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Clusterization transition between cluster Mott insulators on a breathing kagome lattice
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Motivated by recent experimental and numerical progress on various cluster Mott insulators, we study an
extended Hubbard model on a breathing kagome lattice with a single electron orbital and 1/6 electron filling.
Two distinct types of cluster localization are found in the cluster Mott regime due to the presence of the electron
repulsion between neighboring sites, rather than from the on-site Hubbard interaction in the conventional Mott
insulators. We introduce a unified parton construction framework to accommodate both types of cluster Mott
insulating phase as well as a trivial Ferm liquid metal and discuss the phase transitions in the phase diagram.
It is shown that, in one of the cluster localization phases, the strong intersite repulsion results into locally
metallic behavior within one of two triangular clusters on the breathing kagome lattice. We further comment
on experimental relevance to existing Mo-based cluster magnets.
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I. INTRODUCTION

Cluster Mott insulators (CMIs) seem to become a new
frontier For Exploring the emergent correlated physics [1–3].
The cluster magnet 1T-TaS2 develops a commensurate charge
density wave order at about 120 K, and the enlarged unit cell
due to the charge order then has a David-star shape with 13
lattice sites [4,5]. The enlarged unit cell traps one unpaired
electron that is Mott localized on the cluster unit of the David
star, and the system in the commensurate charge density wave
state forms a CMI in two spatial dimensions. The surging
field of twistronics, that was initiated from the twisted bi-
layer graphenes [6–11], potentially can be another example
of realizing CMIs where the electrons are localized on the
large moiré unit cell. These moiré unit cells are often one to
two orders of magnitude larger than the lattice constant of the
original untwisted crystals. The twisting procedure provides a
new knob to tune the physical properties of the underlying
systems. The common ingredient shared by these systems
is the large cluster unit for the electronic degrees of free-
dom, and the longer range interactions ought to be considered
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[1–3,12–21]. This ingredient leads to distinct and interesting
features and experimental consequences in different realiza-
tions of cluster localization.

In expectation of the large internal electronic degrees of
freedom inside each cluster, we explore the rich phase dia-
gram of the CMIs. We present the observation by showing
the existence of distinct cluster localizations and study the
phase transition between the CMIs on the breathing kagome
lattice. This is partly motivated by previous experiments on
various Mo-based two-dimensional cluster magnets [22–26]
and a recent numerical work in the Mn3O8 magnets [27].
More recently, Nikolaev, Solovyev, and Streltsov suggested
that different localization regimes could emerge due to the
competition between kinetic energy and intersite Coulomb
interactions based on the first-principles calculations [27].

FIG. 1. Breathing kagome lattice.
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Encouraged by these results, we here study a 1/6-filled ex-
tended Hubbard model with the nearest-neighbor repulsions
on a breathing kagome lattice with the modified slave-particle
mean-field analysis. The Mott insulating physics in this par-
tially filled system arises from the large nearest-neighbor
repulsions [1,12,28] and localization of the electrons in
the triangular cluster units. Due to the asymmetry between
the up- and down-triangles and the resulting difference in the
interactions and hoppings, two different cluster localizations
are expected. We first show that, for the case of cluster local-
ization on only one type of triangular units (e.g., the up ones)
in the strong breathing limit, the ground state is smoothly
connected to the one for the triangular lattice Hubbard model
at half filling. We then explore the phase transition be-
tween two distinct cluster localizations and further address the
consequences on the spin physics. In terms of the lattice gauge
theory formulation, this transition is identified as a Higgs tran-
sition. The correspondence between the lattice gauge theory
formulation and the physical variables are clarified.

The remainder of the paper is organized as follows. We
begin in Sec. II by introducing the extended Hubbard model
on the breathing kagome lattice with a single electron orbital
and 1/6 electron filling. In Sec. III, we explore the strong
breathing limit and discuss the type-I CMI and the Mott tran-
sition. We go beyond the strong breathing limit in Sec. IV and
study the type-II CMI as well as its emergent U(1)c gauge
structure. We further introduce a unified parton construction
in Sec. V to reveal the rich physics of both type-I and type-II
CMIs at the mean-field level. We establish the generic phase
diagram and discuss the phase transition between two distinct
CMIs. We conclude by discussing the experimental relevance
and consequence about Mo-based cluster magnets in Sec. VI.

