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We numerically study the effects of nonmagnetic impurities (vacancies) in the spin-S Heisenberg antifer-
romagnet on the kagome lattice. For a range of low but nonzero temperatures, and spin values that extend
down to § =2, we find that the magnetization response to an external magnetic field is consistent with the
response of emergent “half-orphan” degrees of freedom that are expected to dominate the response of the
corresponding classical magnet in a similar temperature range whenever there are two vacancies on the same
triangle. Specifically, for all spin values we have considered (from S = 1/2 to 4), there is a large enhancement
of the local susceptibility of the lone spin on such a triangle with two vacancies; in the presence of a uniform
magnetic field 4, this lone-spin behaves effectively as an almost free spin S in an effective field #/2. Quite
remarkably, in the zero-temperature limit, the ground state in the presence of a half-orphan has a nonzero total
spin value Sgs that shows a trend similar to S/2 when S > 2. These qualitative aspects of the response differ
strikingly from the more conventional response of diluted samples without such half-orphan degrees of freedom.
We discuss how these findings could be checked experimentally.

DOI: 10.1103/PhysRevResearch.2.043425

I. INTRODUCTION

The low-temperature physics of frustrated quantum mag-
nets is controlled by the interplay between the geometric frus-
tration, quantum fluctuations, entropic effects, and quenched
disorder. In many interesting cases [1], the geometric frustra-
tion renders the leading exchange interactions unable to drive
magnetic ordering even at temperatures much lower than the
scale of these interactions. Instead, in a semiclassical picture,
they confine the system to a manifold of minimally frustrated
configurations, which can admit a description in terms of
emergent degrees of freedom as in the case of classical spin
ice [2]. The low-temperature physics is then controlled by how
these emergent degrees of freedom behave in the presence
of subdominant interactions as well as quantum and thermal
fluctuations. In the extreme quantum limit, frustrated S = 1/2
magnets can provide an arena for the physics of quantum
number fractionalization, the Majorana fermion excitations of
Kitaev’s honeycomb model being a celebrated example [3].

Interestingly, quenched disorder, i.e., nonmagnetic sub-
stitutional impurities or lattice imperfections that affect the
bond strengths in their vicinity, can provide a powerful probe
of these emergent excitations and their unusual quantum
numbers. For instance, the emergent magnetic monopole ex-
citations of classical spin ice can be nucleated in the ground
state of a disordered sample. Similarly, vacancies in Kitaev’s

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2020/2(4)/043425(14) 043425-1

honeycomb model nucleate a Majorana fermion-Z, flux com-
plex in their vicinity. More generally, a wide variety of
features can be probed or created by nonmagnetic impurities
in magnetic systems, depending on the nature of the underly-
ing state. If the clean system is a spin liquid, then nonmagnetic
impurities can lead to spinon deconfinement [4] or even spin-
charge separation if they are mobile [5]. More conventional
ordering patterns can also be characterized by the response
to nonmagnetic impurities [6]. An enhancement of local
correlations is often observed near spinless impurities in an-
tiferromagnets [7]. In valence bond crystals that break lattice
symmetries, or valence bond solids that are nondegenerate,
nonmagnetic impurities generically induce a localized spin
texture around them [4]. In systems with competing phases
at low temperatures, nonmagnetic impurities can furthermore
reveal or seed competing orders [8]. Quantum critical systems
have also been shown [9,10] to host responses characteristic
of their criticality to the inclusion of spinless defects. All
these different physical behaviors and the corresponding local
textures or responses have been detected in magnetic com-
pounds using local probe techniques, such as nuclear magnetic
resonance (NMR). Let us mention, for instance, the spin
“polaron” observed in the two-dimensional doped material,
SrCuy(BO3), [11,12]; the imaging of spin-1/2 edge exci-
tations in the spin-1 Haldane compound Y,;BaNi;_ Mg Os
[13]; the magnetic response around an impurity observed in
an S = 1/2 kagome compound (herbertsmithite) [14]; and the
localized bound states generated by impurities in topological
magnets [15].

Coming back to frustrated magnets, the SrCrg,Gaj2-9,019
(SCGO) compound, in which Cr** § = 3/2 moments lie on
the vertices of the pyrochlore-slab (bilayer kagome) lattice,
provides another striking example of the interplay between

Published by the American Physical Society


https://orcid.org/0000-0002-4554-6539
https://orcid.org/0000-0001-9172-049X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043425&domain=pdf&date_stamp=2020-12-28
https://doi.org/10.1103/PhysRevResearch.2.043425
https://creativecommons.org/licenses/by/4.0/

PATIL, ALET, CAPPONI, AND DAMLE

PHYSICAL REVIEW RESEARCH 2, 043425 (2020)

impurities and the underlying physical state [16—18]. Even
in the best samples of SCGO, nonmagnetic Ga atoms disrupt
the corner-sharing network of triangles and tetrahedra formed
by the Cr ions; these Ga impurities can be modeled as static
vacancies in the Heisenberg antiferromagnet on this lattice.
At a classical level, the Heisenberg model on the pyrochlore
slab lattice remains disordered down to 7" = 0, providing an
interesting example of a classical spin liquid with full SU(2)
symmetry of interactions [19,20].

Following an earlier phenomenological analysis [21] of ex-
perimental results on SCGO, Henley [22] described the T = 0
liquid state in terms of an emergent fluctuating polarization
field and noted that a triangle with two vacancies led to a lone
or “orphan” spin on that triangle, which behaves as a source
(charge) for this polarization field. The polarization field of
this charge leads, in this description, to an oscillating spin
texture with a power-law envelope. Even without a detailed
computation of this texture, this effective theory predicts that
the classical spin-S Heisenberg model on the pyrochlore slab
lattice will have a net spin polarization of S/2 in the direction
of an infinitesimal external magnetic field at 7 = 0.

Motivated by this factor of 2, which is suggestive of
spin fractionalization, Henley dubbed this combination of
the lone spin and the resulting spin-texture a “half-orphan,”
modifying the terminology of “orphan spins” introduced in
the earlier phenomenological studies [21]. In closely related
work [19] that studied the classical Heisenberg antiferromag-
net on the pyrochlore and pyrochlore-slab lattices, Moessner
and Berlinsky also recognized the special role of these half-
orphan degrees of freedom in dominating the low-temperature
magnetic response, and they used this insight to model the ex-
perimental results on SCGO with varying degrees of dilution.
These results were achieved using a single-unit approximation
where the properties of individual simplices were taken as
input.

This striking T = 0 prediction of a saturation magnetiza-
tion of §/2 for the system with two vacancies on the same
triangle led immediately to the following questions: Does the
low-temperature susceptibility show signatures of this “spin
fractionalization”? In other words, does the impurity sus-
ceptibility of this orphan-texture complex correspond to that
of a classical spin-S/2 object? If yes, how is this response
resolved spatially? Motivated by these questions, Ref. [23]
used a hybrid large-N field-theory as well as direct Monte
Carlo simulations to study the low but nonzero temperature
behavior. Perhaps surprisingly, the answer turns out to be in
the affirmative, with an interesting spatial structure that will be
important in our present study: At low temperatures 7 in the
spin-liquid regime, each lone spin on a triangle with two va-
cancies “sees” an effective magnetic field that has magnitude
h/2 (where h is the applied external field) and responds to it as
a free spin S in this field at temperature 7. Exactly half of this
paramagnetic response is canceled off by the net diamagnetic
response of the surrounding spin texture for which this orphan
spin serves as a source, giving rise to a net susceptibility that
equals the susceptibility of a spin S/2 at temperature 7.

In conjunction with subsequent work [24] that also char-
acterized the entropic interactions between these half-orphan
degrees of freedom, this approach provides a fairly de-
tailed picture of both the orphan-texture complex and its

susceptibility, as well as interactions between orphans, in-
cluding a theory for low-temperature glassy behavior in the
multiorphan case. Importantly, it provides a reasonably sat-
isfactory fit to NMR data on SCGO [18,25] that could not
previously be accounted for by more conventional ideas. We
provide more details on orphan physics in the classical case
in the Appendix for completeness, along with classical Monte
Carlo simulations for kagome systems, as starting from now
we will focus on kagome planes (and not bilayers).

While one expects that the classical physics of half-orphans
would be reflected in some form in a semiclassical treatment
of the corresponding quantum magnet with large but finite
spin S, this expectation has thus far not been shored up by an
actual controlled calculation of 1/§ corrections to the classical
picture. Nor has the fairly impressive success of classical
descriptions of S = 3/2 frustrated magnets such as SCGO
been quantitatively examined from this point of view.

