
PHYSICAL REVIEW RESEARCH 2, 043422 (2020)

Wavefront shaping with a tunable metasurface: Creating cold spots
and coherent perfect absorption at arbitrary frequencies

Benjamin W. Frazier ,1,2,3,* Thomas M. Antonsen, Jr.,1,2,4 Steven M. Anlage ,2,4,5 and Edward Ott1,2,4

1Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
2Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

3Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA
4Department of Physics, University of Maryland, College Park, Maryland 20742, USA

5Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA

(Received 11 September 2020; revised 24 October 2020; accepted 9 December 2020; published 29 December 2020)

Modern electronic systems operate in complex electromagnetic environments and must handle noise and
unwanted coupling. The capability to isolate or reject unwanted signals for mitigating vulnerabilities is critical
in any practical application. In this work, we describe the use of a binary programmable metasurface to (i)
control the spatial degrees of freedom for waves propagating inside an electromagnetic cavity and demonstrate
the ability to create nulls in the transmission coefficient between selected ports, and (ii) create the conditions
for coherent perfect absorption. Both objectives are performed at arbitrary frequencies. In the first case, an
effective optimization algorithm is presented that selectively generates cold spots over a single-frequency band
or simultaneously over multiple-frequency bands. We show that this algorithm is successful with multiple input
port configurations and varying optimization bandwidths. In the second case, we establish how this technique
can be used to establish a multiport coherent perfect absorption state for the cavity.
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I. INTRODUCTION

Extreme electromagnetic environments are prevalent in
much of our day-to-day lives. While often unnoticed, this
puts significant stress on the design of electronic systems that
are expected to work under all conditions. Extraordinary care
is taken to counter adverse effects whenever possible, but
the operating environment is rarely known ahead of time. In
addition, electromagnetic interference (EMI) takes the form
of unwanted coupling between components. Some platforms,
such as aircraft and spacecraft, can experience devastating
consequences, resulting in severe mission degradation or even
casualties [1]. Wave fields in electrically large enclosed areas
such as passenger compartments in transportation systems
show extreme sensitivity to frequency and geometric details
even though these enclosures, termed chaotic cavities, are
not intended to be reverberant. In such cavities the electro-
magnetic wave fields have specific statistical properties that
depend upon a limited number of parameters [2]. Among
these is the fact that the wave field is statistically equivalent
to a random superposition of plane waves [3]. As such, we
can leverage analytical tools from the active research area of
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quantum chaos [4,5] in the more generalized framework of
wave chaos [6].

Our goal is to adaptively and intelligently control fields
inside complex electromagnetic environments. We show that
this can be achieved through programmable metasurfaces,
which increase the available degrees of freedom (DOF) by
manipulating boundary conditions [7–9]. In recent years,
these devices have enabled novel concepts in a wide variety
of applications throughout the microwave and optical do-
mains [10–16]. The additional DOF in turn enhance diversity
in space and time [17–20], and allow intricate control of
the underlying scattering system; combining a programmable
metasurface with a cavity unlocks applications not possible
with a fixed system [21–23] and encourages research in new
and underexplored domains [24].

One such unexplored area is coherent perfection absorption
(CPA), where coherent excitation of a lossy system can result
in complete absorption of all incident waves [25,26]. It has
applications in highly efficient notch filtering, energy conver-
sion, and even detection; since the CPA state is extremely
sensitive to parameter variation, it can be used to identify
small changes in a complex scattering system [27]. The ability
of a metasurface to manipulate additional DOF presents a
novel capability for realizing CPA states.

In this paper we describe the use of a binary programmable
metasurface to create microwave cold spots at arbitrary
frequencies, and to realize CPA states, both within the 1-
GHz band of operation of the metasurface. The conceptual
overview is shown in Fig. 1 where the metasurface is in-
stalled in a complex reverberating cavity and controlled in a
closed-loop manner. Input directional diversity is introduced
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FIG. 1. Conceptual overview of the metasurface-enabled cavity as a closed-loop system. The cavity S parameters (scattering parameters)
are measured with a network analyzer and passed to a controller that updates the metasurface elements with a new set of commands. The
controller can generate cold spots at port 2 at an arbitrary set of frequencies, or drive candidate S-matrix eigenvalues towards the origin, and
includes a stochastic iterative optimization algorithm. The three ports allow additional angular and spatial diversity to be added at the inputs.
The inset shows a closeup view of one of the metasurface unit cells.

by simultaneously driving multiple ports with arbitrary rela-
tive phase shifts. An iterative optimization algorithm is used
to generate cold spots at the output port, or to drive candidate
scattering matrix eigenvalues towards the origin to achieve
CPA.

II. CAVITY CONFIGURATION

The metasurface used for this work is a reflectarray fab-
ricated by the Johns Hopkins University Applied Physics
Laboratory (JHU/APL) that is designed to operate from 3–
3.75 GHz. It has a lattice of 10 × 24 squares occupied by unit
cells with size <λ/6 [28], where λ is the wavelength. These
240 unit cells can be independently set to one of two states,
which approximate electric or magnetic boundary conditions
and provide a relative 180◦ phase shift for waves reflected by
the element. This results in the local surface impedance of
the array varying from cell to cell and state to state. The array
surface thus has 2240 independent states, each of which reflects
waves in a uniquely different set of directions. We refer to the
settings of the 240 elements as a command.

As shown in Fig. 2, the array was installed in a 0.76-m3

cavity where it covers ∼1.5% of the total interior surface
area. The cavity has three ports with one acting as a target
for scoring and two used for signal injection; the input ports
can be driven either individually or collectively with a relative
phase shift. Although three ports are present, we are typically
using the cavity as a two-port system because we have a two-
port network analyzer. All three ports are used when driving
ports 1 and 3 simultaneously, in which case the underlying
scattering system is represented by a 3 × 3 scattering matrix.
While the experiment has a physically fixed number of ports,

the results can be generalized to an arbitrary number of ports.
The cavity has both low- and high-loss configurations to test
how the behavior varies with the typical quality factor Q of
the modes; here we consider the high-Q case. Introducing
the metasurface to the cavity reduced the average Q in the
frequency band of operation of the metasurface by a factor of
∼2. However, once the metasurface was installed, the average
Q was found to be independent of the number of active or
inactive elements on the surface. The quality factor was deter-
mined to be roughly 5.5 × 103, by measuring the power decay
time τ = Q/ω (250 ns with the metasurface installed). Further
details of the metasurface, cavity construction, experimental
setup, and impact of the metasurface on losses are provided in
Appendix B.