II. EXTENDED HUBBARD MODEL

We start from the extended Hubbard model on the breath-
ing kagome lattice,

H =
∑
〈i j〉

[−ti jc
†
iσ c jσ + Vi jnin j] +

∑
i

Uni↑ni↓, (1)

where c†
iσ (ciσ ) creates (annihilates) an electron with spin σ at

the lattice site i, and ti j = t1(t2),Vi j = V1(V2) for i j on the up-
(down-) triangles. Here, ni ≡ ∑

σ c†
iσ ciσ defines the electron

occupation number at the lattice site i. We are interested in
the regime with one electron in each kagome lattice unit
cell, and thus the electron filling for this Hubbard model is
1/6 [22,24]. This model is expected to capture the essential
physics of the Mo-based cluster magnets [2,12]. For the frac-
tional 1/6 filling here, the Mott localization is driven by the
intersite repulsions (V1,V2) rather than the on-site Hubbard-U
interaction and the electrons are localized in the (elementary)
triangles of the kagome lattice instead of the lattice sites. Due
to the asymmetry between the up- and down-triangles, the
Mott localization in the up-triangles and down-triangles does
not occur simultaneously. Setting the Hubbard U as the largest
energy scale, we study the properties of the model and explore
its phase diagram.

The kinetic part of the model can be readily diagonalized
and the electrons form the following three bands:

E1,2(k) = − 1
2

[
t1 + t2 ± [

9t2
1 − 6t1t2 + 9t2

2

+8t1t2(cos k1 + cos k2 + cos(k1 + k2))
] 1

2
]
, (2)

E3(k) = t1 + t2, (3)

where k1 ≡ k · b1, k2 ≡ k · b2, and b1, b2 are two elementary
lattice vectors of the underlying Bravais lattice (see Fig. 1).
These three electron bands are well-separated from each other
and only touch at certain discrete momentum points. In par-
ticular, E1(k) and E2(k) have Dirac-point band touchings at
the Brillouin zone corners when t1 = t2. With the 1/6 electron
filling, the electrons fill half the lowest band E1(k) and the
ground state of the kinetic part is a Fermi liquid (FL) metal.

III. STRONG BREATHING LIMIT AND TYPE-I CMI

Electron correlations are considered on top of the kinetic
part. A strong Hubbard U merely suppresses double occupa-
tion on a single lattice site and cannot cause localization due to
the fractional filling here. What replaces is the cluster localiza-
tion from the inter-site interactions. We first explore the strong
breathing limit with V2 = 0 and study the cluster localization
driven by the remaining interaction V1 in the framework of
the slave-rotor construction [29–32]. A strong repulsion V1

penalizes the double occupancy on the up-triangles and would
drive a Mott transition from FL metal to a CMI. Because
the number of the up-triangles is equal to the total electron
number, there is exactly one electron in each up-triangle in this
cluster Mott regime. To describe different phases and study
the Mott transitions, we first employ the standard slave-rotor
representation for the electron operator c†

iσ = f †
iσ eiθi , where

the bosonic rotor (eiθi ) carries the electron charge and the
fermionic spinon ( f †

iσ ) carries the spin quantum number. To
constrain the enlarged Hilbert space, we introduce an angular
momentum variable Lz

i ,

Lz
i =

∑
σ

f †
iσ fiσ − 1/2, (4)

where Lz
i is conjugate to the rotor variable with[

θi, Lz
j

] = iδi j . (5)

Since the interaction U is assumed to be the largest, in
the large U limit the double electron occupation is always
suppressed. Hence, the angular variable Lz

i primarily takes
Lz

i = 1/2 (−1/2) for a singly occupied (empty) site. De-
coupling the electron hopping into the spinon and the rotor
sectors, we obtain the Hamiltonians for the spin and charge
sectors

Hs = −
∑
〈i j〉

t̃i j f †
iσ f jσ − h

∑
i

f †
iσ fiσ , (6)

Hc = −
∑
〈i j〉

2Ji j cos(θi − θ j ) + V1

2

∑
r

L2
r

+
(

h + 5V1

2

) ∑
r

Lr + U − V1

2

∑
i

L2
i , (7)

043424-2



CLUSTERIZATION TRANSITION BETWEEN CLUSTER … PHYSICAL REVIEW RESEARCH 2, 043424 (2020)

FIG. 2. (a) The slave-rotor mean-field phase diagram at V2 = 0. We exclude the 120-degree state in the strong coupling limit (V1 � t2).
Inset describes the free and uncorrelated motion of the electrons inside the up-triangles, and the direction is arbitrarily chosen. (b,c) The phase
diagram of the extended Hubbard model for different parameters.

where r labels the center of up-triangle or equivalently the unit
cell of the lattice,

t̃i j = ti j〈eiθi−iθ j 〉 ≡ |ti j |eiai j , (8)

