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Moiré effects in graphene-hBN heterostructures
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Encapsulating graphene in hexagonal boron nitride (hBN) has several advantages: The highest mobilities
reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the
protective hBN layers. Nevertheless, subtle effects may arise due to the differing lattice constants of graphene
and hBN, and due to the twist angle between the graphene and hBN lattices. Here, we use a recently developed
model which allows us to perform band structure and magnetotransport calculations of such structures, and show
that with a proper account of the moiré physics an excellent agreement with experiments can be achieved, even
for complicated structures such as disordered graphene, or antidot lattices on a monolayer hBN with a relative
twist angle. Calculations of this kind are essential to a quantitative modeling of twistronic devices.

DOI: 10.1103/PhysRevResearch.2.043427

I. INTRODUCTION

Graphene, the first successfully isolated two-dimensional
material, has opened a new research area [1,2]. Due to the
linear bands crossing the Fermi level, low-energy carriers in
graphene behave like massless, relativistic Dirac fermions,
allowing predictions from quantum electrodynamics to be
tested in a solid-state system. The high Fermi velocity [3],
Dirac-cone band structure [1], and ultrastrong mechanical
properties [4] make graphene a promising material for next-
generation electronic nanodevices and high-speed switching
devices. However, the intrinsic zero energy gap of graphene
has hampered its applications in modern electronics. In a
practical nanoelectronic device, semiconducting graphene is
necessary.

A sizable band gap opening around the Fermi level in
a graphene antidot lattice (GAL, a regular arrangement of
antidots in a graphene lattice) has been predicted by several
theoretical studies [5-9] and was recently realized in an ex-
periment [10]. The band gap in GAL can be tuned by the
size, shape, and symmetry of both the antidot and the super-
lattice cell [5—-9]. The tunable band gap can be used to design
quantum wells and channels for electronic devices [5-9]. In-
terestingly, transport under magnetic fields in an antidot lattice
is predicted to show Hofstadter butterfly features arising from
the competition between the antidot lattice periodicity and the
magnetic length [11].

“Corresponding author: antti @dtu.dk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2020/2(4)/043427(11) 043427-1

Recently, heterostructures consisting of graphene and
hexagonal boron nitride (G/hBN) have drawn intense atten-
tion [10,12-23] . The lattice mismatch between graphene and
hBN causes moiré patterns with long wavelengths to emerge
when graphene and hBN lattices are exactly aligned or twisted
relatively by a small angle [12,13]. Experiments have revealed
many exciting phenomena, such as the Hofstadter butterfly
[10,15-17,21,22] (now arising from the competition between
the lattice mismatch induced moiré length and the magnetic
length) or the fractional quantum Hall effect [20-22]. How-
ever, the twist-angle dependence of the properties of antidot
lattices defined on G/hBN heterostructures has not yet been
the subject of a systematical experimental or theoretical study.
Another system where moiré effects show up dramatically is
twisted bilayer graphene, where unconventional superconduc-
tivity or correlated insulator behavior may occur at certain
twist angles between the monolayers [24,25].