Spin S = 1/2 kagome magnets such as herbertsmithite
[26,27] also feature some degree of dilution by nonmagnetic
vacancies. Since it is well known that the classical kagome
magnet has a fairly broad low-temperature spin-liquid regime,
extending upward from a lower cutoff of 7* ~ 1073JS? (that
marks a subtle crossover to an ordered regime below this
temperature [28-30]), one expects that half-orphans seeded
by vacancy-pairs should be fairly well-defined at the classical
level in this regime. These observations provide the central
motivation for the present study, in which we ask the fol-
lowing: Do these emergent half-orphan degrees of freedom
nucleated by pairs of vacancies on the same triangle survive
quantum effects in the Heisenberg antiferromagnet on the
kagome lattice?

The presence of nonmagnetic impurities in some of the
best-known experimental realizations of frustrated quantum
magnets on the kagome lattice has motivated several studies
of vacancy effects, which we build on here with our work. For
instance, a single nonmagnetic impurity is known to induce
local dimer order in the spin-1/2 case [31], and it does not
generate a localized spin in the spin-3/2 case either [32],
while a finite concentration could lead to valence bond glass
in the spin-1/2 case [33]. Using a combination of series
expansion and variational wave-function studies, Gregor and
Motrunich [34] have also modeled inhomogeneous Knight
shifts in compounds such as Herbertsmithite [26] by studying
the response of the S = 1/2 kagome antiferromagnet to non-
magnetic impurities. Again, there is no evidence that single
vacancies induce the kind of dramatic enhancement that pairs
of vacancies do in the classical picture.

In this paper, we study the finite-temperature as well as
ground-state signatures of orphan physics in the spin-S quan-
tum Heisenberg model on the kagome lattice for a large set
of spin values ranging from S = 1/2 up to § = 6, allowing
us to discuss the quantum to classical crossover. One striking
result of our study is that the ground state of the quantum
system with two vacancies on the same triangle has nonzero
spin quantum number Sgs. This tracks [S/2], which is the
total quantum spin value (allowed to exist in the system)
which is the closest to S/2, i.e., we find Sgs >~ [S/2] down
to S = 2. This provides a dramatic quantum manifestation of
half-orphan physics at T = 0. In some way, this result is rem-
iniscent of the § = 1/2 end-spins in cut S = 1 Haldane gap
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chains, which provide the clearest and most experimentally
relevant signature of the underlying symmetry-protected topo-
logical order in these systems. However, this is qualitatively
different: The presence of quantum half-orphans in the ground
state of samples with two vacancies on the same triangle is
blind to the integer or half-integer nature of elementary spin
S, and is perhaps best thought of as a semiclassical effect that
survives to surprisingly low values of S. Indeed, there is no
obvious underlying topological order at the heart of this effect.

In our finite-temperature studies, we find that the local
susceptibility offers a very clear signature of orphan physics
down to S = 2. We attribute this to the presence of quantum
half-orphans in the ground state of these systems. From other
probes such as the magnetization curve, we find that orphan
physics can be detected to even lower values of quantum spin
(down to S = 1/2), with specific signatures not present for
other types of impurity patterns. We also present an analysis
of the histogram of spin magnetization due to a distribution of
impurities, akin to a NMR Knight shift experiment, specific to
the experimentally relevant S = 1/2 situation. Our results are
obtained with a finite-temperature method working in Krylov
bases generated by an appropriate number of randomly dis-
tributed initial states (see details below), as well as Lanczos
exact diagonalization (ED) and density matrix renormaliza-
tion group (DMRG) for the study of ground-state properties.

The layout of this paper is as follows: In Sec. II we first
study the T = 0 ground state and present our results on the
ground-state polarization, as well as spin textures obtained
through ED and DMRG computations. We begin Sec. III with
a brief description of the finite-temperature random sampling
technique used to simulate thermodynamics of the quantum
system, and then we present finite-temperature results for
orphan physics, including the local susceptibility response,
the magnetization curve, as well as experimental predictions
for the NMR Knight shift. Finally, Sec. [V summarizes our
results along with a discussion of some outstanding issues. For
completeness, in the Appendix we also present the results of
finite-temperature Monte Carlo simulations of vacancy effects
in the classical Heisenberg model on the kagome lattice, and
we identify the temperature regime in which orphan physics
is clearly visible in the classical case.

II. GROUND-STATE PHYSICS IN THE QUANTUM CASE

We begin with perhaps the simplest question that gets
to the heart of the intriguing conundrum posed by Henley,
Moessner, and Berlinksy’s classical T = 0 argument for a
saturation magnetization of S/2 that reflects the presence of
a half-orphan nucleated by two vacancies on a triangle: What
is the ground-state spin quantum number of a spin-S quantum
antiferromagnet on a kagome lattice with two vacancies on
one triangle of the lattice?

To answer this question for the kagome magnet with
Hamiltonian

H=>Y"5-8 1)
(i,)
we first compute the total spin of the ground-state for some

of the lattices shown in Fig. 1. This is done using Lanczos
diagonalization for kagome samples with an orphan spin, up

FIG. 1. Kagome lattices with N sites and two nonmagnetic im-
purities (denoted as red crosses). Periodic boundary conditions are
shown through system-spanning bonds denoted by alphabetical in-
dices. (a), (c), (d), and (f) Samples with N = 12, 15, 18, and 21
sites, respectively, for which the positions of the impurities create
an orphan spin (denoted as a blue dot). (b) and (e) Samples with
N = 12 and 18 where the impurities are next-nearest neighbors and
do not create an orphan spin. The blue dot in those cases denotes the
spin which we monitor for the magnetization or local susceptibility
in Sec. IIL.

to S = 6. This is represented in Fig. 2, where we find that
starting from S > 2, the ground state is no longer a singlet.
We compare the total spin Sgs of the ground state to S/2
(dashed line in Fig. 2), and we find an overall trend toward
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FIG. 2. Ground-state global spin Sgs as a function of local spin-S
for kagome lattices of varying sizes with an orphan spin. The straight
line is the classical prediction Sgs = S/2.

this classical prediction. In particular, the ground-state spin
Sgs tracks in most cases the (half-)integer closest to S/2 which
is allowed in the sample. The results in Fig. 2 are mostly
for the 12-site samples with a pair impurity, but we find the
same for the few larger clusters that we are able to simulate.
In particular, we find Sgs = 1 for spin-2 lattices of sizes 15
and 18 with an orphan impurity. We were able to check also a
combination of spin and lattice size where the global total spin
is half-integer € {1/2,3/2,5/2,...}. Note, for instance, the
case of § = 7/2 spins on a 15-site sample with a pair impurity
(13 sites effective) where we find that Sgs = 3/2, which is
indeed the allowed value closest to the classical prediction.

These results should be contrasted with all other cases we
have tested, such as the pure case and different arrangements
of the impurities (for one or two nonmagnetic impurities).
In these more conventional configurations, we always find
the ground state to be of the lowest possible spin (a global
singlet Sgs = 0 when the total number of spins is even).
This is consistent with what is expected for conventional
antiferromagnets.

In addition to this, we also study the ground-state texture
for cases in which it is not a global singlet. This can be done
by calculating (S7) for all sites on the lattice in the highest
polarized state in the ground-state multiplet. This is shown ex-
plicitly in Fig. 3 for S = 11/2. Since the ground state has total
spin Sgs = 2 (see Fig. 2), we have measured the distribution
of magnetization in the 5 = Y | §7 =2 sector. There is
clearly a larger effect at the orphan site that tapers off with
increasing distance, but due to the relative small size of the
lattice, other sites are affected as well.

In Fig. 4, we present other magnetization profiles for much
larger system sizes using DMRG simulations [35-37]. We
have chosen a spin § = 2 so that the ground state is polarized
and we measure the local (S7) values in the S, = 1 ground
state. Typically, we have kept up to m = 8000 states [using
only U(1) quantum number corresponding to the conservation
of $7] to achieve a discarded weight below 5 x 107>. As
is often used in such simulations, we have chosen cylinder
geometries, i.e., periodic boundary conditions in the short
direction and open ones in the other. From these plots, it is

C e d f

FIG. 3. Ground-state texture (S;) for S = 11/2 measured on the
highest polarized state of the ground-state multiplet, with Sgs = 2,
obtained from ED for a 12-site lattice (periodic boundary conditions
are indicated with identical letters), with two impurities shown as
crosses. Radii of the circles are proportional to the (S;) value; blue
and red correspond to positive and negative values, respectively.

clear that the spin texture is well localized around the orphan
spin. Moreover, the numerical values found in these larger
clusters are within 10% of the ones obtained by ED on a much
smaller 12-site cluster with two impurities.

