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The absorption of traveling photons resonant with electric dipole transitions of an atomic gas naturally leads
to electric dipole spin-wave excitations. For a number of applications, it would be highly desirable to shape
and coherently control the spatial waveform of the spin waves before spontaneous emission can occur. This
paper details a recently developed optical control technique to achieve this goal, where counterpropagating,
shaped subnanosecond pulses impart subwavelength geometric phases to the spin waves by cyclically driving
an auxiliary transition. In particular, we apply this technique to reversibly shift the wave vector of a spin wave
on the D2 line of laser-cooled 87Rb atoms by driving an auxiliary D1 transition with shape-optimized pulses,
so as to shut off and recall superradiance on demand. We investigate a spin-dependent momentum transfer
during the spin-wave control process, which leads to a transient optical force as large as ∼1h̄k/ns, and study
the limitations to the achieved 70 ∼ 75% spin-wave control efficiency by jointly characterizing the spin-wave
control and matter-wave acceleration. Aided by numerical modeling, we project potential future improvements
of the control fidelity to the 99% level when the atomic states are better prepared and by equipping a faster
and more powerful pulse shaper. Our technique also enables a background-free measurement of the superradiant
emission to unveil the precise scaling of the emission intensity and decay rate with optical depth.
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I. INTRODUCTION

Spontaneous emission is typically a decoherence effect
to avoid when levels in small quantum systems are cho-
sen to encode information for, e.g., quantum computation,
simulation, or sensing [1–4]. As spontaneous as it is, the
information flow during the process can nevertheless be con-
trolled between long-lived matter degrees of freedom and
a prealigned single-mode electromagnetic continuum [5,6].
In particular, since the seminal work by Dicke in 1954 on
super- and subradiant effects of light emission by ensembles
of excited atoms [7], it is now well-known that the spatiotem-
poral properties of spontaneous emission are, in principle,
dictated by collective properties of the atoms themselves.
For spatially extended atomic ensembles, the timed phase
correlations of the collective excitations, in the form of spin
waves with phase-matched wave vector k satisfying |k| =
ω/c, can direct superradiant emission into narrow solid angles
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[8–11]. This collective enhancement forms the basis for many
applications predicated upon efficient quantum atom-light in-
terfaces [5,12]. However, there has been relatively little work
to address the question of what happens when |k| �= ω/c
becomes strongly phase-mismatched from radiation. Within
the context of atomic ensembles, complex phenomena can
arise involving the combination of spatial disorder, multiple
scattering of light, and dipole-dipole interactions between
atoms [13–17], with much still left to be understood. Fur-
thermore, within the emerging field of quantum optics with
atomic arrays, such phase-mismatched states are predicted
to be strongly subradiant. This forms the basis for exciting
applications like waveguiding of light by the array [18–20],
atomic mirrors [21–23], and exotic states [24,25], includ-
ing emergent Weyl excitations [26] and topological guided
edge modes [27,28], and the generation of highly correlated
“fermionized” states [29]. One major bottleneck to exploring
and controlling all these phenomena is the fact that any op-
tical pulses used to manipulate atomic excited states, being
radiation waves, most naturally excite phase-matched spin
waves, while spin waves with |k| �= ω/c are naturally de-
coupled from light. What is needed then is a technique to
efficiently and coherently alter the phase-matching condition
of collective atomic excitations in the temporal domain—that
is, to modify the wave vector of the spin waves and coher-
ently convert between superradiant and subradiant modes—on
rapid timescales faster than the typical emission time of atoms
themselves.
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Previously, in a short Letter [30], we described an experi-
mental realization of coherent dipole spin-wave control, based
upon rapidly and cyclically driving an auxiliary transition with
counterpropagating control pulses to robustly imprint spin-
and spatially dependent geometric phases onto the atoms.
The resulting k-space shifts lead to spin waves in a 87Rb
gas with strongly mismatched wave vectors |k| �= ω/c off the
light cone and suppressed superradiant emission. Later, the
mismatched spin waves are shifted back onto the light cone to
cooperatively emit again on demand. In this paper, we expand
upon key details that were previously omitted, describing in
greater detail the experimental implementation and theoretical
modeling of the geometric control technique, and additional
research advances enabled by the technique. Furthermore, we
carefully characterize the fidelity of our control sequence and
discuss how current limitations can be overcome.

Beyond a detailed discussion of our spin-wave control
technique, here we also give an example of its use toward the
precise study of fundamental quantum optical phenomena. In
particular, we exploit the ability to shift the dipole spin-wave
vector to measure phase-matched forward collective emission
in a background-free manner. The forward collective emission
has been studied previously as a strong signature of cooper-
ative enhancement of light-atom interactions in cold atomic
gases [10,11,15]. One challenge to measure the forward coop-
erative emission in these experiments is related to the fact that
the exciting beam, typically with a much stronger intensity, is
in the same direction as the forward emission and contributes
a large background. Here, the ability to shift the spin-wave
vector in our case allows us to detect the forward superra-
diant emission from a different, background-free direction.
We experimentally quantify the scaling of the emission inten-
sity iN ∝ N2 and collective decay rate �N/� = (1 + OD/4)
[13,16,17,25], for superradiant emission involving N atoms
with an average optical depth OD.

This paper also brings together two seemingly unrelated
phenomena: the control of collective dipole radiation, and
the acceleration of the free emitters. Accompanying the
nanosecond spin-wave k-vector shifts, we observe a strong
spin-dependent optical force that accelerates the atomic sam-
ple at a ∼107 m/s2 transient rate. Similar techniques of cyclic
rapid adiabatic passage have been studied in pioneering work
by Metcalf et al. [31,32] as a robust way to impart strong
optical forces to neutral atoms and molecules, with important
applications in laser cooling [33,34]. The ∼1h̄k per nanosec-
ond optical force in this work is among the highest [33,35].
The negative impacts by the spin-dependent acceleration to
the spin-wave control is negligible in this work, and can
be mitigated with lattice confinements in future experiments
[30]. On the other hand, the combined effects may open in-
teresting opportunities at the interface of quantum optics and
atom interferometry [36].

The remainder of the paper is structured as follows. First, in
Sec. II, we provide a simple, idealized theoretical description
of our protocol to manipulate spin waves by rapid geomet-
ric phase patterning using shaped subnanosecond pulses. In
Sec. III, we detail the experimental implementation of the
coherent control and discuss the background-free detection of
the cooperative emission as well as matter-wave acceleration
effects. Here we also generalize the simpler theoretical discus-

sion for quantifying the efficiency of our protocol in the face
of various imperfections. We summarize this work in Sec. IV,
and discuss methods and technology for improvements of the
spin-wave control efficiency to the ∼99% level. To ensure
completeness and to provide better context, key ideas from
Ref. [30] are repeated in this paper.

II. PRINCIPLES

A. Preparation and control of optical spin waves

Single collective excitations of an atomic ensemble, con-
sisting of N atoms with ground state |g〉 and excited state
|e〉, are naturally described by spin-wave excitations or timed-
Dicke states of the form |ψTD(kp)〉 = S+(kp)|g1, g2, . . . , gN 〉.
Here S+(kp) = 1√

N

∑
i eikp·ri |ei〉〈gi| denotes a collective spin

raising operator and kp the corresponding wave vector. For
example, a weak coherent state involving such excitations
is naturally generated by an incoming plane-wave probe pulse
with Rabi frequency �p and duration τp � 1/�p, if τp is in
addition short enough that light rescattering effects are negli-
gible. As such, the magnitude of the wave vector |kp| = ωeg/c,
with ωeg being the atomic resonance frequency, matches that
of free-space radiation. As is well-known [9–11], such phase-
matched spin-wave excitations in a large sample with size
σ 	 1/kp and N > k2

pσ
2 radiate efficiently and in a collec-

tively enhanced fashion, much like a phased array antenna,
into a small solid angle θ2 with θ ∼ 1/kpσ around the forward
kp direction.

We are interested in spin waves with strongly mismatched
|k| �= ωeg/c off the light cone, in which case the cooperative
emission is prohibited. In an ensemble with random atomic
positions {ri}, as in this paper, such a spin wave is expected to
decay with a rate near the natural linewidth [37], as the fields
emitted by different atoms in any direction average to zero,
but with nonzero variance. On the other hand, in an ordered
array of atoms, the destructive interference in all directions
can be nearly perfect, leading to strong subradiance that
forms the basis of the exciting applications mentioned earlier
[18–28]. It is therefore highly compelling to have a technique
to shift the spin waves in k space on a timescale much faster
than the spontaneous emission lifetime. To achieve the re-
quired k-vector shift, we consider a unitary transform Uc(	k)
such that S+(k + 	k) = Uc(	k)S+(k)U †

c (	k). The required
control is a class of state-dependent phase-patterning oper-
ations, which can be decomposed into spatially dependent
phase gates for each two-level atom as (with σz,i = |ei〉〈ei| −
|gi〉〈gi|)

Uc(	k) =
N∏
i

e
i
2 	k·riσz,i . (1)

While we have thus far focused on the manipulation of
spin-wave excitations by considering the position ri as an op-
erator as well, one sees that the transformation of Eq. (1) also
imparts opposite momentum boosts to the g, e components
of a freely moving atom. Techniques for realizing such spin-
dependent kicks have been well-developed in the community
of atom interferometry and ion-based quantum information
processing typically on Raman transitions [38–40]. Here,
we demonstrate a high-efficiency process based upon rapid

043418-2



ATOMIC SPIN-WAVE CONTROL AND SPIN-DEPENDENT … PHYSICAL REVIEW RESEARCH 2, 043418 (2020)

FIG. 1. Schematic of the experiment to demonstrate error-resilient optical spin-wave control. (a) Schematic timing sequence for the
amplitudes of the probe and control pulse Rabi frequency |�| (red solid lines), and the instantaneous detuning of the control pulse δc

(blue dashed lines) from the |g〉 − |a〉 transition. (b) Top (from left to right): Generation and control of optical spin wave with the probe
beam followed by the control pulse-induced redirection, switch off and recall of the collective spontaneous emission. The |g〉 − |e〉 electric
dipole spin wave is illustrated with fringes in the atomic sample. Each optical control also imparts a spin-dependent kick, which leads to
momentum transfer with vr = h̄kc/m ≈ 5.8 mm/s, m being the atomic mass of 87Rb. The drawings are not to actual scale, in particular, the
phase-matching angle θ = arccos λD2

λD1
∼ 11.1◦ is exaggerated for clarity. Bottom: Bloch-sphere representation of the projected |g〉 − |a〉 state

dynamics for an atom at a representative position r. An ensemble of trajectories with different control pulse peak intensity parameters s is
displayed. The quasiadiabatic control ensures that the geometric phase writing is insensitive to small deviations of s from s ∼ 0.6 × 106, for
τc�D1 = 0.02 ∼ 0.03 in this paper.

manipulation of a strong optical transition for the spin-wave
control.