Ji j = ti j

∑
σ

〈 f †
iσ f jσ 〉 ≡ |Ji j |e−iai j , (9)

and h is a Lagrangian multiplier to enforce the Hilbert space
constraint. The Hamiltonian is invariant under an internal
U(1) gauge transformation, f †

iσ → f †
iσ e−iχi , θi → θi + χi, and

ai j → ai j + χi − χ j . Here we have introduced an angular mo-
mentum operator Lr as

Lr =
[∑

μ

Lrμ

]
+ 1/2 ≡

∑
μ,σ

f †
rμσ frμσ − 1, (10)

where the lattice site is labeled by the combination of the
unit cell r and the sublattice index μ. Lr measures the total
electron occupation on the up-triangle at r. Moreover, from
Lrμ, we find that Lr can take −1, 0, 1, 2. Finally, because
Lz

i = ±1/2, the last term in the second line of Eq. (7) reduces
to a constant and can be dropped. It is convenient to define the
conjugate variable for Lr. We introduce a super-rotor operator
e±i�r whose physical meaning is to create and annihilate an
electron charge in the up-triangle at r. Clearly, we have

�r ≡ 1

3

∑
μ

θrμ, [�r,Lr′ ] = iδrr′ . (11)

As [θrμ − θrν,Lr′ ] = 0, the hopping terms inside the up-
triangles commute with the V1 interaction and we can set
θrμ ≡ �r. The hopping terms inside the down-triangles, that
describe the electron tunneling from the neighboring up-
triangles, do not commute with the V1 interaction. Increasing
V1 penalizes the kinetic energy gain through hoppings on the
down-triangle bonds and causes the electron cluster localiza-
tion in the up-triangles. Nevertheless, the electrons remain
mobile inside each up-triangle and can gain kinetic energy
through hoppings within the up-triangle. Thus the system is
locally “metallic” within each up-triangle and remains so even
when the interaction V1 becomes dominant.

Using the local metallic condition (θrμ ≡ �r) to opti-
mize the intra-up-triangle hopping, we obtain a reduced rotor
Hamiltonian that is defined on the triangular lattice formed by

the centers of the up-triangles,

H̃c = −2J2

∑
〈rr′〉

cos(�r − �r′ ) +
∑

r

[
V1

2
L2

r + h̃Lr

]
, (12)

where 〈rr′〉 labels two neighboring up-triangles and
h̃ = h + 5V1/2, J2 is defined on down-triangles.

The relevant degrees of freedom for the Mott transition
is the super-rotor mode ei�r . When it is condensed and
〈ei�r 〉 
= 0, we obtain a FL metal. When it is gapped with
〈ei�r 〉 = 0, a CMI with electrons localized on all up-triangles
is obtained, and we refer this CMI as type-I CMI in Fig. 2(a).
In this type-I CMI, there exists charge coherence within
the up-triangle as it is “locally metallic”. The gauge field
fluctuations within the up-triangles become massive from
the Higgs mechanism. The gauge fluctuations on the links
between two neighboring up-triangles remain gapless and
we represent it by arr′ for two up-triangles at r and r′.
The reduced rotor Hamiltonian H̃c and the spinon Hamilto-
nian Hs are invariant under the U(1) gauge transformation
f †
rμσ → f †

rμσ e−iχr ,�r → �r + χr, arr′ → arr′ + χr − χr′ .
In the type-I CMI, the spinon mean-field Hamiltonian Hs

describes the spinon hopping at the mean-field level. The
spinon bands are identical to the electronic ones, Eμ(k), ex-
cept for the modified hopping. Thus the spinons fill a half of
the lowest spinon band, leading to a spinon Fermi surface.
The resulting spin sector is a U(1) quantum spin liquid (QSL)
with a spinon Fermi surface. It is generally believed that,
the U(1) QSL is in the deconfined phase due to the spinon
Fermi surface that suppresses the instanton events. When the
super-rotor mode is condensed, the U(1) gauge field picks up
a mass via the Higgs’ mechanism, and the charge rotor and
fermionic spinons are then combined back to the original elec-
tron. Here we solve the charge sector Hamiltonian H̃c and the
spinon Hamiltonian Hs self-consistently for the phase diagram
and Mott transition. Following the standard procedure, we
implement the coherent state path integral for the super-rotor
variables φ†

r ≡ ei�r and φr ≡ e−i�r . By integrating out the
field Lr, we obtain the partition function,

Z =
∫

Dφ†DφDλe−S−∑
r∈u

∫
dτλr (|φr|2−1), (13)

