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We numerically study coherent errors in surface codes on planar graphs, focusing on noise of the form of Z
or X rotations of individual qubits. We find that, similar to the case of incoherent bit and phase flips, a trade-off
between resilience against coherent X and Z rotations can be made via the connectivity of the graph. However,
our results indicate that, unlike in the incoherent case, the error-correction thresholds for the various graphs do
not approach a universal bound. We also study the distribution of final states after error correction. We show that
graphs fall into three distinct classes, each resulting in qualitatively distinct final-state distributions. In particular,
we show that a graph class exists where the logical-level noise exhibits a decoherence threshold slightly above the
error-correction threshold. In these classes, therefore, the logical level noise above the error-correction threshold
can retain a significant amount of coherence even for large-distance codes. To perform our analysis, we develop a
Majorana-fermion representation of planar-graph surface codes and describe the characterization of logical-state
storage using fermion-linear-optics-based simulations. We thereby generalize the approach introduced for the
square lattice by Bravyi et al. [npj Quantum Inf. 4, 55 (2018)] to surface codes on general planar graphs.
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I. INTRODUCTION

In recent years, significant progress has been made to
improve the coherence times of qubits [1–3], including
demonstrations of key ingredients for quantum error cor-
rection (QEC) [4–8]. To proceed further on the way to
long-time stable qubits, topological codes such as the surface
code [9–11] are considered promising candidates.

One of the major benefits of the surface code is its high
tolerance to errors in physical qubits [11,12]. Error rates at the
theoretically estimated fault-tolerance threshold have already
been reached in experiments [1]. These thresholds are usually
based on the assumption that the noise acts in the form of
Pauli noise, an error model in which the action on the physical
qubits is given by Pauli operators chosen from a probability
distribution. In the uncorrelated case, the action on single
qubits can be described by the channel

EP[ρ] = (1 − ε)ρ + εxXρX + εyY ρY + εzZρZ, (1)

where ρ is the state of the qubit, X,Y, Z denote the Pauli
operators, and εx, εy, εz are suitably chosen probabilities (ε =∑

j ε j). This channel is also referred to as an incoherent
single-qubit error. Based on this error model, analytic re-
sults show that an error threshold exists under which, by
increasing the number of qubits in the code, the error rate
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for qubits encoded in the code (so-called logical qubits) can
be made arbitrarily small [12]. The appeal of the incoherent
error model is that all operations are from the Clifford group.
This, together with the stabilizer code nature of the surface
code, implies that the effect of such errors can be efficiently
simulated classically according to the Gottesmann-Knill the-
orem [13]. This allowed the numerical establishment of high
threshold rates [14,15], which gives reason for optimism that
QEC and ultimately general quantum computation is achiev-
able.

One of the limitations of the Pauli error model is that it
does not include coherent noise, e.g., errors where each qubit
undergoes a unitary rotation. These kinds of errors inevitably
occur (e.g., due to qubit detuning) in quantum devices and
therefore their interplay with QEC procedures needs to be
understood. Mathematically, focusing on single-qubit errors,
coherent errors correspond to the error channel

Ec[ρ] = UρU †, (2)

with U ∈ SU (2).
Theoretical studies of coherent errors suggest that they act

substantially different from incoherent errors [16–19]. In cer-
tain circumstances, they can build up quadratically faster than
incoherent errors [20]. It has been shown that they affect aver-
age fidelities less than incoherent errors, but introduce higher
diamond-norm error rates [21]. On the other hand, the logical-
level diamond-norm error rate can scale with code distance
as a more favorable power of the physical-qubit diamond-
norm error for coherent rather than incoherent errors [22]. It
was also found that even if physical qubits experience coher-
ent errors, the logical-level noise, especially upon averaging
over error syndromes, becomes increasingly incoherent with
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increasing code distance [23–25]; however, quantifying this
has some subtleties [26].

Simulations of QEC codes under coherent errors can give
a useful picture of the resilience against this kind of noise.
Direct simulations of the general coherent noise model are
limited by the exponential scaling of Hilbert space dimension
with the number of qubits. This may be partially sidestepped
using tensor network descriptions of the surface code, using
which, systems up to 153 qubits have been simulated [27]. The
size of the system was not sufficient to establish a threshold
but it provided evidence that using the so-called Pauli twirl to
approximate coherent errors as incoherent noise on the level
of physical qubits underestimates the logical error rate.

A key advance for understanding the effect of coherent
errors was the recent development of an algorithm capable of
simulating a subset of coherent errors with effort that scales
polynomially with the system size [24]. The algorithm ex-
ploits a representation [28,29] of the surface code in terms
of Majorana fermions and links this to coherent errors via
the classically efficiently simulable [30] fermion linear optics
(FLO) framework. By construction, the algorithm is limited
to coherent errors acting as unitary rotations about one of the
axes defined by the stabilizers, e.g., U = exp(iηZ ), and it was
developed for surface codes defined on a square lattice.

Here we describe a general approach for representing sur-
face codes with Majorana fermions on arbitrary planar graphs,
including planar lattices, and show how the FLO-based algo-
rithm can be adapted to this case. For incoherent errors, it was
found [31,32] that by changing the lattice geometry, one can
trade off resilience against phase flips for resilience against bit
flips. By applying our method to various lattices, and relating
Z rotations in one lattice to X rotations in its dual lattice, we
show that a similar trade-off is present for coherent errors as
well, but now for Z and X rotations instead of Z and X (that
is, phase and bit) flips.

Furthermore, we study the distribution of states resulting
from the application and correction of a coherent error and
investigate whether, and if so in what sense, the logical-level
noise decoheres, i.e., is approximable by a distribution of
Pauli errors. We show that the answer depends on a graph
classification that we establish. En route to our analysis of the
logical-level coherence, we also describe a coherent decoder
that takes advantage of the deterministic nature of coherent
errors.

II. SURFACE CODE ON GENERAL LATTICES

Stabilizer codes, and as such surface codes, are constructed
by defining a set of independent, mutually commuting, prod-
ucts g j of Pauli operators, in particular g2

j = I and g j �=
−I [33,34]. The logical subspace is the subspace of the
Hilbert space “stabilized” by the g j : |ψ〉 is in the codespace
if g j |ψ〉 = |ψ〉 for all j. The condition g j �= −I is required
for the logical subspace to be nontrivial. To perform error
corrections with such a code, first each of the stabilizers is
measured. The tuple s of outcomes that are obtained is referred
to as syndrome. From this syndrome, the decoder of the code
computes a Pauli correction operation Cs that brings the code
back to a state in which all stabilizers measure +1, i.e., the
logical subspace.

X

Z

Z

X

FIG. 1. A small surface code on a square lattice. The white
circles mark qubits. At each vertex of the lattice, a Z stabilizer is
placed, acting on all adjacent qubits. On each plaquette, that is an
area surrounded (or at the boundary partially surrounded) by links,
an X stabilizer is placed, acting on all qubits that are on its boundary.
Examples of X and Z stabilizers are indicated as grey boxes. The
code patch has two rough (dashed bars) and two smooth boundaries
(solid bars). For both types of boundaries, an appropriately truncated
stabilizer is shown.

The surface code is a particular stabilizer code derived
from the toric code [35]. It is usually defined on a patch of
a square lattice with a qubit placed on each of the links as
shown in Fig. 1. Each of the vertices are associated with a Z
stabilizer,

∏
j Z j , where the product is taken over the qubits

adjacent to the vertex. Conversely, each plaquette, that is, a
square surrounded by links, carries an X stabilizer,

∏
j Xj ,

where the product is over the qubits on the plaquette boundary.
In the toric code, this pattern is placed on a torus or some
other manifold without a boundary [35]. The surface code,
in contrast, is a planar construction based on a patch with
boundaries [9,11]. To obtain a finite-sized surface code, the
pattern must be terminated. The choice of boundaries deter-
mines the number of encoded logical qubits. The most often
used boundaries are so-called rough boundaries and smooth
boundaries. The rough boundaries are made of qubits on
which only one (instead of two) Z stabilizer acts. In terms of
the lattice, they are stubs pointing out of the boundary of the
patch, hence the name rough boundary. While the Z stabilizers
are unchanged compared to their bulk form at such a bound-
ary, the X stabilizers need to be modified due to the truncation
of the plaquettes. Smooth boundaries are boundaries without
such stubs. Now the X stabilizers are unchanged compared to
their bulk form but the Z stabilizers need to be modified. The
boundary stabilizers are shown in Fig. 1. A patch with two
rough and two smooth boundaries, in alternation, as shown in
Fig. 1, encodes one logical qubit. The logical Z operator can
be formed by a product of Z operators acting on each of the
qubits on one of the rough boundaries. Similarly, the logical X
operator can be constructed by a product of X operators acting
on each qubit on one of the smooth boundaries.

