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Quantum frequency locking and downconversion in a driven qubit-cavity system
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We study a periodically driven qubit coupled to a quantized cavity mode. Despite its apparent simplicity,
this system supports a rich variety of exotic phenomena, such as topological frequency conversion as recently
discovered in Martin er al. [Phys. Rev. X 7, 041008 (2017)]. Here we report on a qualitatively different
phenomenon that occurs in this platform, where the cavity mode’s oscillations lock their frequency to a rational
fraction r/q of the driving frequency 2. This phenomenon, which we term quantum frequency locking, is
characterized by the emergence of g-tuplets of stationary (Floquet) states whose quasienergies are separated
by /g, up to exponentially small corrections. The Wigner functions of these states are nearly identical, and
exhibit highly regular and symmetric structure in phase space. Similarly to Floquet time crystals, these states
underlie discrete time-translation symmetry breaking in the model. We develop a semiclassical approach for
analyzing and predicting quantum frequency locking in the model, and use it to identify the conditions under

which it occurs.
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I. INTRODUCTION

In recent years, periodic driving has been explored as a way
to create desirable properties in otherwise ordinary systems
[1-6]. In addition to inducing exotic phases that already exist
in equilibrium [7-9], periodic driving can also induce exotic
phenomena with no equilibrium counterpart [10-37]. These
predictions inspired a wide range of experiments, leading to
the realization and observation of new drive-induced phenom-
ena, such as Floquet time crystals, and anomalous Floquet
insulators [30,38-50].

In this work, we consider another class of such
driving-induced phenomena: quantum frequency locking
[31,39,43,51-55]. Quantum frequency locking arises when a
quantum system with an intrinsic characteristic frequency w,
is driven at a frequency 2 = 27 /T close to (but not necessar-
ily equal to) a rational multiple g/r of the intrinsic frequency
w.. In this case, the system can respond by robust oscillations
with period locked exactly to an integer multiple of the driving
period ¢gT .

Here, we propose an experimentally accessible realization
of quantum frequency locking. Namely, we consider a peri-
odically driven qubit coupled to a quantized electromagnetic
cavity [Fig. 1(a)]. When the qubit is driven close to resonance
with a rational multiple of the cavity’s resonance frequency,
the cavity mode oscillates with frequency locked to r2/gq.
This phenomenon has a wide range of interesting implications
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and uses, which we explore in this paper: in particular, it
implies the formation of characteristic subsets of quasienergy
levels which are separated by €2/g, up to exponentially small
corrections [see sketch in Fig. 1(b)] [43,51]; we term this
related phenomenon ‘“quasienergy locking.” Quantum fre-
quency locking is, moreover, a robust effect, which does not
require fine tuning [56]. It persists both for weak and strong
qubit-cavity coupling, and for finite ranges of the driving
frequency [see Fig. 1(c)].

Quantum frequency locking has previously been consid-
ered in various platforms and settings, including ultracold
atoms interacting with a vibrating mirror [39,55], spin chains
or clock models [47,54,57], parametrically driven chains
of electromagnetic cavities [58], and nonlinear oscillators
[43,51,59]. Our proposal provides a complementary realiza-
tion that can capitalize on recent advances in control of
few-level quantum systems in Rydberg atoms, quantum dots,
and superconducting qubits interacting with microwave cav-
ities [60-62]. In this way our results provide a direct path
for realizing quantum frequency locking on readily available
experimental platforms. In addition to being of fundamental
interest, the robust coherent oscillations of the cavity mode
can moreover be used as a frequency converter to generate a
coherent signal at a frequency different from the drive (by a
factor r/q).

Quantum frequency locking has a well-established clas-
sical counterpart, known as Arnold Tongues [33,63-66].
Quantum mechanics, however, introduces several new aspects
to this effect: the wave packets of a system do not spread
in phase space when observed stroboscopically [58,67].
Moreover, as explained above, the robust period-multiplied
oscillations imply a nontrivial ordering of the quasienergy
spectrum in the system [see Fig. 1(b)]. The Wigner func-
tions of the corresponding Floquet eigenstates exhibit a
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FIG. 1. (a) We study a two-level system (orange), coupled to a
single cavity mode (green) while driven periodically with frequency
Q2 (blue). (b) Quasienergy locking: while the quasienergies of the sys-
tem (gray, red, and blue lines) are effectively uniformly distributed
between 0 and €2, in certain finite parameter regimes the spacings
between certain subsets of levels (red and blue) are exponentially
close to €2/¢g for some integer g (here we illustrate this clustering
for ¢ = 3). (c) Number of period-3 quasienergy-locked levels in the
model, obtained from numerical exact evolution and diagonalization
of the system’s Floquet operator, as function of cavity frequency w.
and qubit-cavity coupling 1 (see Sec. II for model details, Sec. V
for details of the simulation, and Appendix B for similar plots for
other frequency-locking ratios). The inset shows a histogram of
quasienergy level spacings in the frequency-locked regime (parame-
ters indicated by the cross in main panel).

remarkably rich structure [see Figs. 2(c) and 2(d)]. The non-
trivial organization of the quasienergy spectrum mentioned
above is a signature of the breakdown of discrete time-
translation symmetry [39,43,51,68]. Thus, frequency-locked
quantum systems also present examples of “Floquet time
crystals” [14,15], and demonstrate how time-translation sym-
metry breaking (in a broader sense than defined in Ref. [15])
may be realized in few-body quantum systems (see also
Refs. [39,43]); see Sec. IV for further discussion.

In what follows, we introduce the qubit-cavity model we
study in Sec. II. In Sec. IIl, we perform an approximate
semiclassical analysis of the model to describe how quantum
frequency locking emerges, and identify the conditions under
which it occurs. We discuss the implications of quantum fre-
quency locking for the quasienergy spectrum of the system
in Sec. IV, before confirming our approach numerically in
Sec. V. Here, we also discuss how quantum frequency lock-
ing may be utilized for frequency conversion (Sec. V C). We
conclude with a discussion in Sec. VI. Technical details of our
analysis are provided in the Appendices.

II. MODEL

The system we consider consists of a two-level system,
such as a qubit, quantum dot, or a spin-% magnetic moment,
coupled linearly to a quantized electromagnetic cavity mode,
and to a periodic drive [see Fig. 1(a)]. Without loss of gener-
ality, we refer to the two-level system simply as a spin below.
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FIG. 2. (a), (b) Constant (quasi)energy contours of the effective
Hamiltonian for the cavity mode in the frame where phase space
rotates with frequency /3, H.i (x, p) [see Eq. (8)], Panels (a) and
(b) depict two parameter sets where period-3 quantum frequency
locking occurs, within the adiabatic and Floquet regimes, respec-
tively; see Sec. III A for parameters. (c), (d) Wigner functions of
quasienergy-locked Floquet eigenstates, using the same parameters
as in (a) and (b), respectively. The contours of the corresponding
effective Hamiltonians from (a) and (b) shown as gray lines. Inset,
(c): Wigner function for an equal-weight linear combination of the
three related Floquet eigenstates of which one is depicted in (c)
(see Sec. IV).