043424-3



YAO, ZHANG, KIM, WANG, AND CHEN PHYSICAL REVIEW RESEARCH 2, 043424 (2020)

with the effective action

S =
∫

dτ
∑

r

1

2V1
|∂τφr|2 − J2

∑
〈rr′〉

(φ†
r φr′ + H.c.). (14)

We have dropped the term with parameter h̃ that is required to
vanish since

∑
r〈Lr〉 = 0. The Lagrange multiplier λr is also

introduced in the partition function to enforce the unimodular
constraint |φr| = 1 for each up-triangle. We take a uniform
saddle point approximation by setting λr = λ and further in-
tegrate out the φ fields. Finally we get the following saddle
point equation in the Mott insulating phase,

1

SBZ

∫
d2k

V1

ωk
= 1, (15)

where SBZ is the area of the first Brillouin zone of the trian-
gular lattice and ωk is the dispersion of the super-rotor mode
with

ωk = [2V1(λ − 2J2(cos k1 + cos k2 + cos(k1 + k2))]
1
2 . (16)

When λ = 6J2, the dispersion ωk becomes gapless. That
means the super-rotor mode is condensed. Combining this
condensation condition with the super-rotor saddle point
equation Eq. (15) and the spinon-sector mean-field theory, we
construct the phase diagram in the strong breathing limit as
shown in Fig. 2(a).

Here we do not consider the possibility of magnetic or-
dering in the strong Mott regime. For a small (large) V1/t2,
we obtain a Fermi liquid metal [or a U(1) QSL with a spinon
Fermi surface]. The Mott transition is continuous and of the
quantum XY type in the mean-field theory, and is expected to
be so even after including the U(1) gauge fluctuations [33].
The phase boundary of the Mott transition is understood as
follows. For smaller (larger) t1/t2, the electrons gain more
(less) kinetic energy from the t2 hopping or the inter-up-
triangle hopping, and thus, a larger (smaller) critical V1/t2 is
needed to localize the electrons in the up-triangles. In particu-
lar, in the limit of t1/t2 → ∞, our model with V2 = 0 and 1/6
electron filling is equivalent to a triangular lattice Hubbard
model at half-filling where the triangular lattice is formed by
the up-triangles. Therefore the U(1) QSL with a Fermi surface
in the type-I CMI is smoothly connected to the one proposed
for the triangular lattice Hubbard model at half-filling [30,31].

IV. EMERGENT U(1)c GAUGE STRUCTURE
IN TYPE-II CMI

As V2 gradually increases from zero, the free motion of
electrons inside the up-triangles becomes less favorable en-
ergetically because this motion creates double occupancy
configurations on the down-triangles. Thus, at a critical V2,
the electron number on each down-triangle is also fixed to
be one, and we experience the cluster localization on both
types of triangles. This new cluster Mott state is referred as
type-II CMI. The slave-rotor representation in this phase fails
to capture the proper physics and we should introduce a new
parton construction. Before that, we need to first understand
the low-energy physics of the charge sector, especially in the
type-II CMI. We will show the charge localization pattern
in the type-II CMI leads to an emergent compact U(1) lat-
tice gauge theory description for the charge-sector quantum

FIG. 3. The two collective hopping processes that contribute to
the ring electron hopping or the ring exchange in Eq. (21). The red
ball represents the electron or the charge rotor.

fluctuations. In the slave-rotor formalism, the charge-sector
Hamiltonian with V2 interaction is given by

Hc =
∑
〈i j〉

−2Ji j cos(θi − θ j ) + Vi j

(
Lz

i + 1

2

)(
Lz

j + 1

2

)

+
∑

i

h

(
Lz

i + 1

2

)
, (17)

where we have dropped the U interaction term because
Li = ±1/2 only gives a constant for the L2

i term in the large
U limit. Up to a mapping from the rotor operators to the spin
ladder operators, e±iθi = L±

i , this charge sector Hamiltonian
is equivalent to a kagome lattice spin-1/2 XXZ model in
the presence of an external magnetic field. We can recast the
charge sector Hamiltonian as

Hc =
∑
〈i j〉

[−Ji j (L
+
i L−

j + H.c.) + Vi jL
z
i Lz

j

] + Beff
∑

i

Lz
i .

(18)

Here the effective spin-1/2 ladder operators L±
i satisfy

L±
i

∣∣Lz
i = ∓ 1

2

〉 = ∣∣Lz
i = ± 1

2

〉
, (19)

and the effective “magnetic” field reads Beff ≡ h + 3(V1 +
V2). The 1/6 electron filling can be regarded as the total
“magnetization” condition Ns

−1 ∑
i Lz

i = −1/6, where Ns is
the total number of kagome lattice sites.