B. Error-resilient spin-wave control

To implement Uc(	k) in Eq. (1) on a strong dipole tran-
sition in a large atomic sample, we combine the geometric
phase method suggested in Ref. [37] with optical rapid adia-
batic passage techniques as in Refs. [31,32] for the necessary
control speed, precision, and intensity-error resilience. In par-
ticular, we consider two nearly identical optical “control”
pulses with Rabi frequency �c(t )eiϕ1,2 and instantaneous de-
tuning δc(t ) to drive the auxiliary |g〉 → |a〉 and |a〉 → |g〉
transitions, respectively. By optical pulse shaping, the cyclic
transition can be driven with high precision in a manner that
is largely insensitive to laser intensity. We adapt a simple
choice of �c(t ) = �0 sin(πt/τc) and δc(t ) = −δ0 cos(πt/τc)
to achieve quasiadiabatic population inversions at optimal
{�0, δ0} within the τc pulse duration [31,32]. To connect to
the experimental setup (Figs. 1 and 2), after preparing the
S+(kp) spin-wave excitation, we send the first control pulse

to the atomic sample, propagating along the direction given
by wave vector ±kc, driving |g〉 → |a〉. Subsequently, a sec-
ond control pulse with ∓kc interacts with the sample after
a τd delay, driving |a〉 → |g〉. Although every ground-state
atom in the original |g〉 − |e〉 spin wave returns to |g〉, the
area enclosed around the Bloch sphere by the state vector
causes each atom to pick up a spatially dependent geometric
phase ϕG(r) = π + 	k · ri, with 	k = ±2kc to fully exploit
the resolution of the optical phase. The ideal state-dependent
phase patterning achievable in the short τc,d limit can be
formally expressed within the {|g〉, |e〉} space as

Ug(	k) =
N∏
i

(|ei〉〈ei| − ei	k·ri |gi〉〈gi|), (2)

which performs a k → k − 	k shift to spin-wave excitations
the same way as Uc(−	k) in Eq. (1).

Although the phase patterning operation in Eq. (2) could
in principle be achieved without the control pulse shaping,
practically, the control laser intensity inhomogeneity across
the large sample would translate directly into spin control
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FIG. 2. Setup schematics for spin-wave control based on optically delayed retroreflections. The schematics share the same relative
orientations of the laser beams as in Fig. 1. In (a), the incoming pulse is retroreflected with a delay τdelay = 1.36 ns for L ≈ 200 mm to
interact twice with the atomic sample. In (b), the preprogrammed pulse (marked with p′) is stored in the much longer optical delay line with
L ≈ 15 m and τdelay ≈ 100 ns, timed to collide with a new incoming pulse (marked with p). (c) The D1 and D2 level diagram for the 87Rb with
hyperfine structures and the laser coupling scheme in this paper.

error, as in most nonlinear spectroscopy experiments [41–43],
leading to degraded average control fidelity if a highly uni-
form laser intensity profile cannot be maintained. To fully
exploit the intensity-error resilience [44] offered by the SU(2)
geometry of the two-level control, the optical pulses need to be
shaped on a timescale fast enough to suppress the spontaneous
emission, and also slow enough to avoid uncontrolled multi-
photon couplings in real atoms. We note that optical methods
for two-level rapid adiabatic passage [45] itself are well-
developed for population transfers in atoms and molecules
using ultrafast lasers [46,47]. However, these ultrafast tech-
niques typically demand control field Rabi frequencies �c

beyond the THz level with intense pulses at low repetition
rates, not easily adaptable to our desired goals. The strong
fields may also cause non-negligible multilevel couplings or
even photoionization beyond the desired multiple population
inversions. Instead of using ultrafast lasers, here we develop
a wide-band pulse-shaping technique based on fiber-based
sideband electro-optical modulation of a cw laser [30], with
up to 13 GHz modulation bandwidth, to support the flexibly
programmable error-resilient spin wave control. Compared
with previous work on spectroscopy based upon perturbative
nonlinear optical effects [41–43], our technique is unique in
that we steer the atomic state over the entire Bloch sphere
of the two-level system to achieve the geometric robustness
toward perfect spin-wave control set by Eq. (2).

C. Dynamics of controlled emission

Here we go beyond Ref. [30] to discuss the expected
emission characteristics of phase-matched and mismatched
spin waves, which will constitute one of the key observ-
ables to verify our coherent control technique and quantify
its efficiency. Later, in Sec. III B, we will experimentally
verify the predicted optical depth dependence for the phase-

matched case. To specifically relate to experimental control
of a laser-cooled gas in this work, we consider an atomic
sample with a smooth profile �(r) = 〈∑i δ(r − ri )〉 nearly
spherical with size σ 	 1/|kp| and at a moderate density
with � < |kp|3. Formally, the quantum field emitted by a
collection of atoms on the |e〉 − |g〉 transition can be expressed
in terms of the atomic spin coherences themselves, Ês(r) =
ω2

eg/ε0c2 ∑
i G(r − ri, ωeg) · deg|gi〉〈ei| [24]. Here G(r, ωeg)

is the free-space Green’s tensor of the electric field, which
physically describes the field at position r produced by an
oscillating dipole at the origin, and deg = deged is the tran-
sition dipole moment. For the single-excitation timed Dicke
state, one can define a single-photon wave function εk(r) =
〈g1, g2, . . . , gN |Ês|ψTD(k)〉, which describes the spatial pro-
file of the emitted photon. Of particular interest will be
the field emitted along direction k at the end of the nearly
spherical sample, and at a transverse position r⊥. Within the
so-called Raman-Nath regime where diffraction is negligible,
we obtain εk(r) averaged over random {ri} as (also see Ap-
pendix B)

εk(r) ≈ ed

√
h̄ωeg

8ε0c

√
Nσr��c(r⊥, δk)eiωegrk/c. (3)

Here rk = r · k/|k|, and �c(r⊥, δk) = 1
N

∫
�(r)eiδkrk drk is a

generalized (and normalized) column density, where in gen-
eral we allow for a wave number δk = |k| − ωeg/c that is
mismatched from radiation. σr = ωegαi/c is the resonant ab-
sorption cross section, and the imaginary part of the resonant
polarizability αi is related to the dipole element deg and �

through h̄�αi = 2|deg|2. While deg and � are directly related
for two-level atoms, this formula also generalizes to atoms
with level-degeneracy.

Equation (3) describes the possibility of both enhanced
or suppressed collective emission associated with the spin-
wave excitation at a δk radiation wave-number mismatch. A
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well-known consequence of Eq. (3) is that when the spin-wave
excitation is by a weak probe pulse with wave vector kp (see
Fig. 1), the atoms act as a phased antenna array with δk = 0,
and light in the forward direction along kp is re-emitted at
an enhanced rate within an angle θ ∼ 1/(|kp|σ ) [48]. As our
probe pulse is in a weak coherent state, the timed Dicke state is
excited with a population of Nθ2

p , where θp = 1
2

∫
�pdt is the

time-integrated Rabi frequency of the probe pulse (θp � 1).
Assuming that the spatial profile of Eq. (3) does not change
significantly during the emission process, one can integrate
the intensity of light predicted by Eq. (3) over space, and
arrive at the following time-dependent collective spontaneous
emission rate:

ikp (t ) ≈ Nθ2
p (ODp/4)�e−(1+ODp/4)�t . (4)

Here ODp ≡ ∫
OD2

p(r⊥)/
∫

ODp(r⊥) ∝ N is the average
optical depth, and ODp(r⊥) = N�c(r⊥, δk = 0)σr . The ex-
ponential factors of e−�t and e−ODp�t/4 account for the
(noncollective) decay into 4π and enhanced emission along
the phase-matched kp direction, respectively.

We now consider what happens if, immediately following
the probe pulse at t = 0, we apply the ideal spin-wave control,
which imprints a geometric phase and transforms the orig-
inal timed-Dicke state along kp according to Eq. (2) (finite
delay times and other imperfections can be straightforwardly
included, as discussed in Sec. III). As the original state has
a well-defined wave vector, the application of Eq. (2) sim-
ply creates a new timed Dicke state with new wave vector
ks = kp − 2kc. Then, two distinct cases emerge. The first
is that |ks| ≈ ωeg/c, in which case the spin wave is again
phase matched to radiation and an enhanced emission rate
like Eq. (4) is again observed, but with the majority of emis-
sion “redirected” along the new direction ks. The second,
and more intriguing, possibility is that |ks| is significantly
mismatched from ωeg/c. In that case, there is no direction
along which emission can be constructively and collectively
enhanced. For the case of our disordered ensemble, this results
in the emission rate into the same solid angle in absence of
phase-matching as

i′kp
(t ) ≈ Nθ2

p/(|kp|2σ 2)�e−�t , (5)

i.e., the emission reduces to an incoherent sum of those from
single, isolated atoms. This is due to the random positions
of the atoms, such that the field of emitted light in any
direction tends to average to zero, but with a nonzero vari-
ance [corrections to Eq. (5) are expected at high densities
due to granularity of the atomic distribution, which make
the problem quite complex in general [13,14,49]]. However,
in an ordered array of atoms, the destructive interference in
all directions can be nearly perfect, leading to a decay rate
much smaller than �. The ability to generate excited states
with extremely long lifetimes is key to all of the applications
mentioned in the Introduction [18–24,26–28,50].

III. EXPERIMENTAL RESULTS

A. Experimental methods

In this paper, the dipole spin-wave excitation is
implemented on the 87Rb 5S1/2 − 5P3/2 D2 line between

hyperfine ground state 5S1/2F = 2 and excited state
5P3/2F ′ = 3, represented by |g〉 and |e〉 in Fig. 2,
respectively. The transition wavelength is λD2 = 780 nm (with
kp = 2π/λD2), and the natural linewidth is �D2 = 2π × 6.07
MHz. We prepare N ∼ 104 87Rb atoms in |g〉 in an optical
dipole trap with up to ∼5 × 1012/cm3 peak density and
T ∼ 20 μK temperature. After the atoms are released from
the trap, the dipole excitation is induced by a τp = 3 ∼ 5 ns,
Ip ≈ 10 mW/cm2 resonant D2 probe pulse. The Gaussian
probe beam has a wp ≈ 50 μm waist, which is much larger
than the 1/e radius of atomic density profile σ ≈ 7 μm,
validating the plane-wave excitation picture.

The auxiliary transition is implemented on the D1 line
between |g〉 and |a〉, with |a〉 representing the 5P1/2F ′ =
1, 2 levels, with λD1 = 795 nm, kc = 2π/λD1 and �D1 =
2π × 5.75 MHz. The spin wave Ug control as in Eq. (2)
is implemented by cyclically driving the D1 transition with
the counter-propagating chirped pulses, with Rabi frequency
�c(t ) = �0 sin(πt/τc) and instantaneous detuning δc(t ) =
−δ0 cos(πt/τc) (defined relative to the midpoint of the
5S1/2F = 2−5P1/2F ′ = 1, 2 hyperfine lines), so as to phase
pattern the 5S1/2F = 2 atoms without perturbing the 5P3/2

level due to the large D1-D2 transition frequency differ-
ence. Utilizing our subnanosecond pulse-shaping technology
as detailed in Ref. [30], with ∼20 mW of peak power, peak in-
tensity parameter s ∼ 106 (s ≡ I/Is1 and Is1 = 4.49 mW/cm2

is the D1 transition saturation intensity [51]) and peak Rabi
frequency �0 = √

s/2�D1 at GHz level are reached by fo-
cusing the kc-control beam into a waist of w ≈ 13 μm at the
atomic sample.