The Hamiltonian of the system is given by
ﬁ(t)zﬁc +ﬁs(t) (1)

Here, H. and H(t) denote the Hamiltonian of the cavity
and spin, respectively, defined such that H,(?) includes the
spin-cavity coupling; this term [and hence also H (¢)] depends
on time 7. The cavity Hamiltonian is simply given by H, =
w:b'h, where w. and b denote the frequency and bosonic
annihilation operators of the cavity mode, respectively (here
and below, we work in units where % = 1). The Hamiltonian
of the spin H,(t) consists of three parts: a static (Zeeman) part
Hy, a term coupling the spin to a time-dependent driving field
Vae (1), and a term coupling the spin to the cavity field H.:

ﬁs(t) :HO +Vdr(t)+I:Isc- (2)

The drive encoded in Vi (¢) has T -periodic time dependence
(angular frequency Q = 27 /T): Var(t) = Vet + T).

We do not expect frequency locking to depend on the spe-
cific details of Hy, V4 (1), and Hy.. For concreteness, however,
we use the forms

Hy = 16,Bo, 3)
Var(t) = nAq[sin(Q)8, + cos(21)6.], 4)
Hye = nb6™ +5b'67). ®)
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Here, n parametrizes the spin’s coupling to the external (Zee-
man and driving) fields and to the cavity field, 6, 6y, 6;
denote the Pauli matrices acting on the spin, with 6% =
%(@ £ i6y), and By and A, are dimensionless numbers denot-
ing the effective Zeeman field strength and driving amplitude,
respectively. This model was shown to support topological
frequency conversion in Refs. [16—18].

The cavity mode is described by a harmonic oscillator, and
can thus conveniently be represented using the dimensionless
position and momentum operators [69] & = %(5 +b%) and
p= %(13 — b"). In terms of these operators, the Hamiltonian
of the full system is given by

A W, 0 A ~
H@) = 7(36 + p°) +nb&, p,t) - S, (6)

where § = (6, 6y, 6;) denotes the effective spin operator de-
scribing the qubit, while

b(x, p,t) = (By — Ay sin Qt — x, p, Ay cos Q) (7)

can be seen as the effective Zeeman field acting on the spin,
as a function of the cavity mode’s position and momentum,
and time.

As mentioned in the Introduction, the model above can
be realized in various ways. Most appealing perhaps are
realizations using superconducting qubits [62,70,71] and
nitrogen-vacancy (NV) centers [72,73], as well as atoms in
optical cavities (see, e.g., Refs. [74,75]). We expect that our
following discussion generalizes to cavities with multiple
modes [17].

III. SEMICLASSICAL PICTURE OF
FREQUENCY LOCKING

When the driving field of the in model of Sec. II has an
off-resonant frequency €2, close to a rational multiple ¢/r
of the cavity eigenfrequency w. (where ¢ and r are inte-
gers), there exists finite regions of phase space where the
cavity mode responds to the drive with coherent oscillations
whose frequency is locked exactly to r2/q. We refer to this
phenomenon as quantum frequency locking. In this section,
we demonstrate from heuristic semiclassical arguments how
quantum frequency locking arises in the model. We confirm
our approach using numerical simulations in Sec. V.

Our first step towards deriving frequency locking is to
transform the cavity mode’s degrees of freedom (&, p) to a
frame rotating with frequency Q = r2/q (as in previous stud-
ies of quantum frequency locking; see, e.g., Refs. [43,59]). In
this rotating frame, the cavity mode becomes much slower
than the driving period and the spin’s dynamics. In this
section we identify conditions under which this separation of
timescales allows us to effectively integrate out the spin and
the driving field. This results in a time-independent semiclas-
sical effective Hamiltonian that governs the evolution of the
cavity mode in the rotating frame:

)
Her(x, p) = 7‘”(98 + P+ e(x, p), ®)

where x and p denote the semiclassical position and momen-
tum variables of the cavity mode (in the rotating frame), and
dw = w, — 2 is the cavity detuning from €2. The potential

e(x, p) in Eq. (8) results from integrating out the spin and
the driving field, and plays a central role in our analysis.
We identify two distinct parameter regimes where the above
separation of timescale occurs, namely, the large-n adiabatic
regime, and the small-n Floquet regime (see following for
discussion of these regimes). Both regimes support quantum
frequency locking, but result in two distinct expressions for
the potential (x, p).

Frequency locking can naturally be understood by inspect-
ing the effective Hamiltonian Hc¢ (x, p): in Figs. 2(a) and 2(b)
we plot Hes(x, p) for the two regimes where quantum fre-
quency locking occurs with period 3. In both cases H (x, p)
has local extrema at nonzero values of x and p. When the
cavity mode is initialized at one of these extrema, its phase
space location in the rotating frame remains stationary. As
a result, in the original “lab” frame, the cavity mode will
oscillate with frequency €2/3.

The picture above also explains the robustness of frequency
locking. Even if the cavity is initialized near (but not precisely
at) the extremum of H.g, its location in the rotating frame
will remain confined near the extremum at all times. Thus,
frequency locking can be achieved with only moderate re-
quirements for control over initial conditions; for instance, in
Fig. 2, it will occur with significant probability as long as the
displacement amplitude of the cavity mode /x2 + p? is less
than 30 in the dimensionless units we have adopted [see text
above Eq. (6)]. The corresponding motion in the laboratory
frame must remain close to this point each time three driving
periods have passed. As a result, the frequency spectrum of
the cavity mode’s motion features a sharp, well-defined peak
at 2/3. The extrema moreover cannot be removed by weak
perturbations, implying that frequency locking persists in fi-
nite parameter ranges.

In Appendix A we present a different, complementary
perspective on quantum frequency locking, based on the dy-
namics in the combined Fock space of the oscillator and
driving field. The approach presented there can in principle
be used to study quantum frequency locking for any driven
finite-dimensional quantum system coupled to a quantized
cavity mode, in the limit of small nonlinearity and detuning.

Effective cavity mode Hamiltonian

We now obtain the effective Hamiltonian in Eq. (8).
To this end, we consider the dynamics of the system in
the rotating frame that was described above. The Hamil-
tonian of the system in this rotating frame is given by
H(t) = U] )[A(t) — Qb'B10, (1), where the unitary oper-
ator Up(t) = e ®'" generates the transformation to the
rotating frame: the Schrodinger equation in the laboratory
frame is solved by [y (1)) = Uy(t)|v/(¢)), where & | (1)) =
—iH (t)|4/(¢)). Noting that Uo(t) only acts nontrivially on
H,., we find

- Sw n
H(1) = 7(22 + p*) + nh(z, p, 1) - S, )

where h is obtained from b in Egs. (6) and (7) after rotating
the oscillator phase space by Qf: h(x, p,t) = b(x cos Qt +
p sinQt, p cos Qt — x sin ¢, ). Note that the Hamiltonian
H(t) in Eq. (9) describes a periodically driven system with
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extended period T = g7, through the explicit time depen-
dence of h(x, p, t) above (recall that = r2/q).

