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Aharonov-Bohm interference as a probe of Majorana fermions

T. C. Bartolo ,1,* J. S. Smith ,1 B. Muralidharan,2 C. Müller ,3,4 T. M. Stace,4 and J. H. Cole 1,†

1Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
2Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

3IBM Quantum, IBM Research - Zurich, 8803 Rüschlikon, Switzerland
4ARC Centre for Engineered Quantum System, School of Mathematics and Physics, University of Queensland,

Brisbane, Queensland 4072, Australia

(Received 29 June 2020; revised 1 October 2020; accepted 28 November 2020; published 28 December 2020)

Majorana fermions act as their own antiparticle, and they have long been thought to be confined to the
realm of pure theory. However, interest in them has recently resurfaced, as it was realized through the work
of Kitaev that some experimentally accessible condensed matter systems can host these exotic excitations as
bound states on the boundaries of one-dimensional chains, and that their topological and non-Abelian nature
holds promise for quantum computation. Unambiguously detecting the experimental signatures of Majorana
bound states has turned out to be challenging, as many other phenomena lead to similar experimental behavior.
Here, we computationally study a ring comprised of two Kitaev model chains with tunnel coupling between
them, where an applied magnetic field allows for Aharonov-Bohm interference in transport through the resulting
ring structure. We use a nonequilibrium Green’s function technique to analyze the transport properties of the ring
in both the presence and absence of Majorana zero modes. Further, we show that these results are robust against
weak disorder in the presence of an applied magnetic field. This computational model suggests another signature
for the presence of these topologically protected bound states can be found in the magnetic field dependence of
devices with loop geometries.
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I. INTRODUCTION

Majorana fermions were postulated in 1937 as fermionic
excitations that act as their own antiparticle [1], but so far
they have not been experimentally shown to exist in nature.
More recently it was shown theoretically that one-dimensional
(1D) systems exhibiting p-wave superconductivity within cer-
tain parameters host Majorana zero modes (MZMs) at their
boundaries [2]. It was soon realized that the topological na-
ture of these bound states make them ideal candidates for
quantum computation, as it helps to protect them from some
types of decoherence [3,4]. Destroying information encoded
in this way requires a global perturbation that is strong enough
to break the topologically nontrivial phase of the system
[5,6]. Further, their non-Abelian character [2,7] allows one
to manipulate pairs of MZMs through braided exchange of
their relative positions, showing a way towards topologically
protected quantum computation [2,3,8–10]. One possible ex-
perimental system hosting MZMs is one-dimensional (1D)
semiconductor wires with strong spin-orbit coupling and
proximity induced superconductivity [2,11]. Several recent
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works have reported experimental evidence for the existence
of MZMs in such condensed matter systems [11–17]. How-
ever there exist a number of confounding effects that have
signatures similar to MZMs [17–23] and which make the
unambiguous detection of Majorana fermions an ongoing
challenge.

The standard theory model that allows for MZMs is the
Kitaev model nanowire [2]. It consists of a 1D tight binding
chain with proximity induced p-wave superconductivity, as
illustrated in Fig. 1(a). Several different materials have been
considered to realize such wires [2,11–17]. Although the sys-
tem parameters vary between the different materials, for all
these systems the key physics can be approximated by the
effective Kitaev nanowire Hamiltonian.

The parameter regimes of the Kitaev nanowire have been
extensively studied [2,24–26], as have its transport prop-
erties [27–29]. By coupling two Kitaev nanowires through
nonsuperconducting links at their ends, we form an Aharonov-
Bohm (AB) ring, as illustrated in Fig. 1(b).

Different ring geometries have previously been investi-
gated using interferometry, from which it was suggested that
the periodicity of the conductance as a function of magnetic
field might be used as a way to identify Majorana bound
states [30–33]. Other studies employed either scattering ma-
trix theory or Green’s function techniques to study a normal
AB ring containing a single nanowire hosting MZMs [34–38].
For example, the transport properties of such an AB ring were
found to be sensitive to the difference between MZMs and
Andreev bound states [34,39–44]. Studies of two-dimensional
systems of finite extent have investigated interference effects
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FIG. 1. A diagram of a 1D Kitaev nanowire (a) and Aharonov-
Bohm ring (b). These consist of a tight binding chain with onsite
potential μ, hopping strength t , and a p-wave pairing amplitude of �.
Normal leads are coupled to the nanowire with a hopping amplitude
of τ .

due to chiral Majorana fermion edge states at the normal-
superconductor boundary [13,45,46].