When the intersite repulsion V1,2 dominate over the hop-
pings t1,2, the system enters into the type-II CMI phase where
the cluster localization appears on both types of triangles. In
terms of the effective spin Lz

i , the electron charge localization
condition in the type-II CMI is

∑
i∈u

Lz
i = −1

2
,

∑
i∈d

Lz
i = −1

2
. (20)

Therefore the allowed effective spin configuration is “2-down
1-up” in every triangle. These allowed classical spin config-
urations are extensively degenerate. However, the degeneracy
will be further lifted after involving the transverse effective
spin exchanges. Physically, the effective interactions are orig-
inated from the collective hopping processes of electrons
(shown in Fig. 3) and can be obtained from a third-order
degenerate perturbation theory. The resulting ring exchange
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Hamiltonian has the form of

Hc,ring = −
∑
�

Jring(L+
1 L−

2 L+
3 L−

4 L+
5 L−

6 + H.c.), (21)

where “�” refers to the elementary hexagon of the kagome
lattice, Jring = 6J3

1 /V 2
2 + 6J3

2 /V 2
1 is the ring exchange param-

eter and “1, 2, 3, 4, 5, and 6” are the six vertices on the corner
of the elementary hexagon on the kagome lattice (see Fig. 3).

We now demonstrate that the effective Hamiltonian Hc,ring

can be mapped into a compact U(1) lattice gauge theory on
the dual honeycomb lattice. As shown in Fig. 1(a), this dual
honeycomb lattice is formed by the centers of up- and down-
triangles, labeled as r and r′ respectively. We follow the previ-
ous work Ref. [34] and introduce the lattice U(1) gauge fields
(E , A) by defining

Lz
r,μ ≡ Lz

r+ eμ
2

= Er,r+eμ
, (22)

L±
r,μ ≡ L±

r+ eμ
2

= e±iAr,r+eμ , (23)

where r ∈ u, Err′ = −Er′r, and Arr′ = −Ar′r. The fields E
and A are identified as the electric field and the vector
gauge field of the compact U(1) lattice gauge theory and sat-
isfy [Er,r+eμ

, Ar,r+eμ
] = −i. With this identification, the local

“2-down 1-up” charge localization condition in Eq. (20) is
interpreted as the “Gauss’ law” for the emergent U(1) lattice
gauge theory. The effective ring exchange Hamiltonian Hc,ring

reduces to a gauge “magnetic” field term on the dual honey-
comb lattice,

Hc,ring = −2Jring

∑
�

cos(
 × A), (24)

where 
 × A is a lattice curl defined on the “�” that refers
to the elementary hexagon on the dual honeycomb lattice. As
this internal gauge structure emerges at the low energies in
the charge sector, we refer this gauge field as the U(1)c gauge
field. The fate of U(1)c gauge field can become confining as it
is in two spatial dimensions. However, as the gapless spinon
matter is involved, it is likely that the instanton events can
still get suppressed. Thus, even though the plaquette charge
order is expected in previous works [12,35–39], the gauge
deconfinement can coexist with the charge order. This is very
much like the AFM∗ phase where the spin quantum num-
ber fractionalization and the antiferromagnetic order coexist
[40,41]. The more detailed structure inside the charge sector
of the type-II CMI is not the focus of this work. We are more
concerned about the localization pattern and thus assume the
charge fractionalization in the type-II CMI. A strict analy-
sis requires nonperturbative computations involving quantum
fluctuations and is beyond the mean-field theory. In this work,
we ignore the instanton effect and focus on constructing the
mean-field phase diagram for the extended Hubbard model.

V. MEAN-FIELD THEORY FOR THE TRANSITION
BETWEEN TYPE-I TO TYPE-II CMIS

In this section, we go beyond the strong breathing limit and
build a generic framework which can support both type-I and
type-II CMIs. As mentioned in the last section, the slave-rotor
representation is incapable of describing the type-II CMI state

where cluster localization occurs on both types of triangles.
Therefore we first introduce a new parton representation based
on the emergent gauge structure in type-II CMI and then
establish the phase diagram at the mean-field level. We also
discuss the properties in each clusterization phase and the
phase transitions between them.