To derive the effective semiclassical Hamiltonian for the
cavity mode Hes(x, p), we consider the equations of motion
generated by H(¢) for the Heisenberg picture operators £(¢),
p(1), and S(¢):

95(t) = 8w p(t) + nv,(t) - S, (10)
dp(t) = —Swk(t) — nvi(t) - S, (11)
3S(t) = nh[x(t), p(t), 11 x S, (12)

where v,(#) and v,(t) are vectors with unit norm: v,(t) =
(— cos Qt, sin Qt, 0), v,(t) = (sin Qt, cos Qt,0). We apply a
semiclassical approximation to the equations of motion above,
by assuming that the cavity mode’s location in phase space is
relatively well defined at all times: in Eq. (12), we approx-
imate h(X(z), p(t), t) =~ h(x(¢), p(t), t), where x(t) = (2(1)),
and p(t) = (p(t)) denote the expectation values of the posi-
tion and momentum operators. We expect this approximation
to be justified when the characteristic scales in phase space
of variations in h(x, p, t) are large compared to the scale of
quantum fluctuations Ax, Ap ~ 1.

The approximation above reduces Eq. (12) to a Bloch
equation with a time-dependent field h(x(z), p(¢),t). By
moreover taking the expectation values on both sides of
Egs. (10)—(12), we then obtain three coupled equations of
motion for the (semi)classical variables x(¢), p(t), and S(¢) =
(S(#)): namely, Egs. (10)—(12) with the operators X(¢), p(t),
and S(r) replaced by their expectation values x(¢), p(t), and
S(#). These equations of motion are generated by the time-
dependent classical Hamiltonian 7{(), given by

) = %“’(xz b frhGep) S, (13)

Note that the dynamics of the cavity mode (x(¢), p(¢)) has
characteristic frequencies dw, n, which can be much smaller
than Q (which is on the same order as the resonance frequency
of the oscillator) and the characteristic frequencies of the
spin’s dynamics. Below, we identify two parameter regimes
where this separation of timescales allows us to effectively
eliminate the spin S(z) and obtain the static effective Hamil-
tonian for the cavity mode in Eq. (8).

1. Adiabatic regime

The simplest “adiabatic” regime occurs for large 7. In
this regime the direction of the instantaneous Zeeman field
h(x(t), p(t),t) changes adiabatically with respect to the
(fast) Larmor precession of the spin, which has frequency
~nlh(x, p, t)| [see Eq. (13)]. In this case, the equations of
motion [Eq. (12) with %, p, and S substituted by their ex-
pectation values x and p] have the two distinct solutions:
S(t) ~ th(x, p,t)/|h(x, p, t)| [76]. With these solutions for
S, Eq. (13) becomes

VEu _bw 5
Heay (X, p, 1) = 2 "+ p?) £, p, o). (14

Similarly to quantum systems, the stroboscopic time evolu-
tion generated by HZE (x, p, 1) (i.e., time evolution at integer

multiples of T') is equivalent to that generated by some time-
independent effective classical Hamiltonian [77]. When the
cavity mode in the rotating frame oscillates slowly compared
to (see below for more detailed conditions), this effective
Hamiltonian is well approximated by the time average of
HE (x, p,1); i.e., by Hege (x, p) in Eq. (8), with

T
e(x, p):ii/dr Ih(x, p, 1), (15)
T Jo

where the sign () depends on the initial alignment of the
spin [76]. Equation (15) can be obtained using a Magnus
expansion of the evolution operator generated by the system’s
Liouvillian (see Ref. [77] for details).

The considerations above show that Hg(x, p) in Egs. (8)
and (15) describes the system when the Larmor precession
frequency of the spin nlh(x, p,t)| is much larger than the
driving frequency, which in turn should be much larger than
the characteristic frequency of the cavity mode in the rotat-
ing frame. The latter is given by the renormalized frequency
detuning 8w’ (x, p), given by the radial gradient of Hcg(x, p),
divided by the amplitude of the cavity mode A,y = /X2 + p2.
Hence, the adiabatic regime arises when o' (x, p) K Q <«
nlh(x, p, t)| (here we used that €2 and € have the same order
of magnitude). This condition is satisfied in the vicinity of
the extrema of H.g(x, p), as long as these occur in regions
of phase space where nlh(x, p, )| > Q. As an illustration,
in Fig. 2(a), we plot the constant (quasi)energy contours of
Hesr(x, p) in the adiabatic regime, obtained from direct nu-
merical evaluation of Egs. (8) and (15). We use the parameters
Ay =15,By =7, w, = 0.342, and n = 0.56€2. These param-
eters are indicated by the cross in Fig. 1(c), and fall within the
adiabatic regime. We expect Hes (x, p) to describe the system
accurately near the three minima located at radius A,y ~ 24,
where its gradient (and hence §w’) vanishes. In Sec. V [see
also Fig. 1(c)], we confirm that these local minima indeed
lead to quantum frequency locking at these parameters, as
explained above.

2. Floquet regime

The Floquet parameter regime for frequency locking
occurs not when the instantaneous Hamiltonian changes adi-
abatically, but rather when the effective Floquet Hamiltonian
of the spin (with x and p held fixed) changes adiabatically.

To obtain the effective Hamiltonian Heg(x, p) in the
Floquet regime, we consider the dynamics resulting from
Eq. (12) with x and p held fixed. In this case, the time
periodicity of h(x, p,#) implies that all solutions S(¢t) to
Eq. (12) satisfy S([n + 11T) = Ry(x, p)S(nT), for some fixed
three-dimensional orthogonal matrix Ry(x, p) with unit deter-
minant. Like any orthogonal matrix with unit determinant,
Ro(x, p) can be expressed as a rotation about some axis
a(x, p) by some angle 6(x, p) between 0 and 7 (note that
the required interval for 6 fixes the direction of a). As a
result, for fixed x and p, there exists a time-periodic solution
to the Bloch equation in Eq. (12) (up to a constant scale
factor), S(t) = ny(x, p, t), in which ny(x, p, 0) = a(x, p) is
parallel to the net rotation axis, and ny(x, p, ) evolves ac-
cording to Eq. (12). Thus, for fixed x and p, we identify
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H"(x, p) = 0(x, p)a(x, p) - S as the effective Hamiltonian
of the spin (see Appendix C for further details).

When x and p are not fixed, but the evolution of effec-
tive precession axis a(x, p) (due to the motion of x and p)
evolves slowly relative to the energy gap of H.k", Se(x, p) =
min (6(x, p), 2w — 26(x, p))/T (see Appendix C), the stro-
boscopic motion of the spin closely follows stroboscopic
motion resulting from the adiabatically changing Hamilto-
nian H_ji" (x(7), p(t)) [78]. As a result, if initially aligned or
antialigned with a(x(0), p(0)), the spin’s evolution at later
(stroboscopic) times will satisfy S(nT) ~ +a(x(nT), p(nT)),
where the sign depends on the initial alignment. In
Appendix C, we substitute this solution into Eq. (13) and take
the time average, making use of our assumption that the cavity
mode is effectively stationary within the driving period T [77].
Doing this, we find that the cavity mode evolves according to
the effective Hamiltonian in Eq. (8), with

e(x, p) = £0(x, p)/2T. (16)

Here, the sign depends on the initial alignment of the spin
with a(x, p) [76]. The angle 6(x, p) can be straightforwardly
calculated for the system by exact time evolution of the Bloch
equation for the spin in Eq. (12).