The cavity mean mode spacing in frequency � f is found
from the Weyl formula as � f = πc3(2ω2V )−1 [29]. A mea-
sure of the loss in the cavity is the Q width of a mode
normalized to the mode spacing α = f /(2� f Q) = 3 for this
cavity. For our cavity, the mean mode spacing is roughly
115 kHz at a 3.5-GHz center frequency. As discussed in
Appendix A, the mean spacing between nulls in the trans-
mission coefficient |S21| was found to be ∼2 MHz and the
average width of the nulls was found to be ∼200 kHz. This
indicates a transmission coefficient null contains about two
modes. Alternatively, it corresponds to a path difference of
750 m between two interfering signals.

We are interested in the steady-state response, so the
average Q does put a bound on the effective speed with
which we can switch the cavity scattering matrix between
fixed states. This can be seen through the power decay time,
which measures how quickly energy in the cavity dissipates.
In order to guarantee a steady-state result, the metasurface
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FIG. 2. Experimental schematic and cavity configuration. (a) Schematic of the experimental setup in the configuration driving all three
ports. A network analyzer (Agilent PNA-X 5241A) is used to measure cavity S parameters, with channel 1 connected to both ports 1 and
3 (through a phase shifter) and channel 2 connected to port 2. The ports are terminated with ultrawide-band antennas. The metasurface is
mounted on the cavity wall opposite ports 1 and 3, and a block is used next to port 2 to break the line of sight (LOS) between port 2 and ports 1
and 3. A laptop controls the system and is connected to the metasurface through a USB interface and to the network analyzer through a wired
ethernet link. (b) Photograph looking inside the cavity, with the metasurface and ports labeled. Also shown in the photo are the line of sight
block and the irregular scattering elements installed on the cavity walls as discussed in Appendix A.

commands must be toggled at a rate slower than 1/τ . The
time between measurements must also be staggered by several
τ to ensure each measurement corresponds to the desired
metasurface commands. To observe transient behavior in a
cavity with a 250-ns power decay time, the metasurface
commands must be switched at rates greater than 4 MHz.
This assumes the bandwidth of the measured phenomena
is wider than the switching rate; an additional complication
arises with narrow-bandwidth responses that are of interest.
When considering finite-bandwidth nulls (200 kHz as stated
above), the narrower-bandwidth process will determine the
bound. Our experimental setup is limited to switching rates
<1 Hz, so neither limit presents a practical concern for our
configuration. However, experiments with an embedded mi-
crocontroller demonstrated that the metasurface itself can be
switched at rates up to 15 kHz [28], so this may need to be
considered with high-speed operation in higher-Q cavities.

A complex scattering system such as our cavity exhibits
both universal fluctuations, which can be described by random
matrix theory (RMT) [4], and deterministic behavior arising
from the system-specific configuration of the ports and short
orbits between the ports [30–32]. Due to the small relative
size of the metasurface, the chaotic ray paths with many mul-
tipath bounces will experience the strongest influence. Since
minimizing the power received at a port is accomplished by
creating destructive interference of the ray paths, the relation-
ship between commands and responses is quite complicated.
This leads to utilizing stochastic iterative approaches, or ma-
chine learning, in place of linear deterministic methods for
control. Here, we consider iterative processes. A metasur-
face covering a larger fraction of the interior surface would
likely produce stronger results [33] and allow us to use a
transmission-matrix-based approach to determine the optimal
metasurface commands [34–36]. For this reason most prior
research utilizes metasurfaces that cover a significant portion
of a wall (or multiple walls). However, using a relatively small

metasurface coverage is better suited for real-world applica-
tions where it is not practical to build or use a larger device.

Three-dimensional (3D) microwave cavities are known to
suffer from missing energy levels in the experimental spectra
due to the large density of states coupled with small ampli-
tude resonances; the statistics of these missing energy levels
provides a powerful tool in analyzing wave chaotic systems
[37]. Particularly at the lower frequencies near 3 GHz, this
method could be used to verify that the scattering matrix of
our cavity follows RMT.

A key step in evaluating system performance is to de-
termine the range of possible responses of the scattering
properties of the system so as to ensure that we have a
sufficiently diverse command set. Unfortunately, with 2240

possible commands (approximately 1.8 × 1072), it is not fea-
sible to test every one and we need to find a reduced number
that produces the full range of outcomes. Diversity in the
responses is an important indicator of the degree of control
we have over the cavity scattering parameters and a critical
enabling aspect for generating cold spots and realizing CPA
states. If the responses are too highly correlated, then there
will be negligible change between S21 responses for different
metasurface commands, resulting in limited control capabil-
ity.

As discussed in Appendix D, deterministic decomposi-
tion of commands into orthogonal basis functions, such as
Hadamard bases [38,39], generated a very narrow range of
system scattering responses. Diversity in the responses re-
quires a distribution of commands with a variety of spatial
frequencies, ratios of active to inactive elements, and local-
ized groupings of active elements. Doubly random methods
or compound distributions, such as a biased coin toss, or
power-law spectral density with the bias, or power exponent
itself a random draw, were found to yield the widest range of
responses. Details of our stochastic algorithm are discussed in
the next section.
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III. GENERATING COLD SPOTS

Our goal is to program the metasurface to minimize the
transmission between two ports in a complex scattering sys-
tem at an arbitrary frequency. Cases are scored by evaluating
the difference in average power �P2 in a specified frequency
range at a given center frequency between the initial inactive
(all 0’s) state and the current state of the metasurface. To
maximize this difference we take a directed random walk ap-
proach in which at each step a number of array element states
are toggled (changed), �P2 is evaluated, and the new state is
accepted or rejected based on whether or not it decreases �P2.
As discussed in the previous section, we need to have a mix
of large and small spatial groupings of elements and a varied
number of active elements to ensure a diverse set of responses.
To meet this requirement, our iterative algorithm operates in
two distinct phases: multiple element toggling and individual
element toggling.