We choose the polarization for the probe and control lasers
to be along ey and ex, respectively. Taking the ex−direction as
the quantization axis, the π -control couplings to 5P1/2 would
be with equal strengths and detunings for all five 5S1/2F =
2, mF Zeeman sublevels, and with vanishing hyperfine Ra-
man coupling, if the 5P1/2 hyperfine splitting 	D1,hfse = 2π ×
814.5 MHz can be ignored. The approximation helps us to
establish the simple two-level control picture in Fig. 2(c),
even for the real atom. Practically, the hyperfine dephasing
effects can be suppressed for atoms in the |mF | = 0, 2 Zee-
man sublevels by adjusting the optical delay τd to match
2π/	D1,hfse ≈ 1.23 ns. The hyperfine effect more severely
impacts the |mF | = 1 atoms through both intensity-dependent
dephasing and nonadiabatic population losses. These hy-
perfine effects are suppressible with better Zeeman-state
preparations or by faster controls with τc	D1,hfse � 1 while
setting τd to be a multiple of 2π/	D1,hfse.

To experimentally implement the spin-wave Ug(	k)
control as in Eq. (1) with 	k = ±2kc, counterpropagating
pulses are sent to the atomic sample using retroreflection
with optical delay lines [Figs. 2(a) and 2(b)]. The
ability to control the sign is important for the turnoff
and recall of superradiance. Going beyond Ref. [30],
we discuss how to implement this using two types of
optical delays. In the first type [Fig. 2(a)], an incoming
pulse and its retroreflection by a R = 200 mm concave
mirror at a L ≈ 200 mm distance outside the vacuum
interact twice with the sample with a τdelay = 2L/c =
1.36 ns relative delay. This design conveniently enables
the |g〉 → |a〉 → |g〉 cyclic transition driven by a
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kc and then a −kc pulse, thereby accomplishing a
Ug(2kc) operation with nearly identical pulse pairs.
However, the ordered arrivals for the ±kc pulses rule
out the possibility of realizing efficient Ug(−2kc)
control.

To reverse the time order for the ±kc pulses, we introduce
a second type of optical delay as in Fig. 2(b). Here the delay
distance L ≈ 15 m and the associated delay time τdelay ≈
100 ns are long enough that we are able to temporally store
a few preprogrammed pulses on the side of the atomic sample
opposite to the incoming direction. In particular, before the
preparation of the |g〉 − |e〉 spin waves, up to three prepro-
grammed D1 control pulses, such as the one marked with “p′”
in Fig. 2(b), are initially sent to the optical delay line. After
all these pulses pass through the atomic sample, the atoms are
excited and then decay into the F = 1, 2 ground states within
the delay time τdelay 	 1/�D1. At the moment when these
stored pulses are coming back, additional control pulses [such
as the one marked with p in Fig. 2(b)] with readjusted pulse
properties are sent to collide with the preprogrammed pulses
to form the control sequence including spin-wave controls
Ug(±2kc) in a designed order [Fig. 1(a)]. The second optical
delay method is therefore more flexible for parametrizing the
control pulse pairs to reversibly shift the spin waves in k-space
on demand. We notice that the first pass of the stored optical
pulses causes some atom losses (to the F = 1 ground states
which are dark to the following spin-wave excitations). The
amount of loss is a function of the (unwanted) D1 excitation
efficiency, and is therefore correlated to the pulse number,
relative delays and shapes. By combining proper timing of the
stored pulses with numerical modelings, the loss effects can be
controlled in measurements where the atom numbers are im-
portant [49]. In addition, in this work the extra beam steering
optics to fold the delay line onto the optical table introduces
extra optical power loss (30%) to the retroreflected pulses,
challenging the range of intensity resilience for the control
operation (also see Figs. 1 and 6). Therefore, to optimally
operate the control with the second mode of optical delay,
we typically readjust the pulse-shaping parameters and in
particular to balance the power of the pulse pairs. To precisely
measure the optical delay time τdelay, a single D1 control
chirped pulse is sent to the optical path to efficiently excite the
atomic sample twice. The two fluorescence signals separated
by τdelay are collected to precisely measure τdelay with ∼0.1 ns
accuracy.

Additional details on the experimental measurements are
given in Appendix A. With the experimental methods, we
can precisely perform multiple D1 controls to shift the
dipole spin-wave excitation S+(k) on the D2 transition from
the original value of k = kp to the new wave vectors kp −
2nkc (with n = 1, 2 in this paper) in a reversible manner. To
benchmark the control quality, we set up the photon detec-
tion path along a finely aligned ks = kp − 2kc direction to
meet the |ks| = ωeg/c redirected phase-matching condition
(Fig. 1). As such, following the kp spin wave preparations
a k → k − 2kc shift can redirect the forward superradi-
ance to ks for its background-free detection. We collect the
ks-mode superradiance with a NA=0.04 objective for de-
tection by a multimode fiber coupled single photon counter.
To enhance the measurement accuracy, an optical filter at

780 nm is inserted to block possible fluorescence photons at
λD1 = 795 nm.

B. Intensity and decay of the redirected emission

The k-vector shift of dipole spin waves allows us to access
both the subradiant states with strongly phase-mismatched
wave vectors |k′

s| �= ωeg/c, and the redirected superradiant
states with phase-matched wave vectors |ks| = ωeg/c. A study
on the dynamics of subradiant states is left for a future publi-
cation [49]. In this paper, we primarily focus on the dynamics
of the directional superradiance. In particular, the redirected
superradiant emission from kp to ks in our setup naturally
avoids the large probe excitation background, which com-
monly exists in previous studies of forward emission [11,15],
and thereby enables us to characterize the redirected superra-
diance with high accuracy. With the spin-wave excitation of
timed-Dicke states prepared in a nearly ideal way (Sec. II A),
we go beyond Ref. [30] and verify the ikp ∝ N2 scaling as
in Eq. (4). Furthermore, we observe possible deviation of the
collective decay rate from (1 + OD/4)� [13,16,17,25], which
is likely related to a subtle superradiance reshaping effect [52].

We note Eq. (4) can describe what would be observed in
the redirected emission in an ideal experiment, e.g., if the first
pair of control pulses could be applied immediately (	t1 = 0)
and perfectly after the probe pulse. To quantitatively describe
the actual experiment, however, we must account for the fact
that the spin wave already begins decaying in a superradiant
fashion along the direction kp during the delay time 	t1,
that the ensemble is nonspherical and has different optical
depths ODp, ODs along the directions kp,s, and that the con-
trol efficiency fd < 1 for the applied unitary operation of
Eq. (2) is not perfect. The nonideal Ug control in presence
of, e.g., mF -dependent hyperfine phase shifts and spontaneous
emission during the control, only partly converts the S+(kp)
into S+(ks) excitation and further induces subwavelength den-
sity modulation in �(r), thus we expect simultaneous and
Bragg-scattering coupled superradiant emission into both the
Es(kp) and Es(ks) modes. Practically for optical control with
the focused laser beam as in this work, we numerically find
the ground-state atoms not shifted in momentum space are
often associated with dynamical phase broadening, leading
to suppressed S+(kp) excitation and distorted subwavelength
density fringes. A simple model for the superradiant photon
emission rate into the redirected Es(ks) mode is

is(t ) ≈ fd
ODs

ODp
ip(	t1)e−(1+(1−l )ODs/4)�D2(t−	t1 ). (6)

Here, we have accounted for the different optical depths along
the ks,p directions, the finite control efficiency fd , the superra-
diant decay that already occurs during the time 	t1 along the
original direction kp, and the fraction of atoms l that are lost
during the control process.

Experimentally, the spin-wave control for superradiance
redirection with a k vector shift kp → kp − 2kc by a sin-
gle pair of control pulses is first demonstrated in Fig. 3(a),
where the Es(ks) emission at a fixed delay 	t1 = 0.2 ns is
recorded. To study the collective effect of forward emission,
we vary the atom number N for atomic samples loaded into
the same dipole trap with nearly identical spatial distribution.
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FIG. 3. (a) Typical time-dependent redirected superradiant emis-
sion rate is(t ) multiplied by a detection quantum efficiency Q ≈ 0.15,
estimated over Nexp = 13 000 experiments. The plot is on log scale.
The curves are for samples with different atom numbers, with reso-
nant optical depth images along ex (insets) inferred from absorption
images taken at the corresponding experimental conditions. The
exponential fit gives the peak count rate imax,N and the collective
decay rate �N . (b) imax,N and �N are plotted versus estimated atom
number N and average optical depth ODx . The error bars represent
the statistical and fit uncertainties of the data.

The time-dependent photon emission rate is(t ), obtained by
normalizing the fluorescence counts with the number of runs
Nexp, counter time bin δt , and an overall detection quantum
efficiency Q ≈ 0.15, nicely follows exponential decay curves
for the accessed N between 2 × 103 and 9 × 103 in this work.
We extract both the peak emission rate imax,N and collective
decay rate �N with exponential fits, and study both quantities
as a function of atom number N .

The cooperative nature of the collective emission is clearly
demonstrated in Fig. 3(b) with the imax,N ∝ N2 scaling since
according to Eqs. (4) and (6) we have imax,N ∝ NODs but
ODs ≈ Nσr/σ

2 for our nearly spherical sample with size
σ . We experimentally extrapolate the average optical depth
ODs with ODx(y, z) measurements along the x direction
[Fig. 3(a) insets, see Appendix A for imaging details]. We
have ODs = ξ × ODx with ξ ≈ 0.8 to account for the ratio
of optical depth integrated along the ks and ex directions,

respectively. By comparing the quadratic fit that gives imax,s ≈
4 × 10−4N�D2ODx/4 in Fig. 3(b) with Eqs (4) and (6), we
find a time-integrated probe Rabi frequency of θp ≈ 2 × 10−2,
taking our best understanding of the efficiency fd = 0.7 (see
Sec. III E). This value of θp is consistent with the expected
excitation by the probe (with peak saturation parameter s ∼ 1
and duration τp = 5 ns) in these measurements [53], consid-
ering the large uncertainty in the absolute intensity parameter
estimations.

We now discuss the enhanced decay rate �N of the col-
lective emission, which is approximated in Eqs. (4) and (6)
under the assumption of negligible angular-dependent emis-
sion dynamics (Appendix B). This approximate decay rate
corresponds to that of the timed Dicke state [13,16,17,25].
Similar to previous studies of forward superradiance [10,11],
we find �N ∝ N for the redirected superradiance, as expected.
Here, to make a precise comparison with the theoretical pic-
ture, we plot the same data in Fig. 3(b) versus the in situ
measured average optical depth ODx. From Fig. 3(b), we
have �N/�D2 ≈ 1.1 + 0.26ODx. Using Eq. (6) again with ξ =
ODs/ODx ≈ 0.8 and the remaining fraction of atoms (1 −
l ) ≈ 0.9 in these measurements, as discussed in Sec. III E, we
obtain �N ≈ (1.1 + ν × (1 − l ) × ODs)�D2 with ν = 0.35 ±
0.1, with no freely adjustable parameters but with an uncer-
tainty limited by the ODs estimation in this paper. The likely
discrepancy between this result and the ν = 0.25, �N/� =
1 + OD/4 prediction of the collective decay of the timed
Dicke state [10,11,13] can be expected, since the measured
collective emission is(t ) is integrated over the σ -limited solid
angle ∼1/(kpσ )2 beyond the “exact” ks = kp − 2kc phase-
matching condition, while the small angle scattering of Es(ks)
by the sample itself generally affects the collective emission
dynamics [52], thereby violating our assumptions to reach
Eq. (4).

