case, by integrating out modes at momenta |ky| > π/2d∗. Returning to real space, we again

find Leff
gauge, but with modified parameters γ 2 = κ2+(2−α)2

κ2 + 4ṽ
κvF

, η2 = κ2+(2+α)2

κ2 + 4uF
κ ṽ

.

To compute the correlation function of a probing monopole in this theory, we supplement Leff
gauge by the monopole action of

Eq. (82) and integrate out aμ. At leading order in �ky , we find

LM,eff =
⎡⎣ ṽ

2πκ
+ ṽ

2πκγ 2

η2ṽ2
∣∣�ky

∣∣2 + ω2

η2ṽ2
∣∣�ky

∣∣2 + ω2 + η2

γ 2 ṽ2k2
x

⎤⎦k2
x |φM|2 + gM

2
[M−�kM�k + M†

−�kM
†
�k]. (D17)

The monopole-monopole correlation function, evaluated within a monopole-free background gM = 0, is given by

CM
R = exp

{
− κd∗

8π2ṽ

γ 2

γ 2 + 1

∫
k,ω

[2 − 2 cos (k · R)]

[
1

k2
x

+ O(1)

]}
∼
⎧⎨⎩e

− 4
π

γ 2

γ 2+1
( x

d∗ )2

, y = 0

e
− 2

π

√
κ ṽ
vF

γ 2

γ 2+1
f (y) L

d∗ , y �= 0
(D18)

where L is the wire length, and the ω and kx integrals are cut off by EQSH and v−1
F EQSH, respectively. The function f (y) ≡

1 − sin (πy/2)
πy/2 is bounded from below by 1 − 2/π ≈ 0.36 for nonzero y. At long distances, this correlation function decays faster

than exponential. Monopoles described by M are thus strongly irrelevant.
We now turn to dressed monopoles, which were introduced in Sec. V B 2 via the shorthand Mdressed ∼ f †

↓ f↑M. Their explicit
expression is

Mdressed,r =
{
Mr f †

r− 1
2 ŷ,↑,L

fr+ 1
2 ŷ,↓,L, y even

Mr f †
r+ 1

2 ŷ,↑,R
fr− 1

2 ŷ,↓,R, y odd.
(D19)

It is instructive to relate its correlation function to configurations of the emergent gauge field �a. We therefore write

CM
dressed,r−r′ = 〈M†

dressed,rMdressed,r′ 〉 ≡
∫
D[ fσ , a, φM]M†

dressed,rMdressed,r′e−SM−SQSH∫
D[ fσ , a, φM]e−SM−SQSH

, (D20)

and perform the integrals over both the fermions and the monopole field φM. To lowest order in kx, we find

CM
dressed,R = exp

{
− κd∗

16π2ṽ
γ 2

∫
k,ω

2 − 2 cos (k · R)

k2
x

[
1 − κ

4π ṽ
γ 2d2

∗ 〈|ε2|2〉0

]}
, (D21)

where 〈. . .〉0 is evaluated with respect to Eq. (D16) and ε2 = �a0/d∗ is the y component of the emergent electric field in the
a2 = 0 gauge. Consequently, the long-distance behavior of the dressed monopole-monopole correlation function matches the
form obtained by evaluating Eq. (10) with the appropriate singular configuration �aM (cf. Fig. 7 ). Explicitly, we find

CM
dressed,R ∼ exp

⎡⎣ κηd∗

4
√

x2 + ( d∗y
γ

)2

⎤⎦. (D22)

We conclude by pointing out that CM can also be expressed in the form of Eq. (D21) but with γ 2 replaced by γ 2 − 4ṽ
κvF

.
This apparently innocuous change spoils the cancellation between the bare k−2

x singularity and the 〈|ε2|2〉0 term, which requires
its prefactor to match the one in Leff

gauge, changing one but not the other results in qualitatively different long-distance behavior
[cf. Eq. (88), where we discarded oscillatory terms and hence found Eq. (D21) with γ = 1]. The presence or absence of the
oscillatory terms in the total gauge-field action Lgauge + Lind changes both of these factors equally and, therefore, does not
qualitatively affect the monopole-monopole correlation function.
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