
PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

Decoding across the quantum low-density parity-check code landscape

Joschka Roffe ,1,* David R. White ,1 Simon Burton ,2 and Earl Campbell1
1Department of Physics & Astronomy, University of Sheffield, Sheffield S10 2TN, United Kingdom

2Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom

(Received 19 August 2020; accepted 23 November 2020; published 28 December 2020)

We show that belief propagation combined with ordered statistics post-processing is a general decoder for
quantum low-density parity-check codes constructed from the hypergraph product. To this end, we run numerical
simulations of the decoder applied to three families of hypergraph product code: topological codes, fixed-rate
random codes, and a new class of codes that we call semitopological codes. Our new code families share
properties of both topological and random hypergraph product codes, with a construction that allows for a
finely controlled trade-off between code threshold and stabilizer locality. Our results indicate thresholds across
all three families of hypergraph product code, and provide evidence of exponential suppression in the low error
regime. For the toric code, we observe a threshold in the range 9.9% ± 0.2%. This result improves upon previous
quantum decoders based on belief propagation, and approaches the performance of the minimum-weight perfect-
matching algorithm. We expect semitopological codes to have the same threshold as toric codes, as they are
identical in the bulk, and we present numerical evidence supporting this observation.

DOI: 10.1103/PhysRevResearch.2.043423

I. INTRODUCTION

Any scalable computer architecture must be robust against
hardware imperfections. In quantum computing, where qubits
are realized as fragile quantum two-level systems, fault tol-
erance necessitates active error correction [1–5]. A quantum
error correction code specifies an encoding in which quantum
data are distributed across a larger space of qubits to create a
logical qubit state. Errors are detected on the logical state via
a series of nondestructive stabilizer measurements (quantum
parity checks) yielding an error syndrome. This syndrome in-
formation is processed by a decoding algorithm to determine
the best recovery operation to return the encoded quantum
information to its uncorrupted state. All three stages of the er-
ror correction cycle—syndrome measurement, decoding, and
recovery—must be performed within a short time frame be-
fore the qubits irreversibly decohere. Performing the decoding
in real time is a computationally intensive inference problem,
with realistic resource estimates showing a need for terabytes
of syndrome information to be processed per second [6]. As
such, efficient decoding algorithms are necessary to allow
quantum error correction to be performed while maintaining
realistic demands on classical co-processors [7].

Low-density parity-check (LDPC) codes are a ubiquitous
classical error correction protocol [8], finding use, for exam-
ple, in the recent 5G communication standard [9]. The specific
advantage of LDPC codes is that they can be decoded using an

*joschka@roffe.eu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

algorithm from probabilistic graph theory known as iterative
belief propagation (BP) [10]. The BP algorithm exploits the
structure of the error correction code to solve the decoding
inference problem in time linear in the code block length [11].
For certain LDPC codes, BP decoding enables error correction
at close to the Shannon capacity, the theoretical upper bound
on the rate of information transfer along a noisy channel
[12,13].

Quantum LDPC (QLDPC) codes can be constructed from
classical LDPC codes using the hypergraph product frame-
work due to Tillich and Zemor [14]. The hypergraph product
translates the parity check sequences of a classical parent code
into a set of commuting stabilizers that define a quantum code.
The most commonly studied hypergraph product codes fall
into one of two types: topological QLDPC codes and random
or expander QLDPC codes.

In contrast to classical LDPC codes, there is no established
decoder that works generally for all QLDPC codes. For purely
2D topological codes, the minimum-weight perfect-matching
algorithm achieves a threshold [15] that is close to the the-
oretically maximum possible value derived from statistical
mechanics arguments [16]. For random QLDPC codes with
the expansion property [17–19], the small set-flip (SSF) de-
coder has a theoretically proven threshold [18] that has been
verified numerically [20]. Furthermore, in a recent study by
Grospellier et al. [21], it was shown that the performance
of the SSF decoder can be improved by combining it with
the classical BP algorithm. This two-stage BP + SSF decoder
exhibits a higher code threshold, in addition to being applica-
ble to a wider range of random QLDPC codes than the SSF
decoder alone.

In this paper, we consider another two-stage quantum de-
coder, first proposed by Panteleev and Kalachev [22], that
combines BP with a post-processing technique known as
ordered statistics decoding (OSD) [23,24]. Panteleev and

2643-1564/2020/2(4)/043423(13) 043423-1 Published by the American Physical Society

https://orcid.org/0000-0001-9202-1156
https://orcid.org/0000-0001-6317-4348
https://orcid.org/0000-0002-8932-3492
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043423&domain=pdf&date_stamp=2020-12-28
https://doi.org/10.1103/PhysRevResearch.2.043423
https://creativecommons.org/licenses/by/4.0/

ROFFE, WHITE, BURTON, AND CAMPBELL PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

Kalachev demonstrated that for many random QLDPC codes,
the BP + OSD method improves decoding performance by
several orders magnitude over the BP algorithm alone. In this
work, we expand on the results of Panteleev and Kalachev
to provide further evidence that the BP + OSD decoder is a
general decoder for all QLDPC codes that can be constructed
from the hypergraph product. To this end, we first propose a
new class of semitopological codes which share properties of
both topological and random QLDPC codes. We use this new
class of codes to define a spectrum of QLDPC codes, and run
numerical simulations to show that the BP + OSD decoder
applies generally across it.

Topological QLDPC codes have stabilizers that can be
locally embedded in some D-dimensional space [25]. The
simplest example is the surface code, obtained by taking the
hypergraph product of the classical repetition code. The sta-
bilizers of the surface code are local, meaning they can be
implemented via nearest-neighbor interactions on a 2D array
of qubits [25,26]. With regard to experimental implemen-
tation, this is highly beneficial, as many qubit technologies
are limited in terms of connectivity between qubits [27–29].
Another practical advantage of the surface code is that it has
a high threshold [15,16,26]. The disadvantage of the surface
code, and topological codes in general, is that they have poor
encoding rate. The surface code, for example, encodes only a
single qubit per logical block meaning its encoding rate tends
to zero as the code distance is increased.

Random QLDPC codes are constructed by taking the hy-
pergraph product of high-performance classical LDPC codes.
The strength of QLDPC codes over topological codes is
that they can have considerably higher encoding rates that
do not tend to zero with increasing block length [17–19].
The trade-off is that random QLDPC codes have nonlocal
stabilizer checks, typically requiring interactions between ar-
bitrary qubit pairs. Quantum computers based on ion traps
[30–33], photonic qubits [34,35], or nitrogen vacancy centers
[36] promise connectivity beyond nearest neighbors. How-
ever, such prototype devices do not yet meet the connectivity
requirements of high-rate random QLDPC codes. Another
disadvantage of random QLDPC codes is that they appear
to have lower thresholds than their topological counterparts
[20–22,37,38].

The new class of semitopological codes we propose in
this work allow for interpolation between local topological
codes and nonlocal random QLDPC codes. The construction
of semitopological codes begins by modifying a classical
parent code via a process called edge augmentation. This
involves replacing each parity check edge with a length-g
section of repetition code referred to as a chain segment.
The semitopological code is then obtained from the aug-
mented parent code via the hypergraph product, which maps
each of the chain segments to a surface-code-like patch. A
semitopological code can therefore be thought of as a set
of surface code patches connected to one another at their
boundaries via a small number of long-range interactions. The
locality of a semitopological code can be finely controlled by
varying the degree to which the parent code is augmented.
The ability to control connectivity makes semitopologi-
cal codes promising candidates for networked surface code
architectures [39].

In its unmodified form, the BP algorithm is ineffective for
decoding QLDPC codes due to degenerate quantum errors.
Quantum degeneracy is a uniquely quantum effect, and arises
in situations where quantum superposition permits multiple
equivalent solutions to the decoding problem. Panteleev and
Kalachev [22] have shown that for random QLDPC codes, the
problem of quantum degeneracy can be resolved by decod-
ing using BP in conjunction with OSD post-processing. The
OSD method is called when BP fails, and uses matrix inver-
sion to resolve ambiguities in the decoding due to quantum
degeneracy.

In this work, we show that in addition to random QLDPC
codes, BP + OSD enables high-performance decoding of both
topological QLDPC codes and our new class of semitopolog-
ical codes. To this end, we first run numerical simulations of
BP + OSD on the toric code with increasing code distances.
Our results indicate a threshold in the region 9.9% ± 0.2%,
in addition to showing evidence of exponential suppression
in the low error regime. This BP + OSD threshold improves
upon previous BP-based decoders for the toric code [38], and
is close to the value of 10.3% achieved by state-of-the-art
decoders for the toric code based on the minimum-weight
perfect-matching algorithm [15,40,41]. We perform further
numerical simulations of BP + OSD applied to a family of
semitopological codes, as well as a family of finite-rate ran-
dom QLDPC codes. For large block sizes, the BP + OSD
threshold obtained for the semitopological codes approaches
the value obtained for the toric code, reflecting the fact that
the majority of stabilizer checks are 2D local.