C. Reversible shift of spin-wave k vector

In the previous section, we have demonstrated the spin-
wave control for the redirection operation, where a high-
fidelity spin-wave vector shift kp → kp − 2kc is implemented
for the background-free detection of superradiance. We pro-
ceed further with our geometric control of the spin wave by
applying a second pair of switch-off (kp − 2kc → kp − 4kc)
control pulses along the kc direction, followed by a third
control for superradiance recall (kp − 4kc → kp − 2kc). The
superradiant emission iks in the ks = kp − 2kc direction is
recorded by the photon counter during the full redirection–
switch off–recall sequence. We refer readers to Ref. [30] for
discussions of the control sequence and the associated super-
radiance measurements. Here we provide an example signal
iks in Fig. 4(ii), where the photon counts are initiated, shut
off, and recalled at the expected instances when the three
spin-wave control operations as in Fig. 1 are performed.

To understand the observations in Fig. 4, we should note
that after the switch-off control, the new wave vector k′

s =
kp − 4kc is associated with wave number |k′

s| ≈ 2.9 ωeg/c
that is strongly mismatched from radiation. For our di-
lute ensemble, this spin-wave excitation should decay in a
superradiant-free fashion with approximately the single-atom
decay rate ∼�D2 [37]. At the same time, the emission into the
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FIG. 4. Experimentally measured photon emission counts iks

during spin-wave controls. In curve (ii), the collective spontaneous
emission along ks is switched on at 	t1 = 0.2 ns, switched off
at 	t2 = 0.8 ns, and recalled at 	t3 = 30.0 ns. The pulses are
optimized with τc = 0.5 ns, τd = 1.2 ns, �0 ≈ 2π × 4 GHz and
δ0 ≈ 2π × 4 GHz. The spin-wave generation is implemented with
a τp = 5 ns probe pulse. Here curve (i) shows the measured iks under
the same experimental conditions as those for the curve (ii), but for
the redirection only and with the switch off and the recall operation
removed.

same detection solid angle, without the collective enhance-
ment, should decrease by a factor of ∼N [13]. Following the
recall control, the spin wave is phase matched again and the
superradiance is recalled at the desired time after a 	t3 de-
lay. It should be noted that the recalled superradiance decays
almost on the same timescale of τ ≈ 15 ns as those for the
directly redirected superradiance, as shown in reference curve
(i) under the otherwise identical experimental conditions. The
reduced amplitude of the recalled emission (see Sec. II C)
reflects gradual decay of the mismatched S+(k′

s) spin-wave
order in the atomic gas (with an experimentally estimated
lifetime ∼26 ns in Ref. [30]), before its conversion back to
the phase-matched S+(ks) excitations. The fact that we can
map the phase-mismatched spin-wave order to light should
have significant consequences when this technique is applied
to arrays, where the subradiant dynamics has been predicted
to be particularly rich [24–28].

D. Optical acceleration

As discussed in Sec. II A, the control pulse sequence to
shift the spin waves also results in a spin-dependent kick,
which optically accelerates the phase-patterned |g〉 states by
the geometric force [54]. The momentum transfer along the
control beam along ez can be evaluated by integrating 〈F̂z〉
with the single-atom force operator F̂z = − h̄

2 ∂z�c|a〉〈g| +
H.c., as the projected atomic state evolves on the {|g〉 − |a〉}
Bloch sphere [Fig. 1(b)]. For ideal population inversions, the
integrated Berry curvature [55] gives the exact photon recoil
momentum 	P = 2h̄kc with h̄ the reduced Planck’s constant.

Going beyond Ref. [30], we experimentally measure the
recoil momentum transfer 	P associated with the D1 chirped
pulse pair along ez for the spin wave control, using a time-of-
flight (TOF) absorption imaging method [Fig. 5(b)]. Keeping
in mind the Doppler effects due to the acceleration affect
negligibly the nanosecond control dynamics, we repeat a k →

Ω

(a)

B C D EA

−

image beam
CCD

(b)

=
2
0
0
m
m

FIG. 5. (a) Typical absorption images of D1 controlled atomic
samples after a Ttof = 400 μs time of flight. The three red dashed
lines mark the expected positions for different momentum trans-
fer: 	P = 0h̄kc(i), 2h̄kc(ii), and 4h̄kc(iii). For images A–D, each
D1 control consists of a pair of chirp pulses with calibrated peak
Rabi frequency �0 = 0 GHz, 2π × 0.8 GHz, 2π × 1.9 GHz, and
2π × 2.7 GHz and chirp parameter δ0 = 2π × 0.1 GHz, 2π × 0.1
GHz, 2π × 0.1 GHz, and 2π × 3.4 GHz, respectively. For image
E, each D1 control consists of two pairs of chirped pulses with the
same parameters as that for image D. The central positions of the
atomic samples can be obtained with Gaussian fits. These parameter
combinations are also marked in Fig. 6(a). (b) Imaging setup for the
optical acceleration measurements. The setup is with aberration-free
numerical aperture of NA ≈ 0.3.

k − 2kc control pulse Nrep = 5 times to enhance the measure-
ment sensitivity. The period Trep = 440 ns 	 1/�D1 is set to
ensure independent interactions. We then measure the cen-
tral position shift of the atomic sample after a Ttof = 400 μs
TOF, using calibrated absorption images. For the absorption
imaging, the atomic sample is illuminated by a τexp = 20μs
imaging pulse resonant to 5S1/2 F = 2−5P3/2 F ′ = 3 along
the ex direction. The 2D transmission profile T (y, z) = I/I0

is obtained by processing the imaging beam intensity I, I0

on a CCD camera with and without the atomic sample, re-
spectively. We then process T (y, z) to obtain the optical depth
profile OD(y, z) of the samples (also see Appendix A). Next,
the central position shifts 	z0 are obtained with 2D Gaussian
fits for samples with and without the control pulses. Finally,
a velocity change is estimated as 	v = 	z0/(Ttof + τexp/2).
Typical absorption images are presented in Fig. 5(a) for
samples under D1 control pulses with various �0 and δ0

parameters as defined in Sec. III A. In particular, we expect
that the parameters used in image D in Fig. 5(a) lie in an
error-resilient region of parameter space and reflect the nearly
ideal momentum change of 	P = 2h̄kc. We shortly show that
the measured momentum kicks agree well with numerical
models.
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FIG. 6. Optical acceleration and efficiency for a k → k − 2kc spin-wave control with various pulse shaping parameters. Here τc =
0.9 ns, τd = 1.36 ns. The mean momentum shift 	P in (a) and normalized redirected superradiance (S.E.) in (c) are plotted versus peak
laser intensity parameter

√
s for control pulses with various chirping parameters δ0. (b) and (d) are simulated momentum transfers and dipole

control efficiencies fd with additional laser pulse parameters optimally estimated. The simulation also provides acceleration and dipole control
efficiency for an atom starting in the Zeeman state mF = 0 (dashed lines labeled with (i) in the legends). In (a), the A–D markers give
parameters for absorption images presented in Fig. 5.

With the knowledge of recoil velocity vr = h̄kc/m ≈
5.8 mm/s, we obtain 	P = 	v/Nrepvr × h̄kc per D1 control.
Typical 	P measurements are presented in Fig. 6(a) versus
intensity parameter

√
s, for shaped pulses with different chirp-

ing parameters δ0. For controls with nearly zero chirp (δ0 =
2π × 0.1, 1.0 GHz), 	P displays a damped oscillation, which
is due to optical Rabi oscillations with broadened periodicity
associated with intensity inhomogeneity of the focused laser.
The oscillation is suppressed at large δ0, with 	P reaching
89(4)% of the ∼2h̄kc limit at large s, suggesting a robust-
ness to our coherent control process. Similar measurements
are performed for the reversed k → k + 2kc controls which
results in opposite momentum shifts.

E. Control efficiency: calibration and optimization

To quantify the imperfections in implementing the
spin-wave control by geometric phase patterning [Ug

in Eq. (2)], we need to properly model the dissipa-
tive dynamics of collective dipoles. For this purpose,
we introduce the coherent dipole control efficiency, fd =
〈tr(ρηS+(ks)S−(ks))〉η/tr(ρ0S+(ks)S−(ks)), with ρη, ρ0 the
density matrix that describes the weakly D2 excited atomic
sample subjected to the nonideal Ũg and the ideal, in-
stantaneous Ug(	k) control by Eq. (2), respectively. Here
Ũg(	k; �0, δ0, η) due to the nanosecond shaped pulse control
is parameterized by the peak Rabi frequency �0 and chirping
parameter δ0, as well as factors η1,2 as the normalized laser
intensities for the forward and retroreflected pulses locally
seen by the atoms. The control efficiency fd is averaged over
the Gaussian intensity distribution.

To optimize the k → k − 2kc shift by the nonideal
Ũg(2kc; �0, δ0, η) control, experimentally we simply scan the
control pulse shaping parameters

√
s ∝ �0 and δ0 to maxi-

mize the redirected superradiant emission that generate the
time-dependent signal such as the curve (i) in Fig. 4. The
data in Fig. 6(c) are the corresponding total photon counts
by integrating the time-dependent signals. By optimizing the
total counts, we are able to locate the optimal pulse shaping
parameters �0 = 2π × 2.7 GHz and δ0 = 2π × 3.4 GHz for
the τc = 0.9 ns chirped-sine pulses in these experiments.

The magnitude of the optimally redirected superradiant
emission scales quadratically with total atom number N and
increases with both the probe excitation strength |�pτp|2 � 1
and the control efficiency fd [see Eqs. (4) and (6)]. However,
without accurate knowledge of the experimental parameters
associated with the spin-wave preparation and emission de-
tection, it is difficult to precisely quantify fd with the photon
counting readouts. Instead, we calibrate the spin-wave control
efficiency fd with a numerical modeling strategy. In par-
ticular, we perform density-matrix calculations of a single
atom interacting with the control pulses, including full hy-
perfine structure. Both the collective spin wave shifts and
matter-wave acceleration can be evaluated from the single-
atom results, if atom-atom interactions and re-scattering of
the control fields is negligible, as we expect to be the case
for the low atomic densities and high pulse bandwidths used
in our work. For the calibration, we first adjust experimental
parameters in numerical simulations so as to optimally match
the simulated average momentum shift 〈	P〉η in Fig. 6(b)
with the absolute experimental measurements in Fig. 6(a).
The corresponding fd under identical experimental conditions
are then calculated as in Fig. 6(d). The fairly nice match
between the superradiance measurements in Fig. 6(c) and
Fig. 6(d) is achieved by uniformly normalizing the total counts
in Fig. 6(c), with no additionally adjusted parameters. Near
the optimal control regime, the simulation suggests we have
reached a collective dipole control efficiency fd = 72 ± 4%,
accompanied with the observed fa ≡ 	P/2h̄kc = 89 ± 4%
acceleration efficiency. Constrained by the absolute accelera-
tion measurements, we found this optimal fd estimation to be
quite robust in numerical modeling when small pulse-shaping
imperfections are introduced.

