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Reservoir engineering for maximally efficient quantum engines
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We employ reservoir engineering technique to build an artificial thermal bath at arbitrary (effective) negative
and positive temperatures for a single spin system. The required interaction engineering is achieved by applying
a specific sequence of radio-frequency pulses using nuclear magnetic resonance, while the temperature of the
bath can be controlled by appropriate preparation of the initial 1H nuclear spin state. This artificial reservoir
allowed us to implement a single qubit quantum engine that operates at a single reservoir at effective negative
temperature and with maximum efficiency, independent of the unitary transformation performed on the qubit
system, as long as it changes the qubit state. We measured the population of the carbon spin and the efficiency
of our quantum engine, which are in very good agreement with the predicted results.
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I. INTRODUCTION

The study of quantum thermodynamics has been growing
in recent years since it has allowed a deeper understanding
of the basic laws of thermodynamics and their limitations
that appear when quantum effects are taken into account [1].
In this context, quantum engines, which employ quantum
systems as the working medium, have attracted great interest
from physicists since they allow investigating the fundamental
limits of quantum engine efficiencies [2,3]. In a recent work
we have shown that quantum engines working with one of the
reservoirs at an effective negative temperature [4–7] present
counterintuitive behaviors as higher efficiency when perform-
ing nonadiabatic cycles [8], contrary to the usual behavior
of classic machines which provide their maximum efficiency
only in strictly adiabatic processes. In Ref. [8] the temperature
of the working medium is simulated by properly preparing
the qubit in a thermal state. So, the natural question is: can
we indeed prepare a real reservoir with arbitrary temperature,
even an effective negative one, for nuclear magnetic reso-
nance (NMR) systems? By employing reservoir engineering
techniques [9,10], which were already successfully applied to
a large number of different systems [11–20], here we show
that this is indeed possible. Following these ideas, here we
show how to engineer reservoirs at arbitrary temperatures for a
qubit spin system, even at effective negative ones [4–7], which
allows for intriguing phenomena in quantum engines [8]. As
a special application of reservoirs at effective negative tem-
peratures, here we implement a single qubit quantum engine,
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which presents the advantage of employing a single reservoir
and allowing for maximum efficiency (100%), independently
of the unitary transformation we carry out on the working
medium, as long as it changes its state.

This paper is organized as follows: In Sec. II we present
a description of our physical system, in Sec. III we describe
the dynamics of the effective Hamiltonian after the reservoir
engineering process, in Sec. IV we present the experimental
results obtained for the thermalization of a qubit coupled to
engineered thermal reservoirs with different temperatures. As
a proof of concept, in Sec. V we built a quantum thermal
engine that works with a single reservoir allowing maximum
efficiency and, finally, in Sec. VI we present our concluding
remarks. In the appendices we give details of the derivations
of the effective Hamiltonian, fidelity of the experimental data,
calculation of work and heat and, finally, we checked the
gain/loss of energy from the hydrogen bath during the unitary
evolution applied in each cycle of our quantum engine.

II. SYSTEM

Our system is composed by an adamantane molecule
C10H16, Fig. 1(a), which contains six CH2 groups and four
CH groups. In our model, the qubit system is the carbon spin
from the CH2 group, whose signal can be well isolated in the
NMR spectrum, as shown in Fig. 1(a), since the signals appear
according to the neighborhood of each spin, thus resulting,
in our case, in two signals for carbon spin, one for carbon
bound to one hydrogen and the other for carbon bound to 2 hy-
drogens. The 13C nuclear spins (S = 1/2) are approximately
1.1% of all the carbon spins contained in an adamantane sam-
ple while 1H (I = 1/2) has a natural abundance of 99.98%,
therefore, in an approximation we have 1 13C spin for 160
1H spins. Thus, the large amount of 1H spins around a single
13C spin allows us to say that hydrogens work out as a spin
bath for 13C. We can disregard the carbon-carbon interaction
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FIG. 1. Spin system: (a) The NMR spectrum of the 13C nuclear
spin in a sample of polycrystalline of adamantane. (b) Representation
of our spin system model composed by a 13C atom coupled to two
linear chains of N 1H atoms each.

and, although a carbon spin couples with several 1H spins
close to it, the coupling strength is inversely proportional to
the distance between the respective spins, which allow us to
keep only the first-neighbor interactions. Therefore, we can
consider each 13C nucleus as an independent spin surrounded
by a large number of hydrogen nuclear spins that acts as a bath
to the carbons [21–23]. For modeling the entire spin system,
here we propose a configuration with a 13C linked to 2 chains
of 1H, as illustrated in Fig. 1(b).

The experiments were performed at room temperature
with a sample of polycrystalline adamantane subjected to a
high intensity static magnetic field and radiofrequency pulses
using a Varian 500 MHz NMR spectrometer. We consider
S = Sxi + Sy j + Szk and I = Ixi + Iy j + Izk as the nuclear
spin operators for 13C and 1H, respectively. In polycrystalline
adamantane the spin-spin interaction is dominated by the
dipolar interaction [24,25], while the interaction of the spins
with the static magnetic field results in a Zeeman splitting. The
Larmor frequencies in our experiment are 125 and 500 MHz
for the 13C and 1H, respectively. Using the secular approx-
imation, we can neglect the terms of the dipolar coupling
Hamiltonian that do not commute with the strong Zeeman
interaction [24].