This paper is structured as follows. In Sec. II, we first
review essential concepts in classical coding theory, before
introducing the edge-augmentation procedure. Section III
covers the basics of quantum stabilizer codes, and explains
how they can be represented as binary linear codes. In Sec. IV,
we describe how QLDPC codes are obtained from classical
LDPC codes via the hypergraph product, giving explicit ex-
amples of the construction of topological and random QLDPC
codes. Following this, we explain how semitopological codes
are constructed by taking the hypergraph product of aug-
mented parent codes. In Sec. V we describe the workings of
the BP + OSD decoder. In Sec. VI, we describe the “com-
bination sweep” strategy as a greedy search method for
finding higher-order solutions to BP + OSD. Following this,
we present the results of our numerical simulations of the
BP + OSD decoder for topological QLDPC codes, semitopo-
logical codes, and random QLDPC codes. Finally, in Sec. VII
we summarize and discuss directions for future work.

II. LOW-DENSITY PARITY-CHECK CODES

Classical error correction. A classical error correction code
CH describes a redundant encoding b �→ c from a k-bit data
string b to an n-bit code word c (where n > k). The code
words c ∈ CH are defined as the null space vectors of an
m × n binary parity check matrix H such that H · c mod 2 =
0.1 By the rank-nullity theorem, a parity matrix permits

1From this point on, we assume all arithmetic is performed
modulo 2.

043423-2

DECODING ACROSS THE QUANTUM LOW-DENSITY … PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

(a) (b)

FIG. 1. Factor graphs for two instances of the three-bit repetition
code. Data nodes are drawn as circles, parity nodes as squares,
and edges as solid black lines. (a) The full-rank [3,1,3] repetition

code with parity check matrix H =
(

1 1 0
0 1 1

)
. (b) The closed-loop

[3,1,3] repetition code (also known as the ring code) with parity

check matrix H =
(

1 1 0
0 1 1
1 0 1

)
.

k = n − RANK(H) linearly independent code words. If a code
word is subject to an error e, the parity check matrix yields an
m-bit syndrome s = H · (c + e) = H · e. The syndrome will
be nonzero for all errors of Hamming weight less than the
code distance |e| < d . In general, classical codes are labeled
with the [n, k, d] notation, where n is the code word length, k
is the number of encoded bits, and d is the code distance. The
code rate is given by the ratio R = k/n.

Factor graphs. The factor graph of an [n, k, d] classical
code is a bipartite graph G = (V,U,�) with an adjacency
matrix given by the code’s parity check matrix H [42]. For
an m × n parity check matrix H , the two sets of nodes in G
are defined as follows: (1) data nodes V = {v j | j = 1, . . . , n}
corresponding to the columns of H and taking the bit val-
ues of the error e; (2) parity nodes U = {ui|i = 1, . . . , m}
corresponding to rows of H and taking the bit values of the
syndrome s = H · e. A graph edge λi j ∈ � is drawn between
a pair of nodes {v j, ui} if Hi j = 1. Factor graphs serve as a
useful visualization of the parity check matrix with applica-
tions in code design and decoding [11,43]. Diagrammatically,
factor graphs are drawn with circles representing data nodes,
squares representing parity nodes, and solid lines representing
the edges. Figure 1 shows factor graphs for two instances of
the three-bit repetition code.

LDPC codes. A family of (l, q)-LDPC codes is defined
as a set of codes whose parity check matrices have column
and row weights upper bounded by l and q, respectively. As
first demonstrated by Gallager [8], it is possible to construct
an (l, q)-LDPC code by randomly generating a parity check
matrix with the desired column and row weights. An alter-
native to random LDPC code search is to employ graphical
constructions in which an LDPC code family is obtained by
systematically modifying the factor graph of a base code.

Edge-augmented LDPC codes. We now introduce “edge
augmentation” as a graphical method for creating an LDPC
code family from the starting point of any “parent” factor
graph G = (V,U,�). In Sec. III, we show how semitopologi-
cal codes are created by taking the hypergraph product of such
augmented codes.

Focusing first on a single edge λi j connecting nodes {v j, ui}
in the parent code, the edge-augmentation operation involves
the addition of a “graph chain segment” Gg = {V g,U g,�g}

containing g data nodes V g = {vg
j | j = 1, . . . , g} and g parity

nodes U g = {ug
i |i = 1, . . . , g}. The adjacency matrix Hg of

the graph chain segment has dimensions g × g. Its general
form is obtained by taking a size-g identity matrix and adding
a “1” to the right of each of the first g − 1 entries in the
diagonal. As an example, the adjacency matrix of a graph
chain segment with g = 4 is given by

Hg=4 =

⎛
⎜⎝

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞
⎟⎠. (1)

Following addition of the graph chain segment to the parent
graph G, the updated factor graph G′ is written

G′ = (V ∪ V g,U ∪ U g,� \ {λi j} ∪ �g ∪ �w), (2)

where � \ {λi j} is the original parent edge set minus the
edge that has been augmented. Two additional edges �w =
{λg

1 j, λ
g
ig} are added to connect the nodes {v j, ug

1} and {vg
g, ui}.

These edges “weld” the graph chain segment to the parent
nodes {v j, ui}.

A g-augmented factor graph G�g = (V �g,U �g,��g) is ob-
tained by edge-augmenting each edge in a parent graph G =
(V,U,�) with a length-g graph chain segment. If G corre-
sponds to an [n, k, d] code with parity check matrix H , then
the g-augmented graph G�g corresponds to an [n + g|�|, k, d ′]
code with parity check matrix H�g, where |�| is the number
of edges in the parent graph. The augmented code distance
depends upon the structure of H , but is lower bounded by
d ′ � (1 + gμ)d , where μ is the minimum degree over all data
nodes V (for the proof of this lower bound see Appendix A).
If the parent graph G is an (l, q)-LDPC code with l, q � 2,
then the g-augmented graph G�g will also be an (l, q)-LDPC
code. A family of LDPC codes with increasing code distance
can be obtained by augmenting a parent code with increasing
values of the augmentation parameter g. The trade-off in the
edge-augmentation procedure is a reduction in the code rate:
if the parent graph has rate R = k/n, the augmented graph will
have rate R�g = R

1+g|�|/n . Any increases in code distance due
to edge augmentation must therefore be balanced against the
respective increase in code overhead.

Figure 2 illustrates the first three levels of a (2,3)-LDPC
code family starting from a [3,2,2] parent code with par-

ity check matrix H =
(

1 1 1
1 1 1

)
. The factor graph of the

parent code G is shown in Fig. 2(a). Figure 2(b) shows the g-
augmented graph G�1 with g = 1 and code parameters [9,2,6].
Here, each edge in the parent graph G has been augmented
with a length-1 graph chain segment, the nodes of which
are colored red. Figure 2(c) is the g-augmented graph G�2

corresponding to a code with parameters [15,2,10].

III. QUANTUM CODING

Quantum error correction. Quantum bits (qubits) are sus-
ceptible to a continuum of errors corresponding to rotations
about the Bloch sphere. Fortunately, due to an effect known as
the digitization of the error, quantum errors can be modeled
in terms of the random occurrence of a discrete set of Pauli

043423-3

ROFFE, WHITE, BURTON, AND CAMPBELL PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

FIG. 2. Augmented (2,3)-LDPC codes. (a) The parent factor graph G with parity check matrix H =
(

1 1 1
1 1 1

)
. (b) The g-augmented

graph G�1 with g = 1 corresponding to a [9,2,6] code. (c) The g-augmented code G�g with g = 2 corresponding to a [15,2,10] code. The nodes
belonging to the graph chain segments that form each augmented edge are colored red.

operators, {1, X,Y, Z},2 on each qubit [44]. An [[n, k, d]]
quantum error correction code Q is a mapping |ψ〉 �→ |ψ〉L
from a k-qubit quantum state |ψ〉 to an entangled n-qubit code
word (logical) state |ψ〉L. The quantum code words |ψ〉L ∈
Q satisfy the condition S j |ψ〉L = (+1) |ψ〉L for all S j ∈ S ,
where S is a group of mutually commuting Pauli operators
known as the code’s stabilizer [45]. Pauli errors of Hamming
weight less than the code distance |E | < d will result in at
least one stabilizer Sk projecting onto the negative eigenspace
Sk |ψ〉L = (−1) |ψ〉L.