On the other hand, for a full redirection–switch off–recall
sequence as in Fig. 4, we can also estimate the efficiency of
the k → k + 2kc recall. We fit the amplitude of the recalled
superradiant emission in the short 	t3 limit, and compare that
with the amplitude of the redirected emission with the same
experimental sequence [30]. The ratio between the two flu-
orescence signal amplitudes defines an overall storage-recall
efficiency for the controlled dipole spin wave intensity of
∼58%. By assuming equal efficiency for each of the two
operations, the efficiency for a single k → k ± 2kc shift is

043418-9



YIZUN HE et al. PHYSICAL REVIEW RESEARCH 2, 043418 (2020)

thus at the 75(5)% (∼√
58%) level, which are performed using

the second type of delay line [Fig. 2(b)] and reoptimized
pulse-shaping parameters. The efficiency is also consistent
with the prediction by numerical modelings, as discussed in
Appendix B.

The optimal fd as in Fig. 6(c) is limited by mF -dependent
hyperfine phase shifts and D1 + D2 spontaneous decays dur-
ing the τd + τc = 2.26 ns control. In particular, a l ∼ 10%
atom loss due to D1 spontaneous emission and 5P1/2 popu-
lation trapping (particularly for |mF | = 1 states) is expected
to reduce the number of atoms participating in the D2 col-
lective emission. With atoms prepared in a single mF = 0
state, spontaneous emission limited dipole control efficiency
of fd ≈ 87%, accompanied with an acceleration efficiency
fa ≈ 97% should be reachable [Figs. 6(b) and 6(d)] with the
same control pulses.

IV. DISCUSSIONS

The error-resilient state-dependent phase patterning tech-
nique demonstrated in this paper is a general method to
precisely control dipole spin waves in atomic gases and the as-
sociated highly directional collective spontaneous emission in
the time domain [37,56–58]. The control is itself a single-body
technique, which can be accurately modeled for dilute atomic
gases when the competing resonant dipole-dipole interactions
between atoms can be ignored during the pulse duration. With
the geometric phase inherited from the optical phases of the
control laser beams, it is straightforward to design ϕG beyond
the linear phase used in this work and to manipulate the col-
lective spin excitation in complex ways tailored by the control
beam wavefronts.

We note that the atomic motion associated with the control
can limit the coherence time of the spin-wave order in free
gases at finite temperature, and that the limiting effect can
be suppressed with optical lattice confinements [30]. In the
following, we discuss methods for perfecting the spin-wave
control in dense gases and then summarize possible prospects
opened by this work.

A. Toward perfect control with pulse shaping

The optical dipole spin-wave control in this work is sub-
jected to various imperfections at the single-body level. The
pulse-shaping errors combined with laser intensity variations
lead to imperfect population inversions and reduced opera-
tion fidelity. The imbalanced beam pair intensities lead to
spatially dependent residual dynamical phase writing and dis-
tortion of the collective emission mode profiles. The hyperfine
coupling of the electronically excited states may lead to in-
homogeneous phase broadening as well as hyperfine Raman
couplings, resulting in coherence and population losses as in
this work. Finally, the spontaneous decays on both the D1
control and D2 probe channels limit the efficiency of the
finite-duration pulse control. However, the imperfections of
the control stemming from the single-atom effects are gen-
erally manageable with better quantum control techniques
[59–62] well-developed in other fields, if they can be im-
plemented in the optical domain with reliable pulse-shaping
systems of sufficient precision, bandwidth, and output power.

Beyond single-body effects, we emphasize that with in-
creased �c strength and reduced τc,d time, it is generally
possible to suppress interaction effects so as to maintain the
precision enabled by the single-body simplicity, for precise
spin-wave control in denser atomic gases.

As discussed in Sec. III E, the pulse-shaping system used
in this work already supports fd ∼ 87% efficiency if atomic
mF states are better prepared, which is then limited by the
D1 and D2 spontaneous decay (single-atom limit) during the
τc + τd = 2.26 ns control time. Instead of imparting geo-
metric phase to the ground-state atoms, in future work an
|e〉 − |a〉 transition with a longer |a〉 lifetime [63] may be
chosen to implement a Ue(ϕG) for |e〉-state phase-patterning.
The influence from the D1 decay can thus be eliminated,
leading to fd ∼ 95% limited by the suppressed D2 decay.
With an additional fivefold reduction of τc to enable τc + τd to
∼400 ps, aided by the well-developed advanced error-resilient
techniques [59–62], we expect fd reaching 99% for high-
fidelity dipole spin-wave control.

For the error-resilient shaped optical pulse control, ideally
the fivefold reduction of control time from the τc = 0.5-0.9 ns
pulses in this work needs to be supported by a fivefold
increase of laser modulation bandwidth and a 25-fold in-
crease of laser intensity. Starting from the subnanosecond
pulse-shaping technique in this paper detailed in Ref. [30],
the improvement may be achieved with a combined effort
of stronger input, wider modulation, and tighter laser focus.
As a promising alternative, the control pulses may also be
generated with mode-locked lasers [34,35,64–67] with orders
of magnitudes enhanced peak power and pulse bandwidth.
Here we notice that for the same control operation, the re-
quired pulse peak power and energy scales with 1/τ 2

c and
1/τc, respectively. For controlling macroscopic samples as
in this work, the scaling toward ultrafast pulses can become
demanding enough to require sophisticated optical pulse am-
plifications, compromising the setup flexibility. In addition,
the control strength �c 	 1/τc and the modulation bandwidth
are also upper-bounded to minimize uncontrolled light shifts
and multiphoton excitations. Therefore, for the purpose of
precisely and flexibly controlling dipole spin waves, it appears
shaping picosecond pulses is more preferred than shaping
ultrafast pulses [34,64,68,69] for generating nearly resonant
pulses with a suitable duration and modulation bandwidth.

B. Summary and outlook

In this paper, we experimentally demonstrate and system-
atically study a state-dependent geometric phase patterning
technique for control of collective spontaneous emission by
precisely shifting the k vector of dipole spin waves in the
time domain. The method involves precisely imparting ge-
ometric phases to electric dipoles in a large sample, using
a focused laser beam with large intensity inhomogeneities.
Similar error-resilient techniques have been widely applied in
nuclear magnetic resonance [44,61,62,70]. Our work repre-
sents a step in exploring such error resilience toward optical
control of dipole spin waves near the unitary limit and for effi-
cient far-field access to the rarely explored phase-mismatched
optical spin-wave states. During the characterization of our
method, we also made intriguing observations related to fun-
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damental properties of spin-wave excitations. These include
a verification of the iN ∝ N2 scaling law, a qualification of
the enhancement relation �N/� = 1 + OD/4, and an observa-
tion of matter-wave acceleration accompanying the spin-wave
control. We have provided a theoretical analysis of this spin
wave and spontaneous emission control. Instead of working
with free-space and randomly positioned atoms, our control
technique can be readily applied to atomic arrays for effi-
cient access to highly subradiant states. The technique may
open the door to related applications envisaged in the field of
quantum optics [37,71], to help unlock nontrivial physics of
long-lived and interacting dipole spin-waves in dense atomic
gases [24–29,50,72–75], and to enable nonlinear quantum op-
tics based on subradiance-assisted resonant dipole interaction
[76–78].

Finally, on the laser technology side, we hope this paper
motivates additional developments of continuous and ultrafast
pulse-shaping methods for optimal quantum control of optical
electric dipoles.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Resonant OD and atom number measurements

The absorption imaging setup as schematically illustrated
in Fig. 5 not only helps us to quantify the optical accelera-
tion effect with TOF technique, but also to directly measure
the optical depth profile ODx(y, z) and atom number N as
in Sec. III B. To investigate the �N/� = 1 + OD/4 relation,
extra care was taken to extract the ODx(y, z) images from the
resonant absorption images. Here ODx(y, z) to be measured
should be the unpolarized atoms in the weak excitation limit,
with in situ �(r) distribution close to those in the quantum
optics experiments and for both low OD < 1 and quite high
OD ∼ 3.5. To ensure consistent �(r) distribution to be mea-
sured, a short exposure time of 20 μs is chosen. To collect
sufficient counts on the camera, we use imaging beams with

quite high intensity in the range of I0 = 1 ∼ 20 mW/cm2

and thus with a saturation parameter s = 0.3 ∼ 7 assum-
ing Is = 3.05 mW/cm2 [51] for π transition of 5S1/2F =
2 − 5P3/2F ′ = 3. We reduce the measurement uncertainty re-
lated to saturation effects following techniques similar to
Refs. [79,80]. In addition, to avoid measurement uncertainty
related to low local counts for the highly absorbing samples,
we calibrate the peak OD of the in situ samples with TOF
images at reduced OD. The processes are detailed as follows.

We start by repeated absorption imaging measurements for
nearly identical TOF samples with 2D transmission profile
T (I ) = I/I0 > 75%, with incoming I0(y, z) and transmitted
I (y, z) intensities recorded on the camera. The optical depth
profile in the weak excitation limit can be approximately
as ODx(y, z) = −logT (I ) + (I0 − I )/Ieff

s [79,80]. Here Ieff
s is

an effective parameter for calibrating our saturation inten-
sity measurements. By globally adjusting Ieff

s and thus the
(I0 − I )/Ieff

s term, we obtain consistent ODx(y, z) from all
the measurements with I0 = 1 ∼ 20 mW/cm2 with minimal
variations. Notice that the radiation pressure during the imag-
ing process does not significantly vary the power-broadened
atomic response.

The optimally adjusted Ieff
s serves to extract the ODx(y, z)

spatial profile for atomic sample immediately after their re-
lease from the dipole trap, as in Fig. 3(a) with approximately
identical spatial profiles. In addition, under the consistent
atomic sample preparation conditions, we also measure the
optical depth profile OD′

x(y, z) and total atom number after
a 430 μs TOF. The TOF greatly reduces the peak linear ab-
sorption for the highest OD sample here from the expected
95% ∼ 99% level down to 15% ∼ 25%, leading to more ac-
curate estimation of integrated OD that is served to calibrate
the in situ ODx measurements. To account for optical pumping
effects that tend to increase the F = 2 − F ′ = 3 light-atom
coupling strengths, a factor of 0.85 [51] is multiplied to the
extracted ODx(y, z).

We finally adjust ODx due to the imaging laser frequency
noise in this work by up to 30%, according to the measured
linewidth broadening of the TOF sample absorption spectrum
and then obtain ODs using the sample aspect ratio estimated
by the auxiliary imaging optics along ez. These last two steps
introduce the largest uncertainties into our ODs estimation. It
is worth noting that the laser noise correction tends to reduce
the ν value in Sec. III B. We use σr = 1.59 × 10−9 cm2 for
linearly polarized probe on 5S1/2, F = 2 levels to estimate
N = 1

σr

∫
ODx(y, z)dydz.

APPENDIX B: THEORETICAL MODEL AND
NUMERICAL SIMULATION

This Appendix provides a theoretical background associ-
ated with the experimental observations for both this paper
and Ref. [30]. First, in Appendix B 1, we provide a minimal
model to explain the collective spontaneous emission by the
controlled spin waves. Next, in light of short control time
τc,d with negligible atom-atom interaction effects, we set up
a single-atom model to explain the control of spin waves
supported by the nearly noninteracting atoms in Appendix
B2–B4. Different from Ref. [30], here we outline the method
to model the interaction between the atomic sample with the
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focused laser beam by estimating the most likely experimental
parameters, so as to clearly understand the physical limitations
behind the inefficiency of our spin-wave control. Finally, in
Appendix B5 we discuss the influence of controlled spin-wave
dynamics subject to hyperfine interactions during the superra-
diant recall operation.