In this paper, we consider two examples of recent exper-
imental interest where the relative angle between graphene
and hBN plays an important role [10,26]: (i) disordered
graphene and (ii) antidot lattices. We first summarize our
most important physical findings, and discuss the technical
details in subsequent paragraphs. By using an effective lat-
tice model, we first calculate the electronic structure and
conductance of G/hBN with and without a relaxation of
the graphene and hBN monolayers comprising the system.
Our results show that without relaxation the band structure
is particle-hole symmetric, in disagreement with experimen-
tal data, while the fully relaxed graphene shows, correctly,
a particle-hole asymmetry emphasizing the importance of
lattice relaxation of G/hBN. Next, we compute the con-
ductance in the presence of a magnetic field perpendicular
to the graphene sheet. The computed magnetoconductance
shows a moiré potential induced secondary Dirac point, which
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clones the Landau fan of the primary Dirac point. The Hof-
stadter butterfly features are also observed in our numerical
results. The computed results are in excellent agreement
with experimental data [10,15-17]. Based on an Anderson
model, we next investigate how disorder affects the elec-
tronic structure and conductance of G/hBN. We find that
even though disorder can lift the degeneracy of the bands at
high symmetry points, the main features of the band struc-
ture are similar to the clean case. While the magnitude of
the conductance with disorder is reduced to almost a half
of the one without disorder, the magnetoconductance stays
unchanged. Finally, we systematically study the electronic
structure and transport behavior of antidot lattice on twisted
G/hBN. A major theoretical finding is that the secondary
Dirac point will disappear once the distance between antidot
edges (“the neck width,” denoted by d,; see Appendix F)
is smaller than the moiré wave length, a feature seen in ex-
periments [10].

II. THE MODEL

Our effective tight-binding model is proposed in Ref. [27]
and we follow the procedures outlined there (Appendix A
summarizes the details pertinent to this work). Carbon atoms
can be removed from the antidot regions by removing the as-
sociated rows and columns from the system Hamiltonian. Any
dangling o bonds for a carbon atom with only two neighbor-
ing carbon atoms are assumed to be passivated with hydrogen
atoms so that the 7 bands are unaffected. Transport quantities
are calculated using recursive Green’s function techniques,
following Ref. [28]. The zero-temperature conductance is
given by the Landauer formula G = %T, where T is trans-
mission coefficient. A finite magnetic field B perpendicular to
the graphene plane is modeled by associating a Peierls phase
to the hopping amplitude 1 — ¢/, where ¢;; = (e/h) [” A -
dr. Here A is the vector potential and 7; is the position of
atom i. We choose the Landau gauge A = (—By, 0, 0), and the
Peierls phase becomes ¢;; = %B(xj — xi)(”%). In the leads,
the magnetic field is set to zero.

Microscopic theoretical investigations on the G/hBN sys-
tem are made cumbersome by the size of the unit cell,
which for small relative rotations contains thousands of atoms,
making first-principles calculations very expensive. Effec-
tive continuum models [29] or several tight-binding models
[14,30] with empirical parameters controlling the interlayer
interaction between graphene and hBN have been applied to
calculate the electronic properties of G/hBN. However, the
effective continuum model cannot be used to simulate the
transport for realistic experimental conditions, while results
for the tight-binding models with empirical parameters must
be carefully scrutinized to ascertain their reliability. For a
large device transport simulation, Chen et al. [31] applied a
scaled graphene lattice with a triangular periodic scalar moiré
potential and successfully reproduced the main features of the
secondary Dirac point. However, as we show below, this sim-
ple moiré potential does not lead to particle-hole asymmetry.
In our effective lattice model, the Hamiltonian terms at any
local part of a twisted and relaxed G/hBN only depend on
the local relative shift and relaxation-induced strain and can
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FIG. 1. The calculated electronic structure of G/hBN with twist
angle 1.0047¢. Panels (a), (b), and (c) are calculated with relaxation
while panels (d), (e), and (f) are without lattice relaxation. Panels
(a) and (d) show the band structures; panels (b) and (e) are the den-
sities of states; and panels (c) and (f) give the conductance without
magnetic field. In the band structure and DOS, the red dashed lines
denote the graphene monolayer for comparison. In the conductances
(c) and (f), the red solid, blue dashed, and magenta dotted lines
are calculated for device sizes 200 x 200 nm, 300 x 300 nm, and
400 x 400 nm, respectively. The thin dashed green lines indicate the
minima in DOS.

be derived from a transparent set of parameters calculated
by density functional theory. Moreover, our effective lattice
model can be used to calculate the electronic structure of
G/hBN with any twist angle and does not require a recalcula-
tion of the parameters for a new twist angle.