III. DYNAMICS

The total Hamiltonian for this model written in the rotating
frame at the Larmor frequencies is of the form H = HSE + HE

[25], where HSE and HE are, respectively, the Hamiltonians of
the system-environment interaction and of the environment,
such that

HSE = Jch

∑
α=a,b

SzI
α,1
z , (1)

HE = Jhh

∑
α=a,b

N−1∑
k=1

[
2Iα,k

z Iα,k+1
z − (

Iα,k
x Iα,k+1

x + Iα,k
y Iα,k+1

y

)]
,

(2)

where the index α = a, b represents the arrays of hydrogen
spins, being the first one of each array coupled directly to the
13C. The index k represents the kth 1H of the bath, 2N being
the total number of 1H nuclear spins in the bath system (N in
each array). Jch and Jhh are, respectively, the carbon-hydrogen
and hydrogen-hydrogen coupling constants.

The natural interaction between carbon and hydrogen is
described as an Ising model, therefore, it is not capable of
promoting inversions in the qubit system (spin carbon) state,
therefore, it is not immediately useful for our proposal. We
need an interaction like the Heisenberg model, that is, an
interaction that allows the exchange of energy between the
system and the environment. To have this interaction model
we need to do a reservoir engineer, that is, we need to ma-
nipulate the nuclear spin interactions in order to obtain an
effective suitable Hamiltonian. This can be done by applying
a sequence of radio frequency (r.f.) pulses (hard pulses) with
duration time τp, with each one followed by a free evolution
governed by the system Hamiltonian H during a short time
interval �t (free evolution time). This sequence (total duration
τc) is then described by the evolution operator

U (τc) = e− i
2h̄ H�t P4e− i

h̄ H�t P3e− i
h̄ H�t P2e− i

h̄ H�t P1e− i
2h̄ H�t ,

(3)

where P1 = exp[−i π
2 (Sx + Ix )], P2 = exp[i π

2 (Sx + Ix )], P3 =
exp[−i π

2 (Sy + Iy)], and P4 = exp[i π
2 (Sy + Iy)] are r.f. pulse

operators that make the spins I and S to flip at angles π/2 in
the x, −x, y and −y directions, respectively. We can rewrite
Eq. (3) as a single evolution operator governed by an effective
Hamiltonian, i.e., U (t ) = e− i

h̄ Heff t , which can be calculated
using average Hamiltonian theory [25]. The effective Hamil-
tonian reads (see Appendix A for the detailed derivation)

HSE
eff � Jeff

ch

∑
α=a,b

(
2SzI

α,1
z + SxIα,1

x + SyIα,1
y

)
, (4)

HE
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N−1∑
k=1
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z Iα,k+1
z − (

Iα,k
x Iα,k+1

x + Iα,k
y Iα,k+1

y

)]
,

(5)

where Jeff
ch = Jch/4 and Jeff

hh = Jhh/4 is the effective coupling
constants of the interactions between the nuclear spin of
the 13C and its first neighboring hydrogens, and between
the nuclear hydrogen spins of each chain, respectively, ob-
tained after the application of the pulse sequence described
in Eq. (3). As the duration of the r.f. pulses (τp) is fixed, we
can optimize the time interval (�t) between them to minimize
the decoherence effects. As shown in Appendix A, the shorter
the time interval �t , the better the accuracy of the dynamics
predicted by the effective Hamiltonian.

The control of the spin temperature is done by adjusting the
hydrogen nuclear spin state [3,4,6,26]. To study the dynamics
and thermalization of the carbon spin system, we solve the
time-dependent Schrödinger equation numerically consider-
ing different sizes of the environment and different initial
states. Figure 2(a) shows how the dynamics of our carbon spin
system behaves when we increase the size of the environment
(number of hydrogen spins) when the carbon spin system is
prepared in the excited state |1〉 and the environment spins at
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FIG. 2. (a) z component of the magnetization of the carbon
nuclear spin as a function of time and number of qubits of the
bath derived via solution of the Schrödinger equation with Heff and
(b) EoF between the carbon and first hydrogen spin (first array). The
initial state is |1〉 for the carbon nuclear spin and |0〉 for all hydrogen
spins (T = 0 K). The parameters used here are Jeff

ch = 550 rad s−1

and Jeff
hh = 980 rad s−1.

T = 0 K, i.e., all of them in the ground state |0〉. We observe
that the greater the number of hydrogens in the spin system,
the better the thermalization. In all simulations we use the
coupling strengths Jeff

ch = 550 rad s−1 and Jeff
hh = 980 rad s−1,

this values were calibrated from the experimental data shown
in Fig. 3. In Fig. 2(b) we also plot the degree of entanglement
between the carbon and the first hydrogen spin (first array),
quantified by the entanglement of formation (EoF ) [27].
We can see that entanglement moves to the other hydrogen
spins, disentangling the carbon spin from the hydrogen chains,

FIG. 3. Normalized z component of the magnetization of the
carbon nuclear spin (Mz) as a function of time for the initial states:
(a) Carbon in |1〉 and hydrogens in |0〉; (b) Carbon in |0〉 and hy-
drogens in |1〉; Hydrogens in ρ = 1

2 (|0〉〈0| + |1〉〈1|) and carbon in
(c) |1〉 and (d) |0〉. The symbols refer to experimental data while
the dashed lines are derived theoretically via Heff (with 2N = 22
hydrogen spins). The parameters used here are Jeff

ch = 550 rad s−1

and Jeff
hh = 980 rad s−1.

at the same time, the state of the carbon spin approaches
the initial hydrogen spin state; this is a clear signature that
the hydrogen spin chains work out as a real thermal bath
for the carbon spin, as desired. As the dimension of the
system wave vector scales as 2M, where M = 2N + 1 is the
total number of spins in our system; our numerical simula-
tions were limited to M = 23 spins due to our computational
resources. A way to circumvent this problem would be by
employing the mean field approximation, however, this ap-
proximation is not able to describe the creation of quantum
correlations between the spins, which is a key aspect of our
reservoir engineering.