A. Slave-particle construction and mean-field theory

To study the transition between two distinct cluster local-
ization states, we return to the charge sector Hamiltonian in
Eq. (7) by adding the V2 interaction,

Hc = −
∑
〈i j〉

2Ji j cos(θi − θ j ) +
∑
〈i j〉

Vi j

(
Lz

i + 1

2

)

×
(

Lz
j + 1

2

)
+

∑
i

[
U

2

(
Lz

i

)2 + h

(
Lz

i + 1

2

)]
. (25)

Since the electron is not localized on a lattice site in the CMIs,
the rotor variable eiθi is insufficient to describe all the phases
and phase transitions, except for the special limits for type-I
CMI that we have analyzed. To fix the problem, we extend the
slave-rotor representation to a new parton construction for the
electron operator [1,32,42],

c†
rμσ = f †

rμσ�†
r�r+eμ

l+
r,r+eμ

, (26)

where eμ connects the up-triangle center r and the neigh-
boring down-triangle centers r + eμ, �†

r (�r+eμ
) creates

(annihilates) the bosonic charge excitation in the trian-
gle at r (r + eμ), and l±

r,r+eμ
≡ |l±

r,r+eμ
|e±iAr,r+eμ is an open

string operator of the U(1)c gauge field in the charge
sector connecting the charge excitations in the neighbor-
ing triangles at r and r + eμ. Under the U(1)c gauge
transformation, �†

r → �†
r eiχr ,�r+eμ

→ �r+eμ
e−iχr+eμ , and

Ar,r+eμ
→ Ar,r+eμ

e−iχr+iχr+eμ . To constrain the Hilbert space
of the parton construction, one defines the following operator
[32]:

Qr = ηr

2
+ηr

∑
μ

Lz
r,r+ηreμ

≡ ηr

2
+ηr

∑
μ

lr,r+ηreμ
, (27)

that measures the local U(1)c (electric) gauge charge, and for
the remaining part of the paper, r refers to the centers of
both up (denoted as “u”) and down (denoted as “d”) triangles.
Here, ηr = +1 (−1) for r ∈ u (r ∈ d) and lr,r+ηreμ

= Lz
r,r+ηreμ

.
We further supplement this definition with a Hilbert space
constraint [32,42],

[�r, Qr] = �r, [�†
r, Qr] = −�†

r, (28)

such that the physical Hilbert space is recovered. For the type-
II CMI, Qr = 0 for every triangle.

Due to the single electron occupancy on all triangles for
type-II CMI, the electron motions are correlated in type-II
CMI instead of the free electron motion in the inset of Fig. 2(a)
for a type-I CMI. This correlated electron motion leads to
the emergent U(1)c gauge structure here [12] and the pla-
quette charge order whose consequences on the spin sectors
are explained in previous works [12,35–39]. This is not the
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focus of this work where we are more concerned about the
distinct types of cluster localization. Using the new parton
construction, the Hubbard model becomes

H = −t1
∑
r∈u

∑
μ 
=ν

l+
r,r+eμ

l−
r,r+eν

f †
rμσ frνσ �

†
r+eμ

�r+eν

−t2
∑
r∈d

∑
μ 
=ν

l+
r−eμ,rl−

r−eν ,r f †
rμσ frνσ �

†
r−eμ

�r−eν

+V1

2

∑
r∈u

Q2
r + V2

2

∑
r∈d

Q2
r , (29)

which is supplemented with the Hilbert space constraint. In
mean-field treatment, we decouple the kinetic terms and Hu

c
for the charge sector in the up-triangles, Hd

c for the charge
sector in the down-triangles, Hs for the spinon, and Hl for the
U(1) gauge link,

Hu
c =

∑
r∈d

∑
μ 
=ν

−J̄1�
†
r−eμ

�r−eν
+ V1

2

∑
r∈u

Q2
r ,

Hd
c =

∑
r∈u

∑
μ 
=ν

−J̄2�
†
r+eμ

�r+eν
+ V2

2

∑
r∈d

Q2
r ,

Hs =
∑
μ 
=ν

[
−t̄1

∑
r∈u

f †
rμσ frνσ−t̄2

∑
r∈d

f †
rμσ frνσ

]
,

Hl =
∑
μ 
=ν

[
−K̄1

∑
r∈u

l+
r,r+eμ

l−
r,r+eν

−K̄2

∑
r∈d

l+
r−eμ,rl−

r−eν ,r

]
.

where the mean-field parameters are defined by

J̄1 = t2〈l+
r−eμ,r〉〈l−

r−eν ,r〉
∑

σ

〈 f †
rμσ frνσ 〉, r ∈ d,

J̄2 = t1〈l+
r,r+eμ

〉〈l−
r,r+eν

〉
∑

σ

〈 f †
rμσ frνσ 〉, r ∈ u,

t̄1 = t1〈l+
r,r+eμ

〉〈l−
r,r+eν

〉〈�†
r+eμ

�r+eν
〉, r ∈ u,

t̄2 = t2〈l+
r−eμ,r〉〈l−

r−eν ,r〉〈�†
r−eμ

�r−eν
〉, r ∈ d,

K̄1 = t1
∑

σ

〈 f †
rμσ frνσ 〉〈�†

r+eμ
�r+eν

〉, r ∈ u,

K̄2 = t2
∑

σ

〈 f †
rμσ frνσ 〉〈�†

r−eμ
�r−eν

〉, r ∈ d.