To make contact with experiments, we now move to the
finite-temperature regime to see if signatures of orphan spins
remain and how to characterize them.

III. THERMODYNAMICS FOR THE QUANTUM VERSION

In this section, we study the thermodynamics of the quan-
tum version of the Heisenberg model in Eq. (1) for various
values of the spin S ranging from S = 1/2 up to S =4, on
samples of the kagome lattice containing one or several non-
magnetic impurities, some of which are depicted in Fig. 1.

While a full computation of the thermodynamic properties
does require the complete set of eigenvalues (to get the parti-
tion function), or even eigenstates (to compute observables),
it has been known for a long time that finite-temperature
properties can be approximated using only a few well-chosen
pure states in the correct energy window, as done in the
finite-temperature Lanczos method [38]. This is rooted at the
foundations of statistical mechanics since a pure state with
energy E of a large system has the same local properties as a
thermodynamic mixed state at the related temperature. These
ideas have been put on more rigorous grounds over the years,
and are known as quantum typicality [39-42].

In most of our results, we thus use a typicality scheme
based on the exact application of the Hamiltonian to a random
initial vector |vp). Rather than using a power method with
repeated applications of the Hamiltonian [43,44] which has
a slower convergence, we use the formulation in the Krylov
basis Span{|vg), H|vo), H*|vy), . .., H"|vp)}, and we choose
m large enough (typically between 100 and 500) such that
at least two of the lowest energy states are converged. We
found that this criterion implies large enough Krylov spaces to
ensure convergence at the lower temperature. Several previous
works show that these approaches are particularly successful
to study thermodynamic properties of frustrated magnets on
lattices larger than those available with full diagonalization
methods [45-48], and we refer to them for details about this
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FIG. 4. Ground-state texture (S7) for S = 2 measured in the S;

total

. = 1 sector, achieved using DMRG for (a) a 6 x 17 lattice; and (b) a

4 x 19 lattice with a different orientation. Open/periodic boundary conditions are used in the long/short direction. The two crosses denote the
positions of the two impurities, whereas the radius of circles and nearby numbers denote (S) (values are only shown when the absolute value

is larger than 0.1).

method. Despite using exact (machine precision) application
of H, all the data presented using this technique present error
bars, which results from averaging over a finite number of
initial random vectors |vp). In our simulations, we use be-
tween 100 and 800 initial random vectors, depending on the
system size, which is quite a high number (see the discussion
in Ref. [49], which averages over 100 initial states). The error
bars are computed using standard jackknife techniques to
correctly take into account the important correlations between
the numerator and denominators in all thermal expectations
values [49,50].

Specific aspects of our computations are as follows: (i)
the presence of impurities implies the absence of translation
symmetries (for some impurity patterns, a reflection symme-
try is still present), (ii) we measure expectation values of
observables (such as the orphan magnetization S;_, ) that
do not commute with H, hence requiring to store :ﬁjl Krylov
vectors [47]. Even though we use total magnetization S|
conservation and spin inversion S7 — —S7 symmetry, the first
point implies very large Hilbert spaces, especially for large
spin S values. The second point implies a much larger mem-
ory requirement than for most applications of the typicality
method which deal with observables that commute with the
Hamiltonian. We mitigate this by storing all Krylov vectors
in parallel for the largest samples. Both computationally de-
manding points limit the typicality method to kagome samples
with a relatively small number of spins. We can nevertheless
reach samples with up to N = 25 spins for S = 1/2 and up to
N =10 spins for S = 4.

In the following, we will present results for the total
susceptibility of the sample Xt = ((Si )*)/T, the local

susceptibility,
<S (Z)rphan S tzotal

Z
Here S orphan

defined as (see, e.g, [34]) Xioc=
)/T, or the magnetization curve Sg ...(h).
is the magnetization at an orphan site.

A. Local susceptibility

We compute the magnetic response of the spin closest to
nonmagnetic impurities: it is in most cases the orphan spin
[such as in Figs. 1(a), 1(c), 1(d), and 1(f)], but we also con-
sider the closest spin for other impurity patterns [such as in
Figs. 1(b) and 1(e)]. Motivated by the classical expectations
outlined in the Introduction, we study the local susceptibility
as a sensitive probe of orphan physics.

We compare in particular in Fig. 5 the local susceptibility
of the orphan spin for the 12-site kagome sample with a
pair of impurities [Fig. 1(a)] for various values of spin S
to the classical result. To provide a simple comparison, we
scale T — T/S(S + 1) and 1/(x10cT) — S + 1)/ (o),
in analogy with the classical case. We find an agreement
between the classical version for a range of temperatures
lying between a (spin-dependent) minimum temperature and
arbitrarily large temperatures. The inset of Fig. 5 allows us
to identify the dependence on the spin S of the typical tem-
perature scale above which the local susceptibility is almost
indistinguishable from the classical response. As expected,
this temperature decreases with increasing spin S, but note
that it does so even when rescaled by S(S + 1). More strik-
ingly, we find that for S > 2, the inverse local susceptibility
S(S 4 1)/(x10c T ) appears to converge to a finite value (around
~7-10, depending on S), relatively close to that of the classi-
cal case (6 in theory, around ~5.5 for the 12-site samples,
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8

T/S(S+1)

FIG. 5. Scaled inverse local susceptibility at the orphan spin site
for different values of the spin-S. A comparison to the average sus-
ceptibility per site for S = 4 for the 12-site lattice with a pair impurity
is shown. This is calculated by normalizing the total susceptibility by
number of spins. Inset: magnified version where variations between
different spin values can be clearly seen.

as shown in the Appendix). The lower spin values (S = 1/2
and 3/2), for which we can use a larger 18-site sample, depart
earlier from the classical case (as expected), the major dif-
ference lying at low temperatures where the inverse response
S(S + 1)/(ocT) diverges. Clearly, this difference has its ori-
gins in the fact that the ground state for these cases does not
host a half-orphan, i.e., it is a spin singlet and does not lie in
the total spin sector Sgs >~ [S/2].

A clear signature of the orphan spin is found by compar-
ing its local (inverse) susceptibility to the averaged (inverse)
susceptibility per site, also represented for S = 4 in Fig. 5: as
is readily seen in this figure, the orphan spin is approximately
an order of magnitude more sensitive to magnetic field at low
temperatures. This is justified by assuming that a large portion
of the magnetic response of the entire system is provided by
the orphan spin, implying that the averaged susceptibility is
1/N times the orphan susceptibility, where N is the number of
spins (10 in this case). It is important to understand whether
this signature is unique to the orphan spin, or if it could also
be found for spins close to the nonmagnetic impurities for
other impurity patterns. To answer this question, we study two
other kinds of impurities: (i) a single site impurity, and (ii) two
impurities on neighboring plaquettes [this case corresponds to
Figs. 1(b) and 1(e)].

For the former case, we consider the local susceptibility
of any spin close to the impurity, while for the latter we
consider the spin in between the two impurities [blue dot
in Figs. 1(b) and 1(e)]. The corresponding three scaled in-
verse local susceptibilities are represented in Fig. 6 for § =
2 (representative of the generic S > 2 case) as well as for
S = 1/2. In both cases, we find the magnetic response to be
significantly stronger for the orphan spin for low to medium
[T =~ S(S + 1)] temperatures.

The spin-1/2 case is of special importance for several
compounds [26,51-53], for which local magnetic responses
can be probed by NMR. Motivated by this, we study in more
detail the S = 1/2 case for a larger variety of sample sizes

1000

S =1/2 (orphan)

S =1/2 (single impurity)
S =1/2 (nn. plaq.)

S =2 (orphan)

S =2 (single impurity)
S =2 (n.n. plaq.)