IV. EXPERIMENTAL RESULTS

We prepared different initial states for 13C and 1H sim-
ulating different temperatures of the spin bath for the main
qubit (carbon spin) and measured the expected value of the z
component of magnetization. Initially we start from the ther-
mal equilibrium at room temperature, in the high-temperature
limit, and the spin states are almost equally populated with
the excess of the lower energy state on the order of 10−5. First
the carbon spins are prepared in the excited state |1〉 (negative
temperature) and the hydrogen spins are kept in the thermal
equilibrium state (ground state |0〉 or positive temperature),
Fig. 3(a). Then we prepared carbon spins in the state |0〉 and
the hydrogen spins in the thermal equilibrium with negative
temperature (state |1〉), Fig. 3(b), and the resulting situation is
equivalent to put the carbon spins in contact with a thermal
bath with negative temperature. Still in Fig. 3, we do the same
for the bath at infinite temperature, i.e., the hydrogen spins of
the bath are prepared in the mixed state without population
excess ρ = 1

2 (|0〉〈0| + |1〉〈1|), Figs. 3(c) and 3(d). The exper-
imental data are normalized according to the magnetization
of the carbon spin after a π/2 pulse. During the thermal-
ization process, polarization formed hydrogen spins can be
transferred to carbons, this causes the magnetization to exceed
the +1 and −1 values. Where there are negative values means
that the magnetization is in the opposite direction in relation
to the magnetization with positive values. To reproduce the
polarization in the simulations, all results were normalized
and all theoretical lines were multiplied by the same factor
of 1.38. Finally, we could observe that the qubit system tends
to thermalize in the state of the qubits bath, and this happens
even when the qubit system is in the ground state and the
qubits bath are in the excited state.

A slight difference between experimental and theoretical
data can be observed in different regions in all panels of Fig. 3,
however, all results show good fidelity (see Appendix B). The
origin of these errors are mainly due to r.f. pulse imperfections
and the natural relaxation of the spins. In NMR, the thermal
relaxation time is associated with the spin-lattice relaxation,
which occurs at a characteristic times T1, which for our system
are T H

1 = 0.9 s and T C
1 = 1.6 s. Despite being a nonequilib-

rium reservoir, note that the entire process of thermalizing
the qubit system with the reservoir occur in a time on the
order of a few milliseconds, a time small enough to neglect
the sample’s relaxation effects. We can, therefore, consider
that the operation of our quantum engine happens in local
equilibrium, enforcing the laws of classical thermodynamics.

043419-3



TAYSA M. MENDONÇA et al. PHYSICAL REVIEW RESEARCH 2, 043419 (2020)

FIG. 4. (a) Scheme of the cycle of a single reservoir in which step
1 corresponds to the unitary evolution and the step 2 corresponds to
the thermalization step with the reservoir with negative temperature.
Population (Pe) of the excited state as a function of time for different
unitary operations. We consider the beginning of our cycle in t = 0,
starting from a thermalized state with the environment at a nega-
tive effective temperature. The unitary operations performed were:
(b) Ux = exp(−i π

2 Sx ), (c) Uy = exp(−i π

2 Sy ), (d) Uπ = exp(−iπSx ).
The work is calculated in the unitary operation region (gray region)
and the heat exchanged with the hot thermal reservoir is calculated
from the thermalization region with the reservoir (blue region).

V. QUANTUM ENGINE OF A SINGLE RESERVOIR

By employing the previously engineered reservoir, here we
perform a single reservoir quantum engine. The key ingredient
to this end is the preparation of the reservoir at an effective
negative temperature, in this case the quantum engine always
turns all absorbed heat from the hot reservoir into net work. If
the reservoir has a positive temperature, the quantum engine
will always turn all net work into heat when it comes in
contact with the hot reservoir (see proof in the Appendix C).
The spin 1/2 of the 13C nucleus is the working medium, and
the ensemble of spin 1/2 of 1H nuclei plays the role of the
hot thermal reservoir. The following relation describes the
relevant steps of our experiment:

ρground
thermalization→ ρ1

U (τ )→ ρ2
thermalization→ ρ1, (6)

and the scheme of the thermodynamic cycle corresponding to
our quantum engine is described in Fig. 4(a).

First the qubit system (carbon nucleus) is put in contact
with the hot reservoir, to absorb heat from it [a step described
in Fig. 3(b), i.e., step ρground → ρ1 in relation (6)]. There-
fore, the 13C spin will initially be in the thermal state ρ1 =
e−β1H1/Z1, where H1 = − 1

2 h̄ω1Sz is the Zeeman Hamiltonian
for the carbon nucleus, with h̄ being the Planck’s constant
and ω1 is the Larmor frequency of the 13C nuclear spin. Z1

is the partition function, β1 = 1/kBT such that T < 0 is the
spin temperature, and kB is the Boltzmann constant. Then, our
thermodynamic cycle consists of two steps:

(i) First, an unitary evolution operator U (τ ) is applied to
bring the 13C spin state to ρ2 = U (τ )ρ1U †(τ ) [tep ρ1 → ρ2

in relation (6)].This step is performed when the system qubit
is already thermalized with the environment, i.e., the r.f. pulse
that simulates a unitary operation is only applied after a time
interval five times longer than the relaxation time of the engi-
neered system, that is, when t ≈ 5 ms. The unitary evolution
shown in the gray region of Fig. 4 is only representative since
this operation occurs in 32 μs for Ux and Uy and 64 μs for Uπ ,

i.e, much shorter than the typical evolution time of our system.
Therefore, we assume the initial time for the thermalization
process described in step (ii) as our t = 0. More details of
this step can be found in Appendix D. In this process the
Hamiltonian changes, starting from H1, assuming a different
form at intermediate times H (t ), and finally returning to its
initial form H1. In our experiment, the unitary operations
were carried out fast enough such that all the variation of
the energy of the quantum engine is entirely associated with
the variation of the Hamiltonian, thus without heat exchange
with the environment. The gray region in Fig. 4(a) refers to
the carbon nucleus leaving the thermalized state with the hot
reservoir (spin bath) ρ1 and going to the state ρ2 as a result of
the unitary operation. In this case, the work done by/on the
quantum engine is given by [28] (see Appendix C for details)

〈W 〉 = Tr[ρ2H1] − Tr[ρ1H1] = −h̄ω1ξ tanh
(

1
2 |β1|h̄ω1

)
,

(7)

where ξ = |〈1|U (t )|0〉|2 � 0 is the transition probability be-
tween initial state |0〉 and |1〉 and β1 = −|β1| < 0. Here
〈W 〉 < 0 (>0) means that the work is done by (on) the quan-
tum engine.

(ii) The next step consists of thermalization with the hot
thermal reservoir (step ρ2 → ρ1 in relation (6), thus bringing
the system back to its initial state), which is related to the blue
region in Fig. 4. During this process, the Hamiltonian is kept
constant. Thus the variation of the system energy is entirely
associated with the heat exchange, 〈Q〉, with the hot thermal
reservoir, which is given by [28] (see Appendix C for details)

〈Q〉 = Tr[ρ1H1] − Tr[ρ2H1] = h̄ω1ξ tanh
(

1
2 |β1|h̄ω1

)
. (8)

In Fig. 4 we show the application of three different uni-
tary operators: Fig. 4(b) Ux = exp(−i π

2 Sx ), Fig. 4(c) Uy =
exp(−i π

2 Sy), Fig. 4(d) Uπ = exp(−iπSx ), where Ux and Uy

are operators that represent pulses in the x and y direc-
tions, allowing the 13C spin to flip by an angle of π/2.
Uπ is the operator that rotates the spin by an angle of π .
We also performed a fourth operation UI = exp(−2iπSy) =
I, where UI is an identity operator (a complete rotation
around the Bloch sphere), which is not shown in Fig. 4.
The total magnetization in the x, y, and z directions, MU =
(Mx, My, Mz ), immediately after each unitary operation (sec-
ond point in Fig. 4) is MUx = (0.11,−0.92, 0.20)a.u., MUy =
(0.96,−0.05, 0.13)a.u., MUπ

= (−0.01,−0.01, 1.0)a.u., and
MUI = (−0.01, 0.15,−0.87)a.u. (not shown in Fig. 4).

The results obtained experimentally for the different uni-
tary operations are 〈W 〉Ux

= −(1.97 ± 0.28)μeV , 〈W 〉Uy
=

−(1.84 ± 0.21)μeV , 〈W 〉Uπ
= −(3.27 ± 0.22)μeV ,

and 〈W 〉UI
= −(0.20 ± 0.21)μeV . The heat absorbed

from the reservoir are 〈Q〉Ux
= (1.96 ± 0.29)μeV ,

〈Q〉Uy
= (1.79 ± 0.18)μeV , 〈Q〉Uπ

= (3.24 ± 0.22)μeV ,
and 〈Q〉UI

= (0.20 ± 0.21)μeV . Both the work and the
heat are calculated by taking into account the carbon spin
state prior and after each process, i.e., the unitary evolution
and the thermalization with the hot reservoir, respectively,
to this end we performed a tomography on the carbon
state. Thus, the efficiency η = |〈W 〉/〈Q〉| for each process is
ηUx = 1.00 ± 0.05, ηUy = 1.03 ± 0.06, ηUπ

= 1.01 ± 0.02,
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and ηUI = 1.00 ± 0.12. Thus, whenever the unitary evolution
changes the carbon spin state, there will be a non null heat
absorbed from the reservoir and it will be entirely converted
into work in the thermodynamic cycle of our quantum engine.
In Appendix D we show that there is no significant gain or
loss of energy from the hydrogen bath during the unitary
evolution applied in each cycle.

VI. CONCLUSION

We have applied the reservoir engineering technique to
build up reservoirs with arbitrary temperatures, even effective
negative ones, for qubit systems. Our system is composed by
a nuclear carbon spin (the main qubit) coupled to a large num-
ber of nuclear hydrogen spins. By properly manipulating the
initial hydrogen state and the carbon-hydrogen and hydrogen-
hydrogen nuclear spin interactions, the effective dynamics
describes the interaction of a qubit with reservoirs at arbitrary
temperatures. We have shown theoretically that, the larger
the number of hydrogen spins, the better the hydrogen arrays
work out as a bath for the main qubit, which is in excellent
agreement with our experimental results. As an application,
we have implemented a single reservoir heat engine. Sev-
eral papers have discussed how to increase the efficiency of
quantum engines, for example via the use of quantum coher-
ence [29,30] or artificial environments as squeezed reservoirs
[10,11], however, as we have shown here, the simple use
of a single reservoir at negative effective temperature allows
us to obtain maximum efficiency (η = 1) regardless of the
unitary transformation performed on the qubit (making sure
that the final state is different from the initial one in the unitary
transformation), thus being, to the best of our knowledge, the
simpleest and most efficient quantum engine implemented so
far. Naturally, to reach this result we need to build up this
artificial reservoir, with inverted population, which demands
energy, but this is the price we have to pay for this achieve-
ment. For instance, this is quite similar to what happens to a
laser, another system based on inverted population, which is
responsible for great scientific and technological advances in
the last decades. Notice that, as usually done in other works
that also employ artificial reservoirs to improve the efficiency
of quantum engines [8,31,32], we did not take into account
the work needed to prepare our reservoir. Thus, we believe
our single reservoir heat engine can be another interesting
application for inverted population systems and that the results
presented here can be very useful for investigating fundamen-
tal and applications of quantum thermodynamics in general,
for instance, to study quantum thermal engines that require
specific kinds of reservoirs [8,31].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The interaction between carbon and hydrogen that appears
naturally in our system, described in Eqs. (1) and (2), is not
interesting in our work because it only causes dephase on the
qubit system (carbon spin), being unable to flip the qubit. To
solve this, it is necessary to manipulate the nuclear spins in
order to obtain an adequate effective Hamiltonian. We do this
by applying the r.f. pulse sequence described in Fig. 5.