Here we have dropped the Lagrange multipliers in the de-
coupled mean field Hamiltonian. Because they arise from the
constraints of physical Hilbert space and expected to vanish
for the single occupation condition within all triangles in
type-II CMI. In the decoupling treatment, we also respect all
symmetries of the original Hubbard model to obtain correct
mean-field parameters defined above.

B. Mean-field phase diagram

To solve the bosonic mean-field Hamiltonians, we intro-
duce a rotor variable ϕr that is conjugate to the U(1)c charge
operator Qr with

[ϕr, Qr] = i, (30)

TABLE I. The description of the charge sector of the four differ-
ent phases in the slave-particle formalism.

Type-II CMI 〈�r〉 = 0 for r ∈ u, d.
Type-Iu CMI 〈�r〉 = 0 for r ∈ u, 〈�r〉 
= 0 for r ∈ d.
Type-Id CMI 〈�r〉 
= 0 for r ∈ u, 〈�r〉 = 0 for r ∈ d.
FL metal 〈�r〉 
= 0 for r ∈ u, 〈�r〉 
= 0 for r ∈ d.

and hence

�r = e−iϕr , (31)

�†
r�r = 1. (32)

After carrying out the coherent state path integral for the �r
fields and integrating out the Qr field, the resulting partition
functions for the up- and down-triangles share the same form
as

Zi =
∫

D�†D�Dλe−Si−
∑

r∈i

∫
dτλr (|�r|2−1), (33)

where i can take “u” (or 1) and “d” (or 2) corresponding to
up- and down-triangle subsystems respectively. The Lagrange
multiplier λr is used to implement the unimodular constraint
for the � field at each r site. The effective action Si for the
up- and down-triangle subsystems are

Si =
∫

dτ
∑
r∈i

1

2Vi
|∂τ�r|2 − J̄i

∑
〈rr′〉∈i

(�†
r�r + h.c.), (34)

where 〈rr′〉 refers to the nearest-neighbor sites on each type
of triangle subsystem. The rest of the treatment on each sub-
systems is identical to what we did to the super-rotor mode
in Sec. III and then we can find the critical Vi/J̄i at which the
bosons are condensed. The resemblance between the above
actions and the action of Eq. (14) indicates the close con-
nection between this slave-particle approach used here and
the slave-rotor formulation used in Sec. III. In the strong
breathing limit with V2 = 0, this two approaches should give
qualitatively the same results. But quantitatively, the current
approach, through the string parameters, takes into account
of the reduction of the spinon or electron bandwidth due to
the on-site Hubbard interaction. As a result, we expect that it
could give a more reliable phase diagram especially for the FL
metal phase.

The generic mean-field phase diagrams for different
choices of couplings are depicted as Figs. 2(b) and 2(c). The
four phases correspond to different behaviors of the charge
bosons (see Table I). When the charge bosons from both up-
and down-triangles are condensed, the FL metal is realized.
When they are both gapped and uncondensed, we have the
type-II CMI. When the charge bosons from one triangle are
condensed and the other is uncondensed, we have the type-I
CMI. Here the subindex “u” or “d” to the type-I CMI indicates
which triangles the electrons are localized in. In mean-field
theory, because the charge is a higher energy degree of free-
dom, the spinon sector was treated as a spectator, rather than
the driving force.

We turn to explain the phase boundaries in Figs. 2(b) and
2(c). As we increase V2/t1, the effective electron hopping
on the up-triangle bonds gets suppressed which effectively
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enhances the kinetic energy gain through the down-triangle
bonds. Thus a larger V1/t2 is required to drive a Mott tran-
sition. A similar argument applies to the boundary between
type-Iu and type-II CMIs. A larger V2/t1 is needed to compete
with the kinetic energy gain on the up-triangle bonds for a
larger V1/t2 in type-Iu CMI and to drive a transition to type-II
CMI. For t1 > t2, electrons are more likely to be localized in
the up-triangles to gain the intra-cluster kinetic energy. Thus a
smaller V1/t2 is needed to drive a Mott transition and a larger
V2 is needed to drive the system from type-Iu to type-II CMIs.