To facilitate defining and describing surface codes on arbi-
trary planar graphs, we first reformulate the above discussion
in terms of graphs. We illustrate our considerations in Fig. 2.
For this construction, we start with a graph representing the Z
stabilizers, together with external edges that mark the rough
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FIG. 2. (a) The embedded planar graph of the Z stabilizers for
the setup equivalent to that in Fig. 1. Grey circles mark the nodes of
the graph that represent Z stabilizers. (b) The same patch with added
virtual stabilizers (see text). (c) The dual of the graph, forming the
graph of X stabilizers. Light grey circles mark the nodes of the dual
graph that represent X stabilizers. (d) The final code, made up of both
the X - and Z-stabilizer graphs and the qubits. The qubits are shown
as white circles. (To avoid clutter, the stabilizer nodes are not shown.)

boundaries [Fig. 2(a)]. To distinguish the two rough bound-
aries from each other and to keep track of them we add two
connected virtual nodes, each connecting to all edges that
belong to one of the rough boundaries as shown in Fig. 2(b).
Using the virtual nodes, we can bring the external edges,
which form the rough boundaries, to the conventional notion
of graphs. This enables us to formulate the next steps in terms
of standard graph operations. The virtual nodes themselves
will not be translated into stabilizers of the code; instead, they
can be used to define the logical operators, as we shall later
explain.

From that graph, we can obtain the graph of X stabilizers
by building the dual. The dual of a graph embedded in a sur-
face is constructed by placing a node inside all faces that are
formed by the edges of that graph and connecting two nodes
if the faces they were placed on share a common edge. This is
illustrated in Fig. 2(c). The graph that is obtained is the graph
of X stabilizers. It also contains two virtual nodes, defined
as the nodes that are connected by the edge that is crossing
the edge connecting the virtual Z stabilizers. They are also
not translated into stabilizers. Finally, the qubits are placed on
the intersections of edges from the X - and Z-stabilizer graphs,
where the intersection of the edges connecting virtual nodes
is left out, resulting in a code patch shown in Fig. 2(d). Each
stabilizer acts on all qubits it is directly connected to. The
stabilizers thus defined are guaranteed to commute because
a face always shares two edges with each of the vertices on
its corner, therefore, the resulting node in the X -stabilizer
graph will share two qubits with the node from the Z-stabilizer
graph. Since the overlap is on an even number of qubits, the
corresponding operators commute.

Logical operators, i.e., Pauli products that commute with
all stabilizers but are independent of them, can be obtained

FIG. 3. (a) An example of a general planar graph with two rough
boundaries (left and right), defining the Z stabilizers (dark grey
circles) of the surface code patch. (b) The same graph with added
virtual stabilizers to keep track of the code boundaries (see text).
(c) In light grey, the dual graph, defining the X stabilizers (light grey
circles). (d) The qubits (white circles) placed on the resulting surface
code patch.

from the virtual nodes. Constructing an operator XL by build-
ing a product of X operators over all qubits that are connected
to one of the virtual nodes in the X -stabilizer graph produces
an operator that commutes with all stabilizers for the same
reasons the stabilizers commute with all other stabilizer, i.e.,
it overlaps on an even number of qubits with any of the
Z stabilizers and trivially commutes with all X stabilizers.
The same holds for the operator X ′

L that can be obtained by
choosing the other virtual node from the X -stabilizer graph,
as well as for ZL and Z ′

L, the operators obtained from placing
Z operators on the qubits attached to the virtual nodes of the
Z-stabilizer graph.

This gives a total of four operators (one for each virtual
node), however, only two of them are independent: X ′

L can be
obtained from XL by multiplication with all X stabilizers and
Z ′

L from ZL by multiplication with all Z stabilizers. Hence, we
need to study only XL and ZL. While XL and ZL commute with
all stabilizers, they anticommute with each other: We did not
include the qubit in the intersection of the edges between the
virtual nodes, hence ZL and XL overlap only on a single qubit.
Therefore, they form a pair of logical X and Z operators. We
choose ZL to be the logical Z operator and XL the logical X
operator.

Applied to the square lattice, this construction recovers
our previous discussion, as can be seen by comparing Figs. 1
and 2. However, it provides a framework for describing arbi-
trary planar graphs; an example is shown in Fig. 3 with the
four panels describing the steps analogous to those in Fig. 2.

A surface code defined on a general planar graph shares
many properties with the standard square-lattice surface code.
Both are Calderbank-Shor-Steane [5] codes, which means that
all stabilizers are either formed only by X or only by Z oper-
ations, a property we shall exploit to analyze the action of the
error. Also, they can both be decoded by a minimum weight
perfect matching (MWPM) algorithm [12,36,37]. Neverthe-
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less, there are subtle differences, e.g., in the average stabilizer
weight or the connectivity of the graph. In particular, the
connectivity has been shown to influence whether the code,
under incoherent errors, is more resilient against bit or phase
flips [31,32].

III. ERROR MODELS

In these planar graph surface codes, we shall study error
channels,

E =
N⊗

j=1

E j, (3)

where N is the number of qubits and E j is a single-qubit error
acting on qubit j. Our primary focus is the study of coherent
errors of the form

E j[ρ] = exp (iZ jη j )ρ exp (−iZ jη j ), (4)

where η j is a real parameter. The consideration of mere Z
rotations is linked to the FLO simulability of the system [24].
We note, however, that due to the duality relation between the
X - and Z-stabilizer graphs, we can also study X rotations by
exchanging the graphs for their duals.

To compare the effects of coherent errors to the incoherent
case, we shall also study Eq. (3) with Eq. (4) replaced by its
Pauli twirl:

E j[ρ] = ρ cos2 η j + ZjρZj sin2 η j . (5)

We shall be interested in studying what refinements of the
finding of Ref. [27], that the Pauli twirl underestimates the
coherent error, may arise in more general lattices and in as-
sessing how potential trade-offs between resilience against
X and Z errors compare in the coherent and incoherent [31]
cases.

IV. QUANTUM ERROR-CORRECTION AND ITS
CHARACTERIZATION

To study the logical errors that arise, we apply E to
the code followed by error correction R = ∑

s Rs based on
the MWPM decoder. Here Rs is the quantum operation of
measuring syndrome s followed by the application of the
corresponding Pauli correction. (In Sec. VII, we provide a
more detailed description of the procedure.)

Inspired by Ref. [24], we shall investigate the logical error
rate pL and the properties of the distribution of states after
error correction. A key difference between the square-lattice
case [24] and codes on general planar graphs is related to
whether the weight of all Z stabilizers (of ZL) is even (odd).
(The weight of a Pauli operator is the number of qubits on
which it acts nontrivially.) In Ref. [24], an alignment of the
square lattice is chosen where all Z stabilizers have even
weight and ZL has odd weight. (This does not hold in the
conventional orientation shown in Fig. 1 due to the boundary
stabilizers.) As explained in Ref. [24], a key consequence of
this is that Rs ◦ E acts as a unitary channel on the logical
qubit; the state ρs arising after Rs ◦ E is

ρs = 1

Ps
Rs ◦ E[ρ] = exp(iθsZL)ρ exp(−iθsZL), (6)

where neither θs nor the probability Ps of syndrome s depend
on the initial logical state ρ. Hence, both pL and the properties
of the final state ρs can be studied via a statistical analysis
of θs.