The time of each pulse τp is the time necessary for the spins
to rotate by an angle of π/2 around the Bloch sphere (in x
or y directions) when submitted to r.f. pulses with intensities
calibrated for each species of spin. �t is the time between the
pulses (free evolution governed by the system Hamiltonian
H). The total sequence (duration τc) is then given the evolu-
tion operator

U (τc) = e− i
2h̄ H�t P4e− i

h̄ H�t P3e− i
h̄ H�t P2e− i

h̄ H�t P1e− i
2h̄ H�t ,

(A1)

where P1 = exp[−i π
2 (Sx + Ix )], P2 = exp[i π

2 (Sx + Ix )], P3 =
exp[−i π

2 (Sy + Iy)], and P4 = exp[i π
2 (Sy + Iy)] are r.f. pulse

operators that make the spins I and S to flip at angles π/2 in
the x, −x, y, and −y directions, respectively. We can write
Eq. (A1) as a single evolution operator, i.e., U (t ) = e− i

h̄ Heff t ,
where Heff is the effective Hamiltonian that can be derived
using average Hamiltonian theory [25]:

Heff = H̄0 + H̄1 + H̄2 + · · · H̄p. (A2)

The terms of Heff can be calculated from the Magnus’ ex-
pansion [33], where H̄0 is the first approximation for the
Hamiltonian and H̄1, H̄2, ..., H̄p are the correction terms [34].
The time interval between the different pulses used in this
work is designed to be small enough such that the correc-
tion terms are reduced close to zero, remaining only the

043419-5



TAYSA M. MENDONÇA et al. PHYSICAL REVIEW RESEARCH 2, 043419 (2020)

zeroth-order term H̄0, which is given by [25]

H̄0 = 1

t

M∑
j=1

�t jH̃ j, (A3)

where H̃j = T †
j HTj , Tj = ∏M

m=1 Pm, and t = ∑M
j=1�t j , M be-

ing the number of r.f. pulses. �t j is the time duration that the
system evolves under the H̃j Hamiltonian.

From the r.f. pulse sequence (A1) we determine the shape
of Pm:

T1 = e−i π
2 Sx e−i π

2 Ix , (A4)

T2 = ei π
2 Sx ei π

2 Ix e−i π
2 Sx e−i π

2 Ix = I, (A5)

T3 = e−i π
2 Sy e−i π

2 Iy ei π
2 Sx ei π

2 Ix e−i π
2 Sx e−i π

2 Ix = e−i π
2 Sy e−i π

2 Iy, (A6)

T4 = ei π
2 Sy ei π

2 Iy e−i π
2 Sy e−i π

2 Iy ei π
2 Sx ei π

2 Ix e−i π
2 Sx e−i π

2 Ix = I. (A7)

Then we have

H̃1 = T1

∑
α=a,b

{
JchSzI

α,1
z + Jhh

N−1∑
k=1

[
2Iα,k

z Iα,k+1
z

−(
Iα,k
x Iα,k+1

x + Iα,k
y Iα,k+1

y

)]}
T1. (A8)

Each H̃j gives us the evolution of the spin operators con-
tained in the Hamiltonian after each r.f. pulse. A simple way
to calculate each evolution is using the equation of motion in
magnetism [25], i.e., dJ/dt = J × H. Since μ = γ J, dμ/dt =
μ × B, that is, the flow variation of the angular momen-
tum is equal to the torque acting on the elementary dipoles.
Therefore, we can write, for example, that an evolution of an
operator initially in z, after applying a pulse in x, will go in
the y direction, i.e., Sz × Sx = Sy. Thus, the result of Eq. (A8)
will be

H̃1 =
∑

α=a,b

(
JchSyIα,1

y + Jhh

N−1∑
k=1

{
2Iα,k

y Iα,k+1
y

− [
Iα,k
x Iα,k+1

x + ( − Iα,k
z

)( − Iα,k+1
z

)]})
, (A9)

H̃1 =
∑

α=a,b

{
JchSyIα,1

y + Jhh

N−1∑
k=1

[
2Iα,k

y Iα,k+1
y

− (
Iα,k
x Iα,k+1

x + Iα,k
z Iα,k+1

z

)]}
. (A10)

In the same way, we calculate the others H̃j .
To H̃2:

H̃2 =
∑

α=a,b

{
JchSzI

α,1
z + Jhh

N−1∑
k=1

[
2Iα,k

z Iα,k+1
z

− (
Iα,k
x Iα,k+1

x + Iα,k
y Iα,k+1

y

)]}
. (A11)

To H̃3:

H̃3 =
∑

α=a,b

{
JchSxIα,1

x + Jhh

N−1∑
k=1

[
2Iα,k

x Iα,k+1
x

− (
Iα,k
z Iα,k+1

z + Iα,k
y Iα,k+1

y

)]}
, (A12)

and to H̃4:

H̃4 =
∑

α=a,b

{
JchSzI

α,1
z + Jhh

N−1∑
k=1

[
2Iα,k

z Iα,k+1
z

− (
Iα,k
x Iα,k+1

x + Iα,k
y Iα,k+1

y

)]}
. (A13)

Since t = ∑
k=1 �tk = 4�t , we can rewrite Eq. (A3) as

H̄0 = 1

4�t
(�t H̃1 + �t H̃2 + �t H̃3 + �t H̃4), (A14)

H̄0 = �t

4�t
(H̃1 + H̃2 + H̃3 + H̃4), (A15)

H̄0 = 1

4
(H̃1 + H̃2 + H̃3 + H̃4). (A16)

Finally, replacing Eqs. (A10)–(A13) in Eq. (A16), we will
have

H̄0 =
∑

α=a,b

[
1

4
Jch

(
SyIα,1

y + 2SzI
α,1
z + SxIα,1

x

)

+ 1

4
Jhh

N−1∑
k=1

(
2Iα,k

z Iα,k+1
z − Iα,k

x Iα,k+1
x − Iα,k

y Iα,k+1
y

)]
.

(A17)

Therefore, we arrive at the effective Hamiltonian equation
of the interactions between the system-environment and the
environment-environment:

Heff = HSE
eff + HE

eff , (A18)

where

HSE
eff = Jeff

ch

n∑
j=1

(
2SzI

j
z + SxI j

x + SyI j
y

)
, (A19)

HE
eff = Jeff

hh

2N∑
i

[
2I i

zI i+1
z − (

I i
xI i+1

x + I i
yI i+1

y

)]
, (A20)

where Jeff
ch = Jch/4 and Jeff

hh = Jhh/4 are, respectively, the ef-
fective coupling constants of the interactions between the 13C
nuclear spin and its first neighboring hydrogens and among all
nuclear spins of the hydrogens in the spin chain.

The effective Hamiltonian fails at long �t due to deco-
herence effects (natural relaxation of the spins) in addition to
errors associated with the calibration of the pulse intensities.
This could also be due to the finite size of our reservoir (hydro-
gen chains), but this was not investigated. In Fig. 6 we plot the
magnetization of the carbon spin in the z direction (Mz = 〈Sz〉)
as a function of time, derived by solving numerically the
Schrödinger equation, either using the effective Hamiltonian
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FIG. 6. Time evolution of the z component of the magnetization
of the carbon nuclear spin (Mz) coupled to two symmetric chains
containing a total of (a) 6, (b) 8, and (c) 10 spins of hydrogen. The
dashed black line was derived using Heff while the red (dotted), green
(dashed-dotted), and blue (solid) lines refer to the simulations of
100 (�t = 15.10 μs), 225 (�t = 1.228 μs) and 250 (�t = 0.10 μs)
cycles, respectively, with pulse sequence described by Eq. (A1). The
parameters used are τp = 9.89 μs, Jeff

ch = 550 rad s−1, Jeff
hh = 980 rad

s−1. The initial state is |1〉 for the carbon nuclear spin and |0〉 for all
hydrogen spins.

and different times of free evolution. We considered the initial
state of the system as |1〉 (excited) for the carbon nuclear spin
and |0〉 (ground) for all hydrogen nuclear spins. We can ob-
serve that the shorter the time interval �t , the better the match
between the results predicted via Heff and those obtained from
the pulse sequence described by Eq. (A1), this occurs because
the effects of inconsistency can be reduced when we reduce
the cycle time τc, as τp is a fixed time, we can optimize �t
obtain less decoherence effect.

APPENDIX B: PROCESS MATRIX

A slight difference between experimental and theoretical
data can be observed in different regions in all panels of Fig. 3.
The origin of these errors are mainly due to r.f. pulse imper-
fections and the natural relaxation of the spins. In NMR, the
thermal relaxation time is associated with the spin-lattice re-
laxation that occurs at a characteristic times T1, which for our
system are T H

1 = 0.9 s and T C
1 = 1.6 s. Below we discuss how

these source of errors may reduce the fidelity F [35], which
is a parameter commonly used to quantify the performance
of quantum operations by checking the compatibility between
experimental and theoretical operators. We can map a process
matrix into a set of transformations of unitary evolutions from
the initial and final density matrices [36]. For this purpose we
use the equation

ρ f =
∑
mn

χmnEmρiE
†
n , (B1)

where ρi and ρ f are the density matrices at the beginning
and end of the process, and the operators Em = I, Sx,−Sy, iSz

must form a basis. Thus the propagator χmn for the process
can therefore be quantified.

We performed a quantum tomography process of the
thermalized states of carbon in the situations described in
Figs. 3(a) and 3(b) and from these topographies, we calculate
the propagator χmn. The fidelity F between the experimental

and ideal matrices of the thermalization process at negative
temperature, Figs. 7(a) and 7(b), and of the thermalization
process at positive temperature, Figs. 7(c) and 7(d), are 0.999
and 0.984, respectively.