In this paper we study the interplay between the AB effect
and MZMs, and expand on these previous works by analyzing
the transport characteristics of an AB ring formed by two
coupled Kitaev nanowires. We employ the nonequilibrium
Green’s function (NEGF) formalism and explore the relation-
ship between model parameters and transport characteristics
for a finite size ring geometry. Previous studies have inves-
tigated the case of MZMs in a finite nanowire [47,48]. Such
models are particularly useful as all experimentally realizable
devices are finite, which limits what can be understood simply
from the bulk properties of the materials hosting MZMs. The
relation between AB interference and Majorana bound states
in such a loop geometry has previously been studied using a
scattering matrix approach with the wide-band approximation
[49]. However, energy resolved transport characteristics of
such a circuit provide important clues on how such effects
can be probed experimentally and will help us to further
understand the experimental signatures of these topologically
nontrivial bound states. Here we show that mapping the en-
ergy resolved transmission through an AB ring comprising
two MZMs displays the expected resonance at zero energy.
However, mapping this resonance as a function of magnetic
field, on-site potential, or superconducting order parameter
results in characteristic responses, suggesting the possibility
of unambiguously distinguishing MZMs from trivial bound
states.

The paper proceeds as follows: Section II introduces the
standard toy model for the Kitaev nanowire. The NEGF for-
malism is then outlined in Sec. II A. Section III expands on
the Kitaev nanowire by introducing an AB ring comprised of
two coupled Kitaev nanowires. Finally, Sec. IV examines the
transport properties of this ring in the presence of an applied
magnetic field. We conclude in Sec. VI.

TABLE I. The different parameter regimes for the Kitaev
nanowire. These regimes are obtained from the Hamiltonian shown
in Eq. (1).

Regime Model parameters

Topologically trivial μ/t > 2
Topologically nontrivial μ/t < 2, �/t �= 0
Superconducting �/t � 1
Normal �/t = 0

II. THE KITAEV NANOWIRE

We begin by following Kitaev in defining a model Hamil-
tonian (ĤKC) for a system admitting the existence of MZMs
as

ĤNW =
N∑

j=1

[
− t (c†

j c j+1) − μ

(
c†

j c j − 1

2

)
+ H.c.

]
,

ĤKC = ĤNW +
N∑

j=1

[�eiθc jc j+1 + �e−iθ c†
j+1c†

j ] (1)

where t is the nearest-neighbor hopping strength, μ is the
on-site potential, � is the p-wave pairing amplitude, θ is the
superconducting phase and N is the number of sites in the
chain. Without loss of generality we set θ = 2πn, where n ∈
Z, resulting in eiθ = 1. c j is the fermionic annihilation opera-
tor acting on the jth site. We write a particle-hole symmetric
(PHS) form of the Hamiltonian through the Bogoliubov–
deGennes (BdG) Hamiltonian:

HBdG =
[

HNW �

−�∗ −H∗
NW

]
. (2)

HNW is the Hamiltonian for a normal wire and � is the
p-wave pairing amplitude between particles and holes. For
more details see Appendix A. Following Chen et al. [24] we
model the Kitaev nanowire as a 1D tight binding chain that
consists of 50 sites with the on-site potential μ and p-wave
pairing amplitude � as adjustable parameters. The essential
physics studied here remains unchanged with the length of
the chain, so long as the chain is long enough such that
the ground-state wave functions do not overlap, which is the
requirement for topologically nontrivial MZMs. To calculate
the electrical response of the 1D Kitaev nanowire, we couple
it to normal leads on either side and apply a nonequilibrium
Green’s function (NEGF) technique, as described in Sec. II A.

The Kitaev Hamiltonian has three different regimes which
are of interest to us here. These are the topologically trivial,
the topologically nontrivial, and the superconducting regimes.
The different model parameters for each of these regimes
are summarized in Table I, where we also list parameters
for the normal (nonsuperconducting) regime. Figure 2 shows
how the eigenspectrum of this Hamiltonian depends on the
value of μ/t . In this figure we see the separation of the
topologically trivial and nontrivial regimes at approximately
μ/t = 2. When μ/t < 2 the system is topologically nontrivial
and we have a degenerate ground state at E/t = 0. In the
topologically trivial regime, when μ/t > 2, the ground state
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FIG. 2. Eigenenergies for a 1D Kitaev nanowire as a function of
μ/t with �/t = 1.0. Vertical lines indicate values of μ/t used to
compute the transmission probabilities in Fig. 3.

of the system is no longer degenerate, nor does it appear at
E/t = 0.