We next calculate the band structure and conductance for
the twist angle & = 1.0047° with and without lattice relax-
ation; the results are reported in Fig. 1. The band structure
[Fig. 1(a)] and density of states (DOS) [Fig. 1(b)] of fully
relaxed G/hBN show a particle-hole asymmetry which is con-
sistent with the experiments [10,15-17,19-22]. To emphasize
the importance of full relaxation, we plot in Fig. 1(d) the band
structure of graphene with a scalar moiré potential [31]: The
band degeneracy at high symmetry points is lifted and one
finds secondary Dirac points at £0.225¢V. However, in this
case the DOS around the two secondary Dirac points are equal
and obey particle-hole symmetry [Fig. 1(e)], in contrast to

043427-2



MOIRE EFFECTS IN GRAPHENE-hBN ...

PHYSICAL REVIEW RESEARCH 2, 043427 (2020)

0 2 5 15 60

a
1.2

G(e’/h)

1.0
0.8
0'6—e-°
0.4

0.2

b/

n/n0

FIG. 2. Longitudinal magnetoconductance G(B, n) as a function
of magnetic field and electron density. Here n is electron density,
ny = 1/8 is the electron density per each Bloch band, where S is the
area of supercell. Right vertical axis is scaled by ¢ /¢y, where ¢ is the
flux through one moiré unit cell and ¢y = h/e is the flux quantum.
Dashed black lines show g = 1, 2, and 3, where the Landau levels
intersect.

experiment, and Figs. 1(a) and 1(b). The reason for the dif-
ference is that a fully relaxed graphene lattice has, in addition
to a modified on-site energy, also a modified hopping between
neighboring C atoms.

Appendixes B and C report the band structure and con-
ductance for additional twist angles and edge orientations.
The two main conclusions are (i) the secondary Dirac points
shift to larger energies as the twist angle increases, because
the interaction between graphene and hBN decreases as the
twist angle increases (see Figs. 5-7), and (ii) the calculated
conductance does not significantly depend on whether the
edges of the simulated device are in the armchair or zigzag
directions (see Fig. 8). In subsequent calculations, we consider
a device with zigzag edges.

We next carry out magnetotransport simulations using the
effective lattice model for a 300 x 300 nm device (~ 107
atoms). Our results are shown in Fig. 2 (some finer details in
G, not visible in Fig. 2, are discussed in Appendix D). Both the
primary (n/ny = 0) and the secondary Dirac points (n/ng =
44) break into sequences of Landau levels upon application
of a magnetic field, forming the so-called Hofstadter butterfly
spectrum. The high conductance areas (red, white) separate
the gapped Landau levels (blue). As mentioned above, the
moiré superlattice potential breaks the partical-hole symme-
try, as also seen in transport experiments [10,15-17,19-22].
As the magnetic field increases, the Landau levels will inter-
sect when % = %, where ¢ is an integer, indicated in Fig. 2
with black dashed lines. The intersection of the primary and
secondary Landau levels leads to a closing of the magnetic
band gap, and a resulting high conductivity, seen as bright

spots in Fig. 2. Results for other twist angles, showing the
same general trends, are given in Appendix B.

III. EFFECTS DUE TO DISORDER

Disorder is ubiquitous to all graphene samples, even for
those synthesized with state-of-the-art technologies [32]. The
properties of nanoribbons are known to be strongly affected
by disorder [33], and recent studies suggest that the electronic
and transport properties of graphene antidot lattice may also
be strongly perturbed by relatively modest disorder [34-38].
An exploration of the effect of disorder on G/hBN is thus
called for. Here, we introduce disorder as a site-diagonal
random potential with matrix element H;; = §;;v;, where v;
are independent, uniformly distributed random variables in
the range of [—Vj, Vo] (where V; is set to 0.5 eV larger than
the on-site energy &;, maximum 0.14 eV), and have zero
mean and unit variance. Other details on the disorder model
are provided in Appendix E. One would expect that disorder
breaks certain symmetries with concomitant modifications in
the band structure. Here, our simulations show that disorder
leads to band degeneracy lifting at high symmetry points,
especially it opens a band gap at the M point [Fig. 3(a)].
The band gap opening leads to a kink in DOS [indicated by
horizontal green lines in Fig. 3(b)]. Even though the DOS
is modified by disorder, the generic features in conductance
stay qualitatively unchanged, except for an overall reduction
of >~ 50% in magnitude [compare Figs. 1(c) and 3(c)]. In
particular, the features in the conductivity at the secondary
Dirac points still remain. Overall, we conclude that the trans-
port properties of G/hBN at B = (0 are very robust against
disorder.