The Floquet regime arises when the dynamics of the cavity
mode occurs on a much longer timescale than the driving
period T, and when the change of the effective axis of rotation,
a(x, p) (due to the motion of x and p) is slow compared to
the effective Larmor frequency 6(x, p)/T. In Appendix C, we
show that these conditions are satisfied when n < 6(x, p)/T
and 8w < Q/Acuy, Where Agyy = /x2 + p? denotes the am-
plitude of the cavity field. Note that, since 7 > T, and 6 (x, p)
< m, the Floquet regime requires n < €2. Thus, the Floquet
regime arises in the limit of small spin-cavity coupling 1 and
detuning dw (since our semiclassical approximation requires
Acay > 1 for quantum fluctuations not to play a role).

As an illustration, in Fig. 2(b), we plot the contours of
Hegr(x, p) for antialigned spin (i.e., with S = —a) using the
parameters Ay; = 15, By =7, w. = /3, and n = 0.048%.
Since dw = 0, the conditions for Floquet locking outlined
above imply that H.s accurately describes the dynamics of
the cavity mode whenever He (x, p) > 1.

IV. QUASIENERGY LOCKING AND
SYMMETRY BREAKING

In Sec. III, we identified the conditions for quantum
frequency locking: namely, it arises for parameters in the
adiabatic or Floquet regimes where the effective Hamiltonian
Hesr(x, p) [Eq. (8)] has extrema at nonzero amplitude in phase
space. While our treatment in Sec. III in principle also applies
to fully classical systems (indeed, our results were derived
using semiclassical arguments), in this section we demon-
strate some aspects of the quantum mechanical version of the
phenomenon. In particular, we show that period-g quantum
systems feature characteristic multiplets of quasienergy levels
that differ by rational fractions of the drive frequency €2/g up
to exponentially suppressed corrections [see Eq. (17) below].
We term this phenomenon “quasienergy locking.” It was also

identified in earlier work [15,39,43,51], and can be seen as the
defining feature of quantum frequency locking.

Quasienergy locking can be seen as a breakdown of the dis-
crete time-translation symmetry which is inherently present in
the driven system [15,39,43]: as we show below, linear com-
binations of quasienergy-locked Floquet eigenstates define a
family of nearly stationary states of the system’s evolution that
break the discrete time-translation symmetry of the drive (up
to exponentially long times).

In the remainder of this section we review the defining
features of quasienergy locking (Sec. IV A), and subsequently
show how it arises the qubit-cavity model (Sec. IV B). We fi-
nally discuss how quasienergy locking can be understood as a
breakdown of discrete time-translation symmetry (Sec. IV C).
To highlight physical aspects of the phenomenon, we provide
our arguments on a heuristic level, while a more rigorous (but
technical) treatment is given in Appendix D.

A. Quasienergy locking

Quasienergy locking is a phenomenon that arises in the
quasienergy spectrum of periodically driven quantum systems
[15,39,43,51]. In such systems the quasienergies {g,} define
the eigenvalues of the system’s time-evolution operator over
one period (known as the Floquet operator), U (T, =
e~ T |y, where U(t) = Te @A) denotes the system’s
time-evolution operator and 7~ denotes the time-ordering op-
eration. The corresponding eigenstates {|1,,) }, termed Floquet
eigenstates, hence form a complete basis of states that are
mapped to themselves after each driving period T, up to a
unitary phase e "7, Quasienergy thus plays a role analogous
to energy for the evolution of periodically driven quantum
systems: the evolution at integer multiples of the driving pe-
riod k can be resolved as | (kT)) = >, c,e T |4s,), where
the coefficients {c,} are determined from the initial conditions
[79]. However, note that each ¢, is only defined modulo 2.

The quasienergies of a generic periodically driven quantum
system are naturally distributed uniformly between O and €2.
However, when period-g quantum frequency locking arises,
the spectrum features characteristic multiplets of quasienergy
levels ¢y, ... g, that differ by /¢, up to exponentially sup-
pressed corrections:

g0 =&+ £Q/q + O(S¢), (17

where ¢ generally differs from multiplet to multiplet. Here,
de is a quasienergy scale that can be many times smaller
than the average quasienergy level spacing in the system,
such that the feature above would not occur by coincidence
[see, e.g., the inset in Fig. 1(c) and Sec. V]. For the driven
qubit-cavity system we consider in this work, we show below
that 8¢ ~ ¢~¢/¢, where d denotes the separation in phase space
between the extrema of the effective Hamiltonian Heg (x, p),
while £ ~ 1 denotes the scale of quantum fluctuations. We
term the formation of these multiplets “quasienergy locking.”

The Floquet eigenstates associated with each multiplet of
locked quasienergy levels [y1), ... |¥,) have interesting fea-
tures of their own. Specifically, they take the form

q

1 )
o == D ey, (18)
k=1

043411-5



NATHAN, REFAEL, RUDNER, AND MARTIN

PHYSICAL REVIEW RESEARCH 2, 043411 (2020)

where, for the model we consider, each state | x;) has support
only near a particular extremum of H.¢ (x, p) in phase space
(see Appendix D and Sec. IV B below). Note from Eq. (18)
that, for each k, |x;) = \/Lﬁ Dok e?itk/a |4y One can thus ver-

ify that the states |x;) ... |xx) are orthogonal, and mapped to
each other under evolution by one driving period 7', up to a
phase and an exponentially suppressed correction:

UM xx) = e ) + O@eT), (19)
with |xg11) = |x4) [80].

B. Derivation of quasienergy locking for the driven
qubit-cavity system

Having reviewed the defining features of quasienergy lock-
ing, we now show how it emerges in the driven qubit-cavity
system that we consider in this work. We provide our ar-
guments on a heuristic basis, by analyzing the dynamics of
the system in the rotating frame introduced in Sec. IIT A. For
simplicity, we consider the limit where the evolution of the
system in this frame is fully captured by the effective semi-
classical Hamiltonian from Sec. III, He (x, p) (see Sec. IIT A
for specific conditions). In Appendix C we provide a more
rigorous line of arguments that holds in the Floquet and
adiabatic limits whenever Hcg(x, p) features extrema with
surrounding “potential wells” that are much larger than the
scale of quantum fluctuations £ ~ 1 (see below for definition
of potential wells).