A. Nonequilibrium Green’s function formalism

To calculate the electrical response of a Kitaev nanowire
we apply the NEGF formalism [50], which allows us to com-
pute transmission probabilities as a function of energy. We are
also thereby able to introduce open boundary conditions and
model transport through the device with changing magnetic
field. The retarded Green’s function for the device GR, from
which the transport properties of the system can be calculated,
is written as

GR(E ) = [(E + i0+)I − HBdG − �L(E ) − �R(E )]−1 (3)

where E is energy and 0+ is a small positive number. For
brevity we suppress the energy dependence in subsequent
Green’s functions, transmission functions, and other opera-
tors. The Hamiltonian describing the device is modified by
two self-energy terms �L and �R to include the left and
right leads respectively. These self-energy terms are calcu-
lated from the hopping parameter and onsite potential for the
leads and are used to model the open boundaries. The nearest-
neighbor hopping strength between the leads and the device is
given by τ/t = 0.3. These weak links (τ < t) at the interfaces,
together with the self-energy terms, modify the system’s den-
sity of states such that resonant tunneling dominates transport
through the device. The Green’s function is used along with
the Caroli formula [Eq. (4)] to calculate transmission prob-
abilities for particles and holes moving through the device.
When applying the NEGF formalism to a conventional charge
transport problem, the transmission probability T is given by

T = Tr(�LGR�RGA) (4)

with GA = (GR)† and broadening matrices �α given by

�α = i(�α − �†
α ) (5)

with α an index describing the left (L) and right (R) contacts.

The conductance g can be calculated via [51]

g = −2q2

h

∫ ∞

−∞
T (E )

∂ f (E )

∂E
dE , (6)

where h is Planck’s constant, q is the charge of the particle,
and f (E ) is the equilibrium Fermi-Dirac distribution function.
In the limit as temperature goes to zero, the conductance is
simply proportional to the transmission function and there-
fore in everything that follows we only consider T (E ). In
general if a voltage bias is applied to the device then the
onsite potential becomes spatially dependent and the integral
in Eq. (6) must be taken over a range of energies. Although
these complications are important in discussing real devices,
they do not change the underlying physics and so we focus
on the zero-bias limit. For the BdG Hamiltonian we must now
account for both electron and hole degrees of freedom. We can
compute the total transmission probability as the sum of the
transmission probabilities for direct transmission TD, Andreev
reflection TA, and crossed Andreev reflection TCA:

T e(h) = T e(h)
D + T e(h)

A + T e(h)
CA (7)

with

T e(h)
D = Tr

(
�

e(h)
L GR�

e(h)
R GA)

, (8)

T e(h)
A = Tr

(
�

e(h)
L GR�

h(e)
L GA)

, (9)

T e(h)
CA = Tr

(
�

e(h)
L GR�

h(e)
R GA)

. (10)

Equation (7) therefore gives the transmission probability of a
particle (hole) through the device at a particular energy (see
Appendix B for further details).

The broadening matrices are now represented as a 2 × 2
matrix due to PHS:

�α =
[

�(e)
α �(eh)

α

�(he)
α �(h)

α

]
, (11)

where the superscript represents the type of particles involved
in the interaction. For example (e) is a electron-electron in-
teraction and (h) is a hole-hole interaction. As the system has
normal leads we do not consider the off-diagonal terms which
correspond to electron-hole interaction in the broadening ma-
trices, i.e., �(he)

α = �(eh)
α = 0.

As we are ultimately interested in the total conductance
through the device, in what follows we often plot the com-
bined transmission due to electrons and holes, (T e + T h)/2,
where the individual electron and hole transmission functions
are given by Eq. (7).

B. Signatures of Majorana fermions and the zero-bias anomaly

A signature of MZMs in the electrical response of these
systems is the existence of a zero-bias anomaly (ZBA) that is
topologically protected [14]. This ZBA is a conduction mode
at E/t = 0 that results from the zero-energy ground state of
the MZMs. Figure 3 shows the transmission probability for
the 1D Kitaev nanowire in the topologically trivial and non-
trivial regimes. The figure shows the transmission probability
for a particle through the Kitaev nanowire at E/t = 0, with
on-site potentials μ/t = 1 (μ/t < 2, topologically nontrivial)
and μ/t = 3 (μ/t > 2, topologically trivial). The presence of
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FIG. 3. Transmission probability as a function of energy for the
1D Kitaev nanowire for two values of μ/t , highlighted in Fig. 2
as vertical lines. The nanowire has a p-wave pairing amplitude of
�/t = 1.0 and a hopping strength between the leads and the device
of τ/t = 0.3.