To investigate whether the robustness persists for finite
magnetic fields, we next calculate the magnetotransport prop-
erties of disordered G/hBN; the results are shown in Fig. 3(d).
One observes that the main features of the magnetoconductiv-
ity are essentially the same as those without disorder, shown
in Fig. 2. The main differences are the overall reduction
of magnetoconductiviy, as already discussed above, and that
many fine features are washed out by disorder, and thus the
results for the disordered system appear significantly more
regular than those for the pristine system. The conclusion is
that the magnetotransport in G/hBN is indeed robust with
respect to disorder, and its salient features should survive even
a nonideal fabrication process.

IV. ANTIDOT LATTICES

The band structure of graphene antidot lattices (GAL) may
differ qualitatively from that of graphene, as witnessed by the
observation of a band gap in recent experiments [10]. We next
describe how the techniques developed in this work can yield
additional important information of transport in a GAL on a
(twisted) hBN substrate. In addition to the magnetic length,
there are now two (at least) other competing other length
scales: the moiré length A, which is maximally 14.4 nm [27],
and the length scale(s) characterizing the GAL. A schematic
geometry of the GAL system is shown in Fig. 11. We consider
triangular antidot lattices, because they are known to lead to
gapped systems [8]. Our numerical results reveal an important
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FIG. 3. The electronic structure and conductance of G/hBN with disorder with twist angle 1.0047°. (a) Red solid line: band structure with
disorder. Dashed blue line: band structure for pristine sample. (b) Density of states. (c) Zero-field conductance. Red, blue, and magenta lines
refer to device sizes of 200 x 200 nm, 300 x 300 nm, and 400 x 400 nm, respectively. (d) Magnetoconductance for a disordered sample.

relationship between A and d,. The secondary Dirac point
features in conductance are observed only when d,, > A, while
they vanish if d, < A, as shown in Fig. 4(a). This finding
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FIG. 4. (a) Zero-field conductances for antidot lattices with
different neck widths (d, = 7, 11, 15, 19, 23 nm). The secondary fea-
ture at £ ~ —0.2 eV disappears if the neck width d, is smaller than
moiré length A = 10.1 nm for the twist angle = 1.0047° . (b) Landau
fan diagram with for neck width d, = 15 nm.

explains an important detail in the recent experiments [10].
Namely, pristine graphene encapsulated in hBN shows a pri-
mary Landau fan and two cloned fans corresponding to moiré
periods of 10.2 and 17.2 nm. The second moiré length is
larger than the longest possible moiré length in single-layer
graphene on hBN. Recent experimental and theoretical studies
show that the second moiré pattern is due to the simultaneous
effects of top and bottom hBN [39-42]. However, after fab-
rication of the GAL, the second peak related to the 17.2-nm
moiré wavelength is lost. As the neck length in the fabricated
GALs is 12-15 nm, and thereby smaller than the second moiré
wavelength 17.2 nm, one does not expect to see Landau fans
related to this length scale, which indeed is the case in the
experiment. In Fig. 4(b), we show the Landau fan diagram of
G/hBN with an antidot lattice whose d,, = 15 nm. Compared
to the results shown in Fig. 2, there is a reduction in both the
magnitude of magnetoconductance, and the number of Lan-
dau levels. Importantly, the secondary Dirac point survives,
just as in experiments [10].