For more general graphs, apart from some special cases,
this property is absent and Ps depends on the initial logi-
cal state |ψL〉 of the code; the error correction process thus
reveals information about |ψL〉. In studying the logical er-
ror rate, we eliminate this |ψL〉 dependence by defining pL

as the diamond-norm distance between the actions on the
logical subspace of the identity and the average logical chan-
nel [24,38] �L defined by

�L[ρ] =
∑

s

Psρs =
∑

s

Rs ◦ E[ρ] = R ◦ E[ρ]. (7)

We are also interested in the properties of final states ρs.
To mitigate the |ψL〉 dependence of Ps in this case, we adopt
a statistical approach based on averaging with respect to a
uniform distribution of |ψL〉 across the Bloch sphere. With
|ψL〉 thus chosen randomly, the syndrome probability

Ps = Tr(Rs ◦ E[ρ]) ≡ P(s|ρ) (8)

must be viewed as the probability of s conditioned on the
initial state being ρ = |ψL〉〈ψL|. We shall be interested in
the Bloch-sphere-averaged distance between ρs and ρ. For a
suitable (semi)metric δ2(ρs, ρ) on the space of logical states,
this is

〈δ2(ρs, ρ)〉	 =
∫

	

dρP(ρ|s)δ2(ρs, ρ), (9)

where 	 is the Bloch sphere and the conditional probability
P(ρ|s) enters because we are after the Bloch-sphere average
given that the syndrome outcome is s. The combined Bloch-
sphere and syndrome average is

∑
s

P(s)〈δ2(ρs, ρ)〉	 =
∑

s

∫
	

dρP(s, ρ)δ2(ρs, ρ), (10)

where P(s) = ∫
	

dρP(s, ρ) is a marginal of the joint
syndrome-Bloch-sphere distribution P(s, ρ). For computa-
tional convenience, for δ2 we shall use the square of the
trace-norm distance,

δ(ρs, ρ) =
√

1 − |〈ψL|ψs〉|2, (11)

between ρ and ρs = |ψs〉〈ψs|. That is, we consider the
average infidelity conditioned on measuring syndrome s.
Equation (10) thus gives the average infidelity to the identity
of the average logical channel. For a discussion of the relation
between the average infidelity and the diamond-norm dis-
tance, see Refs. [21,25,26,39,40] and for the relation between
the worst-case and average infidelities see Ref. [41].

V. MAJORANA GRAPH

To study the model introduced above, we represent the
surface code on a planar graph in terms of a corresponding
Majorana fermion graph. Our approach is based on that of
Refs. [24,28,29]; it proceeds by representing physical qubits
in terms of Majorana fermions and a local constraint. In this
way, the eigenstates of the surface code are described in
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FIG. 4. (a) Representation of a qubit in the C4 encoding with
four Majorana fermions c1, c2, c3, c4. The Pauli operators X and Z
can each be formed by two equivalent dimers (pairs) of Majorana
fermions. The order of the operators is indicated by arrows, e.g.,
X = ic1c2 is represented by an arrow from c1 to c2. (b) Majorana
graph for four qubits. A stabilizer with support on different qubits
can be represented in terms of the Pauli dimers (black) of the qubits,
but also using link dimers (grey) between the qubits. Link dimer ori-
entations must be chosen to ensure equivalence to Pauli dimerization
of stabilizers; this results in a Majorana graph where edges (Pauli and
link dimers) have Kasteleyn orientation.

terms of free-fermion eigenstates of a quadratic commuting-
dimer Majorana Hamiltonian projected to the physical, qubit,
Hilbert space.

To obtain this representation, each qubit j is encoded in
four Majorana fermions c j1, c j2, c j3, c j4. This is referred to as
C4 encoding. The Majorana fermions c jk satisfy

c†
jk = c jk, {cik, c jl} = 2δi jδkl , (12)

where {...} denotes the anticommutator and δi j is the Kro-
necker delta. A conventional fermion, satisfying {dm, d†

n } =
δmn, is built out of a pair of Majorana fermions via dm =
cm1 + icm2. The four Majorana fermions for qubit j thus corre-
spond to two conventional fermions, hence a four-dimensional
Hilbert space. To arrive at a two-dimensional Hilbert space en-
coding a qubit, we introduce the stabilizer S j = −c j1c j2c j3c j4

and work in the subspace satisfying S j = 1 for all qubits j.
We shall refer to the S j as qubit stabilizers.

In the C4 encoding, the Pauli operators on a qubit are
given by Majorana bilinears, Xj = ic j1c j2,Yj = ic j1c j3, Zj =
ic j2c j3. We shall call these bilinear Pauli dimers. They satisfy
the commutation relations for Pauli operators and commute
with the qubit stabilizer S j . Since C4-encoded states are sta-
bilized by S j , there is for each Pauli dimer an equivalent Pauli
dimer: Xj = ic j2c j3S j , Yj = ic j2c j4S j , Zj = ic j4c j1S j .

It is beneficial to represent C4-encoded qubits in terms of a
Majorana graph, as shown in Fig. 4. In this graph, nodes repre-
sent Majorana fermions and the edges between them represent
bilinears icikc jl . The edges have an orientation indicated by
arrows reflecting the operator order: for a bilinear icikc jl , the
arrow points from fermion cik to fermion c jl . The Pauli dimers
we shall use for a single qubit j are those for Xj and Zj . The
graph for a single qubit is shown in Fig. 4(a).

The Z and X stabilizers of the surface code involve prod-
ucts of Pauli operators from different qubits. Such products
translate into products of Majorana operators which we have
the freedom to reorder, provided we keep track of the signs.
As illustrated in Fig. 4(b), this freedom can be used to change

from Pauli dimers to link dimers, i.e., on the links between
the qubits. In the example of Fig. 4(b), the stabilizer XaXbXc

is rearranged:

XaXbXc = (ica1ca2)(icb3cb4)(icc1cc2)

= (ica1cb4)(icc2cb3)(ica2cc1).
(13)

Note that the rearrangement is performed in such a way that
the dimer icc2cb3 is also a part of the rearrangement of the
stabilizer ZbZcZd .

More generally, consider a stabilizer g involving a product
of n Pauli operators, for which we can pick dimer representa-
tions such that the Pauli dimers can be connected by additional
edges such that the joint set of added edges and Pauli dimers
forms the boundary of a face in the Majorana graph. Then we
can represent g in terms of a clockwise product of Majorana
fermions along the boundary of that face. Considering this
operator order, each of the Pauli dimers in g has the form
iskcαk cβk , where αk and βk enumerate the double (i.e., qubit
and Majorana) indices along the boundary of the face and
sk = −1 if this operator order is opposite to that of the original
Pauli dimer (sk = 1 otherwise). That is,

g = (
is1cα1 cβ1

)(
is2cα2 cβ2

)
. . .

(
isncαn cβn

)
. (14)

We now rearrange the product such that it is over link dimers.
A simple rebracketing is sufficient for this for all but the first
and the nth Pauli dimer:

g = cα1

(
is1cβ1 cα2

)(
is2cβ2 cα3

)
...

...
(
isn−1cβn−1 cαn

)(
isncβn

)
. (15)

To form the link dimer icβn cα1 , however, cα1 has to be com-
muted through an odd number of Majorana fermions yielding

g = −(
is1cβ1 cα2

)(
is2cβ2 cα3

)
...

...
(
isn−1cβn−1 cαn

)(
isncβn cα1

)
. (16)

Provided we absorb this additional sign in the orientation
of one of the link dimers, we now find that the stabilizer is
expressed as a product over these. Since all but one of these
have a corresponding Pauli dimer with the same orientation,
the total number of clockwise-oriented edges (i.e., Pauli and
link dimers) around the face of the Majorana graph is odd.
By the same logic, the same holds for each of the faces that
represent a stabilizer in the graph. The Majorana graph thus
has an orientation in which all faces have an odd number of
clockwise oriented edges: a so-called Kasteleyn orientation.

The free-fermion state underlying the description of the
surface code emerges from the observation that the entire
set of stabilizer generators can be rearranged in the way
described above and thereby be described in terms of mutu-
ally commuting link dimers. (These dimers, however, do not
commute with the qubit stabilizers Sj , highlighting the fact
that the surface code eigenstates are not free-fermion states,
but projections thereof.) For the square lattice, this is shown
in Refs. [24,28,29]. In the following, we shall describe an
algorithm with which one can construct Majorana graphs for
surface codes on arbitrary planar graphs. We shall illustrate
our algorithm using the Z-stabilizer graph in Fig. 3(a) and the
corresponding qubit graph in Fig. 3(d).
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FIG. 5. (a) The construction of graph G with one face per stabi-
lizer for the surface code in Fig. 3. (b) The edges of G can be used as
Majorana dimers for the C4 encoding of the surface code. This results
in four Majorana fermions per qubit except for the four qubits in the
corners (grey). (c) A Kasteleyn orientation of the dimers. (d) Zoom
from panel (c) showing the C4 encoding of the individual qubits (cf.
Fig. 4).