The Pauli group has a convenient binary representation in
which each operator is mapped to a length-2 vector: 1 �→
(0, 0), X �→ (1, 0), Z �→ (0, 1), and Y �→ (1, 1). In general,
the binary representation of an n-qubit Pauli operator K will
be a length-2n vector of the form k = (x, z), where x and
z both have length n and represent the positions of X - and
Z-Pauli components respectively. As an example, the binary
representation of the three-qubit Pauli operator K = X1Z3 is
k = (100, 001). The binary representation provides a useful
setting from which to repurpose existing classical coding tech-
niques for quantum error correction.

A quantum parity check matrix is defined as a matrix in
which each row corresponds to a code stabilizer in its binary
representation. Calderbank, Shor, and Steane (CSS) codes
[46–48] are a subset of quantum codes with parity check

matrices of the form HCSS =
(

HZ 0
0 HX

)
, where HZ · HT

X = 0
due to the requirement that the stabilizers commute. For a CSS
code subject to a Pauli error E �→ eQ = (x, z), the quantum
syndrome sQ is calculated as follows:

sQ = (sX , sZ) = (HZ · x, HX · z). (3)

From the above, it can be seen that the working of a CSS code
can be thought of in terms of two classical codes, C(HZ) and
C(HX), designed to detect bit flips (X errors) and phase flips
(Z errors), respectively.

2The Pauli operators are defined as follows: 1 = (1 0
0 1

)
; X =(0 1

1 0

)
; Y = (0 −i

i 0

)
; Z = (1 0

0 −1

)
.

Hypergraph product codes. The hypergraph product, first
proposed by Tillich and Zemor [14], is a method for convert-
ing classical code pairs {CH1 , CH2} to a quantum CSS code
HGP (CH1 , CH2). In the below, we describe the special case
of the symmetric hypergraph product HGP (CH) for which
CH2 = CH1 .

For a classical code CH with code parameters [n, k, d], the
symmetric product HGP (CH) is a CSS code with

HX = (H ⊗ 1n|1m ⊗ HT),

HZ = (1n ⊗ H |HT ⊗ 1m), (4)

where HT is the transpose parity check matrix describing a
“transpose” code CT

H with parameters [m, kT , dT]. Here, kT is
the number of logical qubits encoded by the transpose code
while dT is the distance of the transpose code. The quantum
code parameters of HGP (H) are

[[n2 + m2, k2 + (kT)2, MIN(d, dT)]]. (5)

The specific advantage of the hypergraph product construc-
tion is that it allows any classical code to be converted to a
quantum code: the commutativity constraint HZ · HT

X = 0 is
satisfied for all binary parity check matrices H .

IV. QUANTUM LDPC CODES

An (lQ, qQ)-QLDPC code family is defined as a set of CSS
codes whose quantum parity check matrices HCSS have row
and column weights upper bounded by lQ and qQ, respectively
[49]. The hypergraph product preserves the sparsity of the
original classical code [14]. From the structure of Eq. (4), we
see that the hypergraph product of an (l, q)-LDPC code with
parity check matrix H results in an (lQ, qQ)-QLDPC code with
quantum parity check matrix HQ, where lQ = MAX(2l, 2q)
and qQ = l + q. The hypergraph product of a classical LDPC
code family is therefore a quantum LDPC (QLDPC) code
family.

Two important classes of hypergraph product codes are as
follows: (1) topological QLDPC codes, such as the surface
and toric codes, constructed by taking the hypergraph product
of repetition codes; (2) random QLDPC codes constructed
by taking the hypergraph product of randomly generated

043423-4

DECODING ACROSS THE QUANTUM LOW-DENSITY … PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

TABLE I. A constant-rate (8,7)-QLDPC code family HGP (CH)
constructed from the hypergraph product of classical (3,4)-LDPC
codes CH . Column 1: [n, k, d] parameters of the classical (3,4)-LDPC
codes CH . The parity check matrices of these codes have full rank.
Column 2: [m, kT , dT] parameters of the transpose codes CT

H . The
distance of these codes is set to dT = ∞ as they encode zero logical
bits. Column 3: [[n, k, d]] parameters of the (8,7)-QLDPC codes
HGP (CH). Column 4: The rate of the QLDPC code HGP (CH).
Column 5: the average check weight w̄ of HGP (CH).

CH CT
H HGP (CH) R = k/n w̄

[16, 4, 6] [12, 0, ∞] [[400,16,6]] 0.04 7.0
[20, 5, 8] [15, 0, ∞] [[625,25,8]] 0.04 7.0
[24, 6, 10] [18, 0, ∞] [[900,36,10]] 0.04 7.0

classical LDPC codes. When random codes generate a fac-
tor graph with the expansion property, these are known as
“quantum expander codes” [17–19]. In this section, we pro-
pose a new class of semitopological codes constructed by
taking the hypergraph product of augmented LDPC code fam-
ilies. Semitopological codes are designed to share properties
of both random and topological QLDPC codes.

Topological (4,4)-QLDPC codes. The hypergraph product
of an [n, 1, n] full-rank repetition code [see Fig. 1(a) for an
example] yields a surface code with parameters [[n2 + (n −
1)2, 1, n]]. Likewise, the hypergraph product of the closed-
loop repetition code [also known as the ring code; see Fig. 1(b)
for an example] results in a toric code with parameters
[[2n2, 2, n]]. Topological codes such as the surface code are
considered leading candidates for experiment due to their
high threshold [16] and the fact that they are local: all code
stabilizers can be measured via interactions between nearest-
neighbor qubits [26]. Another advantage of the topological
codes is that they have parity check matrices that are (4,4)-
QLDPC, meaning each stabilizer measurement involves at
most four qubits. From a hardware perspective, this is ben-
eficial, as each parity check operation involves error-prone
multiqubit operations. The shortcoming of topological codes
is that they scale poorly in terms of rate: R = k/n → 0 as d is
increased.

Random QLDPC codes. Random QLDPC codes are con-
structed from the hypergraph product of randomly generated
classical LDPC codes [37]. The advantage of random QLDPC
codes, over topological codes, is that they can encode more
qubits per logical block. Table I lists members of an (8,7)-
QLDPC code family constructed by taking the hypergraph
product of a family of randomly generated (3,4)-LDPC codes.
The (3,4)-LDPC classical code family was obtained using
the Mackay-Neal method which ensures the randomly gen-
erated parity check matrix has no length-four cycles [13].
The resultant (8,7)-QLDPC hypergraph product codes are fi-
nite rate, with R = k/n = 0.04 as the distance is increased.
The disadvantage of QLDPC codes is that they are highly
nonlocal, requiring arbitrary qubit-qubit interconnectivity to
perform stabilizer checks. Furthermore, the stabilizers typi-
cally involve more qubits than topological codes. The family
of codes shown in Table I, for example, are (8,7)-QLDPC with
stabilizer checks of mean weight w̄ = 7.0. This is higher than
the mean check weight of w̄ = 4.0 for the (4,4)-QLDPC toric
codes.

TABLE II. A semitopological code family HGP (C∗g
H) con-

structed from the augmented (2,3)-LDPC codes C∗g
H . Column 1: the

code augmentation parameter g. Column 2: [n, k, d] parameters for
the augmented (2,3)-LDPC codes. Column 3: [m, kT , dT] parameters
of the transpose code (C∗g

H)T . Column 4: [[n, k, d]] parameters of
the semitopological code HGP (C∗g

H). These codes are (6,5)-QLDPC.
Column 5: code rate R = k/n of HGP (C∗g

H). Column 6: average
check weight w̄ of HGP (C∗g

H).

g C∗g
H (C∗g

H)T HGP (C∗g
H) R w̄

0 [3,2,2] [2,1,1] [[13,5,2]] 0.385 5.00
1 [9,2,6] [8,1,8] [[145,5,6]] 0.0345 4.25
2 [15,2,10] [14,1,14] [[421,5,10]] 0.0119 4.14
3 [21,2,14] [20,1,20] [[841,5,14]] 0.00595 4.10
9 [57,2,38] [56,1,56] [[6385,5,38]] 0.000783 4.04

Semitopological codes. Semitopological codes are con-
structed by taking the hypergraph product of augmented
LDPC codes. Table II shows the code parameters of a fam-
ily of semitopological codes constructed from (2,3)-LDPC
augmented codes of the type illustrated in Fig. 2. For an
augmented code C∗g

H , each augmented edge can be thought
of as a section of a repetition code. The hypergraph product
HGP (C∗g

H) therefore maps each augmented edge to a section
of code that resembles a surface code. In these regions, the
code stabilizers will be local. As the distance of the augmented
code is increased, the resultant semitopological code contains
larger surface code patches and becomes more local in nature.
This convergence to surface-code-like structure is shown by
the check-weight parameter w̄ in Table II, which tends to
4.0 with increasing code distance as the local surface-code-
like patches begin to dominate. We term this new family
“semitopological codes,” as they encode more logical qubits
than the topological codes while requiring fewer long-range
interactions than random QLDPC codes.