In the multiple element toggling phase, we select M el-
ements at random as a trial and toggle their state (0 → 1
and 1 → 0). If �P2 is decreased, the trial set of commands
becomes the new reference set and we repeat the process se-
lecting another M elements at random and toggling their state.
When T consecutive trials have been made without improving
�P2 we claim convergence and move to the next value of M.
In a typical experimental run, M = [120, 48, 24, 12, 6] and
T = 30. After all values of M have been exhausted, we move
to the individual element phase.

The individual element toggling phase has three cases
associated with each trial. We select a single element at ran-
dom and toggle it and then, in an adaptation of the neighbor
toggling method of Ref. [40], we toggle the four nearest
neighbors and the four diagonal neighbors. �P2 is evaluated
for each of these cases and the algorithm continues as in the
first phase until T consecutive trials are performed without
improving �P2.

The multiple element toggling phase tends to result in a
local minimum which is difficult to escape when toggling
only a single element. Adding neighbor toggling significantly
improves the performance, as it provides larger localized
changes in the command set and allows us to escape the local
minimum. Even with the neighbor toggling, however, our
stochastic approach does not guarantee that a global minimum
is found. Increasing the convergence criteria T can increase
the probability of finding the global minimum, but comes
with the cost of increased time. The absolute minimum is not
necessarily required, and our stochastic algorithm is able to
provide substantially deep nulls at arbitrary frequencies in a
reasonable amount of time.

A typical experimental run will provide ∼350 trials, ∼25
iteration updates, and take ∼1.5 h, as the experimental setup
is not optimized for run time. We use an ethernet connection
to transfer 32 001 frequency samples over the full 1-GHz
band for each of the four complex S-parameter measurements
using 64-bit precision. With the frequency values themselves
included, this means 2.3 MB of data are transferred for each
trial. In addition, the commands and measured |S21| are plotted
at each trial for operator feedback, resulting in a delay of
∼15 s per trial. Disabling plotting and capturing only the
processed frequency band could potentially reduce the time

to 1–2 s per trial, or 6–12 min for an experimental run. In
general, the cavity should not be used for other purposes
while generating a cold spot, as trials that move in the wrong
direction in the solution space may produce undesirable re-
sponses. Reducing the time to find a solution in only a few
minutes may present an acceptable interruption in service.
To move towards a faster, real-time operational system, we
would replace the network analyzer with software defined
radios (SDRs), such as the HackRF One [41] or BladeRF [42]
commercial devices which retail for ∼300 or ∼500–1000,
respectively. In addition, an embedded microcontroller, such
as an Arduino or Raspberry Pi, could be used to reduce the
USB communications overhead induced by traditional desk-
top operating systems when interfacing with the metasurface.
This would mean measuring signal I and Q channels rather
than S parameters; however, this is a realistic requirement
for a practical fielded solution that would not use a bulky,
expensive network analyzer anyway. Trial rates approaching
1 kHz could be achieved in this fashion, though substantial
engineering effort would be required to reduce the latency to
approach the metasurface switching limit of 15 kHz [28].

Figure 3 shows the results obtained when minimizing the
average power at the output port and compares the results of
many different experiments and configurations. All the cases
are scored by the change in average power �P2 between the
initial inactive (all 0’s) state and the final state. The opti-
mization algorithm was performed with �P2 evaluated over
a single-frequency band as well as simultaneously over mul-
tiple separated-frequency bands. As discussed previously, the
widths of the nulls were observed to be ∼200 kHz. The initial
bandwidth was selected to be 500 kHz in order to ensure that
�P2 was evaluated over an entire null. In addition, the cavity
configuration was switched between driving a single input
port and driving two input ports simultaneously with varying
relative phase shifts. The achieved suppression ranges from
4–40 dB with most cases providing >10 dB. The lower values
of �P2 arise in the following cases: working near the edges of
the metasurface operational window, evaluating �P2 over a
large bandwidth, or evaluating �P2 over multiple separated
bands. This is not surprising as more bandwidth results in
more features in the region where �P2 is evaluated, which
then means more degrees of freedom are required to be manip-
ulated for destructive interference. The metasurface provides
some benefit outside of the 3–3.75 GHz design window; the
reflection phase change of the pixels is limited near the edges
of the operational bandwidth, so performance is expected to
be reduced under those conditions.

Since �P2 is inherently a relative measurement, there is an
implicit dependence on the initial state. Using the inactive (all
0’s) state as the reference ensures the metasurface is always
initialized with the same command even though the specific
value is dependent on the selected frequency window. Starting
with a condition where there was already a deep null would
result in limited improvement; the average power in that case
would already be quite low and there would not be a need
for further reduction. Starting with a condition where there
is a transmission peak however, would result in significant
reduction. When using a single-frequency band metric, we
were able to drive deep nulls in each of the windows that
were tested, as can be seen by the circles in Fig. 3(a) and the
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FIG. 3. Results of minimizing power at port 2 with the iterative optimization algorithm. (a) Plot of �P2 at various frequencies in the range
of operation of the metasurface. Circles represent cases where the metric was evaluated over a single-frequency band and are color coded by
bandwidth (sky blue is 500 kHz, green is 5 MHz, and red is 10 MHz). Hexagrams represent dual-frequency band metrics and are color coded
by matching pairs. Diamonds represent driving both ports 1 and 3 collectively and are color coded by relative phase shift (0, 8, 15, 25, and
50 deg/GHz). Letters indicate points shown in detail in the following panels. The dashed black lines indicate the smallest reduction (−4 dB)
and largest reduction (−41 dB). (b)–(g) P2 evolution from initial (all 0’s) to final state. The dark shaded region represents the frequency band
where �P2 was evaluated, the dashed black line shows the initial response, the solid bold red line shows the final response, and the remaining
lines show a few of the incremental steps. (b), (c) Single-band examples centered at 3.033 and 3.6525 GHz, with 28 and 5 dB of suppression,
respectively. (d), (e) Single-band examples centered at 3.473 and 3.437 GHz, with 41 and 31 dB of suppression, respectively. (f), (g) Dual-band
example centered at 3.75 and 3.15 GHz, with 7 dB of suppression averaged over the two bands.

power at port 2 in Figs. 3(b)–3(e). Figures 3(b) and 3(d) show
moderate cases where there is not a clear peak in the initial
P2 measurement, while Figs. 3(c) and 3(e) show cases with
a clear peak in the initial P2 measurement and demonstrate
significant improvement. This highlights the dependence of
�P2 on the initial state.