We start the construction of the Majorana graph M with
the qubit graph Q, the graph containing both qubits and stabi-
lizers as vertices and connecting each stabilizer to the qubits
they are acting on. The construction of Q starting from any
initial planar graph of Z stabilizers is described in Sec. II
[an example is shown in Fig. 3(d)]. To construct M, we will
construct one intermediate graph G by taking all qubits from
Q and connecting them if this can be done without crossing
any edge in Q. Figure 5(a) shows graph G obtained in this
way from Q in Fig. 3(d). Graph G has the property that it
contains a face for every stabilizer generator and the operator
it represents acts on the qubits on the boundary of that face.
Additionally, it has the property that every qubit, apart from
those at the corners, has four edges connected to it. Qubits
at the corners are different because these miss the link to the
qubit that was not inserted because it would have been at the
intersection of edges connecting virtual stabilizers.

To obtain the Majorana graph M, we place two Majorana
fermions on each of the edges in G and associate each of the
fermions to one of the qubits at the edge’s ends. Using this
method, we associate with each qubit the same number of Ma-
jorana fermions as the qubit has edges connected to it. Since in
graph G each of the vertices, except the four on the corners of
the graph, is connected with four edges, all qubits, except the
qubits in the corner, have four Majorana fermions associated
to them. For the example system we are considering, this stage
of the construction is shown in Fig. 5(b). To be able to encode
all qubits in the C4 encoding, we add one additional Majorana
fermion to each of the qubits at the corners of the code, such
that these additional fermions are in none of the faces of graph
G. This gives the complete set of vertices for graph M.

To construct the edges of M, we first add an edge between
two of its vertices if they were on the same edge in G; these
edges will form the link dimers. We also add the edges asso-
ciated to the C4 encoding of the qubits by adding the edges
forming a face around each qubit; these edges will form the
Pauli dimers. This completes the construction of the (thus far
unoriented) edges of M.

Next, we have to associate some more structure to M:
We must assign (i) a Kasteleyn orientation [cf. Fig. 4 and
under Eq. (16)] and (ii) a placement of Pauli dimers (i.e., a
numbering c j1, . . . , c j4 of Majorana fermions) around each
qubit such that the clockwise Majorana product around each
face of G encodes the correct stabilizer. That such a structure
exists can be seen as follows. First, we consider the Pauli
dimers. In the bulk of the code, the stabilizers surrounding a
qubit alternate between X and Z , since qubits are placed on the
intersection of an edge of the X -stabilizer graph and an edge
of the Z-stabilizer graph. Similarly, the dimer representation
of the Pauli operators in the C4 encoding alternates between
X and Z dimers [cf. Fig. 4(a)]. Therefore, we can always
arrange Pauli dimers such that each of them is adjacent to
the stabilizer face to which it contributes. (On the edge of the
code, there are less than four surrounding stabilizers, however,
the existing adjacent stabilizers already specify the placement
of X and Z dimers). In a convention where X dimers are ori-
ented clockwise [Fig. 4(a)], there are two possible orientations
for each qubit: We can choose which of the Z Pauli dimers
is oriented anticlockwise. We can pick any of the two. This
defines the Pauli dimer part of the Majorana graph, including
the orientation of the faces around each of the qubits.

To complete the structuring of M, we must orient the
link dimers such that, globally, a Kasteleyn orientation is
obtained. To this end, we can use that each of the so-far
unoriented faces (edges) in M is associated to a face (edge)
in the graph G. Then, for any face in G, we count the number
n of clockwise-oriented Pauli dimers surrounding the cor-
responding face in M. If n is odd, we have to orient the
edges of this face of G such that an even number of edges
are clockwise (and vice versa for n even). In this way, it is
sufficient to find an orientation of G such that each face has the
parity of clockwise oriented edges as determined by n before.
To produce this orientation for G, we can proceed similarly
to the first steps of the Fisher-Kasteleyn-Temperley (FKT)
algorithm [42]. By orienting M’s link dimers according to
the orientation obtained for G, we have obtained a Kasteleyn
orientation of M. The resulting graph and orientations for our
example are shown in Figs. 5(c) and 5(d).

The logical state of the surface code patch is defined by the
state of the qubit encoded in the four unpaired corner Majo-
rana fermions [24]. This becomes clear when we consider the
Majorana encoding of the logical operators. Following steps
analogous to Eq. (16), the Majorana encoding of either of the
logical operators requires a new link dimer connecting two
of the four corner fermions (as shown in Fig. 6); the new
link dimer has an orientation such that the resulting new face
(which corresponds to a virtual stabilizer for G) has an odd
number of edges pointing clockwise. In the initial state in
which all stabilizers measure +1, all equivalent realizations
of a logical operator must have the same expectation value.
Therefore, we have to add such faces for both realizations
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FIG. 6. Majorana encoding of logical operators. A logical opera-
tor of the code translates to an additional face in M bounded by a link
dimer formed by two of the four initially unpaired corner Majorana
fermions. (a) shows M with the two link dimers that form both
realizations of ZL (each dimer corresponds to one of the two virtual Z
stabilizers of Sec. II). The additional faces of M for including these
dimers are shown in grey. (b) Link dimers for XL, showing again the
two additional faces.

(corresponding to both of the virtual stabilizers) of the logical
operator. By stabilizing the state that is encoded in the Majo-
rana graph with a logical operator, we fix the logical state of
the code to be in a +1 eigenvalue of that logical operator. We
thereby fix the code to be in either the |0L〉 state by choosing
to stabilize with ZL or in the |+L〉 state by using XL. To
initialize the code in the |YL〉 state, we can pair up fermions
from diagonally opposite ends of the code patch.

VI. FLO SIMULATION

In the following, we describe how to use the methods
introduced in Ref. [24] to sample from the distribution of
syndromes and how to compute, given a syndrome s, the
overlaps

〈±L|Cs exp iηZ|+L〉, 〈±L|Cs exp iηZ|YL〉, (17)

where Cs is the Pauli correction for syndrome s, η =
(η1, η2, . . . , ηN ), Z = (Z1, Z2, . . . , ZN ), and ηZ is the scalar
product between the two. From these overlaps, the quantities
characterizing the error correction process [cf. Sec. IV] can be
extracted using Monte Carlo simulation, as shown in Secs. VII
and IX.

To perform these operations, we use the framework of
FLO. Within this framework we have access to the following
operations:

(1) Initializing a dimer in the +1 eigenstate.
(2) Applying the unitary operation R = exp(ηcic j ) with an

arbitrary real η.
(3) Projectively measuring a dimer operator, with or with-

out postselection.
These are operations that maintain the property of a state

to be a fermionic Gaussian state, which can be exploited to
simulate their actions efficiently [30].

The limitation of the FLO algorithm is that it cannot treat
quartic products of Majorana operators such as those in the
qubit stabilizers S j . To bypass this problem, each qubit is
projectively measured in the |±〉 basis; we shall see that this
allows working with objects involving Majorana bilinears.
Although this makes it impossible to evaluate the Z stabilizers,

such evaluation is not needed: Since we apply only Z rota-
tions, we know that none of the Z stabilizers could have been
flipped.