V. BELIEF PROPAGATION DECODING

In the classical setting, the role of the decoder is to
determine the most likely error string e satisfying the syn-
drome equation H · e = s. In practice, this decoding problem
amounts to finding a minimum weight (MW) estimate of the
error eMW �→ ARGMAXe P(e|s). For a uniformly distributed
random noise model, the MW estimate can be computed bit-
wise by calculating the marginal probability that bit ei = 1 as
follows:

P1(ei) =
∑
∼ei

P(e1, e2, ei = 1, e3, . . . , en|s), (6)

where
∑

∼ei
denotes a summation over all bits e j except ei.

The marginal P1(ei) is referred to as a soft decision for the bit
ei. The final decoding estimate (hard decision) is then made
for each bit according to

(eMW)i =
{

1, if P1(ei) � 0.5,

0, if P1(ei) < 0.5.
(7)

Belief propagation (BP) is an efficient marginalization algo-
rithm and the backbone of many high-performance classical
decoders [50]. The essential intuition underpinning BP is that

043423-5

ROFFE, WHITE, BURTON, AND CAMPBELL PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

(for certain codes) the probability distribution P(e|s) can be
factorized in a way that reduces the number of repeat sum-
mations in the computation of the marginals. The specific
form of this factorization is deduced from the structure of
the code’s factor graph. The BP algorithm computes exact
marginals when applied to codes with treelike factor graphs.
For factor graphs with loops, the BP decoder outputs approxi-
mate marginals. However, it has been shown [13] that good
decoding performance is nonetheless possible provided the
factor graph is sufficiently loop-free.

The BP decoder takes a parity check matrix H and a
syndrome s as input. The algorithm iteratively updates a soft-
decision vector P1(e) by passing sets of “beliefs” between the
nodes of the factor graph. At each iteration, a BP estimate eBP

is obtained via a hard decision on P1(e). If the BP estimate sat-
isfies the syndrome equation, H · eBP = s, the BP decoder is
said to have “converged” and the BP algorithm is terminated.
The BP decoder fails if convergence does not occur within a
number of iterations equal to the block length of the code. A
more detailed description of BP can be found in Appendix C.

BP decoding of quantum codes. For a CSS code subject to a
Pauli error E �→ eQ = (x, z), the quantum syndrome is given
by sQ = (sx, sz) = (HZ · x, HX · z). Assuming a Pauli-noise
model with uncorrelated X and Z errors, the CSS code can be
decoded independently as two classical codes with syndrome
equations sx = HZ · x and sz = HX · z. Unfortunately, the un-
modified BP algorithm cannot be used to directly decode
CSS codes owing (in part) to an effect known as quantum
degeneracy. Quantum degeneracy arises due to the fact that
there can be multiple minimum-weight solutions to the quan-
tum decoding problem. In classical coding the goal is to
estimate the exact error configuration that occurred eMW = e.
In contrast, for quantum coding, it is sufficient to find any
recovery operation rQ that is equivalent to the error up to
a stabilizer rQ + eQ = ROWSPACE(HCSS). For BP decoding,
quantum degeneracy becomes problematic when there are
multiple minimum-weight solutions satisfying the syndrome
equation. As an example, consider a bit error decoding prob-
lem sx = HZ · x that has two minimum-weight solutions x1

and x2. As the degenerate solutions have equal Hamming
weight |x1| = |x2| the BP decoder assigns high probability to
both. This situation is referred to as a split belief [15], and
leads to a BP output of the form xBP = x1 + x2. In this case,
HZ · xBP = sx + sx = 0 �= sx. The BP decoder therefore fails
to converge when there are split beliefs of this type.

Ordered statistics decoding. Many attempts have been
made to modify or supplement the BP algorithm to solve
the problem of quantum degeneracy. The most successful ap-
proach to date involves applying a post-processing algorithm
known as the ordered statistics decoder (OSD). Originally
designed as a method for reducing error floors in classical
LDPC codes by Fossorier and Lin [23], OSD was first ap-
plied in the quantum setting by Panteleev and Kalachev [22]
and shown to be a surprisingly effective decoder of random
QLDPC codes. In this paper, we show that OSD also performs
well for the toric codes and our new class of semitopological
codes. We also provide the first open-source demonstration
of the algorithm [51]. Note that in the below, for notational
simplicity, we describe OSD post-processing as applied to a
classical decoding problem s = H · e. The procedure we out-

line applies equally to decoding the HX and HZ components
of a CSS code.

As parity check matrices do not have full column rank,
it is not possible to solve the syndrome equation by matrix
inversion H−1 · s = e. However, for any parity check matrix it
is possible to find a subset of columns, specified by the indices
[S], that are linearly independent. These columns form a basis
and can be used to define a submatrix H[S] with full column
rank, formed by selecting the columns [S] of the original
parity check matrix H . As this submatrix has full column rank,
it can be inverted to give a solution to the syndrome equation
H−1

[S] · s = e[S]. Each choice of the basis [S] corresponds to
a unique solution e[S], eliminating any potential ambiguity
due to quantum degeneracy. It is possible to select [S] as a
random basis set, but this approach is unlikely to result in a
good (low-weight) solution for e[S]. The idea behind the OSD
post-processing algorithm is that the soft decisions from BP
are used to select a basis set [S] containing bits that have high
probability of having been flipped.

The OSD-0 algorithm. In a BP + OSD decoder, the OSD
post-processing step is called when the BP algorithm fails
to converge within a number of iterations equal to the block
length of the code. The simplest manifestation of the OSD de-
coder is known as OSD-0, the steps of which are as follows:

(1) Use the BP soft decision vector P1(e) to obtain a
ranked list of bit indices [OBP] ordered (left to right) from
most to least likely of being flipped.

(2) Order the columns of the parity check matrix H[OBP]

according to the ranking [OBP].
(3) Select the first RANK(H) linearly independent columns

of H[OBP] as the most probable basis set [S].
(4) Calculate the OSD-0 solution on the basis bits by ma-

trix inversion e[S] = H−1
[S] · s.

(5) The OSD-0 solution across all bits is given by e[S,T] =
(e[S], e[T]) = (e[S], 0), where we define the remainder set [T]
as the bits which are not in the basis set [T] /∈ [S]. The OSD-
0 solution will always satisfy the syndrome equation H[S,T] ·
e[S,T] = s.

(6) Map the OSD-0 solution to the original bit ordering
e[S,T] �→ eOSD-0.

Higher-order OSD. In higher-order OSD, we consider so-
lutions for which e[T] �= 0. The first step involves computing
the OSD-0 solution e[S] on the basis bits as described above.
Following this, for a given choice of e[T], the higher-order
OSD solution across all bits is given by

e[S,T] = (
H−1

[S] · e[S] + H−1
[S] · H[T] · e[T], e[T]

)
. (8)

Note that the above solution satisfies the syndrome relation
H[S,T] · e[S,T] = s for all possible configurations of e[T]. A
higher-order OSD routine involves searching over different
values of e[T] to find the OSD solution with the lowest Ham-
ming weight MIN(|e[S,T]|). The length of the e[T] vector is
equal to k′ = n − RANK(H), meaning there are 2k′

distinct
configurations: as a result, searching over all configurations
soon becomes intractable for large codes. However, the BP
soft-decision vector P1(e) can be used to rank the bits in e[T].
Good solutions can then be discovered by implementing a
weighted greedy search routine which prioritizes the more
probable configurations of e[T] according to the soft decisions
P1(e).

043423-6

DECODING ACROSS THE QUANTUM LOW-DENSITY … PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

Greedy search strategies for higher-order OSD. For the
numerical simulations in this paper, we implement a greedy
search method we refer to as the “combination sweep strat-
egy,” a variant of the method originally proposed in [23]. The
steps of the combination sweep strategy are as follows:

(1) The bits in the e[T] component of the OSD solution are
sorted according to the BP soft decisions.

(2) All weight-one configurations of e[T] are searched
over.