The phase transition between the tpye-I and type-II CMIs
can also be understood in the charge boson picture. To be
concrete, we focus on the transition from the type-II CMI to
the tpye-Iu CMI and the extension to the tpye-Id CMI is direct.
In the type-II CMI, charge bosons from both up- and down-
triangles are gapped and uncondensed. With the decreasing
of the inter-site repulsion V2/t1 on the down-triangle bonds,
the charge bosons become condensed on the down-triangle
subsystem and the U(1)s gauge field also acquires a mass
concurrently. The two fractionally-charged charge bosons �

from two types of triangles then are combined back into
the original unit-charged charge rotor eiθ . The large inter-site
repulsion V1/tt still preserves the single electron occupancy
on the up-triangle subsystem. Thus the charge rotor eiθ is
well-defined on the center of an up-triangle and within the
up-triangle, the localized electron can move more or less
freely. In this sense, the condensation of the charge bosons
from the down-triangles leads to the local “metallic” clus-
ters in the up-triangles. After the charge boson condensation,
there is no charge fractionalization in the type-I CMI, but
the spin-charge separation still survives. Because of the local
“metallic” clusters, only the U(1)s gauge field living on the
down-triangle bonds that connect the up-triangles remains
active and continues to fluctuate at the low energies. The
low-energy physics is described by the spinon Fermi surface
coupled with a fluctuating U(1)s gauge field, leading to a U(1)
QSL in the triangular lattice formed by the up-triangles.

All transitions discussed above are continuous at mean-
field level, except the transition between type-Iu and type-Id

CMIs that is strongly first order. Beyond mean-field theory,
the transition between FL metal and type-I CMIs will remain
continuous and quantum XY type [33,43] while the transition
into type-II CMI may depend on the detailed charge structure
inside type-II CMI. Moreover, our mean field theory does not
capture the charge quantum fluctuation inside the type-II CMI
as described by the compact U(1)c gauge theory in Sec. IV,
but does obtain qualitatively correct phase boundaries.

VI. DISCUSSION

We discuss the experimental relevance and consequences
about the Mo-based cluster magnets. These compounds,
M2Mo3O8 (M = Mg, Mn, Fe, Co, Ni, Zn, Cd), LiRMo3O8

(R = rare earth) and other related variants [44–47], incor-
porate the Mo3O13 cluster unit, and the physical properties
of most materials have not been carefully studied so far.
According to our theory, more anisotropic systems with a
stronger breathing tend to favor the type-I CMI. Li2InMo3O8

is more anisotropic than LiZn2Mo3O8 from the lattice param-
eters. For LiZn2Mo3O8, the spin susceptibility shows a “1/3
anomaly” and double Curie regimes [22,26]. This could be
attributed to the plaquette charge order in the type-II CMI
that reconstructs the spin sector. In contrast, Li2InMo3O8 is
characterized by one Curie regime with the Curie temperature
�CW = −207 K down to 25 K [44]. The Curie constant is
consistent with one unpaired spin-1/2 moment per Mo3O13

cluster in the type-I CMI. Below 25 K, the spin susceptibility
of Li2InMo3O8 saturates to a constant, which is consistent
with the expectation from a spinon Fermi surface U(1) QSL.
Besides the structural and spin susceptibility data, however,
very little is known about Li2InMo3O8. It is also likely that
this system is located in the 120◦ order state of the model.
Thus more experiments are needed to confirm the absence
of magnetic ordering in Li2InMo3O8 and also to explore the
magnetic properties of ScZnMo3O8 and other cluster magnets
[48]. From the numerical aspect, first-principals calculation
is carried out recently and supports the experimental findings
and theoretical understandings in Mo3O8 magnets. Namely,
LiZn2Mo3O8 is shown to exhibit the plaquette order with
one dangling spin, Li2InMo3O8 is a CMI with 120◦ order
and Li2ScMo3O8 displays a spin liquid behavior [27]. The
numerical and our mean-field results could complement each
other. A recent experimental study also shows that different
ground states can be realized on Mn3O8 magnets even with
very close anisotropies we concerned here [49]. This implies
that our model may oversimplify the physics of these intricate
materials, and more detailed interactions should be incorpo-
rated in future works. In spite of that, our study provides a
concise framework to understand the mechanism of distinct
clusterizations due to the electron repulsion between neigh-
boring sites and partial fillings, hence can be extended to a
broad range of Mott insulators.
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