To sample from the syndrome distribution, we sample from
the eigenvalues ma of single-qubit Pauli operators Xa; the
eigenvalues of X stabilizers can be computed from ma classi-
cally. The probability for measuring ma requires performing
three steps on each qubit a: First, switch to fermions and
project into the C4 encoding using (1 + Sa)/2, then apply the
coherent error Ua = exp IηaZa, and, finally, apply the projec-
tor (1 + maXa)/2. Since Za commutes with the qubit stabilizer
Sa, we can perform the rotation first; a further reordering of the
Majorana fermions gives

Pa(ma) = 1
2 (1 + maXa) 1

2 (1 + maSaXa) exp(IηaZa), (18)

in terms of which the joint probability of measuring m =
(m1, m2, . . . mn) is the expectation value of

∏N
a=1 Pa(ma) with

respect to a Gaussian state. Note that computing this joint
distribution requires only rotations and measurements with
postselection, both involving dimers only, allowing a compu-
tation using the FLO operations introduced above. However,
this by itself does not offer a route to efficiently sample from
the exponentially many outcomes m. Reference [24] showed
how one may do this qubit by qubit, thus breaking the sam-
pling down to a repeated sampling from just two states. The
success of this approach hinges on choosing a correct order
in which to measure the qubits: The order must be such that
graph G stays connected when removing, after every measure-
ment, the qubit that was measured. Such an ordering can be
obtained for our graphs by performing a breadth-first search
through the graph; the obtained order can be used in reverse.

From the sampled m, we compute the syndrome s clas-
sically using suitable products of ma for the corresponding
X stabilizers. From s, the decoder produces the correction
Cs. Since, by construction, no Z stabilizer is flipped, the
correction contains only operators that correct X stabiliz-
ers: Cs contains only Z operators. Using this, we define ηs
according to

exp iηsZ = Cs exp iηZ, (19)

that is, we absorb the correction operations into the parameters
of the coherent rotations.

The quantity we aim to compute is 〈+L| exp iηsZ|+L〉. We
can expand |+L〉 in the computational basis; it is given by the
sum over the set L of all computational basis states that satisfy
all Z stabilizers:

|+L〉 = |L|−1/2
∑
x∈L

|x〉. (20)

Furthermore,

〈+L| exp iηsZ|+L〉 = |L|−1
∑
x∈L

∑
y∈L

〈y| exp iηsZ|x〉

= |L|−1
∑

y∈{0,1}N

∑
x∈L

〈y| exp iηsZ|x〉

= 2N/2|L|−1
∑
x∈L

〈+⊗N | exp iηsZ|x〉

= 2N/2|L|−1/2〈+⊗N | exp iηs|+L〉, (21)
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where in the second line we used that exp iηsZ is diagonal
in the computational basis to replace

∑
y∈L by a summation

over all computational basis states, and in the third line we
used that 2N/2|+⊗N 〉 = ∑

y∈{0,1}N |y〉. Hence,

|〈+L| exp iηsZ|+L〉|2 = M−2|〈+⊗N | exp iηsZ|+L〉|2, (22)

with M = 2−N/2|L|1/2. Equation (22) is a constant M−2 times
the probability to measure the outcome |+〉 for all qubits.
Hence it can be computed using the FLO algorithm, this time
without sampling, to find the probability for the outcome
m = (1, 1, ...). To eliminate the factor M we can build the
ratio

qs = |〈−L|Cs exp iηZ|+L〉|2
|〈+L|Cs exp iηZ|+L〉|2

= |〈+⊗N |ZL exp iηsZ|+L〉|2
|〈+⊗N | exp iηsZ|+L〉|2 . (23)

For the simulation, the operator ZL can be absorbed into η the
same way we absorbed Cs.

In a similar fashion, we can compute the ratio

rs = |〈−L|Cs exp iηZ|YL〉|2
|〈+L|Cs exp iηZ|YL〉|2 , (24)

i.e., the same expectation values but starting with the |YL〉
state. This can be done by initializing the simulation in a
different state such that the logical state is given by |YL〉.

VII. AVERAGE LOGICAL CHANNEL

In the following, we explain how to obtain the full action
of the average logical channel from the observables qs, rs that
are accessible via the FLO simulation.

To this end, we first need a description of the recovery
procedure R. The recovery scheme consists of two steps.
First, all stabilizers are measured; this projects the state into
one syndrome s. This projection is performed by the projector
�s. Next, depending on the syndrome s, the decoder chooses
a correction operation Cs. The combined recovery is given by

R[ρ] =
∑

s

Cs�sρ�sC
†
s . (25)

Since Cs maps between the space in which the stabilizers have
syndrome s and the logical subspace, we can represent �s =
Cs�0C†

s , where �0 denotes the projection into the logical
subspace. Using this relation and the fact that the corrections
Cs are Pauli operators and thus satisfy Cs = C†

s , the operation
R can be expressed as

R[ρ] =
∑

s

�0CsρCs�0. (26)

The correction R together with the error E is

R ◦ E[ρ] =
∑

s

�0Cs exp(iηZ)ρ exp(−iηZ)Cs�0. (27)

This operation maps any state of the logical subspace back to
the logical subspace. Within that subspace, it is the average
logical channel

�L[ρ] = R ◦ E[�0ρ�0], (28)

where we introduced �0 to remind that we view �L[ρ] as a
quantum channel on the logical subspace.

Since we have an algorithm to sample from the distribu-
tion of syndromes, we study the action corresponding to an
individual syndrome s,

Rs ◦ E[�0ρ�0] = DsρD†
s , (29)

where we introduced Ds = �0Cs exp(iηZ )�0. We consider
the action of Ds in the logical subspace. Ds commutes with the
logical ZL operator, therefore, Ds is diagonal in the ZL basis
and hence can be represented as

Ds = diag(as, bs) = asπ0 + bsπ1, (30)

with as, bs ∈ C and πi the projector on the logical states
|iL〉〈iL|, i ∈ 0, 1. In terms of as and bs, we have

Rs ◦ E[�0ρ�0] = |as|2π0ρπ0 + |bs|2π1ρπ1

+ asbsπ1ρπ0 + asbsπ0ρπ1, (31)

where the bar indicates complex conjugation. The action of
�L follows from

∑
s Rs. We find

�L[ρ] = απ0ρπ0 + βπ1ρπ1 + γπ0ρπ1 + γπ1ρπ0, (32)

with

α =
∑

s

|as|2, β =
∑

s

|bs|2, γ =
∑

s

γs, γs = asbs.

(33)
Since �L is trace preserving, we have α = 1 and β = 1. Thus,
the entire action of �L is encoded in the single complex
parameter γ . Furthermore,

(�L − 1)[ρ] = (γ − 1)π0ρπ1 + (γ − 1)π1ρπ0, (34)

from which, by the proportionality of Eq. (34) to the action
of a unitary channel minus the identity, we read off [21,24,43]
the diamond-norm [35] distance:

pL = ‖�L − 1‖� = |γ − 1|. (35)

We wish to estimate γ using Monte Carlo simulation.
Using the FLO approach, we are able to sample from the
distribution of syndromes starting from the initial state |+L〉.
The syndrome probability is

P+
s = ‖Ds|+L〉‖2. (36)

To estimate γ , we seek a quantity cs accessible from the
simulation such that

P+
s cs = γs. (37)

In this way, the Monte Carlo average
∑

s P+
s cs = γ .

Using the simulation algorithm introduced in Sec. VI, we
have access to

qs = |〈+L|ZLDs|+L〉|2
|〈+L|Ds|+L〉|2 and rs = |〈+L|ZLDs|YL〉|2

|〈+L|Ds|YL〉|2 . (38)
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FIG. 7. The logical error rate pL for the coherent and Pauli-twirled error models versus the angle η for three different code sizes of each
lattice. (The argument of O indicates the approximate number N of qubits; the concrete value of N depends on the lattice.) The dashed lines
indicate the thresholds obtained by fitting a finite-size scaling ansatz [15]. Above the threshold, we sketch the graphs of the X stabilizers. They
are, from left to right, dual of trihex, dual of hexagonal, dual of kagome, square, kagome, hexagonal, and trihex.

By expanding both expressions in as and bs and reordering,
we find the relations

qs = P+
s − Re γs

P+
s + Re γs

, rs = P+
s − Im γs

P+
s + Im γs

, (39)

which imply

Re γs = 1 − qs

1 + qs
P+

s , Im γs = 1 − rs

1 + rs
P+

s . (40)

Conveniently, both expressions match the form of Eq. (37).
Therefore, we can approximate γ using a Monte Carlo ap-
proximation of the sum

γ =
∑

s

P+
s cs =

∑
s

P+
s

(
1 − qs

1 + qs
+ 1 − rs

1 + rs
i

)
. (41)

VIII. THRESHOLD

Simulations of surface codes on various lattices have
shown that the thresholds of the codes depend significantly
on the connectivity of the lattice [31,32]. In the following, we
study lattices with different connectivity under coherent and
incoherent errors.