100 1

S(8+1)/x10cT

g
pad § TSNS L

TEY

0.01 0.1 1 10 100
T/S(S +1)

FIG. 6. Comparison between the scaled inverse local suscepti-
bility for the orphan spin situation and other impurity patterns, for
S =2 on a 12-site sample and S = 1/2 on an 18-site sample.

and impurity patterns. In Fig. 7, we study the orphan spin
configuration for an 18-site kagome sample (with effectively
16 spins), a 21-site sample (19 spins effective), and a 27-site
sample with two orphan spins that are maximally separated
(23 spins effective), as well as the same 27-site sample with
impurities on neighboring plaquettes (25 sites effective). All
of these configurations are shown in Figs. 1 and 12. When
the number of spins is even, the ground state can be and is a
global singlet. This feature is absent in all other cases with
an odd number of spins, leading to a divergence in xjo at
low temperatures. Besides the lattice-independent behavior in
the high-temperature range, we observe a clear distinction in
the medium- to high-temperature range in the local response
between the orphan spin and other spins close to impurities,
before the low-temperature signal (dominated by the ground-
state nature) eventually appears. For the case of the lattice
with two orphan impurities, both orphans are chosen to be
equivalent from the perspective of lattice geometry, and we

I ® 18 (orphan)
100 A - ‘Ei! 21 (orphan)
@ !ii! ¥ 27 (orphan 1)
o izg A 27 (orphan 2)
& S > 27 (n. plag.)
S ®
= i ®
= v VI9, ®
+ i *JAI}E
Do ol .
@10 4% ¢
B Q
L. )
] .
¥ 2 saem
T T T
0.1 1 10 100
T/S(S+1)

FIG. 7. Scaled inverse local susceptibility comparisons of the
orphan spin for S = 1/2 on various samples of large sizes. For the
27-site sample, we consider two situations: one with two orphan
spins (for which we distinguish the response) and one with impurities
on neighboring plaquettes.
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FIG. 8. Scaled orphan magnetization curve (S, ..,) /S as a func-
tion of scaled applied field AS/T at different temperatures, for a spin
S =4, 12-site kagome sample. The continuous curves are Brillouin
functions at fields 4/2 and A.

expect that they should have identical behavior, which is what
we observe within error bars.

B. Orphan magnetization curve and effects of the
screening cloud

Another important feature of orphan physics which is im-
portant to test for in the quantum case is the effect of the
screening cloud on the orphan spin itself. As discussed in
the Introduction, in the classical case the cloud screens half
of the applied magnetic field, implying that the orphan spin
responds like a free spin S in a magnetic field #/2. This
description should work only in the temperature range where
quantum and thermal effects are not strong, i.e., in an inter-
mediate temperature range with respect to JS2, the coupling
value.

Figure 8 displays a comparison between the scaled magne-
tization curve of the orphan spin (Sf)rphan (h, T))/S for the spin
S = 4 kagome 12-site sample for three different temperatures,
and it compares it to the expected Brillouin functions for the
full-field Bg(hS/T) or half-field Bs(hS/2T), where

25 +1 25 +1 1
Bo(x = hS/T) = > Looth( =22 x ) — ——coth( =
28 28 28

is the response to a magnetic field & of a free spin-S at temper-
ature 7. We find good agreement between the typicality data
and the half-field response for a temperature 7 /[S(S + 1)] =~
0.1, and expected deviations at low and high temperature. We
discuss below how to quantify the temperature scale for which
the agreement is the best. We find similar behavior for lower
spins, all the way down to spin-1/2.

In particular, motivated by the specific signature of the
orphan local susceptibility in Fig. 7, we also study the field-
dependent response of the orphan impurity complexes at
different temperatures for the low-spin case S = 1/2. Once
again, we find a temperature range where the screening cloud
of the orphan provides a net cancellation of half the magnetic
field, making the response of the orphan spin consistent with
a free spin-S in a magnetic field //2. This can be observed in

1.0 —

0.8 1

P N=18 » N =27 (1 orphan)
0.2 / i N =21,T/S(S +1) =0.027 N = 27 (2 orphans)
S I N=21,T/S(5+1) = 040 ——B, )5(hS/T)
A N=2 —— By /2(hS/2T)
/ b N=21,T/S(S+1) =133
0.0 = T T T T
0 1 2 3 4 5

hS/T

FIG. 9. Scaled orphan magnetization curve (S, ...} /S as a func-
tion of scaled applied field hS/T, for various S = 1/2 kagome
samples. For the 27-site kagome sample, we consider the case
with two equivalent orphan spins. The temperature is 7/S(S + 1) =
0.53, unless specified in the legend. Also shown are the expected
Brillouin functions for spin S = 1/2 at temperature 7 in field &
and h/2.

Fig. 9 for a different set of lattice sizes where the adherence
to the half-field Brillouin function is consistent for differ-
ent samples with the same temperature scale. An interesting
feature to note here is the behavior of the orphan impurity
complexes in the 27-site sample with two such complexes.
The screening cloud appears to be highly local as each of the
two orphan spins responds exactly as a lattice with only one
orphan spin. Furthermore, we find a plateau at low tempera-
tures in the orphan response (Sf)rphan) as well as an approach
to its saturation value through a series of plateaus at higher
fields (not shown in Fig. 9). This is due to the discrete nature
of the finite-size spectrum on such a small lattice (and at such
low temperature), and it appears without any relationship to
other well-known quantized plateaus that exist in the clean
case [54-57].

The field dependence discussed above only appears for a
particular temperature range which is controlled by thermal
and quantum correlations. At high temperatures, the thermal
correlation length is too short for the texture to survive, and at
low temperatures the quantum correlation length is too long
for the classical orphan description to work. It was noted
in Ref. [23] that in the classical case, the expectation that
the orphan texture in the SCGO bilayer provides exactly /2
shielding works at temperatures below 7/S? ~ 0.2. In the
case of the kagome lattice, the classical results presented in
the Appendix indicate that the orphan physics is slightly less
stable to temperature (see Fig. 14) and we must thus expect a
lower 7'/S? bound. This sets an approximate upper bound of
temperature congruent with orphan physics for the quantum
case as well for large spin-S.

To make a more quantitative prediction for this tem-
perature range, we define the integrated square of the
difference between the numerical data obtained with the
typicality method and the expected form of the field re-
sponse of the orphan. Considering the analytical Brillouin
function for spin-S in magnetic field 4/2, we compute the
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FIG. 10. Integrated difference square between the orphan mag-
netization curve and the half-field Brillouin function, as defined in
Eq. (2), for different values of S and as a function of scaled tempera-
ture 7/S(S + 1).

integral

I= / ][5 ). T) = Bs/2, T, (@)

where T is fixed. This quantity approaches zero only when the
data fit the function to high accuracy in the window defined
above. For numerical convenience, we define the integral to
run from 4 = 0 to an A satisfying B2 (hS/2T ) = 0.9. We have
checked that this does not affect the conclusions.

We show results for the quantum case in Fig. 10 for S = 3
and 4 on the 12-site lattice with an orphan spin, along with
S = 1/2 results on larger lattices. For all spin values, we
find a temperature range where the data are extremely close
to the half-field Brillouin function. This region can also be
estimated directly from Fig. 5 by comparing the susceptibility
with the expected value for the orphan defect. The deviations
from orphan behavior at high temperatures arise from the
same thermal fluctuations that melt orphan defects for the
classical case, whereas the deviations at low temperatures
arise from strong quantum fluctuations expected to render the
spin-liquid description inapplicable. We chose in Figs. 8 and
9 the temperature close to the minima of / for S =4 and
1/2, respectively, but let us emphasize that displaying data
at temperatures corresponding to values of I < 0.01 (respec-
tively 7 < 0.002) would result in curves that would not be
distinguishable for § = 4 (respectively S = 1/2) on the scale
of Figs. 8 and 9. Based on the numerical evidence provided
in Fig. 10, this leaves a fair range of temperatures where the
orphan physics could be probed experimentally with local
probes, for instance.

As can be noted furthermore in Fig. 10, there is no signifi-
cant difference between 18- and 27-site samples for § = 1/2,
implying that the orphan shielding is fairly local (as also
expected from Refs. [23,24]). We also compare to the case
in which the two impurities are on neighboring plaquettes
to show that a strong h/2 shielding does not occur for any
temperature range in this case. Although there is a minimum
in the integrated difference square measure, the values at the
minimum are significantly larger than corresponding values
in cases in which orphan spins are present. The corresponding

1.0
0.8 1
Q0.6
E
5
2 041
i 0.6 _
e ® T/S(S+1)=0.667 T/S(S +1) = 1.000
0.2 T/S(S + 1) = 0.800 T/S(S+1) = 1.334
I T/S(S+1) = 0.827T——B 2(hS/T)
y T/S(S +1) = 0.853——B, )5 (hS/2T)
0.0 = T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

nS/T

FIG. 11. Scaled orphan magnetization curve for an § = 1/2 27-
site lattice with neighboring plaquette impurities [Fig. 12(c)], where
the points are shown for the range of AS/T used for the integrated
difference.

magnetization curves are also quite distinct from the half-field
Brillouin function (as seen in Fig. 11).

C. Local susceptibility distribution for doped S = 1/2
kagome systems

To make connections with possible experimental detection
of orphan physics using NMR, we develop in this section a
crude estimate for the distribution of local susceptibilities on
large kagome samples for the case § = 1/2.