(3) All weight-two configurations in the first λ bits of
e[T] are searched over. The total number of configurations
considered is equal to k′ + (

λ

2

)
, where k′ = n − RANK(H) is

the length of the e[T] vector.
We label our decoders using the combination sweep greedy

search algorithm as BP + OSD-CS. For all the simulations in
this work, we set the combination sweep search depth parame-
ter to λ = 60. Note that in [22], Panteleev and Kalachev used
a different greedy search method that involved testing all 2λ

permutations of the first λ bits in x[T]. For a fixed number of
search terms, the combination sweep search algorithm pro-
vides a modest improvement in decoding performance over
this exhaustive approach. For more details, see Appendix B.

VI. NUMERICAL SIMULATIONS

Simulation methodology for BP+OSD decoding. For the
numerical simulations of the BP + OSD decoder in this work,
we sample errors from the code capacity channel under the
assumption that X - and Z-type errors are uncorrelated. As the
quantum error correction codes we consider are constructed
from a symmetric hypergraph product, the respective decod-
ing problems for X - and Z-type errors are equivalent. As such,
it suffices to simulate a single error species to assess decoding
performance. Here, we sample X errors and solve the de-
coding problem sx = HZ · x. The pseudocode for the specific
implementation of BP we use for the numerical simulations in
this paper can be found in Appendix C. The simulation chain
we implement for each BP + OSD decoding cycle is described
below:

(1) An error x is randomly sampled from a binary sym-
metric channel with bit error rate p. The syndrome is then
calculated sx = HZ · x.

(2) The BP decoder is called with HZ and s as inputs. The
output of the BP decoder is a candidate solution xBP along
with its respective soft-decision vector P1(x). If HZ · xBP =
sx, then the BP decoder has converged and the simulation
jumps directly to step 5. If HZ · xBP �= sx, then the OSD post-
processing routine (steps 3 and 4) is called. For our decoding
simulations we use the “min-sum” variant of the BP algorithm
as described in [52].

(3) The OSD-0 post-processing method, as described
above, is used to obtain a solution of the form x[S,T] =
(x[S], x[T]) = (x[S], 0).

(4) A greedy algorithm is run to search for higher-order
OSD solutions that improve upon OSD-0. For this work, we
adopt the combination sweep strategy with the search depth
parameter set to λ = 60. However, in general, the specific
form of the greedy search routine can be tailored according
to parameters such as the physical error rate or code structure.
The lowest weight OSD solution, MIN|e[S,T]|, is mapped to the

TABLE III. Observed thresholds for numerical simulations of
the BP+OSD decoder applied to toric, semitopological, and random
QLDPC codes.

Code BP BP+OSD-0 BP+OSD-CS

Toric N/A 9.2% ± 0.2% 9.9% ± 0.2%
Semitopological N/A 9.1% ± 0.2% 9.7% ± 0.2%
Random 6.5% ± 0.1% 6.7% ± 0.1% 7.1% ± 0.1%

original bit ordering and chosen as the BP + OSD candidate
solution eOSD.

(5) After applying the recovery provided by the decoder,
the “residual” error is given by xR = x + xOSD (or in the case
where BP converged xR = x + xBP). The decoding cycle is
counted as a success if xR is a not an X -type logical operator
of the code. By definition, an X -type logical operator will
anticommute with its corresponding Z-type logical operator.
Checking for decoding success therefore involves verifying
that LZ · xR = 0, where LZ is a matrix in which each row
represents a Z-type logical operator.

Next, we discuss our thresholds estimates for three code
families across the QLDPC code spectrum, with an overview
presented in Table III.

Topological QLDPC codes. Figure 3 shows a toric code
threshold plot comparing the BP decoder against the
BP + OSD-CS decoder. The logical error rate pL is plot-
ted against the physical error rate p for code distances d =
{9, 11, 13, 15}. Due to quantum degeneracy, the BP decoder

FIG. 3. Toric code threshold plot comparing the BP decoder
(dashed lines) versus the BP + OSD-CS decoder (solid lines). The
logical error rate pL is plotted against the physical error rate p for
code distances d = {9, 11, 13, 15}. For this simulation, the search
depth parameter for the greedy search “combination sweep strategy”
is set to λ = 60.

043423-7

ROFFE, WHITE, BURTON, AND CAMPBELL PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

FIG. 4. Threshold plot for the semitopological codes constructed
from a family of augmented codes (see Table II for the code parame-
ters). The logical error rate pL is plotted against the physical error rate
p for code distances d = {6, 10, 14, 18}. The search depth parameter
for the greedy search combination sweep strategy is set to λ = 60.

alone (dashed lines) does not exhibit a threshold: increasing
the code distance d increases the logical error rate pL for all
values of the bit error rate p. In contrast, the BP + OSD-CS
decoder (solid lines) shows crossings that indicate a thresh-
old in the region 9.9% ± 0.2%. Furthermore, by inspection
of the subthreshold regime, we see evidence of exponential
suppression in the logical error rate with decreasing physical
error rate. The corresponding threshold (not plotted) for the
BP + OSD-0 decoder is 9.2% ± 0.2%. Performing the combi-
nation sweep for higher-order OSD solutions therefore results
in a quantifiable improvement in decoding performance.

Semitopological codes. Figure 4 shows the threshold plot
for a family of semitopological codes constructed from aug-
mented (2,3)-LDPC codes. The parameters for this code
family are listed in Table II. The logical error rates pL (for
both BP and BP + OSD-CS) are plotted against the physical
error rate p for code distances d = {6, 10, 14, 18}. As with the
toric codes, the BP decoder alone does not yield a threshold.
For the BP + OSD-CS decoder, however, a crossing is clearly
visible, suggesting a threshold in the range 9.7% ± 0.2%.
Similarly to the toric code, inspection of the subthreshold
regime shows evidence of exponential suppression for the
semitopological code family. Within the margin of error, the
semitopological code threshold aligns with the threshold for
the toric code using the same decoder. This is the expected
behavior, reflecting the fact that semitopological codes be-
come structurally similar to toric codes (more local) as their
distance is increased. The structural similarity arises because
the chain segments are mapped to toric-code-like patches by
the hypergraph product, and these regions form the bulk in

FIG. 5. Threshold plots for the family of constant-rate QLDPC
codes listed in Table I. The logical error rate pL is plotted against the
physical error rate p for code distances d = {6, 8, 10}. The search
depth parameter for the greedy search combination sweep strategy is
set to λ = 60.

the limit of large g. Discrepancies in the threshold between
the semitopological codes and toric codes can be attributed to
finite-size effects.

Random QLDPC codes. Figure 5 shows the results of
numerical simulations of the BP + OSD decoder applied to
the finite-rate family of random QLDPC codes summarized
in Table I. The code distances considered are d = {6, 8, 10}.
In contrast to the toric and semitopological codes, the BP
decoder alone (before any OSD post-processing) shows a
crossing, pointing to a threshold in the range 6.5% ± 0.1%.
The existence of this threshold for the BP decoder can be
attributed to the fact that random QLDPC codes are less
structured than toric and semitopological codes; the repeating
patterns present in stabilizer checks of topological codes lead
to high densities of degenerate errors that cause BP to fail. The
full BP + OSD-CS decoder applied to the random QLDPC
family results in a threshold in the range 7.1% ± 0.1%. While
this threshold value is only a modest improvement over
BP, the real benefit of the OSD post-processing for random
QLDPC codes becomes apparent in the low-error regime;
at p = 0.01, for example, the logical error rate pL for the
BP + OSD-CS decoder is approximately an order magnitude
less than that for BP.

VII. SUMMARY

Quantum LDPC codes have traditionally been studied as
local topological codes or nonlocal random codes. In this
paper we introduce semitopological codes as a means of
interpolating on the local to nonlocal QLDPC spectrum.

043423-8

DECODING ACROSS THE QUANTUM LOW-DENSITY … PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

Previously, the practicality of QLDPC codes has been hin-
dered by the lack of a general purpose decoder: designing a
new family of QLDPC codes would necessitate the develop-
ment of a special-purpose decoding strategy [19,20]. In this
paper, we provide further evidence that the recently proposed
BP + OSD decoder [22] applies to all QLDPC codes con-
structed via the hypergraph product, including our new family
of semitopological codes.

The methods for constructing semitopological codes pro-
posed in this paper allow the locality of QLDPC codes to
be balanced against other factors such as code rate. The ex-
istence of a general purpose BP + OSD decoder for QLDPC
codes grants quantum computer architects more freedom in
the design of fault-tolerant quantum computers; modifications
to the structure of a QLDPC code can be made according to
demands of a given device, without compromising the practi-
cality of their decoding.