V. CONCLUSION

In summary, we have performed a systematic examination
of the consequences of the lattice mismatch and relative ori-
entation between graphene and hBN and show that several
experimental observations find a common explanation rooted
in the interplay of the moiré length and other relevant length
scales. The method described in this work can be extended to
many other systems of current interest, including twistronic
devices.
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TABLE 1. The parameter of the Fourier expansion of t,(n = 1 — 3), hy, and h;. s E), and i{z are the expansion amplitudes and are in
the unit of meV. ¢,, ¢y, and ¢, are the corresponding expansion angles. G = n;b; + n,b, are the used reciprocal lattice. b; and b, are the
reciprocal vectors for graphene. The data are adapted with permission from Ref. [27].

G 7 $1(9) P $>() 73 #3(°) ho $o(°) h, ¢.(°)
(0,0) 2540.23 0.00 2540.23 0.00 2540.23 0.00 0.00 0.00 2.13 0.00
(1,0) 16.78 132.90 10.45 —151.18 16.78 132.90 25.12 —80.83 12.47 179.52

(—1,1) 16.78 132.90 16.78 132.90 10.45 —151.18 25.12 —80.83 12.47 179.52
0,—1) 10.45 —151.18 16.78 132.90 16.78 132.90 25.12 —80.83 12.47 179.52
(1,1) 2.55 —17.69 2.55 17.69 4.05 0.00 2.86 —180.00 1.29 0.00
(-2,1) 4.05 0.00 2.55 —17.69 2.55 17.69 2.86 —180.00 1.29 0.00
(1,-2) 2.55 17.69 4.05 0.00 2.55 —17.69 2.86 —180.00 1.29 0.00
2,0) 2.20 —103.20 0.98 60.31 2.20 —103.20 1.95 51.47 1.04 —52.14
(—2,2) 2.20 —103.20 2.20 —103.20 0.98 —60.31 1.95 51.47 1.04 —52.14
0,-2) 0.98 —60.31 2.20 —103.20 2.20 —103.20 1.95 51.47 1.04 —52.14

APPENDIX A: EFFECTIVE LATTICE MODEL

The effective lattice Hamiltonian for graphene and hexag-
onal boron nitride (G/hBN) reads
H = Z(hAiCLCAi + hBing,'CBi) — Z fij(CLCBj + C};,-CAi),
i <i,j>

(AD)

where cfm. is the creation and c,,; is the annihilation operator

of p, state in sublattice m and unit cell i, and h,,; and ¢;
represent on-site energies and hopping terms. Here we set
hy = (ha + hp)/2 and h, = (h4y — hg)/2. The hopping terms
along the three nearest-neighbor vectors §,, with n = 1-3 (see
Fig. 1 in Ref. [27]) are represented by —1,,.

1. First step: Hopping terms and on-site energies
at point r for rigid G/hBN

As the analysis in Ref. [27] shows, in a large moiré super-
lattice the local lattice structure is similar to that of a shifted
G/hBN bilayer where both layers have the same orientation
and the same lattice constant as monolayer graphene (see
Fig. 1 in Ref. [27]). First-principles calculations show that the
electronic structure of the shifted G/hBN is periodic in the
shift vector d with the lattice vectors of graphene determining
the period. Thus, for every shift vector d, we can derive the
hopping parameters #, and on-site energies sy and &, by fit-
ting the band structure from first-principles calculations. The
results show that #,, hy, and h, are also periodic in the shift
vector d. Since the ¢, hy, and &, in the effective lattice model
are periodic in vector d, they can be expanded in Fourier
series, such as

tn(d) = Y 1(G)cos[G - d + ¢,(G)], (A2)
G

ho(d) = > " ho(G)cos[G - d + ¢o(G)],  (A3)
G

(A4)

h(d) =Y h.(G)cos[G - d + ¢.(G)],
G

where G are the reciprocal lattice vectors of graphene
and 10 shortest vectors including the origin are used in

the expansion. 7,(G) [fy(G), h.(G)] and ¢,(G) [¢o(G),
¢.(G)] are the amplitudes and corresponding phase. The
expansion parameters for t,, ho, and h, are listed in
Table I.