To derive quasienergy locking we investigate the properties
of the driven qubit-cavity system’s Floquet eigenstates and
quasienergies {|v,)} and {e,}. As a first step, we note that
the former are identical to the Floquet eigenstates in the ro-
tating frame (see Sec. IIl A) {|1/,,)}, while each quasienergy &,
is identical to the corresponding quasienergy in the rotating
frame &, modulo Q = Q/q [81]. To obtain {|v,)} and {&,},
we recall our assumption that Hg(x, p) fully captures the
system’s dynamics in the rotating frame. Hence, we expect
the stroboscopic evolution of the quantized cavity mode (in
the rotating frame) to be generated by the effective quantum
Hamiltonian H.g (X, p). We moreover expect the spin to be
locked to the effective axis of precession as a function of x and
p, as explained in Sec. III. For simplicity, we therefore neglect
the spin in the following. Through the above correspondence
between the rotating and laboratory frames, in the idealized
limit we consider here, the Floquet eigenstates of the system
in the laboratory frame are thus given by the eigenstates of
Herr (X, p), while the quasienergies are given by the corre-
sponding eigenvalues, up to integer multiples of Q.

To obtain the eigenstates and eigenvalues of H.g (X, p),
we consider the structure of H.g(X, p) in the frequency-
locked regime. We recall that frequency locking arises when
Hesr(x, p) has extrema at nonzero displacement amplitude.
These extrema are surrounded by classical trajectories [i.e.,
contours of Heg(x, p)] which encircle and remain close to
their respective fixed points at all times. We refer to each
such extremum, along with its surrounding neighborhood that
contains these encircling trajectories (out to the separatrices
beyond which the trajectories encircle other fixed points) as a
potential well. Note that Heg(x, p) has a built-in symmetry
of discrete rotation by 27 /g in phase space, as is evident

in the numerical examples plotted in Figs. 2(a) and 2(b),
where ¢ = 3 (see also Appendix D). This symmetry, which
is generated by Uy(T'), guarantees that each potential well of
Hegr(x, p) forms part of a ring of ¢ wells which are mapped
to each other through rotations by 27 /g in phase space. We
refer to these wells as wells 1 ... g in the following, such that
well k is mapped to well k + 1 (mod ¢g) through a phase space
rotation by 2 /q.

We expect He (X, p) to support approximate eigenstates
that are confined within the potential wells of Heg(x, p),
whose wave functions decay with the distance from the well
ras O(e”’/%). For k=1,...q, we let |¢y) denote such a
“bound” eigenstate of H.g (X, p) when restricting phase space
to well k, such that |¢;) and |¢y4 ;) are related through phase
space rotation by 27 /g; i.e., we restrict phase space to a region
located within a distance ry from well &, for some 0 < ry <
d /2, where d denotes the distance in phase space between ad-
jacent wells. We let ¢ denote the corresponding eigenvalue of
H.¢: (%, p); this takes the same value for all k due to the discrete
rotation symmetry. Below we find that the bound states {|¢x)}
are identical to the states {|xx)} whose linear combinations
give a quasienergy-locked multiplet of Floquet eigenstates as
in Eq. (18). Note, however, that this identification is only
exact in the idealized limit we consider here, where Hg (X, p)
fully captures the stroboscopic evolution in the rotating frame.
Beyond this limit, {|x;)} deviate from {|¢,)} by nonzero, but
small, corrections due to, e.g., nonadiabatic corrections and
quantum fluctuations. In Appendix D, we provide a more
rigorous way to identify the states |x,) that includes such
corrections.

Due to the exponentially decaying wave function of |¢y)
outside well k, when all of phase space is included, each
|¢r) remains an approximate eigenstate of Hg(X, p), up to
an exponentially small correction Heg (%, P)|dr) = €ldr) +
O(e7/%). To zeroth order in A = ¢~ "/¢ (i.e., in the clas-
sical limit & — 0), each |¢;) is thus an exact eigenstate
of Hes(X, p), with eigenvalue €. In the limit of small but
nonzero &, the corresponding eigenstates of Heg (X, P),
[¥1), ... |¥y), can be obtained through zeroth-order degener-
ate perturbation theory, and thus can be expressed as linear
combinations of the degenerate “unperturbed” states |¢y). To
identify these linear combinations, we note that the discrete
rotation symmetry [Uy(T), Her (£, p)] = O requires the eigen-
states of Hes(X, p) to also be eigenstates of Uo(T). Since
Oo(T)Ii) = i), 1), ... 1¥,) are thus given by Eq. (18),
with |x,) = |¢). Using that (gl Her (%, p)lgw) S e %,
we find that the corresponding eigenvalues of Hg (%, p),
g1, ...%,, are all given by &, up to corrections of order e~%/.
We conclude that for each ring of potential wells of Heg(x, p)
(if such wells are present), the qubit-cavity system supports
one or more families of Floquet eigenstates, whose form is
given in Eq. (18), where, for each k, | x;) has support only in
well k of the ring [82]. The corresponding quasienergies are
given by the same value ¢, up to integer multiples of /¢, and
corrections of order e=%/¢,

In Appendix D, we provide a more rigorous derivation
of quasienergy locking, which holds beyond the idealized
limit considered here. There we confirm that in the regime,
the qubit-cavity system supports families of near-degenerate
eigenstates of the form in Eq. (18), where |xx) has support
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only in well k. However, |xx) and |xx+;) are not related by
exact phase space rotation by 2m /g, but rather through
Eq. (19) [83]. It follows that the corresponding quasienergies
take the form in Eq. (17). This was what we wanted to show in
this section.

C. Time-translation symmetry breaking

Here, we review how quasienergy locking can be seen as a
realization of time-translation symmetry breaking [15,39,43].
To see this, note from Eq. (19) that the states {|x)} are
taken onto themselves after evolution by the extended pe-
riod T = ¢T, up to a phase, and an exponentially suppressed
correction. Each |x;) hence is a (nearly) stationary state of
the system’s time evolution that breaks the original discrete
time-translation symmetry by 7'. In contrast to the exact Flo-
quet eigenstates {|v,)}, which are superpositions of states
characterized by distinct values of the oscillator phase (i.e,
“Schrodinger cat” states), each symmetry-breaking state | x)
has a well-defined phase, and hence corresponds to a semi-
classical “noncat” state of the cavity mode. In the sense above,
the driven qubit-cavity system can hence be seen as supporting
steady states that break discrete time-translation symmetry.

The symmetry-breaking states {|xx)} remain stationary
states of the system’s time evolution up to the duration of
confinement within the potential wells of He, T ~ e¥/%.
In contrast, the “coherence time” of the symmetry-breaking
steady states in many-body Floquet time crystals scales expo-
nentially with the size of the system due to many-body nature
of the states, and hence is infinite in the thermodynamic limit
[14,15]. For the qubit-cavity system we consider, although
there is no thermodynamic limit, t still scales exponentially
with the system parameters, and thus can be very large com-
pared to the other timescales of the system. In this sense,
we can still regard time-translation symmetry to be broken
in practice. Note that we consider a more general notion of
time-translation symmetry breaking than defined in Ref. [15]:
namely, we only require some, but not all, steady states of the
system to break the discrete time-translation symmetry of the
system [39,43].