In the choice of lattices, we follow Ref. [31] and per-
form simulations for the square, kagome, hexagonal, (3, 122)
(triangle-hexagonal, also referred to as trihex) lattices, and
their duals. For the square lattice, we study codes with dis-
tances 25 (625 qubits), 37 (1369 qubits), 49 (2401 qubits), and
for the other lattices we study system sizes with a comparable
number of qubits.

For each surface code, we perform two simulations: one
for coherent errors [i.e., with E using Eqs. (3) and (4)] and one
with incoherent errors using the Pauli twirl [i.e., with E using
Eqs. (3) and (5)]. For simplicity, we apply the same error to
all qubits, η j = η. For both error models and all lattices, we
first simulate an initial overview spanning from η = 0.4π to
η = 1.6π in 0.1π steps with 10 000 Monte Carlo samples for
the coherent error and 40 000 Monte Carlo samples for the
incoherent error. The results are shown in Fig. 7. We then
estimate the thresholds ηth by first estimating their position
from this overview, and then performing a simulation in 0.01π

steps around the estimated position and fit a finite-size scaling
ansatz [15]. Our threshold estimates are shown in Figs. 7
and 8. We find that for these lattices the coherent thresholds
are consistently lower than the incoherent ones (or are at best
comparable to them as for the trihex lattice). Our results also
indicate that for η � ηth, the logical error rate decreases with
code distance slower for coherent than for incoherent errors.

The trade-off between resilience against bit and phase flips
that is obtainable in the incoherent (twirled) case is reflected
by the thresholds approaching [31] the bound

R � 1 − h(px ) − h(pz ) (42)

for zero asymptotic encoding rate R → 0. (For our case of a
single encoded qubit, R = 1/N .) Here h is the binary Shannon
entropy and px and pz are the probabilities of X and Z flips
on individual physical qubits [33]. In our case, the thresholds
pz,th are parametrized by η, i.e., pz,th = sin2 ηth and px,th is
obtained by lattice duality. In Fig. 8, we visualize this bound.

The results show that the trade-off between resilience
against bit and phase flips translates, for coherent errors, to
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FIG. 8. The thresholds for X rotations versus the thresholds for
Z rotations for both the coherent (green) and Pauli-twirled (orange)
error models, for the lattices indicated in Fig. 7. (The thresholds
obtained in Ref. [31] are shown in red.) The blue line indicates the
bound Eq. (42).

a trade-off between resilience against X and Z rotations. In
Ref. [31], it is argued that the trade-off for incoherent errors
is present because it is easier for the MWPM decoder to
match up syndromes in a sparse graph. It is reasonable to
assume that a similar effect is also causing the trade-off in
the coherent case. However, considering Fig. 8, unlike for the
incoherent thresholds, there does not appear to be a universal
curve delineating this trade-off for coherent thresholds.

To provide further evidence for the absence of such a
universal curve, we construct a lattice that is self-dual and
therefore can be directly compared to the square lattice, i.e.,
its thresholds for X and Z errors are equal by design. We
call this lattice the doubly odd lattice; it has faces with three
and five vertices (see Fig. 9 inset). We compare the results
for this lattice, both for coherent and incoherent errors, to the
square-lattice case in Fig. 9. The results show that the coherent
threshold for the doubly odd lattice is significantly higher than
that for the square lattice. For incoherent errors, however, the
thresholds for the two lattices are very close, consistent with
the observation of Ref. [31] that most surface codes with a
MWPM decoder perform very close to the bound Eq. (42).

IX. FINAL-STATE DISTRIBUTION

To get further insight into the properties of the states
after error correction, we study the action of the error and
correction process conditioned on the individual syndromes.
The final states have certain properties that are dependent on
properties of the stabilizer group. It turns out that the parity
of the stabilizers is of central importance. We shall generalize
the property [24] that for codes which have only even-weight
Z stabilizers together with an odd-weight logical ZL operator,
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FIG. 9. A comparison between the logical error rate pL for the
doubly odd and square lattice. (A small patch of the Z-stabilizer
graph for the doubly odd lattice shown as inset.) The upper graph
shows pL for coherent errors, the lower shows pL for incoherent
errors. The simulations for the square lattice are the same used for
Fig. 7. The doubly odd lattice is simulated for system sizes of 437,
1365, and 2805 qubits.

a coherent Z error followed by a correction acts as a unitary
operation. We will assess the different symmetries that are
present in the lattices we considered above and determine
the consequences for the final-state distributions. Note that
we are now investigating properties of the error-correction
process based on properties of the Z-stabilizer graph, while
the argument that it is easier to correct errors in sparse graphs
was based on the X -stabilizer graph.

We start by considering an individual syndrome s that is
corrected with the operator Cs that is made up only of Z
operators. In the following, we denote a string of Z operators
by Z (b), where b is a bit string of length N whose value is one
(zero) for qubits on which Z (b) acts nontrivially (trivially).
In particular, Z (0) = I . Expanding both the error and the
correction using this representation yields

Cs = Z (hs), exp(iηZ) =
∑
g∈B

cgi‖g‖Z (g), (43)

where hs is the bit string encoding the correction operation,
cg are real coefficients, ‖g‖ denotes the Hamming weight
of bit-string g, and B is the set of all length-N bit strings.
Therefore [24],

Ds =
∑
g∈B

cgi‖g‖�0Z (hs ⊕ g)�0, (44)

where ⊕ is bit-wise addition modulo 2.
As discussed in Sec. VII, Ds is diagonal in the logical space

of the code. Therefore, we can represent it as

Ds = ks�0 + ls�0ZL, (45)
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with suitable coefficients ks and ls. When expressing ks and
ls as a sum over contributions from Eq. (44), ks is formed by
terms in which Z (hs ⊕ g) acts trivially on the logical space,
i.e., when Z (hs ⊕ g) is within the Z-stabilizer group. Con-
versely, ls is formed by those terms in which Z (hs ⊕ g) acts as
the logical ZL operator, i.e., those corresponding to ZL times a
stabilizer. Hence,

ks =
∑

g∈B with g⊕hs∈A
cgi‖g‖,

ls =
∑

g∈B with g⊕hs∈A⊕l

cgi‖g‖,
(46)

where A is the set of all bit strings corresponding to operators
in the Z-stabilizer group, l is the bit string that encodes ZL,
and A ⊕ l denotes the set {a ⊕ l|a ∈ A}. Since g runs over all
bit strings, we can convert Eq. (46) into sums over A,

ks =
∑
a∈A

ca⊕hs i
‖a⊕hs‖,

ls =
∑
a∈A

ca⊕hs⊕l i
‖a⊕hs⊕l‖.

(47)

We next study the complex phase of ks and ls. In general, A
contains both even- and odd-weight bit strings and we cannot
make a definite statement. If, however, all bit strings in A have
even weight, the exponent of i has the same parity for all the
terms in each sum in Eq. (47). This constrains ks and ls to
be either real or imaginary, with their relative phase set by l .
Therefore, we can distinguish between two families: codes in
which all Z stabilizers are of even weight and codes that do
not satisfy this condition.

In the case that not all Z stabilizers are of even weight, we
can make no further statements about the distribution. In fact,
checking the distribution that is obtained for a code based on a
Z-stabilizer graph defined on a hexagonal lattice, i.e., a system
in which the majority of the Z stabilizers are of weight 3, we
find [Fig. 10(a)] that at least with some probability all parts of
the Bloch sphere of final states are reached.

For those lattices for which every Z stabilizer has even
weight, we can identify the relative complex phase between
ls and ks. For this phase, the parity of hs is irrelevant since,
whether it is odd or even, it affects both ls and ks the same
way. However, the weight of ZL affects only ls. Hence, in the
family in which all Z stabilizers are of even weight, we have
two subfamilies, those with even-weight ZL and those with
odd-weight ZL.