Deep transmission nulls were also observed when driving
two input ports simultaneously with varying relative phase
shifts, as shown by the diamonds in Fig. 3(a). This indicates
our approach is self-adaptive and can compensate for multiple
input signals as well as signals coming in from different direc-
tions. With dual-frequency bands, however, we were generally
unable to drive deep nulls in both bands simultaneously, which
can be seen by the hexagrams in Fig. 3(a) and the power at port
2 over the frequency band in Figs. 3(f) and 3(g). This is be-
cause the metasurface frequency response in separated bands
is correlated, as the metasurface induces wide-bandwidth ef-
fects on the scattering properties of the enclosure. Different

choices of metrics produce different out of band behavior.
These results show that our approach provides three distinct
advantages over previous works: (1) we are able to generate
cold spots at arbitrary frequencies and are not limited to a sin-
gle operating frequency; (2) we are able to generate cold spots
simultaneously in multiple separated-frequency bands as well
as at single frequencies; and (3) we are able to generate cold
spots when the injected signal comes from multiple directions
with an arbitrary relative phase shift and are not limited to a
single direction.

IV. GENERATING COHERENT PERFECT ABSORPTION

Coherent perfect absorption (CPA) is a situation in which
all energy injected into a system is absorbed, no matter how
small the losses are in the system. Creating CPA requires
coherent excitation of all the ports in an eigenvector whose
corresponding S-matrix eigenvalue is zero. Operationally, the

043422-5



FRAZIER, ANTONSEN, JR., ANLAGE, AND OTT PHYSICAL REVIEW RESEARCH 2, 043422 (2020)

first step in establishing CPA is to find an eigenvalue of
the scattering matrix that is close to zero. For example, a
2 × 2 scattering matrix will have a pair of eigenvalues at
each frequency. However, realizing CPA only requires driving
one eigenvalue to zero, as the other eigenvalue corresponds
to the anti-CPA state [27]. For the following discussion and
experimental results, we only consider the smallest eigenvalue
of each pair.

CPA has typically been investigated in simple, regular
scattering scenarios and cavities but recently it has been
demonstrated in more complex systems, specifically in the
realm of wave chaos, and graphs [43–46]. These works an-
alytically demonstrate the use of RMT to explore CPA states
with semiclassical tools without relying on the limit of weak
coupling. CPA states have also been experimentally investi-
gated in multiple scattering environments [26], and in graphs
that break time-reversal invariance [27]. The use of enhanced
spatiotemporal diversity from a metasurface for realization of
CPA has not yet been explored.

Recent research, however, has investigated the use of
metasurfaces for perfect absorption (PA) inside a cavity and
demonstrated a secure communication system as an applica-
tion [47]. PA is a complementary idea to CPA for a single-port
system that relies only on the reflection coefficient S11 [48].
Coherent excitation of a single port with complete absorption
has been demonstrated to enhance wireless power transfer
[49]. Our work extends this to coherent operation with the full
scattering matrix for a two-port system, and can be general-
ized to an arbitrary number of ports.

Realizing a true absolute zero of the S-matrix eigenvalues
is generally difficult because the eigenvalues are complex
numbers. Thus, two parameters must be varied independently
to drive an eigenvalue to zero. Further, a CPA state is highly
dependent on the structure of the underlying scattering sys-
tem. This is best understood in the framework of the random
coupling model (RCM) [6,50]. The eigenvalues accessible
by means of the programmable metasurface tend to cluster
around values determined by the coupling properties of the
ports, which are characterized by the radiation S matrix, Srad.
We define Srad as the S matrix corresponding to the free-space
radiation condition with the cavity walls taken out to infinity
such that no waves come back to the ports [51]. Srad can be
determined by a number of means [52]. Here we employ the
ensemble average of the time gated measured S parameters
in the cavity [29], as described in Appendix B. Deviations
of the scattering matrix from Srad have a number of causes.
First, there are deviations resulting from relatively direct ray
paths between the ports [31]. These deviations are removed
by averaging the S matrix over a frequency window that is the
reciprocal of the time of flight on the path. However, in finding
the eigenvalues of the S matrix in a narrow frequency range,
these deviations are present. Second, there are deviations due
the multitude of longer paths, and these are characterized
statistically by RMT within the RCM. These fluctuations in S
tend to be of the order of 1/(πα)1/2 [30–32] where the loss
parameter α = f /(2� f Q) = 3 in the present experimental
case. Finally, there are deviations dependent on the state of
the metasurface. These deviations are constrained to be less
than or equal to either the direct path or the statistical long
path deviations.

FIG. 4. S-matrix statistics for a random distribution of 2000
metasurface commands. Panels show statistics for the scattering
matrix eigenvalues covering all commands and all frequencies from
3–4 GHz. (a) Probability Density Function (PDF) for the magnitude
of scattering matrix eigenvalues |λs|. The dashed red line shows the
fit to a Rician distribution with σ = 0.173 and ν = 0.177. (b) PDF
for the phase of scattering matrix eigenvalues ∠λs. The dashed red
line shows the distribution for a perfectly uniform phase. (c) Cumu-
lative Distribution Function for the magnitude of scattering matrix
eigenvalues. The dashed red line shows the threshold of |λs| < 0.15.

Thus, to find a CPA state it is necessary for the ports to
be sufficiently matched so that the statistical fluctuations can
shift the eigenvalues to zero. If the ports are poorly matched
and losses within the cavity are sufficiently high, the eigenval-
ues will naturally fall near values determined by the properties
of the ports with statistical fluctuations around those values
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FIG. 5. Point clouds of selected S-matrix eigenvalues for a random distribution of 2000 metasurface commands. Panels show the point
clouds of the smaller eigenvalues of the 2000 scattering matrices at 4 selected frequencies. The colored circles are the S-matrix eigenvalues,
and are color coded by the specific command, from 1 to 2000. The large black hexagrams indicate the position of the eigenvalue of Srad.
(a) Candidate at f = 3.0055 GHz, minimum |λs| = 6 × 10−2. (b) Candidate at f = 3.4021 GHz, minimum |λs| = 2 × 10−3. (c) Candidate at
f = 3.6564 GHz, minimum |λs| = 5 × 10−3. (d) Candidate at f = 3.9991 GHz, minimum |λs| = 5 × 10−4.

dictated by the amount of cavity loss. As such, it is generally
not possible to realize a CPA state at arbitrary frequencies
when limited to a single DOF [27]. The availability of ad-
ditional DOF, such as those produced by the metasurface,
allows greater control over the underlying scattering system
and provides a greater likelihood of potential CPA states.