a nonzero probability for transmission of a particle at E/t = 0
when μ/t = 1 is characteristic of the ZBA [11]. Here the
width of the zero-energy peak in the transmission probability
is directly related to the strength of the coupling to the device,
τ . As τ increases there is a stronger connection between the
device and the leads, which creates a broader resonance peak
[50]. In the topologically trivial regime (μ/t = 3) there is no
zero-energy peak as all states of the Hamiltonian fall outside
of the energy gap, as seen in Fig. 3.

III. THE AHARONOV-BOHM RING

We now consider a device comprised of two 1D Kitaev
nanowires, as illustrated in Fig. 1. This system is capable of
supporting two pairs of MZMs (one MZM at each of the four
interfaces between the device and the leads). For all AB ring
devices modelled here we use a ring comprised of two Kitaev
nanowires with 50 sites,

HAB =
[

HBdG te−iφ�

teiφ� HBdG

]
(12)

where the off-diagonal blocks � are the adjacency matrices
defined such that they couple the BdG Hamiltonians at the
edges of the wires, as per Fig. 1(b), and φ is the Peierls phase
for an applied magnetic field.

The topological phase diagram for this AB ring is equiv-
alent to the topological phase diagram of the 1D Kitaev
nanowire. The presence of a ZBA for the AB ring can been
seen in Fig. 4 for each of the parameter regimes described in
Table I. The two Kitaev nanowires of the ring are connected
by a nearest-neighbor hopping strength of t ′, as shown in
Fig. 1(b). In all that follows we set t ′ = t1 = t2 = t . The p-
wave pairing amplitude between the two nanowires is zero.
This corresponds to the case of normal tunneling between two
superconducting nanowires.

We now apply our NEGF method to an AB ring.
Figure 5 shows the transmission probability for an AB ring
at energies close to E = 0t and values of the on-site potential

FIG. 4. Eigenenergies for an AB ring (without leads attached) as
a function of μ/t with �/t = 1.0. Here the magnetic flux through
the ring is �/�0 = 0.

μ/t = {1.775, 1.925, 1.950, 2.000}. For μ/t > 1.775 we see
peaks form due to the topologically trivial quasiparticle states
which lie outside the superconducting energy gap. As μ is
decreased, we see the formation of a peak in the transmis-
sion probability at zero energy. The appearance of the ZBA
correlates with the system becoming topologically nontrivial.
At μ/t = 1.775 the zero-energy transmission is maximized,
which suggests that at this value of the on-site potential the
system is in the topologically nontrivial regime. The value
of μ at which the system becomes topologically nontrivial
is affected by the number of sites. As the number of sites
increases the system approaches the ideal case and the value
tends to μ/t ≈ 2. For relatively small numbers of sites, the
value of μ/t corresponding to a topological phase transition
is reduced due to finite size effects.

By examining each of the individual components of Eq. (7)
[given in Eqs. (8)–(10)] we are able to see how each

FIG. 5. Transmission probability of an AB ring at energies about
zero for several different values of the on-site potential μ. The AB
ring has a p-wave pairing amplitude �/t = 1.0 and normal leads are
attached with a coupling strength of τ/t = 0.3. The external applied
magnetic field strength here is �/�0 = 0.
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FIG. 6. Contributions to the transmission probability from
(a) Andreev, (b) direct, and (c) crossed Andreev transmission for
an AB ring with 50 × 2 sites as a function of energy E and on-site
potential μ. Here the magnetic flux through the ring is �/�0 = 0.
The AB ring has a p-wave pairing amplitude �/t = 1.0 and normal
leads are attached with a coupling strength of τ/t = 0.3. Note the
logarithmic color scale used in order to resolve the weaker transmis-
sion probabilities in (b) and (c).

component of the transmission probability influences the total
transmission probability through the device. It also allows
for insight into how the magnetic field induced interference
affects each of the difference types of transmission (direct,
Andreev, and crossed Andreev). Figure 6 shows the trans-

mission probability as a function of energy E and on-site
potential μ for Andreev transmission, direct transmission, and
crossed Andreev transmission with a magnetic flux through
the ring of �/�0 = 0. We see in Fig. 6(a) that the subgap
states are due entirely to resonant Andreev transmission, while
in Fig. 6(b) we see that direct transmission occurs via states
above and below the gap. Figure 6(c) shows that the crossed
Andreev transmission only exists close to the point of tran-
sition between trivial and nontrivial topological behavior, at
zero energy and μ/t ≈ 2. The crossed Andreev transmission
is relatively weak compared to the other contributions.