The case that ZL is of odd weight is already explored in
Ref. [24]: we have Im ks = 0 and Re ls = 0 and

Ds = √
PsUs, Ps = |ks|2 + |ls|2, Us = ks√

Ps
+ lsZ√

Ps
, (48)

where Us is a unitary operator. That is, the state ρs satisfies
Eq. (6). In consequence, the logical state is constrained to a
circle on the Bloch sphere that is parallel to the XY plane
[Fig. 10(b)]. The distribution of states that can be obtained
starting from the |+L〉 state is shown in Fig. 10(c).

If ZL is of even weight, we have Im ks = 0 and Im ls = 0.
The operation Ds in that case is given by the, unusual, real

FIG. 10. Panels (a), (c), (d): The projection of 100 000 sampled
states |ψs〉 resulting after error and correction operation with initial
state |+L〉. Distribution for a surface code on the (a) hexagonal
lattice, (c) square lattice, (d) kagome lattice. The size of the system
is for all examples chosen such that the number of qubits is around
500. (b) The Bloch sphere and an example of an initial state (red dot).
The green (blue) circle marks the possible final states in lattices with
even-weight Z stabilizers and odd-weight (even-weight) ZL.

combination of the identity and ZL. If |ks| > |ls|,

Ds = (|ks| − |ls|) + 2|ls|
{
π0 if lsks > 0
π1 else, (49)

and if |ls| > |ks|,

Ds = ZL(|ls| − |ks|) + 2ZL|ks|
{
π0 if lsks > 0
π1 else. (50)

Equations (49) and (50) show that syndrome measurements
reveal information about the ZL polarization of the initial
logical state |ψL〉. They also imply that the final state after the
action of Ds lies on the circle spanning |0L〉, |1L〉, and |ψL〉.
This is also illustrated in Fig. 10(b), and a numerical example
is shown in Fig. 10(d).

This leaves us with three classes of lattices to build Z-
stabilizer graphs, and we have examples for each:

(1) containing odd-weight Z stabilizers: trihex, dual of
trihex, hexagonal, doubly odd, and dual of kagome,

(2) all Z stabilizers even weight, odd-weight ZL: square,
dual of hexagonal,

(3) all Z stabilizers even weight, even-weight ZL: kagome.
To compare the final-state distributions for the differ-

ent lattices, we proceed as explained in Sec. IV. We have
|ψs〉= Ds|ψL〉/√P(s|ρ) with P(s|ρ)=〈ψL|D†

s Ds|ψL〉 (recall,
ρ = |ψL〉〈ψL|). Hence,

δ2(ρs, ρ) = 1 − |〈ψL|Ds|ψL〉|2
〈ψL|D†

s Ds|ψL〉 . (51)

To prepare for the Bloch-sphere average, we parametrize

|ψL〉 = |θ, φ〉 = cos(θ/2)|0L〉 + sin(θ/2)eiφ |1L〉. (52)
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FIG. 11. Distributions of 100 000 samples of 〈δ2
s 〉	 for the seven lattices in Fig. 7, and the doubly odd lattice (on the right of the square

lattice). We give a sketch of the corresponding Z-stabilizer graph above the distributions. (These are the duals of the graphs in Fig. 7.) The
values of the coherent noise parameter η are shown above the distributions; they are chosen as η ≈ ηth, i.e., approximately at the threshold
(middle row), η ≈ ηth − 0.01π (top row), and η ≈ ηth + 0.01π (bottom row). Samples are taken for three different systems sizes O(500)
qubits (red), O(1500) qubits (green), and O(2500) qubits (blue).

After some manipulation, we find

δ2(ρs, ρ) = |〈−L|Ds|+L〉|2 sin2 θ

P(s|ρ)
, (53)

where

P(s|ρ) = 1
2 [|as|2 + |bs|2 + (|as|2 − |bs|2) cos θ ] (54)

due to Eq. (30). Using P(ρ|s) = P(s|ρ)P(ρ)/P(s), the Bloch-
sphere average is

〈δ2
s 〉	 ≡

∫
	

dρP(ρ|s)δ2(ρs, ρ)

= |〈−L|Ds|+L〉|2
P(s)

∫
	

dρP(ρ) sin2 θ

= 2

3

|〈−L|Ds|+L〉|2
P(s)

= 1

3

(
1 − Re γs

P(s)

)
,

(55)

where we used that for P(ρ) uniformly distributed over the
Bloch sphere,

∫
	

dρP(ρ) sin2 θ = 2/3. Note that

P(s) =
∫

	

dρP(s|ρ)P(ρ) = |as|2 + |bs|2
2

= P+
s , (56)

the probability in Eq. (36). Hence, Eq. (55) can be entirely
expressed in terms of quantities that can be extracted from the
FLO-based simulation.

We sample from 〈δ2
s 〉	 for three different values of the

error parameter η for each lattice: approximately the threshold
value (η ≈ ηth) and η ≈ ηth ± 0.01π . The results are shown
in Fig. 11. For all simulations, we observe that 〈δ2

s 〉	 has
sharp peaks around 2/3 and 0; these values correspond to
|ψs〉 = ZL|ψL〉 and |ψs〉 = |ψL〉, respectively. This shows that
the coherent Z rotations for the codes at the distances we study
can be well approximated by a distribution of Pauli errors.
However, in contrast to the effect of an incoherent error, each
state ρs after the operation Rs ◦ E is still a pure state; we get a
mixed state only if the information of the syndrome outcome
s is deleted (i.e., only for the output of �L).

The distributions show patterns characteristic of the lat-
tice geometry. In particular, while below the threshold all
lattices have a distribution that is increasingly concentrated
on 0 and 2/3 with increasing the code distance, slightly above
the threshold (η ≈ ηth + 0.01π ) this increasing concentration
can be observed only for codes containing only even-weight
stabilizers.

X. NOISE DECOHERENCE THRESHOLDS AND THE
COHERENT DECODER

The code-distance dependence of the final-state distribu-
tions in Fig. 11 suggests that, at least for certain lattices, a
second threshold ηc

th might exist such that increasing the code
distance makes the logical-level noise increasingly Pauli-like
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only for η < ηc
th. To study the existence of such a decoherence

threshold, we first invoke a notion [25] of coherence for the
operation Rs ◦ E on the logical subspace. For a logical state
ρ, we have (with proportionality factor |ks|2 + |ls|2)

Rs ◦ E[ρ] ∝ (
1 − εP

s

)
ρ + εP

s ZLρZL + εc
s ZLρ + εc

s ρZL,

(57)
where εP

s = |ls|2/(|ks|2 + |ls|2) and |εc
s | = √

εP
s (1 − εP

s ). The
coherent part can be defined [25] as the non-Pauli contribu-
tion to Eq. (57), quantified by εc

s . The coherent part is much
smaller than the Pauli part if |εc

s | � 1, i.e., if εP
s is either close

to zero or one. (A good Pauli approximation thus requires
action that is either nearly pure identity or nearly pure ZL.)
This precisely corresponds to 〈δ2

s 〉	 being 0 or 2/3 because
〈δ2

s 〉	 = 2εP
s /3.

We next introduce a linearized proxy for |εc
s |:〈

δ2
s

〉c
	

= 2
3 min

[
εP

s ,
(
1 − εP

s

)]
. (58)

The less |εc
s | is, the less is 〈δ2

s 〉c
	, and vice versa. The dis-

tribution for 〈δ2
s 〉c

	 is obtained from the 〈δ2
s 〉	 distribution

by mirroring, around 1/3, the part above 1/3 into the lower
values.

The quantity 〈δ2
s 〉c

	 can also be interpreted as the average
infidelity obtained by choosing between the Pauli correction
Cs and its alternative, C′

s = CsZL such that it minimizes 〈δ2
s 〉	.