APPENDIX C: CALCULATION OF 〈W 〉 AND 〈Q〉
The quantum thermal machine proposed in this paper can

be described by the relationship

ρ0
thermalization→ ρ1

U (τ )→ ρ2
thermalization→ ρ1, (C1)

and it consists of two steps that start after the qubit system
has already thermalized with the reservoir, so the machine has
already absorbed the heat from the reservoir. Therefore, we
assume the step ρ0 → ρ1 described by the relationship (C1)
has already been performed. The cycle steps that are described
in Fig. 4(a) are

Step 1: Unitary evolution applied after the qubit system
has thermalized with the thermal reservoir [step ρ1 → ρ2 in
the relationship (C1)]. Therefore, a unitary evolution opera-
tor U (τ ) is applied taking the 13C spin state, will initially
be in a thermal state equivalent to ρ1 = e−β1H1/Z1 to ρ2 =
U (τ )ρ1U †(τ ), in this step the spin temperature will depend
on the unitary operator applied. H1 = − 1

2 h̄ω1Sz is Zeeman
Hamiltonian, h̄ being Planck’s constant, ω1 is the Larmor
frequency of the 13C nuclear spin, Z1 is the partition function,
and β1 = 1/kBT such that T < 0 is the spin temperature, and
kB is the Boltzmann constant. The Hamiltonian H1 changes in
this process, which is the process where we can extract work
from the machine, returning to its initial form at the end of this
stage. As our unitary evolution is very fast, there is no heat
exchange with the reservoir and any variation of the energy of
the carbon spin will be due to the work done by it. Therefore,
the Hamiltonian starts from the Hamiltonian H1, assumes a
different value H (t ), and then returns to H1. In this process the
entire system density operator changes (only due to the unitary
evolution) and we can then calculate the energy variation due
to the work performed by the system. In this case, �E being
the variation of the energy of the machine, we have

〈W 〉 =Tr(ρ2H1) − Tr(ρ1H1). (C2)

Step 2: Thermalization with hot thermal reservoir [step
ρ2 → ρ1 in the relationship (C1)], when the qubit absorbs heat
and then goes back to the state ρ1. Here the Hamiltonian H1

remains unchanged. In this case, the variation of the energy of
the system is entirely due to the heat exchange [28] so that

〈Q〉 =Tr(ρ ′
1H1) − Tr(ρ2H1). (C3)

In Fig. 4 we show the application of different unitary
operators: (b) Ux = exp(−i π

2 Sx ), (c) Uy = exp(−i π
2 Sy), and

(d) Uπ = exp(−iπSx ), where Ux and Uy are operators that
represent pulses in the x and y directions, allowing the 13C
spin to flip by an angle of π/2. Uπ is the operator which rotates
the spin by an angle of π . We also performed another unitary
transformation (not shown in Fig. 4), UI , which is an identity
operator (a complete rotation around the Bloch sphere).

For the partition function we have

Z1 = Tr(e−β1H1 ) = 〈1|e−β1H1 |1〉 + 〈0|e−β1H1 |0〉 (C4)
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FIG. 7. Theoretical and experimental process matrices of χmn of the thermalization processes of the Figs. 3(a) and 3(b) and Em =
I, Sx, −Sy, iSz. The panels on the left (right) are the real (imaginary) part. Panels (a) and (b) are, respectively, the experimental and theoretical
process matrices of the Fig. 3(b). Panels (c) and (d) are, respectively, the experimental and theoretical process matrices of the Fig. 3(a).

with

H1|1〉 = 1
2 h̄ω1|1〉 (C5)

and

H1|0〉 = − 1
2 h̄ω1|0〉 (C6)

where |0〉 and |1〉 are, respectively, the fundamental and ex-
cited states referring to the base of the Hamiltonian H1(Sz ) .
Then the partition function becomes

Z1 = eβ1 h̄ω1/2 + e−β1 h̄ω1/2 = 2cosh
(

1
2β1h̄ω1

)
. (C7)

We will also have

Tr(ρ1H1) = 1

Z1
Tr(e−β1H1 H1), (C8)

Tr(ρ1H1) = 1

Z1
(〈1|e−β1H1 H1|1〉 + 〈0|e−β1H1 H1|0〉), (C9)

Tr(ρ1H1) = h̄ω1

2Z1
(〈1|e−β1H1 |1〉 − 〈0|e−β1H1 |0〉), (C10)

Tr(ρ1H1) = h̄ω1

2Z1
(e−β1 h̄ω1/2 − eβ1 h̄ω1/2 ), (C11)

Tr(ρ1H1) = − h̄ω1

2

sinh
(

1
2β1h̄ω1

)
cosh

(
1
2β1h̄ω1

) , (C12)

Tr(ρ1H1) = − h̄ω1

2
tanh

(
1

2
β1h̄ω1

)
, (C13)

and

Tr(ρ2H1) = Tr(U (τ )ρ1U
†(τ )H1), (C14)

Tr(ρ2H1) = Tr(ρ1U
†(τ )H1U (τ )), (C15)

Tr(ρ2H1) = 1

Z1
Tr(e−β1H1U †(τ )H1U (τ )), (C16)

Tr(ρ2H1) = 1

Z1
(〈1|e−β1H1U †(τ )H1U (τ )|1〉

+ 〈0|e−β1H1U †(τ )H1U (τ )|0〉), (C17)

Tr(ρ2H1) = 1

Z1
(e−β1 h̄ω1/2〈1|U †(τ )H1U (τ )|1〉

+ eβ1 h̄ω1/2〈0|U †(τ )H1U (τ )|0〉), (C18)

Tr(ρ2H1) = 1

Z1
[(eβ1 h̄ω1/2 − e−β1 h̄ω1/2 )〈0|U †(τ )H1U (τ )|0〉

+ e−β1 h̄ω1/2〈0|U †(τ )H1U (τ )|0〉
+ e−β1 h̄ω1/2〈1|U †(τ )H1U (τ )|1〉], (C19)