The procedure we consider is as follows. We work with
a large lattice with 3 x 300 x 300 = 270000 sites to be rep-
resentative of the thermodynamic limit. On this lattice, we
randomly pick sites to host a nonmagnetic impurity with prob-
ability 0.1. This nonmagnetic impurity doping fraction of 10%
is chosen to ensure that we get a sizable number of orphans.
The choice of temperature is guided by Fig. 9, where we see
that 7/S(S + 1) = 0.53 (or T = 0.4) yields a good agreement
with the orphan picture. At this temperature, we study a range
of impurity patterns on the 27-site sample and find that only
certain impurity patterns produce a local susceptibility that
differs significantly from that of the pure system. Using this
information, we find in particular that there are only six pat-
terns that are relevant for sites that host a magnetic ion, some
of which are presented pictorially in Fig. 12. The motivation to
create this simple division is driven by the observation that for
a temperature 7 = 0.4, quantum correlations are quite weak
and the impurities do not influence significantly the sites that
are separated by more than one bond, confirming that the
physics is very local. In increasing order of probabilities of
occurrence and together with a description of their magnetic
response, these six patterns are as follows:

P1. All four neighbors of the ion are nonmagnetic impuri-
ties. This implies that the spin is completely decoupled from
the lattice, and acts as a free spin § = 1/2.

P2. Three neighbors are nonmagnetic impurities: this is
the situation in which an orphan spin has an additional non-
magnetic impurity next to it [see Fig. 12(a)]. We find that the
response of this spin is only slightly stronger than that of the
orphan spin.
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ey
L0 B

FIG. 12. Kagome 27-site samples showing the various nonmag-
netic impurities (represented as red crosses) pattern considered for
S = 1/2 experimental predictions (see text): (a) triple defect, (b) or-
phan spin, (c) impurities on neighboring plaquettes, and (d) two
single impurities sufficiently separated. The case of two maximally
separated orphans is the same as (d) with orphans in the locations of
the crosses and the impurities in the triangle right of the orphan. The
cases with all or no neighbors being impurities are not represented
for simplicity. The radii of the circles are proportional to the value of
the local susceptibility xjoc at that site, at 7 = 0.4. Some sites may
appear empty as the radius is too small to be visible.

P3. Two neighbors are nonmagnetic impurities
[Fig. 12(b)]. This is the orphan spin, the response of which
has been detailed earlier in this section.

P4. Two neighbors are nonmagnetic impurities on neigh-
boring plaquettes but do not form an orphan [see Fig. 12(c)].
This has a response that is slightly stronger than the pure case.

P5. Only one neighbor is a nonmagnetic impurity
[Fig. 12(d), which displays two of these cases]. We find also
that this situation behaves similarly to the pure case with a
slightly stronger response.

P6. No impurities are in the nearest neighbors. The re-
sponse is well approximated by the pure case.

The six cases mentioned above lead to six peaks in the
local susceptibility distribution P(xjo), as displayed in the
middle panel of Fig. 13 and ranked right to left (the free spin
has obviously the largest local susceptibility). Given the very
similar responses, it might be hard to distinguish the three
leftmost peaks which are likely to form a main broad peak and
correspond to the pure case as well as few impurity nonorphan
physics. Note that in these cases, the impurity susceptibility is
smaller (larger) than the pure one at low (high) temperature,
in agreement with recent series expansion results [58]. The
orphan physics is manifested through the presence of a sec-
ondary peak (where the cases P2 and P3 might also be hard
to resolve). While this secondary peak is only about 2% of
the main peak in strength, it is well separated from it, which
gives hope for possible experimental detection. Also shown
in Fig. 13 are results for 7 = 0.2 and 0.6, which show the
variation of the histogram with slight variations of the tem-
perature away from the temperature (7' = 0.4) that best fits the
orphan picture. For T = 0.2, the quantum correlations may be
too strong for the approximations P1-P6 to strictly apply.
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P4 P3
(orphan)
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=

P1
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P4 P3
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P(Xi0c)
=
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FIG. 13. The probabilities of occurrence of local susceptibilities
in a 270 000-site lattice for S = 1/2 and T = 0.2, 0.4, and 0.6 from
top (a) to bottom (c). Note that the horizontal axis is scaled by T'.

IV. CONCLUSIONS

In this work, we have investigated whether and how
the physics of half-orphans, originally described using a
classical theory, survives quantum effects and leads to clearly
identifiable signatures in the response of quantum spin-S
Heisenberg antiferromagnets on the kagome lattice when
nearest-neighbor nonmagnetic impurities are present. We
found that orphan-specific signatures are evident in local sus-
ceptibility data in an intermediate temperature range. We also
found that the classical predictions for the screening cloud
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around an orphan spin are justified in the quantum case.
Indeed, the resulting spin texture is a more robust signature
than the local susceptibility of the orphan spin itself, and
it appears to provide a window to orphan physics even in
the S = 1/2 case. Another striking result, for samples with a
single orphan, is the strong dependence of the ground-state
spin quantum number on the spin-S of the local moment
itself. In complete agreement with the classical expectation,
we found that the S > 2 kagome antiferromagnet with an
orphan impurity complex has a ground-state spin, which is the
nearest (half-)integer to S/2 allowed in most cases. Finally,
we also presented experimental predictions for NMR Knight
shifts on § = 1/2 kagome systems doped with nonmagnetic
impurities, which point to the possibility of observing the
enhanced orphan-induced magnetic response through a small,
but resolvable, secondary peak.

In the appropriate temperature regime corresponding to
spin-liquid behavior, these classical results on half-orphan
spins are also expected to apply mutatis mutandis to other
corner-sharing lattices such as the pyrochlore. Our results,
taken in conjunction with this expectation, therefore provide
strong motivation for other related studies. For instance, one
follow-up suggested by our work is to consider whether the
nonzero ground-state spin quantum number that we find in
samples with an orphan impurity complex is also present
for the Heisenberg model with sufficiently large spin-S on
other corner-sharing lattices, for which the original 7 =0
arguments go through unchanged. We hope to report on this
in the near future.

A noteworthy feature of the orphan-induced spin texture
studied here is that it appears to be a very local feature that
exists in an intermediate temperature window, and this feature
seems largely independent of the nature of the ground state,
whose character can vary with the spin value S. For example,
the Heisenberg kagome antiferromagnet with spin-1/2 has a
ground state that is nonmagnetic, but the precise nature of this
spin liquid (gapless versus gapped) is still debated [59-66]; in
the spin-1 case, the ground state is also nonmagnetic, although
whether it breaks lattice symmetries [67,68] or not [69] is
still a matter of debate; for larger values of S, spin-wave
analysis, coupled-cluster, or series expansion methods point
to an ordered phase [70-72], while a large-N analysis, which
generalizes the symmetry from SU(2) to a larger symmetry
group, leads to a nonmagnetic state [73].

It would be worth understanding how to incorporate the
quantum orphan features found in our work in various ef-
fective field theories for these putative ground states [34].
Indeed, preliminary results suggest that some signatures of
orphan physics are already present when samples with an
orphan impurity complex are studied using relatively crude
extensions of variational treatments inspired by such effective
field theories. It would also be interesting to complement our
study of quantum half-orphans by series expansion methods;
this may be particularly fruitful since the textures induced by
the orphans are relatively compact in the temperature range of
their existence.
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APPENDIX: CLASSICAL ORPHAN PHYSICS ON THE
KAGOME LATTICE

In this Appendix, we expand on our introductory remarks
on orphan spins on corner-sharing lattices and their main
signatures in the finite-temperature properties of classical
frustrated magnets, with particular emphasis on the kagome
antiferromagnet of interest to us here. To this end, we consider
in this Appendix classical spins S (vectors of magnitude |S]),
coupled by a bilinear Heisenberg interaction on a network of
corner-sharing simplices. For nearest-neighbor interactions,
the Hamiltonian can be rewritten in terms of frustrated pla-
quette terms [19,22]. We have

2
H:Zﬁi.L@:%Z(Zﬁi) +c, (A1)
(i, ))

P iep

where p labels plaquettes in the lattice. This is true for
kagome and pyrochlore and pyrochlore-slab structures, and
other structures where all pairs of spin within a plaquette are
interacting.

The Hamiltonian written in plaquette language is min-
imized by setting Ziep S; =0 for all plaquettes [22]. Re-
placing spins by nonmagnetic impurities reduces the number
of spins participating in a plaquette term, but the energetic
constraint can still be satisfied as long as there is more than
one spin in a plaquette. The orphan spin situation illustrated
in Fig. 1(a) corresponds to the case in which only one spin is
left after substitution with nonmagnetic impurities.