IV. MAGNETIC FIELD APPLIED
TO AN AHARONOV-BOHM RING

We now apply a perpendicular magnetic field to the AB
ring by Peierls substitution to observe interference in the
transmission probability [52–54]. We choose a gauge such
that the Peierls phase � (equivalent to magnetic flux through
the ring and given here in units of flux quanta �0 = h/2e)
drops across only the normal links. By applying a magnetic
field to the AB ring in the topologically trivial and nontrivial
regimes, we see the changes in the transmission probability as
a function of magnetic flux due to the presence (or absence)
of the MZMs.

Resonances in the transport spectrum of the ring are caused
by weak links between the device and the leads [27]. Ap-
plying a magnetic field to the AB ring in the normal regime
(μ/t = 1, �/t = 0), as in Fig. 7(a), we see that there is com-
pletely destructive interference at �/�0 = ±π

2 , which results
in the transmission probability going to zero at these values of
magnetic flux. The symmetry of the transmission resonances
in Fig. 7 about zero energy follows directly from the PHS.
One important consideration is whether such a system would
destroy superconductivity in the ring by applying a magnetic
field larger than the critical field. To investigate this we can
consider a ring of niobium titanium nitride as an example.
If the ring has an area of 1 μm2, one magnetic flux quanta
corresponds to 2 mT, which is considerably smaller than a
typical critical field of approximately 28 mT. This would
allow the mapping of AB interference for many oscillation
periods without collapsing the superconducting state [55,56].

In the case where �/t = 0.05 and μ/t = 1, as in Fig. 7(b),
we see the formation of a sub-gap state that oscillates in
energy, as a function of magnetic flux, with a period of π .
Note that the value of �/t is not large enough to overcome
finite size effects here and that the transport spectrum is char-
acterized by a lack of the zero-energy state at �/�0 = 0.
Furthermore for a magnetic flux through the ring of �/�0 =
±π

2 there still exists channels available for the conduction of
electrons through the device, which implies the interference
is only partially destructive. This is in contrast to the case of
the normal ring [shown in Fig. 7(a)] where transmission is
completely absent for this magnetic field strength.

We now consider the transmission probability for an AB
ring in the topologically nontrivial regime with an applied
magnetic field (�/t = 0.1, μ/t = 1) shown in Fig. 7(c). This
is characterized by the presence of a zero-energy state at
�/�0 = 0. The MZMs exhibit a linear energy dependence
at magnetic flux about �/�0 = nπ where n ∈ Z. Just as in
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FIG. 7. Transmission probability of an AB ring as a function
magnetic flux � and energy E for various values of p-wave pairing
amplitude (a) �/t = 0, (b) �/t = 0.05, and (c) �/t = 0.1. The AB
ring has an on-site potential μ/t = 1.0 and normal leads are attached
with a coupling strength of τ/t = 0.3.

Fig. 7(b), the ground state of the system is protected against
destructive interference at �/�0 = π

2 . However, now this be-
havior extends to the quasiparticle states at both higher and
lower energies (|E |/t � 0.2). Although the splitting of the
zero-energy state shows the degeneracy of the ground state
is broken by an applied magnetic field, these states are still
protected against destructive interference, which is something
that is absent in the topologically trivial regime.

Figure 8 gives the Andreev and direct transmission for
an AB ring when μ/t = 1. Crossed Andreev transmission
is absent from this figure because it is found to be zero for

FIG. 8. Contributions to the transport probability from (a) An-
dreev and (b) direct transmission for an AB ring with 50 × 2 sites
as a function of energy E . Here the on-site potential is μ/t = 1. The
AB ring has a p-wave pairing amplitude �/t = 1.0 and normal leads
are attached with a coupling strength of τ/t = 0.3.

these parameters. At a magnetic flux �/�0 = 0 we see a
zero-energy peak for Andreev transmission [Fig. 8(a)], as well
as contributions to the direction transmission from quasipar-
ticle states [Fig. 8(b)]. As the magnetic flux through the ring
is varied such that the condition for completely destructive
interference is met (�/�0 = π