With the obtained parameters, we can get the hopping
terms and on-site energies around a point r for effective lattice
model because the local lattice structure of moiré superlattice
can be approximated as a shifted bilayer with d(r). For a rigid
superlattices, d(r) = (S~' — I)r, where I is unit matrix and
—sin@

S = 1 (cos@
cos 6

— 1€ \sing
hexagonal boron nitride (hBN), and € = (ag — anpn)/ansn-
Here, ag and a;py are the lattice constants for graphene and
hBN, respectively.

), @ is twist angle between graphene and

2. Second step: Relaxation of G/hBN

Due to the energy gain from the larger domains of en-
ergetically favorable stacking configurations (AB stacking),
the rigid G/hBN bilayer undergoes spontaneous relaxation.
The full lattice relaxation can be calculated by solving three
equations self-consistently [27], as we show below. We define
u!(r) and u?(r) (see Fig. 1 in Ref. [27], and Fig. 3 in Ref. [43])
are the displacement vector for top graphene layer and bottom
hBN layer, respectively. The total energy (E,,) of bilayer
supercell is the summation of the elastic energy (E,;) and
interlayer interaction energy E;,, and also is a functional of the
displacement vector u/ (r). The elastic energy (E,;) is given by
[27,43]

5 . )
Ai+wp;[ouk  Ou
Ee — dr J J Yy
! ;/ { 2 (E)x * oy

Mj ul 8u‘; ’ aujy ul ’
= —-—= — + — , (A5
+ 2 0x ay + ox + ay (A5)

where A =3.653eV/AS, w1 =9.125eV/AY i, =

) 02
1.779eV/A , and u, =7.939eV/A are the elastic Lamé
factors for graphene and hBN, respectively.
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The interlayer interaction energy Ej, can be written as [27,43]
Eint = / VId(r)ldr, (A6)

where V[d(r)] = v Zi:l cos(Gy - d(r) + ¢y ). For Gy, we have G; = by, G, = —b; + b, and G3 = —b,. V takes 4.38 while
¢y = —50.26°.

The minimization of total energy (Ei) as a functional of u/(r) leads to a set of Euler-Lagrange equations by using a similar
procedure as in Refs. [27,43]:

(ﬁfg(q)) 1y ((xj + 2N+ gt g+ )ady >1<fxfj<q) ) A7)
() Gj+upaay O +2u)a +riar) \f @'

where q takes each Gy, G; are the reciprocal lattice vectors of the supercell, and 60 shortest nonzero ones have been used.
j =1, 2 represent top graphene layer (j = 1) and bottom hBN layer (j = 2). The Fourier components U/(G;) and f/(G;) are
defined as

w(r) =) W(G) T, (A8)
G,
W) oo
—d = —V sin(Gy - (87" = Dr +u'(r) = w?(r) + ¢v)Gi = Y _F/(Gy)e ™™ (A9)
k=1 G,

Equations (A7), (A8), and (A9) can be solved self-consistently to obtain converged 0/ (G,), when the difference of AW/ (G,) =
(W (Gy)p — W(Gy)n_1])* between two steps is less than 1075, After relaxation, one can then get the displacement vector u/(r)
and at last the modified shift vector d(r) = (S~! — Dr + u!(r) — v?(r) being used to calculate hopping terms and on-site
energies.