V. NUMERICAL RESULTS

Here we support our discussion with numerical simu-
lations. We simulate the qubit-cavity model in Sec. II by
computing the complete Floquet operator of the system using
direct time evolution. We then obtain the quasienergy spec-
trum and Floquet eigenstates through exact diagonalization. In
these simulations we truncate the Hilbert space of the cavity
to the first 650 photon-number eigenstates (resulting in Hilbert
space dimension 1300), and discretize the Hamiltonian’s con-
tinuous time dependence within one period into 300 evenly
spaced intervals.

Throughout our simulations, we fix the dimensionless Zee-
man field component to be By = 7, and the driving amplitude
Ay = 15, while we vary the qubit-cavity coupling n and the
cavity resonance frequency w. (see Sec. II).

A. Detection of quantum frequency locking

For each choice of the parameters n and w, we probed, we
detected the presence of quantum frequency locking from the

quasienergy spectrum of the system {g,}. We begin by sorting
the quasienergy level spacings for the system Ag,,, = €, — &,
for all 1300 x 1299 pairs of quasienergy levels where m # n
into a histogram of 10° bins evenly spaced in the interval
between 0 and 2 (we consider the value of each level spacing
Ag,,, modulo €2). For a generic distribution of quasienergy
levels, we expect the number of level pairs N(Ag) falling
into the bin at level splitting Ae to be given by 1300?/10° ~
17. However, when period-g quantum frequency locking is
present, we expect an anomalously high number of level spac-
ings to fall into the bin where Ae = /g (cf. the discussion
in Sec. IV).

To illustrate this, in the inset in Fig. 1(c), we plot N(Ag)
for n = 0.56Q2 and w. = 0.3492 (indicated by cross in main
panel). These parameters bring the system into the adia-
batic regime; we previously plotted the g = 3 effective cavity
Hamiltonian for this choice of parameters in Fig. 2(a) (see
Sec. IT A). From the arguments of Sec. III, the local extrema
of Heg(x, p), which are clearly present in Fig. 2(a), should
give rise to period-3 frequency locking. The data in the inset of
Fig. 1(c) confirm this: while N(Ag¢) is of order ~17 for almost
all bins in Fig. 1(c), the spectrum features an anomalously
high number of level pairs (~100) whose splitting falls into
the bin at Ae = Q/3. From the discussion in Sec. IV, this
is a clear indication of period-3 quantum frequency locking.
We expect the model supports approximately 100-17 ~ 85
frequency-locked triplets of Floquet eigenstates of the form
in Eq. (D7).

As the above paragraph demonstrates, we may use the his-
togram peak height N(Ae = 2/q) to estimate the number of
period-g frequency-locked Floquet eigenstates in the system.
In the main panel of Fig. 1(c), we plot this number for g = 3
as a function of w. and n. As is evident in Fig. 1(c), the
model supports a large number of period-3 frequency-locked
Floquet eigenstates in a finite region of parameter space, aris-
ing both for weak and strong detuning dw = w. — 2/3 and
qubit-cavity coupling 7.

The data in Fig. 1(c) show clear signatures of the two
distinct regimes of quantum frequency locking we identi-
fied in Sec. IIT A. Focusing on the peak that emerges from
o, = /3, for n € 2, quantum frequency locking occurs
when w. ~ /3. However, for n 2 Q/2, the w. interval in
which quantum frequency locking occurs splits into two lin-
early diverging branches. This point marks the crossover
from the Floquet (lower branch) to the adiabatic regime (up-
per branches). Specifically, in the adiabatic regime, after a
simultaneous rescaling of n and dw by the same positive
factor A, Hefr(x, p) is mapped to AH(x, p) [see Egs. (8)
and (13)]. Moreover, a sign reversal of Sw maps Heg(x, p)
for aligned spin into —H.g(x, p) for antialigned spin, and
vice versa. Thus, in the adiabatic regime, H.s(x, p) fea-
tures the same structure of local extrema and potential wells
along the lines dw = *«n for some proportionality factor
k and, hence, in this regime, quantum frequency locking
should occur along these two lines in parameter space. This
structure of linearly diverging branches is clearly evident in
Fig. 1(c). In contrast, the Floquet regime only arises when
n < R, and for small values of dw (see Sec. Il A 2).
Thus, the Floquet regime gives rise to a single branch
atdo ~ 0, n K Q.
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B. Structure of Floquet eigenstates

Next, we sought to verify that the frequency-locked Flo-
quet eigenstates have the structure we predicted in Sec. IV:
we expect each triplet of frequency-locked Floquet eigen-
states [¥1), |2), and |2) (with corresponding quasienergies
&n + €2/3) to be of the form in Eq. (D6) (for ¢ = 3), where
|xX) has support only within a particular “potential well” of
the effective cavity mode Hamiltonian Hg (X, p).

To confirm the hypothesized structure above, we obtained
the Floquet eigenstates of the model for the parameter set
used in Fig. 2(a) [see Sec. III for parameters; note that these
were also used for the inset in Fig. 1(c)], where the system
exhibits quantum frequency locking in the adiabatic regime.
We computed the Wigner function W (x, p) for each Floquet
eigenstate |1,,), using the reduced density matrix of the cavity
Py = Trs[| V) (], where Trg denotes the partial trace over
the Hilbert space of the spin. Figure 2(c) shows the Wigner
function of a frequency-locked Floquet eigenstate of the sys-
tem (i.e., one out of the many Floquet eigenstates whose
quasienergies differ by an exact multiple of /3 from two
other quasienergies in the system). The Wigner function in
Fig. 2(c) shows a highly structured pattern, and has support
only in three separate regions of phase space that coincide
with the potential wells of Heg(x, p) in Fig. 2(a) [shown as
gray lines in Fig. 2(c)], consistent with Sec. IV.

Next, we identified the two other Floquet eigenstates of
the triplet in which |y,,) = |1p3) formed a part, |1//,}) and |1ﬂ3)
(i.e., we identified the two Floquet eigenstates of the system
whose quasienergies differ by +€/3 from the quasienergy
of the eigenstate [¢]), up to a correction many orders of
magnitude smaller than the level spacing of the quasienergy
spectrum). The Wigner functions of these two states are nearly
identical to the Wigner function in Fig. 2(c), and are not
shown here. According to the hypothesis of Eq. (D6) there
exists a gauge choice for the Floquet eigenstates [¢]), ... |[¢3)
such that, for each k, |x) = % S KByl only has
support only in well k& of Heg. In the inset of Fig. 2(c),
we show the Wigner function for such a linear combination
(with k = 3). In agreement with the discussion in Sec. IV,
this Wigner function is only nonzero in a single potential
well of He [namely, near (x, p) = (20, 0)]. We confirmed
numerically (data not shown here) that with the same gauge
choice for the states |1ﬁ,}), . |1//3 ), the two other choices of
k led to the Wigner function of the resulting state | x;) having
support in the two other potential wells of He. Thus, we con-
firmed that the triplet of Floquet eigenstates has the structure
in Eq. (D6).