As the orphan spin is released from the constraints coming
from one plaquette (triangle for the kagome lattice), one ex-
pects that this spin remains “partially free” in some sense. As
summarized in the Introduction, this expectation found a pre-
cise expression in the idea of a half-orphan degree of freedom
in the work of Henley, and of Moessner and Berlinsky [19,22].
The detailed characterization of the response [23] indicates
that the orphan behaves as a spin S object that sees an external
field ~/2 when an external field of / is applied. This paramag-
netic response of the lone spin is partially screened by the net
diamagnetic response of the surrounding spin texture, leading
to a net low-temperature susceptibility identical to that of a
spin S/2, as befits the response of an emergent half-orphan
degree of freedom which behaves like a net spin-S/2 particle
smeared across a few lattice spacings around the orphan [23].

For the specific case of the kagome lattice, there is a caveat:
The classical spin liquid at intermediate temperatures gives
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FIG. 14. Difference in the susceptibility between a sample with
a single orphan complex and a sample with no impurities, Ximp =
xomhan _ yPure as a function of temperature for the classical Heisen-
berg model on a kagome lattices of different sizes. A fit to the form
12 4 aT? at low temperature is also displayed. A comparison with
the bilayer system shows that the orphan signature is stronger in the

latter.

way at low enough temperature to a weakly ordered coplanar
state of the classical Heisenberg model, where the coplanarity
is itself a symmetry-breaking crossover phenomenon that
occurs at T* ~ 1073JS?, and the subsequent entropically
driven choice of a coplanar ordered state by anharmonic fluc-
tuations only becomes apparent at even lower temperatures
[28-30]. The smallness of T* is fortuitous from the point
of view of orphan physics: In the very broad temperature
regime 7* <« T <« JS? in which there is spin liquid behavior,
we expect a pair of vacancies on the same triangle to again
nucleate an emergent half-orphan degree of freedom. Below,
we confirm via classical Monte Carlo simulations that this
is indeed true, although the temperature window in which
half-orphan physics is well-established classically is seen to
be smaller compared to the pyrochlore-slab lattice [23].
Reference [23] showed in the pyrochlore-slab magnet that
the difference, denoted yinp in Ref. [23], of the total magnetic
susceptibility x.¢ between a pure sample (with no impuri-
ties) and an otherwise pure sample with two nearest-neighbor
nonmagnetic impurities (thus creating a single orphan) indeed
corresponds to the response of a free spin of length S/2. As
x = S?/(3T) for a single free spin, we should analogously ex-
pect to see at low temperatures a difference of the form ximp =

omhan _ o pure _ 2 /(127') on the kagome lattice at interme-
diate temperatures well above the extremely low-temperature
crossover to coplanar ordering, but well below the temperature
scale set by JS2.

We have computed this difference iy, for several kagome

samples using classical Monte Carlo simulations and standard
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FIG. 15. Local susceptibility of the classical Heisenberg model
on various samples sizes of the kagome lattice and bilayer, as a
function of temperature.

METROPOLIS, Wolff cluster, and overrelaxation [78] updates
to ensure ergodicity. Our results are displayed in Fig. 14,
where we plot S%/( XimpT ) as a function of T to check the
dependence with temperature in a clear manner. Data at the
lower end of our temperature range converge to the expected
constant 12, and we find a size-independent and smooth devi-
ation away from this result. For the sake of completeness, we
also reproduced the results of Ref. [23] for the bilayer with
252 sites, where we find the approach to the 7 = 0 limit to be
even flatter.

The local susceptibility xjoc = (Sf)rphanSfmal)/ T should re-
flect that the orphan spin behaves as a free spin of length S in a
magnetic field of strength /1/2 (where 4 is the applied external
field). This is expected due to the screening of the magnetic
field by the neighbors of the orphan spin [24]. In the low-field
linear regime, we thus expect S?/x1..T = 6 at sufficiently
low but not-too-low temperature. Our Monte Carlo simula-
tions (Fig. 15) are in good agreement with this expectation
at low temperatures, with an approximately size-independent
peel-off toward the high-temperature result of a free spin-S$ at
temperature 7': the data once again displayed as S?/(xiocT)
clearly exhibit a crossover from the value 6 (obtained for
spin-S/2) at low-temperature to the high-temperature spin-S
value 3. Figure 15 also represents data for the small-sized
cluster of 12 sites, which is shown to be already close to
the thermodynamic limit (with at most a difference less than
10%). This particular 12-site sample [which is represented in
Fig. 1(a), along with the location of impurities and the orphan
spin] is useful to compare with the quantum simulations re-
ported in the main text, as we are limited to small sizes in our
studies of the quantum problem.

[1] L. Savary and L. Balents, Quantum spin liquids: A review, Rep.
Prog. Phys. 80, 016502 (2016).

[2] C. Castelnovo, R. Moessner, and S. L. Sondhi, Mag-
netic monopoles in spin ice, Nature (London) 451, 42
(2008).

[3] A.Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[4] D. Poilblanc, A. Liuchli, M. Mambrini, and F. Mila, Spinon
deconfinement in doped frustrated quantum antiferromagnets,
Phys. Rev. B 73, 100403(R) (2006).

043425-11


https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1038/nature06433
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.73.100403

PATIL, ALET, CAPPONI, AND DAMLE

PHYSICAL REVIEW RESEARCH 2, 043425 (2020)

[5] A. Lduchli and D. Poilblanc, Spin-Charge Separation in Two-
Dimensional Frustrated Quantum Magnets, Phys. Rev. Lett. 92,
236404 (2004).

[6] H. Alloul, J. Bobroff, M. Gabay, and P. J. Hirschfeld, Defects
in correlated metals and superconductors, Rev. Mod. Phys. 81,
45 (2009).

[7]1 G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Local En-
hancement of Antiferromagnetic Correlations by Nonmagnetic
Impurities, Phys. Rev. Lett. 78, 3563 (1997).

[8] R. K. Kaul, R. G. Melko, M. A. Metlitski, and S. Sachdev,
Imaging Bond Order Near Nonmagnetic Impurities in Square-
Lattice Antiferromagnets, Phys. Rev. Lett. 101, 187206 (2008).

[9] S. Sachdev and M. Vojta, Quantum impurity in an antiferromag-
net: Nonlinear sigma model theory, Phys. Rev. B 68, 064419
(2003).

[10] K. H. Hoglund, A. W. Sandvik, and S. Sachdev, Impurity In-
duced Spin Texture in Quantum Critical 2D Antiferromagnets,
Phys. Rev. Lett. 98, 087203 (2007).

[11] S. Haravifard, S. R. Dunsiger, S. El Shawish, B. D. Gaulin,
H. A. Dabkowska, M. T. F. Telling, T. G. Perring, and J. Bon¢a,
In-Gap Spin Excitations and Finite Triplet Lifetimes in the
Dilute Singlet Ground State System SrCu,_,Mg, (BO3),, Phys.
Rev. Lett. 97, 247206 (2006).

[12] M. Yoshida, H. Kobayashi, I. Yamauchi, M. Takigawa,
S. Capponi, D. Poilblanc, F. Mila, K. Kudo, Y. Koike,
and N. Kobayashi, Real Space Imaging of Spin Polarons
in Zn-Doped SrCu,(BOs),, Phys. Rev. Lett. 114, 056402
(2015).

[13] F. Tedoldi, R. Santachiara, and M. Horvati¢, %Y NMR Imaging
of the Staggered Magnetization in the Doped Haldane Chain
Y,BaNi,_Mg, Os, Phys. Rev. Lett. 83, 412 (1999).

[14] A. Olariu, P. Mendels, F. Bert, F. Duc, J. C. Trombe, M. A.
de Vries, and A. Harrison, 7’0 NMR Study of the Intrinsic
Magnetic Susceptibility and Spin Dynamics of the Quantum
Kagome Antiferromagnet ZnCu;(OH)sCl,, Phys. Rev. Lett.
100, 087202 (2008).

[15] J.-X. Yin, N. Shumiya, Y. Jiang, H. Zhou, G. Macam, H. O. M.
Sura, S. S. Zhang, Z.-J. Cheng, Z. Guguchia, Y. Li et al., Spin-
orbit quantum impurity in a topological magnet, Nat. Commun.
11, 1 (2020).

[16] X. Obradors, A. Labarta, A. Isalgué, J. Tejada, J. Rodriguez,
and M. Pernet, Magnetic frustration and lattice dimensionality
in SrCrgGayOy9, Solid State Commun. 65, 189 (1988).