Characterization of the S-matrix eigenvalues from a dis-
tribution of 2000 command sets is presented in Figs. 4 and
5. Figure 4 shows the probability distributions for all of the
S-matrix eigenvalues over all frequencies and commands.
Figure 4(a) shows that the magnitude follows a Rician dis-
tribution as predicted by Ref. [53], which also tells us that the
ν parameter of the Rician distribution is due to the presence of
persistent short orbits [54]. Figure 4(b) shows that the phase
of the S-matrix eigenvalues is not truly uniformly distributed.
The deviation of the eigenphase from uniformity indicates that
the random distribution is not statistically independent and
again tells us there are persistent short orbits present in the
system. These short orbits are not captured explicitly in Srad,
and will cause the eigenvalues of Srad to be offset from the
center of the point cloud of S-matrix eigenvalues. Short orbits
can be explicitly included analytically in the RCM [54,55] and
do not prevent us from proceeding. Figure 4(c) shows the CDF
of the eigenvalue magnitudes and is useful in establishing
thresholds for potential CPA candidates.

Figure 5 shows point clouds of the S-matrix eigenvalues
at selected frequencies and demonstrates that the eigenvalues
can have very different behavior in how they approach the ori-
gin. The panels show the collection of eigenvalues of the 2000
S matrices at selected frequencies along with the eigenvalues
of Srad at that frequency. We can see that the eigenvalues of
the distribution tend to cluster around the eigenvalues of Srad;
the offset from the center of the point cloud is due to the
presence of short orbits, as discussed above. In Fig. 5(a), the
S-matrix eigenvalues are clustered in the upper right quadrant
far from the origin and do not enter the inner rings. The
Srad eigenvalue is in the upper right-hand quadrant outside of
the plot area, at 0.1862 + j0.2288. In Fig. 5(b), the S-matrix
eigenvalues are clustered in the upper half, with some getting
close to the origin. In Fig. 5(c), the S-matrix eigenvalues
show a fairly uniform density throughout the full |λs| < 0.15
range. In Fig. 5(d), the S-matrix eigenvalues show a high
density clustered around the origin. The results in these panels
are from a random distribution of commands rather than a
targeted search. During optimization, we will take smaller
dithering steps for finer control as we approach the origin, and
expect to see slightly different behavior.

The variance in eigenvalue magnitudes means we need
to use a large threshold for identifying candidates because
the overall global minimum S-matrix eigenvalue may not be
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FIG. 6. Experimental S-matrix eigenvalue trajectories for realization of coherent perfect absorption (CPA) states. (a), (b) Directed
trajectories for eigenvalues showing the random walk nature of the algorithm and demonstrating mobility of selected eigenvalue candidates.
(a) Zoomed-out view showing selection of initial S-matrix eigenvalue candidates and behavior away from the origin, the bullseye circles are
spaced at radii incrementing by 2.5 × 10−2. The starting eigenvalue magnitude in each case is identified by a star. (b) Close-up view showing
behavior near the origin, the bullseye circles are spaced at radii incrementing by 1 × 10−3. Of the four cases shown, only three were able to
get inside the inner rings near the origin where |λs| < 5 × 10−3. (c) Minimum achieved eigenvalue magnitude for each performed experiment.
The circles indicate data that are shown in the upper plots and are color coded to match. The gray squares indicate an experiment that was
performed but whose detailed trajectory is not shown in the upper plots. The dashed black lines indicate the crossover points of 5 × 10−3 and
1 × 10−3. The enclosed squares indicate cases where the initial eigenvalue magnitude |λs| > 0.15. |λs| = 0.5 for the triangle, |λs| = 0.2 for
the squares, and |λs| = 0.175 for the circle.

identified as a candidate in every realization. In practice, we
found that we were unable to realize CPA states when starting
with a magnitude |λs| � 0.2 but were generally able to real-
ize CPA states when starting with a magnitude |λs| � 0.15.
Moving an eigenvalue far from the origin requires modifying
the underlying scattering matrix more strongly than moving
an eigenvalue that is already near the origin, so this behavior
is expected. Assessing the probability of finding a CPA state
in a given frequency range a priori is difficult. The universal
properties of a complex scattering system are not easily sepa-
rated from the deterministic properties when working with S
parameters, as the statistics are dominated by Srad [56]. This
means the existence of a CPA state is highly dependent on
the coupling properties of the ports and therefore the specific
antennas chosen. An analytical approach is possible through
the framework of the RCM and will be left to future work.

An open question is how small do the eigenvalues need to
be to realize CPA? This is dependent on the specific applica-
tion and scattering system, as that determines how accurately
the eigenvalues can be measured and maintained. For our
experimentation, we set |λs| � 5 × 10−3 as the upper bound
and |λs| � 1 × 10−3 as the goal for realizing CPA.

We adopt the same basic algorithm used for power mini-
mization but initialize it differently. We apply a random set
of commands to the metasurface and then select a candidate
eigenvalue with a specified magnitude. Figure 6 presents the
results of 27 separate CPA eigenvalue optimization experi-
ments. Figure 6(a) shows the behavior of four selected cases
away from the origin for |λs| < 0.15, and Fig. 6(b) shows the
behavior at the CPA condition for |λs| < 5 × 10−3. Only three
of the four selected cases reach the CPA threshold. Figure 6(c)
presents the collection of all 27 experiments, with the four
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FIG. 7. Coherent perfect absorption (CPA) state verification at 3.6697 GHz. (a) Frequency sweep showing the power ratio, Pout/Pin, over
a ± 10 MHz window, with the inset providing a closeup of the null in a ± 200 kHz window. (b) Pout/Pin vs phase difference �φ showing
the power ratio over a ± 30◦ window. (c) Pout/Pin vs relative amplitude showing the power ratio when driving port 1 with an amplitude ∼0–2
times the CPA amplitude (ACPA). (d) Metasurface command sweep showing the power ratio when toggling individual elements relative to the
optimized set. Each bar indicates the power ratio when that particular element was flipped between a 1 or a 0. The black dashed line shows the
power ratio for the optimized state, the red dashed line shows the power ratio for the all 0’s state, and the magenta dashed line shows the power
ratio for the all 1’s state. (e) Eigenvalue magnitude trajectory during optimization of the CPA state prior to performing the verification sweeps.
Minimum achieved |λs| = 4 × 10−4. (f) Diagram showing experimental setup for applying CPA eigenvector excitation and verification sweeps.