All of the simulations in this work were run under the
assumption that the syndrome measurements are noiseless.
In reality, syndrome extraction is performed using ancilla
qubits with imperfect readout. In work currently in prepara-
tion [53], we study the performance of the BP + OSD decoder
for higher-dimensional hypergraph product codes with the
single-shot property [54–56], designed with in-built protec-
tion against syndrome noise.

Since our semitopological codes contain local patches of
surface code, it would be useful to determine whether other
QLDPC codes can be modified to contain such patches.
For instance, Panteleev and Kalachev [22] constructed a
[[1270, 28, d]] (with unknown d) code that was especially
competitive with surface codes. However, this code was con-
structed using a generalized hypergraph product and it is
unclear whether an analog of our edge-augmentation process
can be applied to this more general code family.

In this paper we have demonstrated the versatility of
BP + OSD as a decoder across the spectrum of QLDPC
codes that can be obtained from the hypergraph product. Be-
yond this, we conjecture that BP + OSD decoders will apply
more generally to QLDPC codes constructed using different
methods. Potential candidates for future investigation include
topological fracton codes [57] and QLDPC codes based on
high-performance classical protocols [58].

The code for the BP + OSD decoder used for the simula-
tions in this paper can be downloaded from Github [51].

ACKNOWLEDGMENTS

J.R., S.B., and E.C. are supported by the QCDA project
(EP/R043825/1) which has received funding from the
QuantERA ERA-NET Cofund in Quantum Technologies
implemented within the European Union’s Horizon 2020 Pro-
gramme. E.C. is additionally supported by the Engineering
and Physical Sciences Research Council (EP/M024261/1).
D.W. was supported by a research grant from Huawei. We
thank Armanda Quintavalle for related discussions and com-
ments throughout the project. The authors are grateful for the
use of the following open source software packages: soft-

ware for LDPC codes [59], Scipy [60], Numpy [61], and
Matplotlib [62].

APPENDIX A: LOWER BOUND ON THE INCREASE IN
CODE DISTANCE DUE TO EDGE AUGMENTATION

Theorem 1. Consider an [n, k, d] classical code with Tanner
graph G = (V,U,�) and let μ denote the minimum degree
over all data nodes V . Let G�g be the Tanner graph result-
ing from augmenting each edge of G with g data nodes
and g parity nodes. It follows that G�g corresponds to an
[n + g|�|, k, d ′] code with d ′ � (1 + gμ)d .

Proof. For the augmented graph G�g, we divide the data
qubits V ∪ V g into two disjoint subsets: the parent data nodes
V and the augmented data nodes V g. We let A denote a subset
of data qubits A ⊆ V ∪ V g that corresponds to a code word of
the classical code, which is the case if and only if every check
node in G�g has an even number of graph neighbors in the set
A. Furthermore, because the augmented data nodes V g are all
degree two, for each graph chain segment either all the data
nodes are in A or none of them are. Furthermore, for every
parent data node a ∈ A ∩ V , it follows that every whole graph
chain segment welded to a must be in A. Using #chains(A) to
denote the number of graph chain segments present in A, we
have that

|A| = |A ∩ V | + g#chains(A). (A1)

Recall that each graph chain segment welds to one parent data
node and one parent check node. Therefore, we can count
the number of graph chain segments as follows: #chains(A) =∑

a∈A∩V deg(a). In the graph G�g, the parent data nodes have
the same degree as they did in the original graph G and by
assumption this is lower bounded by μ. Therefore, we have
#chains(A) � μ|A ∩ V | and so

|A| � (1 + gμ)|A ∩ V |. (A2)

Next, we observe that A can only be a code word with respect
to graph G�g if A ∩ V is a code word with respect to graph G,
which entails that

|A ∩ V | � d. (A3)

Let us break this observation down into steps. Assume to the
contrary that |A ∩ V | < d , so that with respect to graph G
there is a parent check node c ∈ U such that it has an odd
number of neighbors in A ∩ V . Furthermore, there will be an
odd number of edges connecting c to A ∩ V in graph G. Each
one of these edges maps to a graph chain segment in A ∩ V in
the augmented graph, each of which welds to check node c.
Therefore, check node c also has an odd number of neighbors
with respect to graph G�g. This is impossible when A is a
code word in graph G�g, so we must have that Eq. (A3) holds.
Combining Eq. (A2) and Eq. (A3) gives |A| � (1 + gμ)d for
any code word A in G�g, so this gives a lower bound on d ′. �

APPENDIX B: COMPARISON OF BP+OSD GREEDY
SEARCH ALGORITHMS

The greedy search stage of a BP + OSD decoder involves
testing different inputs to the OSD encoding operator given by

043423-9

ROFFE, WHITE, BURTON, AND CAMPBELL PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

FIG. 6. Comparison of the BP + OSD-E and BP + OSD-CS
methods when applied to the distance d = 15 toric code. The λ value
for BP + OSD-E is set to λ = 12, leading to a total of 4096 inputs
to the encoding operator defined in Eq. (8). For BP + OSD-CS, the
λ value is set to λ = 86, leading to 3881 inputs to the encoding
operator.

Eq. (8), with the aim of finding solutions that improve upon
OSD-0. In [22], Panteleev and Kalachev use an exhaustive
search strategy which we refer to as BP + OSD-E. For the
simulations in this paper, we adopt the combination sweep
method, referred to as BP + OSD-CS. For an OSD solution of
the form, eOSD = (e[S], e[T]), the first step is to order the bits
in e[T] according to the soft decisions from BP. The greedy
search for the two methods then proceeds as follows:

(1) BP + OSD-E: All permutations of most-probable λ

bits in e[T] are searched over. In total, 2λ search terms are
considered.

(2) BP + OSD-CS: All weight one and two permutations
in the first λ most-probable bits of e[T] are searched over. The
total number of configurations considered is equal to k′ + (

λ

2

)
,

where k′ = n − RANK(H) is the length of the e[T] vector.
Figure 6 compares decoding performance for the above

OSD methods when applied to the d = 15 toric code. For the
exhaustive method (BP + OSD-E), λ is set to λ = 12, giving a
total of 4096 search terms. For the combination sweep method
(BP + OSD-CS), λ is set to λ = 86, giving a total of 3881
search terms. Figure 6 shows that, despite considering fewer
search terms, the BP + OSD-CS method improves decoding
performance compared to BP + OSD-E.

APPENDIX C: MIN-SUM BELIEF PROPAGATION

We gave only a short summary of BP in the paper; we
provide further details here to avoid the ambiguity often found

in the literature, where BP is formulated for different appli-
cations and with many variations. We use a variant of the
“min-sum” algorithm, using log-likelihood ratios for proba-
bilities and the incorporation of variable scaling to prevent
runaway values.

Belief propagation calculates marginal probabilities over
graphical probabilistic models, a form of statistical inference,
and is widely applied to the decoding of classical error-
correcting codes. In the quantum domain the decoding task
differs slightly in that, rather than trying to infer the origi-
nal code word from the received message, we are given the
syndrome indicating whether a given “parity check” failed
and must infer a recovery operator; we must also cope with
quantum degeneracy. Despite these differences, the task of
quantum error correction (QEC) can be reformulated as a
classical syndrome-based decoding problem. Unfortunately,
syndrome-based decoding is not common in the classical de-
coding literature and there are few good references on the
topic.

A more significant difference when applying BP to quan-
tum codes is that all CSS and non-CSS QLDPC codes have
factor graphs of girth four; originally BP was designed to work
on acyclic graphs, but these factor graphs contain short cycles.
While this violates the invariants of the algorithm and hence
its proof of its correctness, empirically BP has been found
to perform surprisingly well on cyclic graphs. Although it
may sometimes fail to converge to a feasible solution, we can
detect this by checking that its output satisfies the syndrome
equation.

Formulating QEC decoding for BP

A QEC factor graph has data nodes representing each bit
in the error string, which we denote v j . It has one “check”
or “parity” node for each syndrome measurement, which we
denote ui. The graph is described by the parity check matrix
H (whether it concerns X or Z errors alone, or both, is imma-
terial; the methodology is the same). A one at position (i, j) in
H indicates that parity node ui has an edge directly connecting
it to data node v j .

There are two forms of prior information we must incor-
porate into the graph: the error rate of the channel, p, and the
syndrome s. The error rate is incorporated as a hidden input
to the data nodes. The syndrome measurement is implicitly
present in the graph via calculations made at the parity nodes.

BP is conceptualized as a message-passing algorithm. We
denote a message from a parity to a data node mui→v j and
from a data node to a parity node as mv j→ui . As we pos-
sess only the syndrome, and not the received code word,
the factor graph for QEC is slightly different from the stan-
dard graph found in classical decoding—but it is indeed
equivalent to the (rarely discussed) syndrome-based classical
decoding.