We also considered the Wigner functions of frequency-
locked Floquet eigenstates in the Floquet regime (1 <
Q, dw ~ 0). Figure 2(d) shows the Wigner function of such a
frequency-locked Floquet eigenstate of the model, for param-
eters w, = /3 and n = 0.048€2, which puts the system in the
Floquet regime, and were also used in Fig. 2(b). The Wigner
function exhibits a very similar structure as in the adiabatic
regime: there exist three separate regions where it is nonzero
and smoothly varying that coincide with the potential wells of
the effective Hamiltonian of the system Hcg (x, p) [Fig. 2(b)].
At the edges of its peaks, the Wigner function exhibits oscil-
lations from positive to negative with nodal lines parallel to

(a) $X(w) (b) A% (w)
2_
" L
1 M
o4+ —h o | - —
-20/3 0 -20/3 0.32Q /3 0.35Q

FIG. 3. Observable signatures of quantum frequency locking.
(a) Frequency spectrum of the cavity field (&(¢)) for the system when
initialized within (green) and outside (orange) the frequency-locking
regime, respectively. See main text for parameters and further details.
Note that the green curve is vertically offset by 1. (b) Zoom-in of (a),
in the vicinity of @ = 2/3 (indicated by vertical dashed line).

the the contours of Hesr (x, p), hence strongly supporting the
discussion in Sec. IIT A 2.

Note that each ring of potential wells of Heg(x, p) can
support several triplets of quasienergy-locked Floquet eigen-
states. Moreover, for the (Floquet regime) parameters used
in Figs. 2(b) and 2(d), Heg(x, p) features multiple rings
of potential wells that can each support its own families
of frequency-locked Floquet eigenstates. We confirm this in
Appendix E where we plot the Wigner functions for two ad-
ditional triplets of frequency-locked Floquet eigenstates that
both have support in the same well; this well is different from
the one where the Floquet eigenstate in Fig. 2(d) has support.

C. Observable signatures and frequency conversion

As a final goal for our numerical simulations, we explored
the observable signatures of quantum frequency locking in
the system, and their possible applications for frequency con-
version. To this end, we considered the dynamics of the
observable (X(z)), which, depending on the exact realization
of the model, for instance can measure a component of the
electromagnetic field in the cavity (see Sec. II for definition).
Using the parameters @ = 0.34€2, n = 0.56<2 [also used in
Figs. 1(c) and 2(a) and 2(c)], we computed the time evolution
of the system after initializing the cavity mode in a coherent
state with phase 0 and displacement amplitude either 20 or 10,
corresponding to locations (xg, pg) = (20, 0) and (xop, po) =
(10, 0) in phase space. For both initializations we initialized
the spin in the state || ), antialigned with the initial effective
magnetic field b(xp, po, 0). From the resulting effective cavity
Hamiltonian of the system shown in Fig. 2(a), we expect these
two initializations to place the system inside and outside the
frequency-locking regime, respectively.

In Fig. 3(a), we show the dimensionless Fourier transform
of (X(¢)) (absolute value), |¥(w)]|, for the two initializations
above, while Fig. 3(b) shows a closeup of the spectrum in the
vicinity of w. = /3 [84]. In the frequency-locked regime,
|¥(w)| features an extremely sharp peak of magnitude ~10
at w = /3. The two side peaks visible in Fig. 3(b) arise
from the slow orbit of the cavity wave packet around the
local minimum of Hg(x, p) (see Sec. III A); their offset
from the main peak defines the oscillation frequency of this
motion. As is evident in Figs. 3(c) and 3(d), in the regime
the system has a clear, measurable subharmonic response to
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the driving. In contrast, outside the frequency-locked regime,
|X(w)| shows a broad feature around the same value, but no
well-defined peak.

When weakly coupled to an external environment (such
as an electromagnetic waveguide), it may be possible to ex-
tract an output signal whose frequency spectrum shares the
spectrum of (x(¢)), and hence exhibits well-defined coherent
oscillations at frequency €2/g which is evident in Fig. 3. In
this way, the qubit-cavity system can potentially be exploited
for frequency conversion.

VI. DISCUSSION

The discovery of Floquet time crystals sparked a broader
investigation of discrete time-translation symmetry breaking.
This work shows how such symmetry breaking can emerge
as quantum frequency locking in a periodically driven spin-
cavity system. When frequency locked, the system exhibits
well-defined oscillations with extended period T = ¢T', where
T denotes the driving period, and ¢ is an integer. Quantum
frequency locking moreover has remarkable consequences for
the quasienergy spectrum of a system: a large number of
multiplets of Floquet eigenstates emerge whose quasienergy
differences are exponentially close to nQ2/g forn=1,...,4.
Using a semiclassical phase-space approach, we identify two
mechanisms for frequency locking, which allow it to occur in
a wide region of parameter space. Quantum frequency locking
hence does not require fine tuning, and can be reached through
appropriately controlled but not fine-tuned initialization of the
cavity mode, for a finite range of detuning dw = w, — r<2/q,
and for both weak and strong qubit-cavity coupling .

The frequency locking exhibited by the qubit-cavity system
is of fundamentally different nature than, e.g., time-crystalline
behavior in spin chains (see, e.g., Refs. [14,15]). In the
latter setting, time-translation symmetry breaking is also
manifested in a large degeneracy of period-doubled Floquet
eigenstates. However, for these systems, period multiplication
emerges from the many-body nature of the system, and each
quasienergy level in the system forms a part of a quasienergy-
locked multiplet. In contrast, for the qubit-cavity system,
only a finite (nonzero) number of quasienergy levels form
multiplets.

We expect that the nontrivial fixed points of the stro-
boscopic motion generated by the semiclassical effective
Hamiltonian H.¢(x, p) remain stable in the presence of weak
dissipation in the cavity, as would be the case if the radiation is
allowed to leak out. In this case, the frequency-locking effect
could be used for extracting an output signal whose frequency
is given by a rational fraction of the drive, thus achieving
frequency conversion. This offers an interesting direction for
future studies.

The driven spin-cavity system we considered is perhaps
one of the simplest systems that exhibits quantum frequency
locking. This generic class of models can describe a diverse
range of settings and physical systems, such as, e.g., Rydberg
atoms in optical cavities and qubits in contact with microwave
modes. Due to the simplicity of the model, and the many suit-
able experimental platforms, we expect that the qubit-cavity
model forms a convenient and versatile platform for study-
ing the breakdown of discrete time-translation symmetry. At

strong coupling 7, frequency locking moreover coexists with
the topological energy-pumping regime that was analyzed
in Ref. [17]. Thus, the relatively simple and experimentally
accessible model of a driven qubit-cavity system supports
several distinct, highly nontrivial nonequilibrium phenomena.
The simplicity of the platform and the interplay of these
nontrivial phenomena make the driven qubit-cavity system
an interesting subject for future experimental and theoretical
studies.
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APPENDIX A: PHOTON LATTICE PICTURE OF
FREQUENCY LOCKING

In this Appendix, we present a complementary perspective
of frequency locking, based on the photon lattice picture of
periodically driven systems. The approach is used to ana-
lyze frequency locking of the the qubit-cavity model in the
limit of small anharmonicity n and detuning. To demonstrate
the emergence of frequency locking, we consider the case
where the driving frequency is close to a rational multiple of
the cavity frequency Q2 =~ gw,/r, where g and r are integers.
We analyze the model as a periodically driven system with
driving period T= 2mq/Q [recall that H(t) = H(t + T) im-
plies H(t) = H(t + T)].