2 ) we see the suppression of
all direct transmission, which is consistent with the behavior
typically observed in AB interference. In contrast to this the
Andreev transmission is found to persist at �/�0 = π

2 . As
with Fig. 7 we see a splitting in the zero-energy state that
depends on the magnetic flux through the ring and increases
with �/�0 between 0 and π

2 . This highlights that it is the
Andreev transmission that is protected against destructive
interference in the AB ring. The extent to which Andreev
transmission is protected against destructive interference is
shown in Fig. 9, where the transmission probability is plotted
as a function of energy for several different values of the on-
site potential and a magnetic flux �/�0 = π

2 . As the value of
the on-site potential is increased and the system moves toward
the topologically trivial regime, the width of the subgap states
becomes vanishingly small.
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FIG. 9. Transmission probability of an AB ring with 50 × 2 sites
as a function of energy E for various on-site potentials μ and a
magnetic flux of �/�0 = π

2 . The AB ring has a p-wave pairing
amplitude �/t = 1.0 and normal leads are attached with a coupling
strength of τ/t = 0.3. When μ/t = 2 the transmission is zero for all
energies.

The absence of destructive interference for an AB ring
in the nontrivial regime, as shown in Figs. 7(c) and 9, is of
particular interest. Previous studies have concluded that elec-
trons move through MZMs preserving phase coherence [57].
This would suggest that transport should be suppressed at half
integer multiples of magnetic flux quanta (e.g., �/�0 = ±π

2 ),
as is typically true for the AB effect. Instead we see a splitting
in energy of the topologically nontrivial state and a shift in the
energy of this state away from zero, in response to changing
the magnetic flux threading the loop. This raises questions
as to whether the topological protection of the MZMs is still
preserved in such a situation. It also suggests that the response
of such a circuit to a magnetic field can be used as a probe of
topologically trivial Andreev bound states.

V. EFFECTS OF DISORDER

Experimentally realisable systems will contain noise which
may perturb the system. One way this can occur is through
disorder within the system itself. To study the effect of disor-
der on our AB rings, we introduce to each site n a quasirandom
on-site energy wn which is obtained from a uniform dis-
tribution [58] centered about zero such that wn ∈ (−1, 1).
The magnitude of the disorder is controlled via a disorder
amplitude P such that the on-site term for Eq. (1) becomes
μn = μ + (Pwn).

Electron transport in nanoscale devices is often limited by
random offset charges stemming from surfaces and interfaces
within the device [59–64]. This background charge disorder
can either be static (approximately constant once the device is
cooled to base temperature) or dynamic during the measure-
ment period, resulting in an ensemble averaged signal over
multiple disorder realizations.

For an AB ring without an applied magnetic field trans-
mission is unchanged by the inclusion of weak disorder. The
MZM in such a system is robust against both weak dynamic

FIG. 10. Transmission in an AB ring with �/t = μ/t = 1.0, 50
sites and a magnetic field of φ/φ0 = π

2 , for several values of disorder
strength P. Each disorder value in this figure has been averaged
over 1000 configurations. The inset shows the a sample of the static
disorder realisations together with the dynamic disorder result for a
disorder strength of P/t = 0.25.

and static disorder, as seen in literature for 1D wires contain-
ing MZMs [65]. However the same is not true for an AB ring
in the presence of a magnetic field. Figure 10 shows the effect
of introducing a dynamic disorder scheme into the AB ring
with magnetic field applied. The disorder has been introduced
in the topologically nontrivial regime where φ/φ0 = π

2 in the
form of a random on-site variation. We see that increasing the
strength of the disorder broadens the transmission peak and
reduces the peak height of the system with dynamic disorder.
This reduction in averaged peak height is caused by a disor-
der induced shifting of the energy values required to achieve
peak transmission. This effect is illustrated in the inset, which
shows the average transmission for a disorder strength of
P/t = 0.25, with several of the static disorder realizations
which have been averaged to get the dynamic disorder result.
Note that the peak height for static disorder is unchanged by
the strength of the disorder.

The movement of the peaks in the inset of Fig. 10 under
disorder may be due to the fluctuations in the on-site potential,
which causes regions of the ring to transition either deeper
into or out of the topologically nontrivial regime. For a system
being pushed deeper into the topologically nontrivial regime,
the superconducting gap would become larger as in Fig. 4.
For a system with magnetic field applied, we see in Fig. 9 that
decreasing the on-site potential causes the peaks to move to
higher energies. However, that there still exist conductance
channels with an applied magnetic field of φ/φ0 = π

2 and
in the presence of disorder suggests that these channels are
robust against weak disorder.