1. Collective spontaneous emission from a dilute
gas of two-level atoms

We consider the interaction between N two-level atoms
with a resonant electromagnetic field at wavelength λp and
frequency ωeg. With transition matrix element deg = deged ,
the absorption cross section is given by σr = kpαi with αi =
2|deg|2/h̄�, � being the linewidth of the |e〉 − |g〉 transition.
The atomic ensemble follows an average spatial density dis-
tribution �(r) = 〈∑i δ(r − ri )〉 that is assumed to be nearly
spherical and smooth, in particular, �(r) does not vary
substantially on length scales other than that close to its char-
acteristic radius σ 	 λp. We further restrict our discussion
to intermediate sample size with σ � cτ , with c the speed
of light and τ the shortest time-scale of interest. The trans-
mission of a plane-wave resonant probe beam at the exit of
the atomic sample, in the r = {r⊥, rp} coordinate, follows the
Beer-Lambert law with transmission T (r⊥) = e−OD(r⊥ ). The
2D optical depth distribution is given by OD = N�c(r⊥)σr ,
�c(r⊥) = 1

N

∫
�(r)drp being the normalized column density.

To describe both the collective dipole dynamics and its col-
lective radiation, we regard the small atomic sample as system
and free-space optical modes as reservoir. The electric-dipole
interaction can be effectively described by the many-atom
density matrix ρ, after the photon degrees of freedom are
eliminated by the standard Wigner-Weisskopf procedure. Fol-
lowing the general approach [24,81], the density matrix ρ

obeys the master equation ρ̇ = 1
ih̄ (Heffρ − ρH†

eff ) + Lc[ρ],
where Lc is the population recycling superoperator associated
with random quantum jumps in the stochastic wave-function
picture. Here we focus on the effective Hamiltonian Heff that
governs the deterministic evolution of states and observables.
The non-Hermitian effective Hamiltonian can be expressed as

Heff =
∑

i

H i
a + V̂DD,eff , (B1)

with single-atom Hamiltonian Hi
a for atom at location ri,

and effective dipole-dipole interaction operator V̂DD,eff =∑
i, j V̂ i, j

DD that sums over the pairwise resonant dipole
interaction:

V̂ i, j
DD = −k2

p

ε0
d∗

eg · G(ri − r j, ωeg) · degσ
+
i σ−

j . (B2)

Here σ+
i = |ei〉〈gi|, σ−

i = (σ+
i )† are the raising and lowering

operators for the ith atom and ε0 is the vacuum permittivity.
G(r, ωeg) is the free-space Green’s tensor of the electric field
obeying

∇ × ∇ × G(r, ωeg) − ω2
eg

c2
G(r, ωeg) = δ3(r)1. (B3)

Intuitively, Eq. (B2) allows for the exchange of excitations
between atoms, which is mediated by photon emission and
reabsorption, and whose amplitude thus naturally depends

on G(r, ωeg) which describes how light propagates from one
atomic position to another.

With the spin-model description of the atomic dipole de-
grees of freedom, the electric field operator, describing the
light emitted by the atoms, can be written in terms of the
atomic properties as

Ês(r) = k2
p

ε0

N∑
i

G(r − ri, ωeg) · degσ
−
i . (B4)

Instead of generally discussing evolution of atomic states
in the N−spin space governed by Heff , in the following we dis-
cuss the timed-Dicke state |ψTD(k)〉 = S+(k)|g1, g2, . . . , gN 〉
and observables composed of collective linear operators. The
results can then be straightforwardly applied to weakly ex-
cited gases in the linear optics regime as in this experiment.

We first consider the field amplitude of the sponta-
neously emitted photons. The emitted single photon from
a timed Dicke state has a spatial mode profile εk(r) =
〈g1, g2, . . . , gN |Ês(r)|ψTD(k)〉, which is readily rewritten af-
ter the {ri}−configuration average as

εk(r) = k2
p

√
N

ε0

∫
G(r − r′, ωeg) · degeik·r′

�(r′)d3r′. (B5)

Writing the spatial coordinate as r = {r⊥, rk}, one can first
integrate Eq. (B5) at a fixed perpendicular coordinate over
rp, to obtain the emitted field at the end of the sample as
in Eq. (3) with δk = |k| − ωeg/c. The approximate integra-
tion assumes slowly varying amplitude along both r⊥ and
rk directions. For k = kp with δk = 0, we then integrate the
corresponding intensity over all transverse positions r⊥, and
normalize the radiation power by the energy h̄ωeg of a single
photon to obtain the collective photon emission rate i(1)

kp
=

2ε0c
h̄ωeg

∫ |εp(r)|2d2r⊥ ≈ ODp�/4. For weakly excited coherent

spin-wave excitation, this emission rate is multiplied by Nθ2
p

as in Eq. (4).
We now discuss time dependence of collective spontaneous

emission described by Eq. (4) in the main text. The topic is
related to a collective Lamb shift in a dilute atomic gas, an
important and quite subtle effect well studied in previous work
[16,82]. To apply the general theoretical predictions to this
paper, we explore the spin model [24] to revisit the decay part
of the problem, for the quite dense and small samples here.

We consider free gas evolution with Heff =
V̂DD,eff and time-dependent field amplitude εp(r, t) =
〈g1, g2, . . . , gN |Ês(r, t )|ψTD(kp)〉, for |r − ri| 	 λp and with
Ês(r, t ) evolving according to Heisenberg-Langevin equation
˙̂Es = 1

ih̄ (ÊsV̂DD,eff − V̂ †
DD,eff Ês) + f̂ . With the Langevin force

f̂ being averaged to zero, for |ψ〉 = |ψTD(kp)〉 we have

ε̇p(r, t) = −i〈g1, g2, . . . , gN |Ês(r, t ))V̂DD,eff |ψTD(kp)〉. (B6)

To evaluate Eq. (B6), we insert the orthogonal timed-Dicke
basis {|ψTD(kp)〉, |ψ1(kp)〉, . . . , |ψN−1(kp)〉} as in Ref. [16]
into the equation. Here |ψn(kp)〉 = S+

n (kp)|g1, . . . , gN 〉 are
single-excitation collective states with S+

n (kp) = ∑
i cn,iσ

+
i ,

n = 1, . . . , N − 1 and with cn,i properly chosen to ensure
the basis orthogonality [16]. We further define the far-field
emission amplitudes associated with the N − 1|ψn(kp)〉 states
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as εn(r, t ) = 〈g1, g2, . . . , gN |Ês(r, t ))|ψn(kp〉. We have

ε̇p(r, t ) = − iVDD(kp, kp)εp(r, t )

− i
∑

n

VDD(n, kp)εn(r, t ), (B7)

with VDD(kp, kp) = 〈ψTD(kp)|V̂DD,eff |ψTD(kp)〉 and similarly
VDD(n, kp) = 〈ψn(kp)|V̂DD,eff |ψTD(kp)〉. The second line of
Eq. (B7) includes random and collective couplings between
the kp superradiant excitation and other super- and subradiant
modes [83], a fact associated with |ψTD(kp)〉 not being the
eigenstate of V̂DD,eff [16,82,84].

The VDD(kp, kp) ∝ ∑
i, j d∗

eg · G(ri − r j, ωeg) · degeikp · (ri−r j )

factor in the first line of Eq. (B7) is carefully evaluated as
follows: For i = j, we have divergent d∗

eg · G(0+, ωeg) · deg

whose real part accounts for the single-atom Lamb shift
and is absorbed into a redefinition of ωeg, with imaginary
part equal to �/2 for isolated two-level atoms. The i �= j
part is evaluated after the {ri}−configuration average as

V ′= N
k2

p|deg|2
ε0

∫∫
d∗

eg · G(r − r′) · deg�(r)�(r′)eikp · (r−r′ )d3rd3r′.
Following the same integration trick to arrive at Eq. (3), we
rewrite this integration into the form of V ′ ∝ ∫

εp(r)�(r) to
have

V ′ ≈ Nσr�

4i

∫
d2r⊥

∫
drp

∫ rp

dr′
p�(r⊥, r′

p)�(r⊥, rp),

= − i

8
ODp� (B8)

with the normalized column density �c(r⊥) = ∫
�(r⊥, rp)drp

and with ODp = Nσr
∫

�c(r⊥)2d2r⊥, as in the main text. We
finally have

VDD(kp, kp) ≈ − i

2

(
1 + ODp

4

)
�. (B9)

To obtain the simple expression of V ′ in Eq. (B8) and
VDD(kp, kp) in Eq. (B9), the SVE and Raman-Nath approx-
imations are applied to evaluate εp inside the sample. The
approximations lead to field errors of order λp/σ or higher.
The corrections of these errors are associated with density-
dependent corrections to Eq. (B9), including the collective
Lamb shifts [16].

We come back to Eq. (B7). For the smooth density distribu-
tion at moderate densities under consideration, the intermode
couplings VDD(n, kp) are generally expected to be quite weak
and {ri}−specific. For the {ri}−averaged fields, at an ob-
servation location ro in the far field along the kp direction,
the couplings can be completely ignored initially, since with
G(ro − ri, ωeg) ∝ ei(kpro−kp·ri )

4πro
we have εp(ro, 0) ∝ ∫

�(r)d3r
while εn(ro, 0) = 0. We consider εp = εp + δεp, εn = εn +
δεn, VDD = VDD + δVDD, and apply the {ri}-configuration av-
erage to Eq. (B7). By ignoring the εn terms, we obtain the
initial decay of εp(ro, t ) as

ε̇p(ro, t ) ≈ −iVDD(kp, kp)εp(ro, t ) + O(〈δV δε〉). (B10)

Equations (B9) and (B10) suggest superradiant decay
of directional spontaneous emission power at the �N =
(1 + ODp/4)� rate on the exact forward (kp) direction for
atomic samples at moderate densities (N < k3

pσ
3). Apart

from predicting the decay rate of the far-field emission, it is
worth pointing out that the �N = 2Im〈ψTD(kp)|Heff |ψTD(kp)〉
associated with Eq. (B9) is also applicable to the de-
cay of |ψTD(kp)〉 population in the Schrödinger picture
[10,11,13,16,82,84,85], and by energy conservation the initial
rate of photon emission into 4π . In this paper, we further
approximately identify this decay rate with that for the ob-
servable ikp (t ) ∝ ∫

d2r⊥|εp(r⊥, t )|2, leading to Eq. (4) in the
main text for the collective emission. The same conclusion can
be reached if one simply assumes the spatial profile εp(r, t )
would not change significantly during the emission, so as to
ignore the VDD(n, kp) couplings. However, it is important to
note that for εn in Eq. (B7) associated with collective emission
near the forward directions (close to kp), the VDD(n, kp) cou-
plings can also be collective, and may strongly affect εp(r, t )
dynamics at r along similar directions. Such couplings are
just small angle diffractions by the averaged sample profile
that generally lead to reshaped emission wavefronts εp(r, t )
over time [52], and, as a consequence, deviation of ikp (t )
decay rate from that for the |ψTD(kp)〉 population. The last
term in Eq. (B10) is associated with granularity of the atomic
distribution, and we also expect that such granularity cannot
be ignored for very high densities or for systems with broken
symmetry, such as in a lattice.

In future work [49], it would be interesting to better un-
derstand the effect of discreteness on collective interactions,
and in addition to investigate further the corrections due to
the intermode coupling in Eq. (B7) and the possible deviation
from the dynamics of Eq. (4).