3. Third step: The strain effect on hopping terms and on-site energies

Fully relaxed graphene is under strain, which will influence the hopping terms and on-site energies. Here we use the
formulation of the dependence of Hamiltonian parameters on the strain tensor proposed by Fang et al. [44]. At a position r,
the changes in hopping terms (§t,,) and on-site energies (6/4;) can be expressed as

5 dul  du, 5 dul  du, 5 dul  du, AL0
t, = . —_— - 2 ,
1 “(ax+ay>+ﬂ[”y<ax ay)+""<ay+ax)] (A1)
oul du!
Shy = o[ 2 4 22 ), (A11)
ox ay

where n =1 — 3, i = A and B, the strain is in the graphene layer, and ;3\,1 is the unit vector along §,. Based on first-principles
calculations of strained graphene, the parameters «, 8, and « are fitted to be 3.27, —4.40, and —4.95 eV, respectively.
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APPENDIX B: ADDITIONAL TWIST ANGLES

D(arb. unit)

50 100
D(arb. unit) G(e'/h)

FIG. 5. The calculated electronic structure of G/hBN with twist angle 0.0°. Panels (a), (b), and (c) are calculated with relaxation while
panels (d), (e), and (f) are without lattice relaxation. Panels (a) and (d) display the band structures; panels (b) and (e) are the densities of states;
and panels (c) and (f) are the conductance without magnetic field. In the band structure and DOS, the red dashed lines denote the graphene
monolayer results. In the conductance [panels (c) and (f)], the red solid, blue dashed, and magenta dotted lines are calculated for device sizes
200 x 200 nm, 300 x 300 nm, and 400 x 400 nm, respectively.

D(arb. unit)

D(arb. unit)

FIG. 6. The calculated electronic structure of G/hBN with twist angle 0.5032°. Panels (a), (b), and (c) are calculated with relaxation while
panels (d), (e), and (f) are without lattice relaxation. Panels (a) and (d) display the band structures; panels (b) and (e) are the density of states;
and panels (c) and (f) are the conductance without magnetic field. In the band structure and DOS, the red dashed lines denote the graphene

monolayer results. In the conductance [panels (c) and (f)], the red solid, blue dashed, and magenta dotted lines are calculated for device sizes
200 x 200 nm, 300 x 300 nm, and 400 x 400 nm, respectively.
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FIG. 7. Landau fans for the longitudinal conductance for twist angles (a) 0.0° and (b) 0.5032°.

APPENDIX C: EDGE DEPENDENCE
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FIG. 8. The conductance of G/h-BN for devices with zigzag edge (Z) and armchair edge (A), with twist angle 1.0047°. Solid lines
denote zigzag edges with while dashed lines are for armchair edges. The device sizes are 200 x 200 nm, 300 x 300 nm, and 400 x 400 nm,

respectively.

APPENDIX D: DETAILS OF MAGNETOCONDUCTIVITY
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FIG. 9. The conductances along the ¢ = 3 line in Figs. 2, 7(a), and 7(b) for magnetic fields B = 7.633, 9.8, 15.4546 T and the
twist angles = 0.0°, 0.5032°, and 1.0047°. (d) Enlarged view of magnetic Dirac point closing in Fig. 2 around the ¢ = 3 line.
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APPENDIX E: DISORDER EFFECT

(b)
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FIG. 10. Conductance for 60 different realizations of the disorder for a twist angle = 1.0047° with and without magnetic field. The site-
diagonal random potential v; varies within the range [—V;, Vp], where V, = 0.5 eV. The main features (e.g., the secondary Dirac points) stay
unchanged, though there are small fluctuations in the magnitude of the conductance.

APPENDIX F: ANTIDOT LATTICE
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FIG. 11. Schematic of the device. Blue areas are the left and the right lead, and red area is the scattering region. The enlarged figures
(bottom panels) show the moiré wavelength A, the neck width d,,, and the radius r; of the antidot. The lattice constant of the antidot lattice is

Aantidot = dn + 274. In our calculations, we set dunidgor = 35 nm, and vary the antidot’s radius to generate different neck widths.
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