shown in detail in Figs. 6(a) and 6(b) color coded. Each
case was initialized with an eigenvalue magnitude chosen
in the range 0.075 � |λs| � 0.5. The case that started with
|λs| = 0.5 is enclosed by a triangle, the cases that started with
|λs| = 0.2 are enclosed by squares, and the case that started
with |λs| = 0.175 is enclosed by a circle. All the rest started
with |λs| � 0.15. Three cases initialized with |λs| = 0.15 did
not quite make the CPA threshold |λs| � 5 × 10−3. Two cases
were within a factor of 2, |λs| � 9 × 10−3, while the third was
within ∼20%, |λs| = 6 × 10−3.

Utilizing the iterative optimization algorithm to change the
metasurface, we are able to drive eigenvalues towards the
origin in all cases, but the algorithm stalls at different points.
The closer we get to the origin, the more difficult it becomes
to reduce the eigenvalue further. As with the cold-spot opti-
mization, the stochastic nature of the algorithm plays a role in
where convergence is reached. The overall performance could
be improved by increasing the convergence criteria or making
the algorithm adaptive so that it tracks multiple candidates and
switches to another candidate when the optimization stalls.

As a final step, we want to verify that the CPA state has
been achieved. Because the CPA state is found by minimizing

the eigenvalues of the scattering matrix, verification requires
that we apply the corresponding S-matrix eigenvector. This
can be done using a network analyzer with two independent
sources and an external phase shifter [27]. After directing a
particular eigenvalue towards the origin, the network analyzer
was configured for independent source operation and the am-
plitude and phase were adjusted to generate the eigenvector,
as described in Appendix E. The presence of a CPA state is
verified by looking at the ratio of all the power emerging from
the cavity to all the power injected into the cavity, Pout/Pin.
Sensitivity to changes in the eigenvector can be determined
by making small deviations in the relative phase shift or am-
plitude between the two sources. Sensitivity to the eigenvalue
can be determined by small changes in frequency.

A set of parameter sweeps that verify a CPA state was re-
alized are presented in Fig. 7. Figure 7(e) shows the S-matrix
eigenvalue magnitude trajectory during optimization prior to
performing the verification sweeps. The overall experimental
setup is shown in Fig. 7(f), which shows that a two-source
network analyzer was configured with independent source
operation and connected to the cavity with an external phase
shifter on port 1. This allows us to produce the appropriate
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eigenvector by controlling the relative amplitude with the
network analyzer and the relative phase with the phase shifter.
The metric for the sweeps is the power ratio Pout/Pin, of all
the power emerging from the cavity to all the power injected
into the cavity. At the CPA condition, all the energy should be
absorbed. However, due to instrumentation limitations with
the system noise floor, the smallest measurable power ratio
is ∼10−6. Before performing the sweeps, the eigenvector was
tweaked to provide the closest CPA state realization and then
the parameters were varied to determine the sensitivity of the
power ratio.

Figure 7(a) shows the results of the frequency sweep per-
formed in a ±10 MHz window around 3.6697 GHz, with the
inset showing a closeup in a ± 200 kHz window. The width
of the deep null is ∼200 kHz, which matches the null widths
found during cold-spot generation. Figure 7(b) shows the re-
sults of the phase sweep, which was performed by adjusting
the external phase shifter. Here, �φ represents the phase shift
at port 1 away from the CPA eigenvector phase. Figure 7(c)
shows the results of the relative amplitude sweep. This was
performed by sweeping the power injected into port 1 from
−10 to +10 dBm. The x axis is then scaled to show the relative
change in injected amplitude from the initial CPA state. In
each of these cases, the minimum power ratio is ∼6 × 10−6

and shows a steep cusplike increase with the various pa-
rameters. Figure 7(d) shows the results of the metasurface
command sweep. In this case, the 240 individual metasurface
elements were toggled to determine the impact of a single
element on the CPA state. Several elements had negligible
impact on the power ratio in comparison with the optimized
value as seen in the dashed black line, but no toggles were
found with clearly better performance. The elements in the
center of the metasurface have a stronger impact than those at
the edges of the metasurface, but the largest change from the
CPA condition was observed by setting all the elements to 1’s
as shown in the dashed magenta line.

V. CONCLUSIONS

We have demonstrated the ability of a programmable meta-
surface to generate microwave cold spots in a chaotic cavity
at arbitrary frequencies and showed this capability exists even
when applied over multiple-frequency bands simultaneously.
The cold spots can be generated for different bandwidths
and mulitple input port configurations that induce additional
angular and spatial diversity. We have also utilized the pro-
grammable metasurface to control the eigenvalues of the
scattering matrix and direct them towards the origin to realize
a CPA state for the cavity. Finally, we verified the existence
of a CPA state and demonstrated the sensitivity to parame-
ter sweeps in frequency, phase, amplitude, and metasurface
configuration. All of this is accomplished with a metasurface
that covers only 1.5% of the interior surface area of the cavity
and a unique and effective stochastic algorithm to find desired
outcomes despite the enormous space of possible metasurface
commands.

A potential worst-case scenario could be experienced
where many trials are attempted with no improvement in the
metric. With sufficient diversity in the responses, this should
only occur when the baseline metasurface commands (all 0’s)

already produce a deep null at the desired frequency. In the
experimentation, we were always able to reduce the measured
power by at least 4 dB; however, no experimental cases were
initialized with the bandwidth centered directly over a deep
null. This could be addressed by shifting the center frequency
or the bandwidth of the metric so that the metric is not initial-
ized to a deep null. Increasing diversity unfortunately requires
changing the cavity configuration so that the metasurface
intercepts more rays. A larger metasurface, multiple metasur-
faces, or even a smaller cavity may be necessary in this case.

Future research directions include quantitatively analyz-
ing CPA in the framework of the random coupling model
[6,30,32,50], and using deep learning to facilitate generating
optimal metasurface commands to minimize power and/or
realize CPA states.