Tr(ρ2H1) = 1

Z1
[(eβ1 h̄ω1/2 − e−β1 h̄ω1/2 )〈0|U †(τ )H1U (τ )|0〉

+ e−β1 h̄ω1/2Tr(U †(τ )H1U (τ ))], (C20)

where

Tr(U †(τ )H1U (τ )) = Tr(U (τ )U †(τ )H1) = Tr(H1), (C21)

so

Tr(H1) = Tr
(− 1

2 h̄ω1Sz
) = 0. (C22)

Therefore,

Tr(ρ2H1) = 2sinh
(

1
2β1h̄ω1

)
2cosh

(
1
2β1h̄ω1

) 〈0|U †(τ )H1U (τ )|0〉, (C23)

Tr(ρ2H1) = tanh

(
1

2
β1h̄ω1

)
〈0|U †(τ )H1U (τ )|0〉, (C24)

Tr(ρ2H1) = tanh

(
1

2
β1h̄ω1

)
〈0|U †(τ )H1

∗ (|0〉〈0| + |1〉〈1|)U (τ )|0〉, (C25)
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Tr(ρ2H1) = −1

2
h̄ω1tanh

(
1

2
β1h̄ω1

)
[〈0|U †(τ )

∗(|0〉〈0| − |1〉〈1|)U (τ )|0〉], (C26)

Tr(ρ2H1) = −1

2
h̄ω1tanh

(
1

2
β1h̄ω1

)
[〈0|U †(τ )

∗(I − 2|1〉〈1|)U (τ )|0〉], (C27)

Tr(ρ2H1) = −1

2
h̄ω1tanh

(
1

2
β1h̄ω1

)
[〈0|U †(τ )U (τ )|0〉

− 2〈0|U †(τ )|1〉〈1|U (τ )|0〉], (C28)

Tr(ρ2H1) = −1

2
h̄ω1tanh

(
1

2
β1h̄ω1

)

∗[
1 − 2|〈1|U (τ )|0〉|2], (C29)

where ξ = |〈1|U (τ )|0〉|2 is the probability of transition be-
tween states |0〉 and |1〉. Therefore,

Tr(ρ2H1) = − h̄ω1

2
tanh

(
1

2
β1h̄ω1

)
[1 − 2ξ 2]. (C30)

Replacing Eqs. (C13) and (C30) in Eqs. (C2) and (C3):

〈W 〉 = − h̄ω1

2
tanh

(
1

2
β1h̄ω1

)
[1 − 2ξ 2]

+ h̄ω1

2
tanh

(
1

2
β1h̄ω1

)
, (C31)

so

〈W 〉 = ξ 2h̄ω1tanh
(

1
2β1h̄ω1

)
(C32)

and

〈Q〉 = − h̄ω1

2
tanh

(
1

2
β1h̄ω1

)

+ h̄ω1

2
tanh

(
1

2
β1h̄ω1

)
[1 − 2ξ 2], (C33)

so

〈Q〉 = −ξ 2h̄ω1tanh
(

1
2β1h̄ω1

)
. (C34)

Efficiency is defined as η = −〈W 〉/〈Q〉.
(i) When ξ = 0, 〈W 〉 = 0, and 〈Q〉 = 0. In this case, the

thermal machine will have same initial and final states after
unitary operation. There is no work nor heat exchange in this
case.

(ii) When ξ > 0 and β > 0, 〈W 〉 =
ξ 2h̄ω1tanh( 1

2β1h̄ω1) > 0 and 〈Q〉 = −ξ 2h̄ω1tanh( 1
2β1h̄ω1) <

0, the machine will always turn all net work into heat when it
comes in contact with the hot reservoir.

FIG. 8. Population of the excited state (Pe) versus pulse time of
the unitary evolutions Ux (a) and (b), Uy (c) and (d), and Uπ (e)
and (f). (a), (c), and (e) show the effect of the operation on the 13C
spin while (b), (d), and (f) show the same effect (on average) on the
hydrogen spins.

(iii) When ξ > 0 and β < 0, 〈W 〉 =
ξ 2h̄ω1tanh( 1

2β1h̄ω1) < 0 and 〈Q〉 = −ξ 2h̄ω1tanh( 1
2β1h̄ω1) >

0, the thermal machine always turns all absorbed heat from
the hot reservoir into net work. Thus, here we have a thermal
machine with maximum efficiency.

APPENDIX D: RESERVOIR ENERGY LOSS

To check if there is gain or loss of energy from the hydro-
gen bath during the unitary evolution applied in each cycle,
we simulate the application of an r.f. pulse in the 13C after its
thermalization with the reservoir (proposed step in our cycle).
In Fig. 8 we show the influence of unitary evolution in the
population of the excited state of the system qubit (carbon)
and the average under the spins of the reservoir (hydrogens).

The 13C magnetization in the x, y, and z directions,
MU = (Mx, My, Mz ), immediately after each unitary
operation is MUx = (0.08,−0.99, 0.00)a.u. [Fig. 8(a)],
MUy = (0.99, 0.08, 0.00)a.u. [Fig. 8(c)] and MUπ

=
(0.17,−0.01, 0.98)a.u. [Fig. 8(e)]. In Figs. 8(b), 8(d),
and 8(f) we see the average populations of the excited states
of the hydrogen chain of the spin chain immediately after
each unitary evolution. In the simulations we used two chains
with 10 hydrogen spins each. We observed that the energy
loss always occurs for the first two spins in the chain (spins
closer to 13C). The greatest loss of energy from the spin bath
occurs for the unit operation corresponding to an evolution of
π (Uπ ), and such loss corresponds to 0.4% of the value before
the operation. We conclude, then, that the unitary evolution
occur fast enough so that there is no significant loss of energy
caused by the exchange interaction between the system qubit
and the spin reservoir.
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