We remark that in all discussions in this paper, the re-
placement |deg|2 = h̄�αi/2 is general and applicable to atoms
with level degeneracy. Thus we expect the conclusions for
Eqs. (3)–(6) in the main text applicable to the D2 line of 87Rb
atom in this paper.

2. Simulation of spin-wave dynamics supported
by noninteracting atoms

We now ignore the atom-atom interaction in Eq. (B1) and
write down the effective non-Hermitian Hamiltonian for the
interaction-free model of N three-level atoms as

H ′
eff =

N∑
i=1

(
Hi

a + Hi
e − ih̄

�D2

2
|ei〉〈ei| − ih̄

�D1

2
|ai〉〈ai|

)
,

(B11)
where

Hi
a = −h̄	|ai〉〈ai| + h̄

2

(
η(ri )�c(t )e−iϕc (ri,t )σ+

c,i + H.c.
)

(B12)
and

Hi
e = −h̄	e|ei〉〈ei| + h̄

2

(
�p(t )e−iϕp(ri )σ+

i + H.c.
)
. (B13)

Here, ri is the spatial position of the ith atom and we have
σ+

c,i = |ai〉〈gi| and σ+
i = |ei〉〈gi|. The control Rabi frequency

is η(ri )�c(t ) = |Ec(ri, t ) · dag|/h̄, with a Gaussian beam in-
tensity profile. �c(t ) is the spatially peak value of the control
Rabi frequency and η(ri ) � 1 is a position-dependent factor.
�p is the Rabi frequency of the probe pulse with

∫ 0
−τp

�pdt�1
as defined before. ϕp(ri ) = −kp · ri is the optical phase of
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FIG. 7. Momentum lattice structure for probe excitation and Ug control simulations according to Eqs. (B14)–(B16). Dash arrows represent
the effective quantum jump operations associated with Eq. (B16). The double-sided arrows represent the coherent laser couplings. The
coherence between the wavy underlined lattice sites |e, k + kp〉 and |g, k + 2kc〉 is associated with the redirected superradiant emission.

the probe pulse. �c(t ) and ϕ̇c(ri, t ) = δc(ri, t ) are depicted in
Fig. 1(a) in the main text for robust state-dependent phase-
patterning. By changing the basis into k space, we can rewrite
the Hamiltonian in Eq. (B11) as Heff = ∑

H (s)
eff with

H (s)
eff = Hp + Hc1 + Hc2,

Hp = h̄
∑
g,k

	g|g, k〉〈g, k|

+ h̄
∑
e,k

(−	e − i�D2/2)|e, k〉〈e, k|

+ h̄
∑
a,k

(−	a − i�D1/2)|a, k〉〈a, k|

+ h̄
∑
g,e,k

(
1

2
�p(t + τp)cy

eg|e, k + kp〉〈g, k| + H.c.

)
,

Hc1 = −h̄
∑
a,k

δc(t − t1)|a, k〉〈a, k|

+ h̄
∑
g,a,k

(
1

2
η1�c1(t − t1)cx

ag|a, k + kc〉〈g, k| + H.c.

)
,

Hc2 = −h̄
∑
a,k

δc(t − t2)|a, k〉〈a, k|

+ h̄
∑
g,a,k

(
1

2
η2�c2(t − t2)cx

ag|a, k − kc〉〈g, k| + H.c.

)
,

(B14)

where |g, k〉 = 1√
N

∑
i eik·ri |gi〉 and similarly for |e, k〉 and

|a, k〉. Here we have included all the D1 and D2 hyperfine lev-
els and use {g, e, a} as indices to label the {5S1/2, 5P3/2, 5P1/2}
hyperfine levels, respectively. The cx

ag, cy
eg are coupling coeffi-

cients for ex− and ey− polarized D1 and D2 pulses, derived
from the Clebsch-Gorden coefficients. Here η1,2 are factors
to account for the laser intensity inhomogeneities. Following
the convention as in Fig. 1(a), the probe excitation is be-
tween −τp < t < 0, which is followed by the two D1 control
pulses (Hc1 and Hc2) starting at t1 = 	t1 and t2 = 	t1 + τd ,
respectively. We finally end up with the master equation for

the single-atom density matrix ρ (s) as

ρ̇ (s)(t ) = 1

i

(
H (s)

eff ρ
(s) − ρ (s)H (s)†

eff

)
+

∑
j

(
Ĉ j

D1ρ
(s)Ĉ j†

D1 + Ĉ j
D2ρ

(s)Ĉ j†
D2

)
. (B15)

The collapse operators are simply defined as

Ĉ j
D1 =

∑
a,g,k

√
�D1c j

ag|g, k〉〈a, k|,

Ĉ j
D2 =

∑
e,g,k

√
�D2c j

eg|g, k〉〈e, k + kp|, (B16)

with j running through x, y, and z polarizations. This effective
evolution of the density matrix within the momentum lattice
basis is summarized in Fig. 7.

With ρ (s)(t ) it is straightforward to calculate the
interaction-free evolution of the many-atom density ma-
trix ρ(t ) = (ρ (s)(t ))⊗N and to evaluate collective observables
〈Ô〉 = tr(ρ(t )Ô) [30]. By solving the master equation with
the initial condition ρ (s) = 1

5

∑5
g=1 |g, k〉〈g, k| (with |g〉 run-

ning through the |F = 2, mF 〉 Zeeman sublevels), we further
calculate the dipole coherence d(ks) = tr(ρ (s)(t )d−(ks)), and
similarly for d(kp) and d(k′

s). Here we define the oper-
ators d−(ks) = ey

∑
g,e cy

eg|g, k + 2kc〉〈e, k + kp|, d−(kp) =
ey

∑
g,e cy

eg|g, k〉〈e, k + kp| and d−(k′
s) = ey

∑
g,e cy

eg|g, k +
4kc〉〈e, k + kp|. The superradiant signal iks in the main text
is related to the expectation value 〈S+(ks)S−(ks)〉. In the
large N limit, we approximately have 〈S+(ks)S−(ks)〉 ≈
|〈S−(ks)〉|2, where 〈S−(ks)〉 is proportional to the dipole
coherence 〈d−(ks)〉 as 〈S−(ks)〉 ∝ N〈d−(ks)〉. Thus, by cal-
culating the dipole coherence, the simulation can reproduce
the D2 collective emission dynamics with D1 control for
noninteracting atoms. With experimental imperfections en-
coded in parameters like η1,2 in Eq. (B14), we refer to the
numerically evaluated single-atom density matrix according
to Eq. (B15) as ρ (s)

η (t ). For comparison, the perfect geometric
phase patterning is implemented by replacing the evolution by
Hc1 + Hc2 in Eq. (B14) with instantaneous Ug(−2kc) = 1 −∑

g |g, k〉〈g, k| + ∑
g |g, k + 2kc〉〈g, k|, leading to a perfectly
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controlled density matrix ρ
(s)
0 (t ) for t > 0. We then fur-

ther define is,η(t ) = |tr(ρ (s)
η (t )d(ks))|2 and similarly is,0(t ) =

|tr(ρ (s)
0 (t )d(ks))|2 for redirected superradiance under perfect

control.

3. fd and fa estimation

We relate the experimental observable iks (t ) with
ensemble-averaged is,η(t ) as 〈is,η〉η, and calculate collective
dipole control efficiency as fd = 〈is,η(τc + τd )〉η/is,0(0). The
ensemble average of emission intensity, instead of field ampli-
tude, is in light of the fact that we experimentally collect iks (t )
with a multimode fiber, and the signal iks (t ) is insensitive to
slight distortion of the Es-mode profile by the dynamic phase
writing due to the imbalanced η1,2.

The simulation of optical acceleration by the D1 con-
trol pulses follows the same Eqs. (B14) and (B15) but
without the probe excitation and with atomic levels re-
stricted to the D1 line only. We evaluate the momen-
tum transfer as 	Pη = h̄kc(

∑
g,n n〈g, k + nkc|ρ (s)

η (t )|g, k +
nkc〉 + ∑

a,n n〈a, k + nkc|ρ (s)
η (t )|a, k + nkc〉) for t = τc +

τd . We then compare the ensemble-averaged accelera-
tion efficiency fa = 〈	Pη〉η/(2h̄kc) with the experimental
measurements.

The η1,2 average in both calculations is according to spatial
distribution of the control laser beam intensity profile seen by
the atomic sample. As the final results are quite insensitive
to distribution details, we assume both the laser beam and
the atomic sample have Gaussian profiles, with waists w =
13 μm and σ = 7 μm by fitting the imaging measurements
and with optics simulations. We adjust the retroreflected beam
waist wr and the intensity factor η2 ∝ 1/wr accordingly in
the simulation, together with an overall intensity calibration
factor κ multiplied to the s parameter from the beat-note mea-
surements of the control pulses [30]. The ensemble-averaged
fa is compared with experimentally measured 	P/2h̄kc and
we adjust κ,wr to globally match the single-atom simulation
with all the measurement results for optical acceleration as in
Fig. 6. We then estimate both fa, fd as discussed in Sec. III E.
Since the second type of delay line [Fig. 2(b)] involves more
optics than the first one [Fig. 2(a)], we expect more power loss
and wavefront distortion for the retroreflected pulses. How-
ever, with the second-type delay line, we are able to exper-
imentally adjust the amplitude of the preprogrammed pulses
[marked with “p′” in Fig. 2(b)] to approximately rebalance the
intensity of the counterpropagating control pulses despite the
power loss. In the corresponding simulation, we accordingly
readjust the beam waist wr for the retroreflection together
with the intensity factor η2 ∝ α/wr . Within reasonable adjust-
ments, the simulation results (see Fig. 8) suggest that the effi-
ciency fd of the single k-shift operation reaches 75%, agree-
ing with the estimation based on the retrieval efficiency [30].

4. Reconstructing the controlled spin-wave dynamics

With the simulation parameters optimally matching the
experiment, we further simulate the experimental sequence
in Fig. 4 and calculate 〈|d(k)|2〉 = 〈|tr(ρ (s)

η (t )d(k))|2〉η asso-
ciated with collective dipole excitation with k = {kp, ks =
kp − 2kc, k′

s = kp − 4kc} for the forward, redirected, and

FIG. 8. Simulation of spin-wave dynamics for typical ex-
perimental sequences. The spin-wave intensities represented by
〈|d(k, t )|2〉 are evaluated according to Eq. (B15) with optimally es-
timated experimental parameters. (a) is according to Eq. (B14) with
a τp = 3 ns D2 probe excitation followed by a k → k − 2kc control
composed of two chirped D1 pulses with τc = 0.5 ns and τd = 1.24
ns at 	t1 = 0.2 ns. The kp (corresponds to forward radiation) and
ks = kp − 2kc (corresponds to the redirected radiation) spin-wave
components are plotted with dashed and solid lines, respectively.
The dash-dotted line corresponds to the mismatched k′

s = kp − 4kc

excitation. In (b), an additional k → k − 2kc is applied with 	t2 =
4.8 ns. In (c), a k → k + 2kc recall is simulated at 	t3 = 5.5 ns.
A recall efficiency similar to those in Fig. 4 is recovered. The
∼267 MHz quantum beat amplitude needs to be taken into account
when comparing the spin-wave amplitudes and to estimate the con-
trol efficiency. Notice the difference of τp and thus a different contrast
to the quantum beat comparing with measurements in Fig. 4.

subradiantly stored collective radiation, respectively. We
not only reproduce features of the experimental observable
iks (t ) ∝ 〈|d(ks)|2〉 but also unveil time-dependent dynam-
ics for the unmonitored forward emission 〈|d(kp)|2〉 and
the subradiantly stored or the superradiance-free excitation
〈|d(k′

s)|2〉. Typical results are given in Fig. 8.