Note added in proof. Recently, we became aware of related
work that uses a pair of metasurfaces inside a complex cavity
to realize on-demand CPA states and relates the CPA state
condition analytically to divergence of the time delay [57].
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APPENDIX A: EXPERIMENTAL SETUP

The metasurface used for the experimentation is a reflec-
tarray fabricated by the Johns Hopkins University Applied
Physics Laboratory (JHU/APL) and is shown in Fig. 8. The
individual LC resonator unit cells can be seen on the front
side and the GaAs FET amplifiers can be seen on the back
side. It is designed to operate in the S band from 3–3.75 GHz
and provides 240 binary unit cells arranged in a rectangular
grid of 10 rows and 24 columns. The unit cells are electric LC
resonators driven by GaAs FET amplifiers with characteristic
length <λ/6 [28].

A test cavity was constructed using aluminum angle brack-
ets for the frame and 0.019-in-thick aluminum sheets for the
sides. Each side length is 3 ft (0.9144 m), so the total cavity
volume is 0.76 m3 and the total surface area is 5.02 m2. This
geometry ensures the cavity is overmoded with at least nine
wavelengths per side, but unfortunately means that the active
area of the metasurface only covers a small portion (∼1.5%)
of the total surface area. All interior joints were lined with
copper tape to minimize losses and hemispherical scatterers
were installed in the corners of the cavity to force an irregular
shape, after which the effective volume was reduced to 0.74
m3. A higher-loss version of the cavity was realized by dis-
tributing absorbing material in the bottom of the cavity. The
metasurface was installed on a wall of the cavity as shown
in Fig. 9, with a 1

4 -in gap between the metasurface and the
wall. This figure also shows the power and three USB cables
running out through the top of the cavity.

An overview of the experimental setup is shown in Fig. 10
and shows the cavity configuration, the locations of the three
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FIG. 8. Metasurface device showing both the front and back of the board.

ports relative to the metasurface, and the overall connectivity.
The cavity has three ports with port 2 used for scoring and
ports 1 and 3 used for signal injection. The input ports can
be driven either individually or collectively with a relative
phase shift. When they are driven collectively, the underlying
scattering matrix is 3 × 3; this extra dimensionality is hidden
when using a two-port network analyzer. To ensure that wave
interaction with the metasurface dominates the results, a sheet
of foil is used to block the direct line of sight path from the in-
put ports to port 2. Ultrawide-band (UWB) antennas designed
for operation from 3–10 GHz are connected to each port. The
antennas connected to ports 1 and 3 are Taoglas FXUWB10
antennas and are mounted so they radiate outward into the
cavity from the walls in a vertically polarized configuration.
The antenna connected to port 3 is a PCB module mounted
orthogonally so that it is horizontally polarized.

Finally, the metasurface is controlled through three USB
interfaces using custom C++ software with a PYTHON wrapper
on a MacBook Pro laptop, which also controls the Agilent
network analyzer through an ethernet connection. In order
to prevent corruption from noise, multiple measurements are
averaged.

FIG. 9. Metasurface installed inside the cavity.

APPENDIX B: CAVITY LOSSES

The cavity time constant τ is an intrinsic aspect of the
cavity that is dependent on losses but independent of the
specifics of the underlying scattering system. This means τ

is not dependent on the positioning or characteristics of the
ports or antennas used to obtain it [58]. τ is an important
characteristic of the cavity as it is related to the quality factor
Q through Q = ωτ . One way to estimate τ is through power
delay profile (PDP), which is the ensemble average of the
magnitude squared of the inverse Fourier transform (IFT)
of the transmission coefficient, PDP = 〈|IFT{S21}|2〉 [59,60].
Since the power in the cavity decays exponentially, we can
perform a linear fit on the logarithmic magnitude and estimate
τ as 4.34/ν where ν is the slope of the PDP in dB/s [29].

Figure 11 shows the time constant estimated for the cav-
ity under various configurations. There were three antenna
pairs used in the PDP measurement: dipoles with both hor-
izontal and vertical polarization, loops, and ultrawide-band
(UWB). Measurements were taken with the cavity empty
before installing the metasurface and in low- and high-loss
cases with the metasurface installed. Each data point in Fig. 11
came from a 100-MHz window centered at the corresponding
frequency. Installing the metasurface in the cavity had a sig-
nificant impact on the time constant, reducing it by a factor of
2. Adding absorbing material for the high-loss configuration
reduced the time constant by another factor of 2. Powering
on and off the metasurface, however, had little impact on the
time constant in either configuration. The PDP was measured
between ports 1 and 2 with three different antenna pairs:

FIG. 10. Experimental setup.
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FIG. 11. Estimated cavity time constant for various configura-
tions. The three primary groupings are the empty cavity without
the metasurface (top), the low-loss configuration with the metasur-
face (middle), and the high-loss configuration with the metasurface
(bottom).

dipole (in both horizontally and vertically polarized orien-
tations), loop, and ultrawide-band (UWB). The on and off
curves indicate whether the metasurface was powered on or
off.

APPENDIX C: EXTRACTING RADIATION S
PARAMETERS

In many cases, it is not feasible to directly measure Srad, but
it can extracted from time gating the Scav measurements [29].
To ensure that the important features of Srad are maintained,
the optimal gate width is determined by examining the S
parameters in the time domain and selecting the point in time
where the individual ray trajectories start to diverge from the
average.

The conventional time-gating approach is to convert the
signal into the time domain with an inverse fast Fourier trans-
form (IFFT), multiply the signal with a rectangular gate, and
then convert the signal back to the frequency domain with a
fast Fourier transform (FFT). This approach compounds trun-
cation effects through the IFFT/FFT sequence and induces
band-edge rolloff effects due to the fact that we are using
a finite, single-sided spectrum [61]. An alternative approach
is to perform gating in the frequency domain through a con-
volution operation and use the concept of renormalization to
remove band-edge artifacts. In order to optimize frequency
domain gating, the gate needs to be centered at the time of
the response being gated [61]. Because we are interested in
gating the initial response, we will center the time window at
0 s; accordingly, the overall width of the gate will be double
the desired end time to include both positive and negative time
extents.