Our task is as follows: given the syndrome s and the struc-
ture represented by the factor graph, what is the most likely
value of each bit in the error string?

043423-10

DECODING ACROSS THE QUANTUM LOW-DENSITY … PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

Algorithm description

Algorithm 1. Pseudocode for belief propagation using log-
likelihood ratios, the min-sum product algorithm, and a scaling
factor. Log-likelihood ratios and the min-sum algorithm (the use of
w in line 13) make the computation more efficient and avoid the
numerical instability of other implementations.

1: function BELIEFPROP H, s, p

2: � Channel LLR
3: pl ← log[(1 − p)/p]

4: � (1) Initialization
5: for (v j, ui) ∈ H do
6: mv j→ui ← pl

7: for iter ← 1 to max do

8: � Scaling factor
9: α ← 1 − 2−iter

10: � (2) Parity to data messages
11: for (ui, v j) ∈ H do
12: w ← min∼v j∈V (ui){|mv′

j→ui
|}

13: mui→v j = −1si α[
∏

∼v j∈V (ui) sgn(mv′
j→ui

)]w

14: � (3) Data to parity messages
15: for (v j, ui) ∈ H do
16: mv j→ui ← m + ∑

∼ui∈U (v j) mu′
i→v j

17: � Hard decision
18: for (v j, ui) ∈ H do
19: P1(e j) ← pj + ∑

u′
i∈U (v j) mu′

i→v j

20: e j
BP ← −sgn[P1(e j)]

21: � (4) Termination check
22: if H · eBP = s then
23: return True, eBP, P1

24: � Failed to converge
25: return False, eBP, P1

The pseudocode for our implementation is given in
Algorithm I, and consists of four sequential steps:

(1) Initialization. Messages are sent from data nodes to
parity nodes giving the a priori probability of that bit in the
error string being a one, i.e., the LLR (log-likelihood ratio)
of the channel error rate p, which we denote pl in its log-
likelihood form:

pl � log[(1 − p)/p]. (C1)

(2) Parity nodes to data nodes. Messages are sent from
parity nodes to data nodes containing the marginal probability
of an error at the destination data node. However, we im-
plement several optimizations that somewhat complicate the
calculation of this message. Denoting the neighboring data
nodes of a given parity node ui as V (ui), the messages sent
are

mui→v j = −1siα

[∏
v′

j∈V (ui)\v j

sgn
(
mv′

j→ui

)]

× minv′
j∈V (ui)\v j

{∣∣mv′
j→ui

∣∣}. (C2)

The set minus notation in the subscripts indicates that this is a
marginal distribution; i.e., we consider only the probabilities

from other data nodes when calculating the marginal for this
bit. The sign function and the first exponential (−1)si are used
to incorporate the syndrome, with si being the ith bit of the
syndrome. In other words: “consider all configurations of con-
nected error bits, and increase the probability of the implied
value for this bit compatible with the observed syndrome.”
The first factor is an XOR operation that establishes the sign of
this probability, i.e., whether ui is implied to be a one or a zero,
based on the decision represented by the messages sent by
other data bits. The second factor describes the magnitude of
the probability and is based on the notion that the “cheapest”
way that this value of ui could be incorrect is if one of the
other bits was flipped. For a full explanation, see [11].

We also include al pha, a scaling factor as outlined in [52].
The scaling factor α is set according to the current iteration
iter, where the first iteration is numbered iter = 1:

α = 1 − 2−iter . (C3)

(3) Data nodes to parity nodes. Next, messages are sent
from data nodes to parity nodes giving the probability ratio
for that bit in the error string, calculated by summing the
inbound marginals and taking into account the error rate for
the channel, omitting normalization for efficiency:

mv j→ui = pl +
∑

u′
i∈U (v j)\ui

mu′
i→v j , (C4)

where we have denoted the neighboring data nodes of a given
check node v j as U (v j).

(4) Termination check. If the factor graph is a tree, we can
always terminate after a single iteration of the algorithm. If
it is cyclic (as in QEC), then we will terminate on success
or else when a given number of iterations are complete. We
first calculate a “hard decision” of the most likely error string,
by selecting the most likely configuration via the bitwise
marginals we have calculated:

P1(e j) = pl +
∑

u′
i∈U (v j)

mu′
i→v j . (C5)

We then select the most likely error string Ẽ given these
bitwise probabilities, and calculate the expected syndrome:

s = H · e. (C6)

We terminate if s matches the measured syndrome, or if we
have reached a preset maximum number of iterations (often
equal to the block length). Otherwise, we return to step 2,
sending “parity nodes to data nodes” messages.

The outputs of BP are both the soft and hard decisions;
the former are used by OSD if BP has failed to converge, i.e.,
the hard decision does not satisfy the syndrome equation. The
soft decision is a bitwise estimate of the probability an error
occurred, which OSD uses to bias its search for an error string.

043423-11

ROFFE, WHITE, BURTON, AND CAMPBELL PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

[1] P. W. Shor, Scheme for reducing decoherence in quantum com-
puter memory, Phys. Rev. A 52, R2493 (1995).

[2] D. Gottesman, An introduction to quantum error correction and
fault-tolerant quantum computation, arXiv:0904.2557.

[3] S. J. Devitt, W. J. Munro, and K. Nemoto, Quantum error
correction for beginners, Rep. Prog. Phys. 76, 076001 (2013).

[4] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[5] J. Roffe, Quantum error correction: An introductory guide,
Contemp. Phys. 60, 226 (2019).

[6] N. Delfosse, Hierarchical decoding to reduce hardware require-
ments for quantum computing, arXiv:2001.11427.

[7] Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and Lajos Hanzo,
Fifteen years of quantum LDPC coding and improved decoding
strategies, IEEE Access 3, 2492 (2015).

[8] R. Gallager, Low-density parity-check codes, IRE Trans. Inf.
Theory 8, 21 (1962).

[9] J. H. Bae, A. Abotabl, H.-P. Lin, K.-B. Song, and J. Lee,
An overview of channel coding for 5G NR cellular commu-
nications, APSIPA Transactions on Signal and Information
Processing 8, E17 (2019).

[10] J. Pearl, Reverend Bayes on inference engines: A distributed
hierarchical approach, in Proceedings of the National Confer-
ence on Artificial Intelligence, Carnegie Mellon University and
the University of Pittsburgh, Pittsburgh, Pennsylvania (AAAI,
1982), pp. 133–136.

[11] F. R. Kschischang, B. J. Frey, H.-A. Loeliger et al., Factor
graphs and the sum-product algorithm, IEEE Trans. Inf. Theory
47, 498 (2001).

[12] C. E. Shannon, A mathematical theory of communication, Bell
System Tech. J 27, 379 (1948).

[13] D. J. C. MacKay and R. M. Neal, Near Shannon limit perfor-
mance of low density parity check codes, Electron. Lett. 33,
457 (1997).

[14] J.-P. Tillich and G. Zémor, Quantum LDPC codes with pos-
itive rate and minimum distance proportional to the square
root of the blocklength, IEEE Trans. Inf. Theory 60, 1193
(2013).

[15] B. Criger and I. Ashraf, Multi-path summation for decoding 2D
topological codes, Quantum 2, 102 (2018).

[16] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[17] A. Leverrier, J.-P. Tillich, and G. Zémor, Quantum expander
codes, in 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science (IEEE, 2015), pp. 810–824.

[18] O. Fawzi, A. Grospellier, and A. Leverrier, Constant overhead
quantum fault-tolerance with quantum expander codes, in 2018
IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS) (IEEE, 2018), pp. 743–754.

[19] O. Fawzi, A. Grospellier, and A. Leverrier, Efficient decoding
of random errors for quantum expander codes, in Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (ACM, 2018), pp. 521–534.

[20] A. Grospellier and A. Krishna, Numerical study of hypergraph
product codes, arXiv:1810.03681.

[21] A. Grospellier, Lucien Grouès, A. Krishna, and A. Leverrier,
Combining hard and soft decoders for hypergraph product
codes, arXiv:2004.11199.

[22] P. Panteleev and G. Kalachev, Degenerate quantum LDPC
codes with good finite length performance, arXiv:1904.02703.

[23] M. P. C. Fossorier and S. Lin, Soft-decision decoding of linear
block codes based on ordered statistics, IEEE Trans. Inf. Theory
41, 1379 (1995).

[24] M. P. C. Fossorier, Iterative reliability-based decoding of low-
density parity check codes, IEEE J. Select. Areas Commun. 19,
908 (2001).