5. Consistent recall at selected �t3 delay

The redirection–switch off–recall sequence as in Fig. 4
involves multiple spin-wave controls Ug(±2kc) implemented
with cyclic D1 transition, driven by pairs of counterpropagat-
ing control pulses. The controls are not perfect. In particular,
after each pair of pulsed control, there is residual D1 popula-
tion left in the 5P1/2 state with dipole coherence determined by
the optical phases as well as details of the control dynamics.
For two successive pulses of the same type, the coherently
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FIG. 9. Simulation of residual D1 dipole coherence induced in-
terference effect for the recall with various 	t3. (a) The pulse
sequence of the simulation, according to the experiments. (b) We
scan 	t3 with all the other parameters in the full redirection–switch
off–recall sequence unchanged and numerically calculate the relative
recall efficiency. Blue dashed line: Reference of single decay dynam-
ics. (c) The Fourier transform of the 	t3-dependent recall efficiency.

added residual D1 coherences may be enhanced or canceled,
depending on the relative phase between the two. Such in-
terference effects are actually explored for robust quantum
control with composite pulse techniques [62,86].

In this experiment, the interference effect emerges, in par-
ticular, between the second pulse of the switch-off control
and the first pulse of the recall control, both driven by a
−kc chirped pulse [Fig. 9(a)]. The relative phase between
the dipole coherence evolves according to the laser detuning
to the dipole transitions. Here, with the center frequency of
the control pulse at the midpoint of the hyperfine transi-
tions 5S1/2 F = 2–5P1/2 F ′ = 1, 2, the interference leads to
oscillation of the control efficiency, which is expected at the
frequency 	D1,hfse/4π = 814.5/2 MHz (	D1,hfse is the 5P1/2

hyperfine splitting.). The oscillations have been observed ex-
perimentally. To confirm the picture, we did a single-body
simulation including all hyperfine levels in the D1 and D2
line of 87Rb as modeled in Appendix B 2, by setting the
Hamiltonian Hc1 + Hc2 to match the sequence in the Fig. 1(a)
of the main text and furthermore with control parameters
consistent with the experimental condition. All the parameters
are fixed except the recall delay 	t3, which is scanned in
simulations to numerically evaluate a relative recall efficiency
define as frecall ∝ (|d(ks)|2)|t=3τc+3τd +	t1+	t2+	t3 . The simu-
lation results are shown in Fig. 9. As expected, the recall
efficiency oscillates with 	t3 with 	D1,hfse/2 frequency. In
addition, it should be noted that there is oscillation at the
frequency ∼6.8 GHz with much smaller amplitude [Fig. 9(b)],
which is associated with the hyperfine splitting of the ground
state. This additional modulation of the recall efficiency is
because the dipole coherence in the hyperfine transitions
5S1/2 F = 1–5P1/2 F ′ = 1, 2 is also excited during the control,
though inefficiently since the control pulse is far-detuned and
negligibly influences our measurements.

To make sure that the residual dipole coherence interfer-
ence effect is consistent for all recall delays, we carefully
select the recall delay time to be 	t3 = 4πm/	D1,hfse + toff ,
with integers m and a constant offset toff . This recall time
selection makes it possible for us to study the decay dynamics
of the phase-mismatched spin waves with a suppressed sys-
tematic error induced by the imperfect D1 control.
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[28] R. J. Bettles, J. Minář, C. S. Adams, I. Lesanovsky, and B.
Olmos, Topological properties of a dense atomic lattice gas,
Phys. Rev. A 96, 041603(R) (2017).

[29] Y.-X. Zhang and K. Mølmer, Theory of Subradiant States of a
One-Dimensional Two-Level Atom Chain, Phys. Rev. Lett. 122,
203605 (2019).

[30] Y. He, L. Ji, Y. Wang, L. Qiu, J. Zhao, Y. Ma, X. Huang, S. Wu,
and D. E. Chang, Geometric Control of Collective Spontaneous
Emission, Phys. Rev. Lett. 125, 213602 (2020).

[31] X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, Strong
optical forces from adiabatic rapid passage, Phys. Rev. A 75,
011402(R) (2007).

[32] T. Lu, X. Miao, and H. Metcalf, Nonadiabatic transitions in
finite-time adiabatic rapid passage, Phys. Rev. A 75, 063422
(2007).

[33] H. Metcalf, Colloquium: Strong optical forces on atoms in
multifrequency light, Rev. Mod. Phys. 89, 041001 (2017).

[34] A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, and
W. C. Campbell, Continuous all-optical deceleration and single-
photon cooling of molecular beams, Phys. Rev. A 89, 023425
(2014).

[35] X. Long, S. S. Yu, A. M. Jayich, and W. C. Campbell,
Suppressed Spontaneous Emission for Coherent Momentum
Transfer, Phys. Rev. Lett. 123, 033603 (2019).

[36] D.-W. Wang and M. O. Scully, Heisenberg Limit Superradi-
ant Superresolving Metrology, Phys. Rev. Lett. 113, 083601
(2014).

[37] M. O. Scully, Single Photon Subradiance: Quantum Control of
Spontaneous Emission and Ultrafast Readout, Phys. Rev. Lett.
115, 243602 (2015).

[38] J. Mizrahi, B. Neyenhuis, K. G. Johnson, W. C. Campbell, C.
Senko, D. Hayes, and C. Monroe, Quantum control of qubits
and atomic motion using ultrafast laser pulses, Appl. Phys. B
114, 45 (2014).

[39] J. D. Wong-Campos, S. A. Moses, K. G. Johnson, and C.
Monroe, Demonstration of Two-Atom Entanglement with Ul-
trafast Optical Pulses, Phys. Rev. Lett. 119, 230501 (2017).

[40] M. Jaffe, V. Xu, P. Haslinger, H. Müller, and P. Hamilton,
Efficient Adiabatic Spin-Dependent Kicks in an Atom Interfer-
ometer, Phys. Rev. Lett. 121, 040402 (2018).

[41] S. T. Cundiff and S. Mukamel, Optical multidimensional coher-
ent spectroscopy, Phys. Today 66(7), 44 (2013).

[42] F. D. Fuller and J. P. Ogilvie, Experimental implementations
of two-dimensional Fourier transform electronic spectroscopy,
Annu. Rev. Phys. Chem. 66, 667 (2015).

[43] T. A. A. Oliver, Recent advances in multidimensional ultrafast
spectroscopy, R. Soc. Open Sci. 5, 171425 (2018).

[44] T. Ichikawa, M. Bando, Y. Kondo, and M. Nakahara, Geometric
aspects of composite pulses, Phil. Trans. R. Soc. A 370, 4671
(2012).

[45] M. M. T. Loy, Observation of Population Inversion by Optical
Adiabatic Rapid Passage, Phys. Rev. Lett. 32, 814 (1974).

[46] S. Zhdanovich, E. A. Shapiro, M. Shapiro, J. W. Hepburn, and
V. Milner, Population Transfer Between Two Quantum States
by Piecewise Chirping of Femtosecond Pulses: Theory and
Experiment, Phys. Rev. Lett. 100, 103004 (2008).

[47] D. Goswami, Optical pulse shaping approaches to coherent
control, Phys. Rep. 374, 385 (2003).

[48] M. O. Scully and A. A. Svidzinsky, The super of superradiance,
Science 325, 1510 (2009).

[49] The spin-wave control technique combined with modified
trap geometries allows us to precisely characterize the phase-
(mis)matched dipole spin waves dynamics as a function of

043418-17

https://doi.org/10.1103/PhysRevLett.117.073002
https://doi.org/10.1103/PhysRevLett.117.073003
https://doi.org/10.1103/RevModPhys.77.633
https://doi.org/10.1103/PhysRevA.94.023612
http://arxiv.org/abs/arXiv:2006.01680
https://doi.org/10.1038/ncomms11039
https://doi.org/10.1103/PhysRevLett.102.143601
https://doi.org/10.1080/09500340.2016.1215564
https://doi.org/10.1103/PhysRevA.92.053826
https://doi.org/10.1103/PhysRevA.94.043844
https://doi.org/10.1088/1367-2630/ab31e8
https://doi.org/10.1103/PhysRevLett.116.103602
https://doi.org/10.1103/PhysRevLett.118.113601
https://doi.org/10.1038/s41586-020-2463-x
https://doi.org/10.1103/PhysRevX.7.031024
https://doi.org/10.1103/PhysRevA.94.013847
https://doi.org/10.1038/ncomms13543
https://doi.org/10.1103/PhysRevLett.119.023603
https://doi.org/10.1103/PhysRevA.96.041603
https://doi.org/10.1103/PhysRevLett.122.203605
https://doi.org/10.1103/PhysRevLett.125.213602
https://doi.org/10.1103/PhysRevA.75.011402
https://doi.org/10.1103/PhysRevA.75.063422
https://doi.org/10.1103/RevModPhys.89.041001
https://doi.org/10.1103/PhysRevA.89.023425
https://doi.org/10.1103/PhysRevLett.123.033603
https://doi.org/10.1103/PhysRevLett.113.083601
https://doi.org/10.1103/PhysRevLett.115.243602
https://doi.org/10.1007/s00340-013-5717-6
https://doi.org/10.1103/PhysRevLett.119.230501
https://doi.org/10.1103/PhysRevLett.121.040402
https://doi.org/10.1063/PT.3.2047
https://doi.org/10.1146/annurev-physchem-040513-103623
https://doi.org/10.1098/rsos.171425
https://doi.org/10.1098/rsta.2011.0358
https://doi.org/10.1103/PhysRevLett.32.814
https://doi.org/10.1103/PhysRevLett.100.103004
https://doi.org/10.1016/S0370-1573(02)00480-5
https://doi.org/10.1126/science.1176695


YIZUN HE et al. PHYSICAL REVIEW RESEARCH 2, 043418 (2020)

atomic density and number. A paper to present the findings is
under preparation.

[50] L. Henriet, J. S. Douglas, D. E. Chang, and A. Albrecht, Criti-
cal open-system dynamics in a one-dimensional optical-lattice
clock, Phys. Rev. A 99, 023802 (2019).

[51] D. A. Steck, Rubidium 87 D Line Data, http://steck.us/
alkalidata (revision 2.2.1, November 21, 2019).

[52] F. Cottier, R. Kaiser, and R. Bachelard, Role of disorder in
super- and subradiance of cold atomic clouds, Phys. Rev. A 98,
013622 (2018).

[53] The data in Fig. 3(b) is from automated measurements over
12 hours with three rounds of automation, with probe power
being increased by up to a factor of 5 to enhance the signals for
measurements with smallest atom numbers. The adjustments
are confirmed not to affect the decay dynamics, and the probe
intensities are all well within the linear excitation regime. We
recorded the probe light power for each automation. The imax,N

in Fig. 3(b) are relatively normalized by the recorded probe
power ratio for the three sets of automation.

[54] M. Cheneau, S. P. Rath, T. Yefsah, K. J. Günter, G. Juzeliūnas,
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