The gate can be designed in two segments: a rectangular
gate in time transformed to the frequency domain, and a
window to reduce side lobes and ringing artifacts due to the

sharp transitions of the rectangular gate. The generalized gate
function in the frequency domain G( f ) for a rectangular time
domain gate defined between times t1 and t2 is given by a sinc
function, where we define sinc(x) = sin(πx)/(πx):

G( f ) = (t2 − t1)sinc[ f (t2 − t1)] exp [− j2π f (t2 + t1)].
(C1)

For a gate centered at t = 0 with end time tg (t1 = −tg, t2 =
tg), this expression is simplified:

G( f ) = 2tgsinc[2 f tg]. (C2)

The next step is to design a window function in the fre-
quency domain to suppress side lobes. A common window
is the Kaiser-Bessel window, which is defined by a shape
parameter β and the window length M [62]. For the analysis
described here, the Agilent PNA provided 32 001 points of
data and the window was defined with β = 6.5 and M =
23 897. We can then apply the gate by convolving the product
of G( f ) and W ( f ) with the measured S parameter for a given
cavity realization. Renormalization is done by dividing the
gated S parameter by the convolution of the product of G( f )
and W ( f ) with a constant unit frequency response, which
removes band-edge rolloff effects [61]. Srad is then found by
taking the average of the results over the ensemble of cavity
configurations as shown in Eq. (C3):

Srad( f ) =
〈

[G( f )W ( f )] ∗ S( f )

[G( f )W ( f )] ∗ 1( f )

〉
. (C3)

APPENDIX D: DIVERSE CAVITY REALIZATIONS

Attempts were made to decompose the input commands
into a deterministic set of orthogonal basis functions. This
included driving single elements, columns of elements, and
even Hadamard matrices. Unfortunately, these all produced
a narrow range of responses that did not cover the full
extent of possibilities. A Hadamard matrix provides an or-
thonormal basis and decomposes sequences similarly to
spatial frequencies; it is less computationally intensive than
two-dimensional (2D) Fourier transforms and has many appli-
cations in multi-input multioutput communication theory and
synthetic aperture imaging [63,64].

Figure 12 presents the resulting ensembles from driving
the metasurface with Hadamard basis functions and shows
that the responses are narrow and do not cover the full extent.
While the spatial frequency content and grouping of elements
in the command sets changed, the number of active elements
did not. An unbiased random coin toss approach likewise
yielded a narrow distribution as roughly 1/2 the elements
were active in each command set. The ensembles do not span
the range covered by the inactive (all 0’s) and active (all
1’s) cases and do not cover the full extent. More variation
is present in the low-loss case because the ray trajectories
survive longer and have more opportunities to interact with
one another

The overall best approach to generating diverse ensembles
was to use doubly random methods, in which compound prob-
ability distributions are used. This implies the statistics follow
a Cox process, which is a generalization of a Poisson process
with the underlying intensity or local mean itself a random
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FIG. 12. Hadamard sequence |S21| ensembles for both high-loss and low-loss cases. The high-loss case is shown on the left-hand side and
the low-loss case is shown on the right-hand side.

process [65]. A random biased coin toss, where the bias itself
was selected from a random draw for each command set
worked well but only excited high spatial frequencies on the
metasurface. To include lower spatial frequencies, we added a
doubly random inverse power spectrum approach, where the
power spectrum is just a power law on spatial frequencies with
the exponent a random draw:

C = Re
(
IFFT

{
[N (0, 1) + jN (0, 1)]

√
fr

γ
})

. (D1)

A small exponent will excite lower spatial frequencies,
while a larger exponent will excite higher spatial frequen-
cies. The number of active elements was allowed to change
with each trial. We generally used a combination, with half
the ensemble generated through an inverse power spectrum
and the other half generated through a random biased coin
toss. The ensemble for a set of 4000 realizations is shown
in Fig. 13. The doubly random methods allow the number
of active elements to change and provide a wider range of
responses than the deterministic methods. This can be seen as
the distribution from the biased coin toss covers the entire area
between the inactive (all 0’s) and active (all 1’s).

From Fig. 13, we can see that the bandwidth of the nar-
rowest null is ∼500 kHz and the closest spacing between
nulls is ∼1 MHz. This matches the observed trends over the
full 1-GHz measurement window, with typical bandwidths
of 0.5–1 MHz and spacings of 1–2 MHz. The optimization
metric was chosen to be the average power measured at port
2, P2, when driving an input from some combination of ports
1 and 3. To isolate narrow-band features, our initial metric
bandwidth was chosen to be 500 kHz.

APPENDIX E: COHERENT PERFECT ABSORPTION
STATE GENERATION AND VERIFICATION

A coherent perfect absorption (CPA) state is not guaranteed
at any specific frequency, so the approach needs to identify
candidates. We repeated the iterative optimization algorithm

from the cold-spot generation but initialized it by applying a
random command set to the metasurface and then finding the
eigenvalue with magnitude closest to a preselected value.

Verifying the CPA state requires exciting the scatter-
ing system with the corresponding eigenvalue. We used an
Agilent N5242A PNA-X Network Analyzer configured for
2-independent source operation. This configuration requires
selecting the appropriate signal path on the setup menu and
making the jumper connections on the back of the instrument
as per the network analyzer documentation. An external phase
shifter was connected between port 1 and the cavity. The CPA
state condition was tuned by adjusting the relative amplitude

FIG. 13. Ensemble of 4000 |S21| realizations from a combination
of doubly random power spectrum and biased coin toss approaches.
The mean value is shown as the solid red line, the case with all
elements active is shown as the solid black line, and the case with
all elements inactive is shown as the dashed black line.
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between the elements with the power control on the network
analyzer and the relative phase between the elements with the
external phase shifter. We can perform parameter sweeps to
determine the sensitivity of the CPA to frequency, relative
phase, relative amplitude, and metasurface commands.

Because there are two independent sources, S-parameter
measurements are not available in this configuration and we
need to make use of the network analyzer receivers. The

network analyzer has reference and test port receivers to
measure incoming and outgoing signals. R1 measures the
reference signal out of port 1 and R2 measures the reference
signal out of port 2. A measures the signal into port 1 and B
measures the signal into port 2. The metric we are interested
in is the power ratio of the total outgoing power from the
cavity to the total incoming power from the network analyzer
Pout/Pin = (A + B)/(R1 + R2).
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