[25] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[26] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[27] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C.
White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, Z. Chen, B.
Chiaro, A. Dunsworth, E. Lucero, M. Neeley, C. Neill, P. J. J.
O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner,
and J. M. Martinis, Scalable in situ qubit calibration during
repetitive error detection, Phys. Rev. A 94, 032321 (2016).

[28] E. A. Sete, W. J. Zeng, and C. T. Rigetti, A functional
architecture for scalable quantum computing, in 2016 IEEE In-
ternational Conference on Rebooting Computing (ICRC) (IEEE,
2016), pp. 1–6.

[29] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow, and J. M.
Gambetta, Experimental Demonstration of Fault-Tolerant State
Preparation with Superconducting Qubits, Phys. Rev. Lett. 119,
180501 (2017).

[30] J. Randall, S. Weidt, E. D. Standing, K. Lake, S. C. Webster,
D. F. Murgia, T. Navickas, K. Roth, and W. K. Hensinger,
Efficient preparation and detection of microwave dressed-state
qubits and qutrits with trapped ions, Phys. Rev. A 91, 012322
(2015).

[31] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman,
K. Wright, and C. Monroe, Demonstration of a small pro-
grammable quantum computer with atomic qubits, Nature
(London) 536, 63 (2016).

[32] M. F. Brandl, M. W. van Mourik, L. Postler, A. Nolf, K.
Lakhmanskiy, R. R. Paiva, S. Möller, N. Daniilidis, H. Häffner,
V. Kaushal, T. Ruster, C. Warschburger, H. Kaufmann, U. G.
Poschinger, F. Schmidt-Kaler, P. Schindler, T. Monz, and R.
Blatt, Cryogenic setup for trapped ion quantum computing, Rev.
Sci. Instrum. 87, 113103 (2016).

[33] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M.
Lucas, High-Fidelity Quantum Logic Gates Using Trapped-Ion
Hyperfine Qubits, Phys. Rev. Lett. 117, 060504 (2016).

[34] X. Qiang, X. Zhou, J. Wang, Callum M. Wilkes, T. Loke,
Sean O’Gara, L. Kling, Graham D. Marshall, R. Santagati,
Timothy C. Ralph, Jingbo B. Wang, Jeremy L. O’Brien,
Mark G. Thompson, and J. C. F. Matthews, Large-scale silicon
quantum photonics implementing arbitrary two-qubit process-
ing, Nat. Photonics 12, 534 (2018).

[35] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen,
Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang,
C.-Z. Peng, L. Li, N.-L. Liu, Yu.-A. Chen, C.-Y. Lu, and J.-W.
Pan, Experimental Ten-Photon Entanglement, Phys. Rev. Lett.
117, 210502 (2016).

[36] Y. Wu, Y. Wang, X. Qin, X. Rong, and J. Du, A programmable
two-qubit solid-state quantum processor under ambient condi-
tions, npj Quantum Inf. 5, 1 (2019).

[37] A. A. Kovalev, S. Prabhakar, I. Dumer, L. P. Pryadko, Nu-
merical and analytical bounds on threshold error rates for
hypergraph-product codes, Phys. Rev. A 97, 062320 (2018).

043423-12

https://doi.org/10.1103/PhysRevA.52.R2493
http://arxiv.org/abs/arXiv:0904.2557
https://doi.org/10.1088/0034-4885/76/7/076001
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1080/00107514.2019.1667078
http://arxiv.org/abs/arXiv:2001.11427
https://doi.org/10.1109/ACCESS.2015.2503267
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1017/ATSIP.2019.10
https://doi.org/10.1109/18.910572
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1049/el:19970362
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.22331/q-2018-10-19-102
https://doi.org/10.1063/1.1499754
http://arxiv.org/abs/arXiv:1810.03681
http://arxiv.org/abs/arXiv:2004.11199
http://arxiv.org/abs/arXiv:1904.02703
https://doi.org/10.1109/18.412683
https://doi.org/10.1109/49.924874
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.94.032321
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1103/PhysRevA.91.012322
https://doi.org/10.1038/nature18648
https://doi.org/10.1063/1.4966970
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1103/PhysRevLett.117.210502
https://doi.org/10.1038/s41534-019-0129-z
https://doi.org/10.1103/PhysRevA.97.062320

DECODING ACROSS THE QUANTUM LOW-DENSITY … PHYSICAL REVIEW RESEARCH 2, 043423 (2020)

[38] Y.-H. Liu and D. Poulin, Neural Belief-Propagation Decoders
for Quantum Error-Correcting Codes, Phys. Rev. Lett. 122,
200501 (2019).

[39] N. H. Nickerson, J. F. Fitzsimons, and S. C. Benjamin, Freely
Scalable Quantum Technologies Using Cells of 5-to-50 Qubits
with Very Lossy and Noisy Photonic Links, Phys. Rev. X 4,
041041 (2014).

[40] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[41] V. Kolmogorov, Blossom V: A new implementation of a mini-
mum cost perfect matching algorithm, Math. Program. Comput.
1, 43 (2009).

[42] R. Tanner, A recursive approach to low complexity codes, IEEE
Trans. Inf. Theory 27, 533 (1981).

[43] J. Roffe, S. Zohren, D. Horsman, and N. Chancellor, Quantum
codes from classical graphical models, IEEE Trans. Inf. Theory
66, 130 (2020).

[44] Emanuel Knill and R. Laflamme, Theory of quantum error-
correcting codes, Phys. Rev. A 55, 900 (1997).

[45] D. Gottesman, The Heisenberg representation of quantum com-
puters, in Group22: Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics (Inter-
national Press, Cambridge, MA, 1999), pp. 32–43.

[46] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[47] A. M. Steane, Error Correcting Codes in Quantum Theory,
Phys. Rev. Lett. 77, 793 (1996).

[48] A. M. Steane, Active Stabilization, Quantum Computation, and
Quantum State Synthesis, Phys. Rev. Lett. 78, 2252 (1997).

[49] D. J. C. MacKay, G. Mitchison, and P. L McFadden, Sparse-
graph codes for quantum error correction, IEEE Trans. Inf.
Theory 50, 2315 (2004).

[50] D. J. C. MacKay, Good error-correcting codes based on very
sparse matrices, IEEE Trans. Inf. Theory 45, 399 (1999).

[51] J. Roffe, BP + OSD: Belief propagation with ordered
statistics postprocessing for decoding quantum LDPC codes,
https://github.com/quantumgizmos/bp_osd.

[52] A. A. Emran and M. Elsabrouty, Simplified variable-scaled
min-sum LDPC decoder for irregular LDPC codes, in 2014
IEEE 11th Consumer Communications and Networking Con-
ference (CCNC) (IEEE, 2014), pp. 518–523.

[53] A. O. Quintavalle, M. Vasmer, J. Roffe, and E. T. Campbell,
Single-shot error correction of three-dimensional homological
product codes, arXiv:2009.11790.

[54] H. Bombín, Single-Shot Fault-Tolerant Quantum Error Correc-
tion, Phys. Rev. X 5, 031043 (2015).

[55] M. Vasmer and D. E. Browne, Three-dimensional surface
codes: Transversal gates and fault-tolerant architectures, Phys.
Rev. A 100, 012312 (2019).

[56] E. Campbell, A theory of single-shot error correction for adver-
sarial noise, Quantum Sci. Technol. 4, 025006 (2019).

[57] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory, and duality, Phys. Rev. B 94, 235157
(2016).

[58] M. Hagiwara, K. Kasai, H. Imai, and K. Sakaniwa, Spatially
coupled quasi-cyclic quantum LDPC codes, in 2011 IEEE Inter-
national Symposium on Information Theory Proceedings (IEEE,
2011), pp. 638–642.

[59] R. M. Neal, Software for low density parity check codes,
http://radfordneal.github.io/LDPC-codes.

[60] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for
scientific computing in Python, Nat. Methods 17, 261
(2020).

[61] S. van der Walt, S. C. Colbert, and G. Varoquaux, The NumPy
array: A structure for efficient numerical computation, Comput.
Sci. Eng. 13, 22 (2011).

[62] J. D. Hunter, Matplotlib: A 2D graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

043423-13

https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevX.4.041041
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.2019.2938751
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.78.2252
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/18.748992
https://github.com/quantumgizmos/bp_osd
http://arxiv.org/abs/arXiv:2009.11790
https://doi.org/10.1103/PhysRevX.5.031043
https://doi.org/10.1103/PhysRevA.100.012312
https://doi.org/10.1088/2058-9565/aafc8f
https://doi.org/10.1103/PhysRevB.94.235157
http://radfordneal.github.io/LDPC-codes
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55