As the type of disorder affects the resultant transmission
peaks, one would expect experimental signatures of the type
seen in Fig. 7(c) to change depending on the type of dis-
order introduced. Static disorder would cause the separation
between the transmission peaks to fluctuate, with the fluctua-
tions increasing in magnitude with disorder strength. However
for a system with dynamic disorder, one would expect the
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separation between the transmission peaks to remain rel-
atively constant, but rather the peak amplitude would be
decreased. In both cases, for weak disorder the conduction
channels persist in the presence of partially destructive AB
interference.

VI. CONCLUSION

We used the NEGF formalism to study the transport prop-
erties of an AB ring comprised of two Kitaev chains coupled
at either end by a normal link. We observed the effect of
electron (hole) interference on the zero-bias transmission of
this AB ring, which is present when the magnetic flux through
the ring is nonzero. We have shown how the MZMs in this
AB ring change with on-site potential μ, the p-wave pairing
amplitude �, and the magnetic flux through the ring �. Each
of these parameters has been shown to have a unique effect
on the MZMs. Having control of the physical parameters μ,
�, and � in an experiment therefore allows the MZMs to be
probed in a controllable way.

Furthermore, we have observed the transmission probabil-
ity of electrons and holes through an AB ring with MZMs to
be persistent even when the condition for completely destruc-
tive interference are met. The power of the NEGF formalism
as a tool for investigating this phenomenon is highlighted
where the transmission probabilities are divided into three
separate contributions: Andreev and crossed Andreev reflec-
tion and direct transmission. We have thereby demonstrated
that transmission through MZMs in an AB ring is mediated
by Andreev reflection at the normal/superconductor interface.
The dependence of the AB interference on the parameters
of the nanowires is therefore a useful probe of Majorana
fermions in condensed matter systems.

The mechanism which provides the above gap states pro-
tection from the AB remains unclear. We believe this issue
requires further investigation using different tools than those
used here and therefore we leave it for further work.
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APPENDIX A: PARTICLE-HOLE SYMMETRY

The Kitaev Hamiltonian when expressed in the BdG form
exhibits particle-hole symmetry (PHS). PHS represents a
symmetry in the behavior of electrons and holes and leads to

a symmetry in the eigenspectrum around zero energy. As we
are investigating a superconducting system, the Hamiltonian
contains a coupling term between particles and holes, which is
best described in the BdG formalism. Employing the Nambu
basis, we group creation and annihilation operators together
as

C† = {c†
1, . . . , c†

n, c1, . . . , cn}, (A1)

C = {c1, . . . , cn, c†
1, . . . , c†

n}T . (A2)

This notation then allows us to write the BdG Hamiltonian as

Ĥ = 1
2C†HBdGC (A3)

with the BdG Hamiltonian coefficient matrix for the Kitaev
chain:

HBdG =
[

H �

−�∗ −H∗

]
. (A4)

Here PHS manifests directly in the symmetry between the
particle and hole sectors of the Hamiltonian.

APPENDIX B: DERIVATION OF THE COMPONENTS
OF CURRENT IN A SYSTEM WITH PARTICLE-HOLE

SYMMETRY

The conventional equation for calculating the transmis-
sion of electrons through a device is given in Eq. (4). When
applied to a system in conjunction with the BdG form of
the Hamiltonian we must also take into consideration the
transmission probability for holes. This allows for the study
of more transport modes than just the conventional transport
of electrons through a device [66–68]. Andreev and crossed
Andreev transmission allow for the reflection of an electron
from an interface as a hole both locally and nonlocally respec-
tively [13,69,70]. In order to probe the role these processes
play in this work, Eqs. (8)–(10) were applied. Although here
we discuss how Eqs. (8)–(10) can be derived from the Lan-
dauer current equations, it is important to note that they are
themselves particle transmission functions and not current
equations. The distinction is that the transmission functions
are independent of the Fermi distribution function (and there-
fore temperature and lead Fermi levels). These equations are
derived from the Landauer current equation:

IL = q

h
Tr[−i�<

L A − �LGn], (B1)

where �α = �α (E ) is the broadening matrix for lead α. We
also have

Gn = −iG< = −iGR(�<
L + �<

R )GA. (B2)

and the spectral function is defined as

A = GR�GA. (B3)

Applying these definitions to the Landauer current equation,
we arrive at

IL = q

h
Tr[−i�<

L GR(�L + �R)GA + i�LGR(�<
L + �<

R )GA].