[17] A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, Strong Frus-
tration and Dilution-Enhanced Order in a Quasi-2D Spin Glass,
Phys. Rev. Lett. 64, 2070 (1990).

[18] L. Limot, P. Mendels, G. Collin, C. Mondelli, B. Ouladdiaf,
H. Mutka, N. Blanchard, and M. Mekata, Susceptibility and
dilution effects of the kagomé bilayer geometrically frustrated
network: A Ga NMR study of SrCrq,Gaj;-9,019, Phys. Rev. B
65, 144447 (2002).

[19] R. Moessner and A. J. Berlinsky, Magnetic Susceptibility of
Diluted Pyrochlore and SrCrg_g,Gas 49,019 Antiferromagnets,
Phys. Rev. Lett. 83, 3293 (1999).

[20] R. Moessner and J. T. Chalker, Properties of a Classical Spin
Liquid: The Heisenberg Pyrochlore Antiferromagnet, Phys.
Rev. Lett. 80, 2929 (1998).

[21] P. Schiffer and I. Daruka, Two-population model for anomalous
low-temperature magnetism in geometrically frustrated mag-
nets, Phys. Rev. B 56, 13712 (1997).

[22] C. L. Henley, Effective Hamiltonians and dilution effects in
kagome and related anti-ferromagnets, Can. J. Phys. 79, 1307
(2001).

[23] A. Sen, K. Damle, and R. Moessner, Fractional Spin Textures in
the Frustrated Magnet SrCry,Ga;,-9,019, Phys. Rev. Lett. 106,
127203 (2011).

[24] A. Sen, K. Damle, and R. Moessner, Vacancy-induced spin
textures and their interactions in a classical spin liquid, Phys.
Rev. B 86, 205134 (2012).

[25] D. Bono, P. Mendels, G. Collin, N. Blanchard, F. Bert, A.
Amato, C. Baines, and A. D. Hillier, SR Study of the Quantum
Dynamics in the Frustrated s = % kagomé bilayers, Phys. Rev.
Lett. 93, 187201 (2004).

[26] P. Mendels and F. Bert, Quantum kagome antiferromagnet:
ZnCu;(OH)sCl,, J. Phys.: Conf. Ser. 320, 012004 (2011).

[27] P. Khuntia, M. Velazquez, Q. Barthélemy, F. Bert, E.
Kermarrec, A. Legros, B. Bernu, L. Messio, A. Zorko, and
P. Mendels, Gapless ground state in the archetypal quantum
kagome antiferromagnet ZnCu;(OH)sCl,, Nat. Phys. 16, 469
(2020).

[28] G.-W. Chern and R. Moessner, Dipolar Order by Disorder in the
Classical Heisenberg Antiferromagnet on the Kagome Lattice,
Phys. Rev. Lett. 110, 077201 (2013).

[29] M. E. Zhitomirsky, Octupolar ordering of classical kagome
antiferromagnets in two and three dimensions, Phys. Rev. B 78,
094423 (2008).

[30] D. A. Huse and A. D. Rutenberg, Classical antiferromagnets on
the kagomé lattice, Phys. Rev. B 45, 7536 (1992).

[31] S. Dommange, M. Mambrini, B. Normand, and F. Mila, Static
impurities in the s = 1/2 kagome lattice: Dimer freezing and
mutual repulsion, Phys. Rev. B 68, 224416 (2003).

[32] A. Liduchli, S. Dommange, B. Normand, and F. Mila, Static
impurities in the s =% kagome lattice: Exact diagonaliza-
tion calculations on small clusters, Phys. Rev. B 76, 144413
(2007).

[33] R. R. P. Singh, Valence Bond Glass Phase in Dilute Kagome
Antiferromagnets, Phys. Rev. Lett. 104, 177203 (2010).

[34] K. Gregor and O. 1. Motrunich, Nonmagnetic impurities in the
spin-1/2 kagome antiferromagnet, Phys. Rev. B 77, 184423
(2008).

[35] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[36] U. Schollwock, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[37] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor software library for tensor network calculations,
arXiv:2007.14822 (available at http://itensor.org).

[38] J. Jakli¢ and P. Prelovsek, Lanczos method for the calculation of
finite-temperature quantities in correlated systems, Phys. Rev. B
49, 5065(R) (1994).

[39] A. Hams and H. De Raedt, Fast algorithm for finding the eigen-
value distribution of very large matrices, Phys. Rev. E 62, 4365
(2000).

[40] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi,
Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006).

[41] S. Popescu, A. Short, and A. Winter, Entanglement and
the foundations of statistical mechanics, Nat. Phys. 2, 754
(20006).

[42] P. Reimann, Typicality for Generalized Microcanonical Ensem-
bles, Phys. Rev. Lett. 99, 160404 (2007).

043425-12


https://doi.org/10.1103/PhysRevLett.92.236404
https://doi.org/10.1103/RevModPhys.81.45
https://doi.org/10.1103/PhysRevLett.78.3563
https://doi.org/10.1103/PhysRevLett.101.187206
https://doi.org/10.1103/PhysRevB.68.064419
https://doi.org/10.1103/PhysRevLett.98.087203
https://doi.org/10.1103/PhysRevLett.97.247206
https://doi.org/10.1103/PhysRevLett.114.056402
https://doi.org/10.1103/PhysRevLett.83.412
https://doi.org/10.1103/PhysRevLett.100.087202
https://doi.org/10.1038/s41467-019-13993-7
https://doi.org/10.1016/0038-1098(88)90885-X
https://doi.org/10.1103/PhysRevLett.64.2070
https://doi.org/10.1103/PhysRevB.65.144447
https://doi.org/10.1103/PhysRevLett.83.3293
https://doi.org/10.1103/PhysRevLett.80.2929
https://doi.org/10.1103/PhysRevB.56.13712
https://doi.org/10.1139/p01-097
https://doi.org/10.1103/PhysRevLett.106.127203
https://doi.org/10.1103/PhysRevB.86.205134
https://doi.org/10.1103/PhysRevLett.93.187201
https://doi.org/10.1088/1742-6596/320/1/012004
https://doi.org/10.1038/s41567-020-0792-1
https://doi.org/10.1103/PhysRevLett.110.077201
https://doi.org/10.1103/PhysRevB.78.094423
https://doi.org/10.1103/PhysRevB.45.7536
https://doi.org/10.1103/PhysRevB.68.224416
https://doi.org/10.1103/PhysRevB.76.144413
https://doi.org/10.1103/PhysRevLett.104.177203
https://doi.org/10.1103/PhysRevB.77.184423
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/arXiv:2007.14822
http://itensor.org
https://doi.org/10.1103/PhysRevB.49.5065
https://doi.org/10.1103/PhysRevE.62.4365
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevLett.99.160404

QUANTUM HALF-ORPHANS IN KAGOME ...

PHYSICAL REVIEW RESEARCH 2, 043425 (2020)

[43] S. Sugiura and A. Shimizu, Canonical Thermal Pure Quantum
State, Phys. Rev. Lett. 111, 010401 (2013).

[44] S. Sugiura and A. Shimizu, Thermal Pure Quantum States at
Finite Temperature, Phys. Rev. Lett. 108, 240401 (2012).

[45] T. Shimokawa and H. Kawamura, Finite-temperature crossover
phenomenon in the s = 1/2 antiferromagnetic Heisenberg
model on the kagome lattice, J. Phys. Soc. Jpn. 85, 113702
(2016).

[46] J. Schnack, J. Schulenburg, and J. Richter, Magnetism of
the n = 42 kagome lattice antiferromagnet, Phys. Rev. B 98,
094423 (2018).

[47]1 A. Wietek, P. Corboz, S. Wessel, B. Normand, F. Mila,
and A. Honecker, Thermodynamic properties of the Shastry-
Sutherland model throughout the dimer-product phase, Phys.
Rev. Research 1, 033038 (2019).

[48] P. Prelovsek and J. Kokalj, Similarity of thermodynamic proper-
ties of the Heisenberg model on triangular and kagome lattices,
Phys. Rev. B 101, 075105 (2020).

[49] J. Schnack, J. Richter, and R. Steinigeweg, Accuracy of
the finite-temperature Lanczos method compared to simple
typicality-based estimates, Phys. Rev. Research 2, 013186
(2020).

[50] M. Aichhorn, M. Daghofer, H. G. Evertz, and W. von der
Linden, Low-temperature Lanczos method for strongly corre-
lated systems, Phys. Rev. B 67, 161103(R) (2003).