With the alternative correction we have

〈
δ′

s
2〉

	
= |〈−L|ZLDs|+L〉|2

P(s)
= 1

3

(
1 + Re γs

P(s)

)
, (59)

from where we get the expression

〈
δ2

s

〉c
	

≡ min

(
1

3

(
1 − Re γs

P(s)

)
,

1

3

(
1 + Re γs

P(s)

))

= 1

3

(
1 −

∣∣∣∣Re γs

P(s)

∣∣∣∣
)

. (60)

The latter interpretation is reminiscent of the optimal de-
coder [12,15,44–47]: this calculates, given an error model,
whether the syndrome s is more likely to require correction
with Cs or CsZL. For the optimal decoder for incoherent er-
rors, this calculation holds for any initial logical state ρ and
requires no choice of error measure. Here, we optimize the
Bloch-sphere-average and target a concrete error measure. [A
ρ-independent variant optimizing θs is, however, possible for
lattices corresponding to Eq. (6).] Our approach is tailored for
coherent errors: it takes advantage of the deterministic nature
of these in an essential manner. Hence, we can refer to 〈δ2

s 〉c
	

as the average infidelity for the coherent decoder.
To assess whether a decoherence threshold ηc

th exists, we
study

� =
∑

s

P(s)
〈
δ2

s

〉c
	
, (61)

which we simulate using Monte Carlo sampling. The results
obtained for the lattices and sizes introduced in Sec. VIII
are shown in Fig. 12. In these averages, we can readily
observe qualitative effects related to the three Z-stabilizer
graph classes introduced in Sec. IX: the three classes can be
distinguished by the plateau value of � attained when the
rotation parameter η is sufficiently beyond ηth. (A different

0.05 0.10 0.15 0.20
rotation η/π

10−2

10−1

Δ

Δe-o

Δunitary
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O(1500)
O(2500)

trihex
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kagome

square

doubly odd

D(kagome)

D(hexagonal)

D(trihex)

FIG. 12. The syndrome average � [cf. Eq. (61)] for a decoder
that chooses a Pauli correction optimizing 〈δ2

s 〉	 for each s. Different
colors correspond to different Z-stabilizer lattices. (D denotes the
dual of a lattice.) The value of � for strong rotations depends on the
graph class; the estimate Eq. (62) [Eq. (63)] for lattices with even-
and odd-weight stabilizers (even-weight stabilizer and odd-weight
logical operators) is indicated by �e-o (�unitary). The system sizes are
the same as those considered in Fig. 7.

behavior sets in upon approaching the S-gate limit η ≈ π/4;
we henceforth focus on η sufficiently below this value.) For η

in this regime, we find that the codes with even-weight Z sta-
bilizers and odd-weight ZL have the smallest �, followed by
those with odd-weight Z stabilizers; those with even-weight Z
stabilizers and even-weight ZL have the largest �.

The plateau value of � for lattices with odd-weight Z
stabilizers can be estimated by assuming that the ensemble
resulting from the action of the coherent decoder on the initial
state |+L〉 corresponds to states uniformly distributed over the
Bloch hemisphere closest to |+L〉. This results in

�e-o = 2

3

1

2π

∫
dθ sin θ

∫ π/2

−π/2
dφ|〈θ, φ|−L〉|2 = 1

6
. (62)

We can estimate the plateau of � for lattices with even-weight
Z stabilizers and odd-weight ZL similarly. Since in these lat-
tices the accessible states, starting from |+L〉, are the part of
the equator spanning |YL〉 over |+L〉 to |−YL〉, the average is
given by

�unitary = 2

3

1

π

∫ π/2

−π/2
dφ

∣∣∣∣
〈
θ = π

2
, φ

∣∣∣∣−L

〉∣∣∣∣
2

= π − 2

3π
. (63)

Both of these values are indicated in Fig. 12 and fit well
to the simulation. In the case of even-weight Z stabilizers
and even-weight ZL, an estimate based on the final states
evenly distributed among the accessible states would give the
same value as Eq. (63), but this is not the distribution we
numerically observe. Instead, we find that the final states are
increasingly concentrated around |0L〉 and |1L〉 upon increas-
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ing η. This explains the significantly higher plateau value in
comparison to the lattices with even-weight Z stabilizers and
odd-weight ZL.

We now investigate the existence of a decoherence thresh-
old ηc

th. To this end, we study the code-distance dependence
of �. As already suggested by the final-state distributions in
Fig. 11, we find qualitatively different behavior for graphs
that include odd-weight Z stabilizers and for those with even-
weight Z stabilizers. In the former case, using a similar fitting
procedure as in Sec. VIII, we observe a decoherence threshold
at ηc

th � ηth + 0.01π : the value of � decreases with code dis-
tance only for η < ηc

th but it increases for η > ηc
th. For graphs

with even-weight Z stabilizers, we find that if a threshold
exists, it is at a much higher value of η, however, we could
not clearly establish threshold behavior.

These observations highlight that the sense in which in-
creasing the code distance decoheres logical level noise
depends on the graph class for η � ηth. While for graphs with
even-weight Z stabilizers our findings are consistent with the
final-state distribution being increasingly well approximated
by that resulting from a distribution of Pauli errors, for the
complementary graph class, ηc

th � ηth implies that the action
of Rs ◦ E on the logical subspace can retain significant coher-
ence for η � ηth; the impact of the coherent part of the logical
error is suppressed only upon averaging ρs over syndromes
(i.e., only on the average-logical-channel level).

XI. CONCLUSION

We described how the C4 encoding of qubits can be used
to obtain a Majorana-fermion representation of surface codes
on arbitrary planar graphs, and we characterized logical-state
storage under coherent Z rotations (or coherent X rotations)
using FLO-based simulations. These methods generalize the
approach introduced for the square lattice by Ref. [24].

We studied surface codes on lattices with varying con-
nectivity and estimated the average-logical-channel threshold
values ηth of the rotation parameter. Comparing ηth to the
thresholds ηP

th for the Pauli twirl of the physical-qubit co-
herent error, we found that while ηth and ηP

th are similar, the
inequality ηth � ηP

th holds for all considered systems. We also
found that, analogously to the case of incoherent Pauli noise,
there is a trade-off between resilience against coherent X and
Z rotations, depending on the graph connectivity. However,
while for Pauli noise the thresholds against bit and phase flips
approach a universal bound, Eq. (42), this is not the case
for coherent errors. To demonstrate this, we have identified
the doubly odd lattice that is self-dual (hence has the same
threshold for Z and X rotations) just as the square lattice, but
has higher ηth than the square lattice.

We also studied the properties of final states corresponding
to individual syndrome measurements followed by recovery.
These properties were found to follow a categorization of
codes into three classes: those whose Z stabilizers include

odd-weight operators, those with only even-weight Z stabi-
lizers and even-weight logical Z operator ZL, and those with
only even-weight Z stabilizers and odd-weight ZL. The three
classes correspond to three distinct patterns of accessible final
states, as shown in Fig. 10(b).

The square lattice studied in Ref. [24] corresponds to the
third class; it is only in this class that per-syndrome error
and recovery Rs ◦ E corresponds to a unitary ZL rotation of
logical states, with state-independent syndrome probability
and rotation angle. In all other cases, the syndrome probability
depends on the initial state. To assess the average case (in
the sense of this dependence), we studied the distribution of
the average infidelity conditioned on syndrome s [Fig. 11],
and introduced a measure of coherence [Eq. (58) and Fig. 12]
and the related coherent decoder. While for η < ηth, upon
increasing the code distance the distributions are increasingly
well approximated by those resulting from a distribution of
Pauli errors, codes that include odd-weight Z stabilizers were
found to display a decoherence threshold ηc

th ≈ ηth + 0.01π

above which increasing code distance increases the coherence
of the logical-level noise. The sense in which logical-level
noise decoheres for η � ηth therefore depends on the graph
class. In particular, for graphs with odd-weight Z stabilizers,
the action of Rs ◦ E on the logical subspace can retain signif-
icant coherence so the decoherence of the logical-level noise
holds only upon averaging ρs over syndromes, i.e., only on the
average-logical-channel level.

That correcting coherent errors is possible in all graph
classes is an encouraging result. It shows that a unitary action
for Rs ◦ E in the logical subspace, as for the square-lattice
case of Ref. [24], is not a key requirement. There are, how-
ever, several directions in which further studies are needed.
For example, while we focused on the case where the same
coherent error is applied to each qubit [i.e., η j = η in terms of
Eq. (4)], our approach is not limited to this setting. A natural
generalization of our study would therefore be to investigate
the effects of random η j ; this would provide another step
toward a more realistic description of the errors one expects
in physical devices. Furthermore, it remains an open question
how systems behave under errors that go beyond the uniaxial
rotations along one of the directions specified by the stabi-
lizers (i.e., X or Z rotations), including more general forms
of coherent rotations or error models with the probabilistic
occurrence of different coherent components such that the
overall error is inequivalent to Pauli noise.
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