(B4)

As we are working in the BdG formalism which utilizes the
Nambu (particle-hole) basis, we must take both particle and
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hole transmission into account. With the application of normal
leads there is no coupling between particles and holes and as
such the in-scattering matrix (�<) becomes block diagonal
(one block for electron scattering and one for hole scattering).
We are therefore able to write the in-scattering matrix for lead
α as

�<
α = i�e

α f e
α + i�h

α f h
α , (B5)

where the superscript e (h) denotes the electron (hole) com-
ponent in the Nambu basis and fα (E ) = (e(E+EF )/kT + 1)

−1
is

the Fermi distribution for the α lead with Fermi energy EF at
temperature T . Combining Eqs. (B4) and (B5) we arrive at

Ie(h)
L = q

h
Tr

[(
�

e(h)
L f e(h)

L + �
h(e)
L f h(e)

L

)
GR(�L + �R)GA

− �LGR
{(

�
e(h)
L f e(h)

L + �
h(e)
L f h(e)

L

)
+ (

�
e(h)
R f e(h)

R + �
h(e)
R f h(e)

R

)}
GA

]
. (B6)

which after some algebraic manipulation returns

Ie(h)
L = q

h
Tr

[
�

e(h)
L GR�

e(h)
R GA

(
f e(h)
L − f e(h)

R

)

+ �
e(h)
L GR�

h(e)
L GA

(
f e(h)
L − f h(e)

L

)
+ �

e(h)
L GR�

h(e)
R GA

(
f e(h)
L − f h(e)

R

)]
. (B7)

As we only want to study the transmission, rather than the
current, we can neglect the constant factor as well as the Fermi
windowing function, after which we arrive at the transmission
equations given in Eqs. (8)–(10).

[1] E. Majorana and L. Maiani, A symmetric theory of electrons
and positrons, in Ettore Majorana Scientific Papers (Springer,
Berlin, 2006), pp. 201–233.

[2] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[3] J. Alicea, Y. Oreg, G. Refael, F. Von Oppen, and M. P. A. Fisher,
Non-Abelian statistics and topological quantum information
processing in 1D wire networks, Nat. Phys. 7, 412 (2011).

[4] B. Lian, X. Q. Sun, A. Vaezi, X. L. Qib, and S. C. Zhang,
Topological quantum computation based on chiral Majorana
fermions, Proc. Natl. Acad. Sci. USA 115, 10938 (2018).

[5] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices
in p-Wave Superconductors, Phys. Rev. Lett. 86, 268 (2001).

[6] G. E. Volovik, Fermion zero modes on vortices in chiral super-
conductors, JETP Lett. 70, 609 (1999).

[7] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[8] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and
C. W. J. Beenakker, Coulomb-assisted braiding of Majorana
fermions in a Josephson junction array, New J. Phys. 14, 035019
(2012).

[9] L. H. Kauffman, in Logic and Algebraic Structures in Quan-
tum Computing, edited by J. Chubb, A. Eskandarian, and V.
Harizanov (Cambridge University Press, Cambridge, 2016), pp.
223–336.

[10] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[11] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[12] H. Zhang, C.-X. Liu, S. Gazibegovic, D. Xu, J. A. Logan, G.
Wang, N. van Loo, J. D. S. Bommer, M. W. A. de Moor, D.
Car, R. L. M. Op het Veld, P. J. van Veldhoven, S. Koelling,
M. A. Verheijen, M. Pendharkar, D. J. Pennachio, B. Shojaei,
J. S. Lee, C. J. Palmstrøm, E. P. A. M. Bakkers, S. D. Sarma, and
L. P. Kouwenhoven, Quantized Majorana conductance, Nature
(London) 556, 74 (2018).

[13] K. T. Law, P. A. Lee, and T. K. Ng, Majorana Fermion Induced
Resonant Andreev Reflection, Phys. Rev. Lett. 103, 237001
(2009).

[14] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs
nanowire topological superconductor as a signature of Majo-
rana fermions, Nat. Phys. 8, 887 (2012).

[15] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Anomalous zero-bias conductance peak in a Nb–InSb
nanowire– Nb hybrid device, Nano Lett. 12, 6414 (2012).

[16] L. P. Rokhinson, X. Liu, and J. K. Furdyna, The frac-
tional a.c. Josephson effect in a semiconductor-superconductor
nanowire as a signature of Majorana particles, Nat. Phys. 8, 795
(2012).
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