[51] Z. Hiroi, M. Hanawa, N. Kobayashi, M. Nohara, H. Takagi,
Y. Kato, and M. Takigawa, Spin-1/2 kagomé-like lattice in
volborthite Cu3;V,07(OH) - 2H,0, J. Phys. Soc. Jpn. 70, 3377
(2001).

[52] P. Mendels, F. Bert, M. A. de Vries, A. Olariu, A. Harrison,
F. Duc, J. C. Trombe, J. S. Lord, A. Amato, and C. Baines,
Quantum Magnetism in the Paratacamite Family: Towards an
Ideal Kagomé Lattice, Phys. Rev. Lett. 98, 077204 (2007).

[53] T. Arh, M. Gomilsek, P. Prelovsek, M. Pregelj, M. Klanjsek,
A. Ozarowski, S. J. Clark, T. Lancaster, W. Sun, J.-X. Mi,
and A. Zorko, Origin of Magnetic Ordering in a Structurally
Perfect Quantum Kagome Antiferromagnet, Phys. Rev. Lett.
125, 027203 (2020).

[54] J. Schulenburg, A. Honecker, J. Schnack, J. Richter, and H.-J.
Schmidt, Macroscopic Magnetization Jumps Due to Indepen-
dent Magnons in Frustrated Quantum Spin Lattices, Phys. Rev.
Lett. 88, 167207 (2002).

[55] D. C. Cabra, M. D. Grynberg, P. C. W. Holdsworth,
A. Honecker, P. Pujol, J. Richter, D. Schmalfuf}, and J.
Schulenburg, Quantum kagomé antiferromagnet in a magnetic
field: Low-lying nonmagnetic excitations versus valence-bond
crystal order, Phys. Rev. B 71, 144420 (2005).

[56] S. Nishimoto, N. Shibata, and C. Hotta, Controlling frustrated
liquids and solids with an applied field in a kagome Heisenberg
antiferromagnet, Nat. Commun. 4, 2287 (2013).

[57] S. Capponi, O. Derzhko, A. Honecker, A. M. Lauchli, and
J. Richter, Numerical study of magnetization plateaus in the
spin-% kagome Heisenberg antiferromagnet, Phys. Rev. B 88,
144416 (2013).

[58] B. Bernu, L. Pierre, K. Essafi, and L. Messio, Ef-
fect of perturbations on the kagome S =% antiferromag-
net at all temperatures, Phys. Rev. B 101, 140403(R)
(2020).

[59] H. C. Jiang, Z. Y. Weng, and D. N. Sheng, Density
Matrix Renormalization Group Numerical Study of the

Kagome Antiferromagnet, Phys. Rev. Lett. 101, 117203
(2008).

[60] G. Evenbly and G. Vidal, Frustrated Antiferromagnets with
Entanglement Renormalization: Ground State of the Spin-%
Heisenberg Model on a Kagome Lattice, Phys. Rev. Lett. 104,
187203 (2010).

[61] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground state of
the s = 1/2 kagome Heisenberg antiferromagnet, Science 332,
1173 (2011).

[62] S. Depenbrock, I. P. McCulloch, and U. Schollwdck, Nature
of the Spin-Liquid Ground State of the s = 1/2 Heisenberg
Model on the Kagome Lattice, Phys. Rev. Lett. 109, 067201
(2012).

[63] Y. Igbal, F. Becca, S. Sorella, and D. Poilblanc, Gapless spin-
liquid phase in the kagome spin-% Heisenberg antiferromagnet,
Phys. Rev. B 87, 060405(R) (2013).

[64] S. Capponi, V. R. Chandra, A. Auerbach, and M. Weinstein, p6
chiral resonating valence bonds in the kagome antiferromagnet,
Phys. Rev. B 87, 161118(R) (2013).

[65] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Sig-
natures of Dirac Cones in a DMRG Study of the Kagome
Heisenberg Model, Phys. Rev. X 7, 031020 (2017).

[66] H.J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang,
B. Normand, and T. Xiang, Gapless Spin-Liquid Ground State
in the s = 1/2 Kagome Antiferromagnet, Phys. Rev. Lett. 118,
137202 (2017).

[67] H. J. Changlani and A. M. Liuchli, Trimerized ground state of
the spin-1 Heisenberg antiferromagnet on the kagome lattice,
Phys. Rev. B 91, 100407(R) (2015).

[68] T. Liu, W. Li, A. Weichselbaum, J. von Delft, and G.
Su, Simplex valence-bond crystal in the spin-1 kagome
Heisenberg antiferromagnet, Phys. Rev. B 91, 060403(R)
(2015).

[69] S. Nishimoto and M. Nakamura, Non-symmetry-breaking
ground state of the S = 1 Heisenberg model on the kagome
lattice, Phys. Rev. B 92, 140412(R) (2015).

[70] A. Chubukov, Order from Disorder in a Kagomé Antiferromag-
net, Phys. Rev. Lett. 69, 832 (1992).

[71] O. Gotze, D. J. J. Farnell, R. F. Bishop, P. H. Y. Li, and J.
Richter, Heisenberg antiferromagnet on the kagome lattice with
arbitrary spin: A higher-order coupled cluster treatment, Phys.
Rev. B 84, 224428 (2011).

[72] J. Oitmaa and R. R. P. Singh, Competing orders in spin-1
and spin—% XXZ kagome antiferromagnets: A series expansion
study, Phys. Rev. B 93, 014424 (2016).

[73] S. Sachdev, Kagomé- and triangular-lattice Heisenberg antifer-
romagnets: Ordering from quantum fluctuations and quantum-
disordered ground states with unconfined bosonic spinons,
Phys. Rev. B 45, 12377 (1992).

[74] S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith, Effi-
cient management of parallelism in object oriented numerical
software libraries, in Modern Software Tools in Scientific Com-
puting, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen
(Birkhiuser, Boston, 1997), pp. 163-202.

[75] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K.
Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik,
M. G. Knepley, L. C. Mclnnes, K. Rupp, B. F. Smith, S.
Zampini, H. Zhang, and H. Zhang, PETSc Users Manual, Tech.
Rep. ANL-95/11-Revision 3.8 (Argonne National Laboratory,
2017).

043425-13


https://doi.org/10.1103/PhysRevLett.111.010401
https://doi.org/10.1103/PhysRevLett.108.240401
https://doi.org/10.7566/JPSJ.85.113702
https://doi.org/10.1103/PhysRevB.98.094423
https://doi.org/10.1103/PhysRevResearch.1.033038
https://doi.org/10.1103/PhysRevB.101.075105
https://doi.org/10.1103/PhysRevResearch.2.013186
https://doi.org/10.1103/PhysRevB.67.161103
https://doi.org/10.1143/JPSJ.70.3377
https://doi.org/10.1103/PhysRevLett.98.077204
https://doi.org/10.1103/PhysRevLett.125.027203
https://doi.org/10.1103/PhysRevLett.88.167207
https://doi.org/10.1103/PhysRevB.71.144420
https://doi.org/10.1038/ncomms3287
https://doi.org/10.1103/PhysRevB.88.144416
https://doi.org/10.1103/PhysRevB.101.140403
https://doi.org/10.1103/PhysRevLett.101.117203
https://doi.org/10.1103/PhysRevLett.104.187203
https://doi.org/10.1126/science.1201080
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevB.87.060405
https://doi.org/10.1103/PhysRevB.87.161118
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevLett.118.137202
https://doi.org/10.1103/PhysRevB.91.100407
https://doi.org/10.1103/PhysRevB.91.060403
https://doi.org/10.1103/PhysRevB.92.140412
https://doi.org/10.1103/PhysRevLett.69.832
https://doi.org/10.1103/PhysRevB.84.224428
https://doi.org/10.1103/PhysRevB.93.014424
https://doi.org/10.1103/PhysRevB.45.12377

PATIL, ALET, CAPPONI, AND DAMLE

PHYSICAL REVIEW RESEARCH 2, 043425 (2020)

[76] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable
and flexible toolkit for the solution of eigenvalue problems,
ACM Trans. Math. Softw. 31, 351 (2005).

[77] J. E. Roman, C. Campos, E. Romero, and A. Tomas,
SLEPc Users Manual, Tech. Rep. DSIC-11/24/02—Revision 3.8

(D. Sistemes Informatics i Computacid, Universitat Politécnica
de Valeéncia, 2017).

[78] L. W. Lee and A. P. Young, Large-scale Monte Carlo simula-
tions of the isotropic three-dimensional Heisenberg spin glass,
Phys. Rev. B 76, 024405 (2007).

043425-14


https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1103/PhysRevB.76.024405