For a periodically driven system with driving period 7, the
photon lattice Hilbert space is spanned by the orthonormal
basis |i, ng)) = |i) ® |ng), where i indexes the basis states of
the original problem, while n; € Z can be seen as a lattice in-
dex, and heuristically counts the number of drive photons with
energy 27 /T [85]. The extended Hilbert space Hamiltonian
is given by Hp = z%ﬁd +D HEli, w+ z)){(j, w], where
figli, n) = nli, n)), and Hfj denotes the Fourier coefficients of
H;j(t) (as a T -periodic function of time). One can verify that
the eigenstates of Hg, [{,)) = Zi,z V. li, z)), are related to the
Floquet eigenstates of H () as follows:

W) = Y Wi li). (A1)

The quasienergy of the state |y,) is related to the corre-
sponding energy as &, = E, (mod 2w /qT). Note that each
Floquet eigenstate of H(¢) corresponds to an infinite family of
eigenstates of Hp due to the symmetry [a, Hp] = 27”, where
ali,ng)) = li,ng — 1)). As a result, if |i,)) is an eigenstate
of Hp with energy E,, a|y,)) is also an eigenstate of Hp,
with energy E, — 27 /(¢qT ). Both eigenstates correspond to
the same Floquet eigenstate through Eq. (A1).
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To find Hp for the qubit-cavity system, we recall that
the Hilbert space of the system is spanned by the states
|, 1), where n, = 0, 1, ... counts the number of cavity pho-
tons, while o = 1, 2 denotes the state of the qubit. Hence,
we can label the basis states for the extended Hilbert space
lae, ne, ng)) = |, ne) ® |ng). We write He =V + K where
V and K denote the diagonal and off-diagonal compo-
nents in the basis above. To find V and K, we recall from
Egs. (1)—(5) in the main text that the Hamiltonian H(¢) os-
cillates monochromatically with period 7. Therefore, H;; is
nonzero only when z is an integer multiple of ¢q. Equivalently,
the above-introduced photon number shift operators & and &'
only appear in powers of g in the expression for Hr. Using the
expression for H(¢) in Egs. (1)—(5), we find

Q
V =dh.o. + ;ﬁd + no. By,

_ g

K== (@0, — ioy] + a0, + ioy]) + nbo™ + b'o 7).

(A2)

In the same way as, for example, in Refs. [16,17], we can
see Hp as describing a two-dimensional (2D) square lattice
tight-binding model where (n., ny) denotes the site index in
the “photon” lattice, and « denotes the orbital index. The
sites in the photon lattice are coupled by the term K, and are
subject to the onsite potential energy term V. Note that, by
construction, the Hamiltonian Hr = V + K only couples sites
(n¢, ng) in the photon lattice separated by a distance ¢ in the
second coordinate.

In the limit n — 0, the term V will generally dominate,
and the eigenstates of Hp are localized on individual sites
in the photon lattice. The eigenstates are given by |V ) ~
%(H, m, n)) £ |2, m, n))), with energies

4 n2
E> = mw. + — £ nBy. (A3)
q

These solutions are trivial, and hence typically there is
no frequency locking in the small-n limit. However, when
the driving frequency Q2 is sufficiently close to w.q/r, the
“potential energies” on sites (n., ny) and (n, + 1, ny — r) can
be close enough that K couples these sites resonantly through
a high-order virtual process (recall that the energy step size on
the drive lattice as defined above is €2/g, while on the cavity
lattice it is w.). As a result, each eigenstate of Hp may extend
along a chain of sites (k, b — rk) fork =0, 1, .. ., as depicted
in Fig. 4(a) for the case ¢/r = 2. Due to the symmetry of Hp
described below Eq. (A1), there is just one independent chain
(b = 0), while the remaining chains are related by shifts in n,.

Each chain is subject to an effective Hamiltonian which
arises from the high-order virtual processes. This Hamiltonian
takes the form

Her = Yl m, —rm){(B. n, —rn|HZL.

m,n

(A4)

Here the matrix elements H*/ can in principle be calcu-
lated analytically from perturbation theory in 5. Since Hr by
construction only couples sites (7., ny) in the photon lattice
separated by a distance ¢ in the second coordinate, the terms
off diagonal in photon number basis can only be nonzero when

(a) ot bt (b) Vi,
.‘/'\ T T
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FIG. 4. Photon lattice representation of frequency locking when
drive Q2 is close to 2w,.. (a) Photon lattice of the system (see
main text for details). Red and blue indicate the chain of sites
along which the eigenstates of Hy have their primary support when
Q ~ 2w,.. Arrows indicate examples of resonant virtual processes
contributing to the second-nearest-neighbor tunneling J and onsite
potential V,, of the effective tight-binding Hamiltonians of the chain.
Different colors emphasize the decoupling into independent sublat-
tices. (b) Schematic depiction of a tight-binding Hamiltonian for the
chains, with sites and onsite potential shown as a function of n,.
(c) Energy profile as a function of the oscillator phase ¢, (variable
conjugate to n.), for the oscillator states close to the minimum of
V.. Green and orange are approximate bound states of the effective
Hamiltonian near ¢, = 0 and m, each a superposition of “red” and
“blue” chain states in (b). Up to exponentially weak tunneling correc-
tion, these bound states are also Floquet eigenstates, corresponding
to the semiclassical states with the oscillator phases locked to O or 7,
respectively.

m — n = kq for some integer k [86]. This coupling arises from
virtual processes where kp cavity photons are emitted, and
kg full drive photons (with frequency €2) are absorbed, or
vice versa.

The above considerations show that the one-dimensional
(1D) chain model above itself separates into g decoupled
sublattices, distinguished by the value of n.(mod ¢g). The

tunneling coefficient H’Z’fn kg arises from a k(g + r)th-order

virtual process [see Fig. 4(a)], and hence scales as ket
Thus, only the k =1 term is relevant in the n — 0 limit.
Following this discussion, we conclude that H*’ takes
the form

Hmn = Vnsmn + %(Jnfsm,iH-q + JJSn-&-q,m)v (AS)
where V,, and J, are 2 x 2 matrices acting on the Hilbert space
of the qubit, and we suppressed the qubit indices «, § for
brevity. The term V, has contributions from the static field
By, from the finite detuning dw, and from even-order “closed”
virtual processes, while the origin of the term J,, was discussed
in the above.

While it is straightforward to analytically compute the
terms V, and J, above through perturbation theory in 7, such
an analysis is beyond the scope of this paper. Instead, below
we infer the emergence of frequency locking from a more
qualitative discussion of the effective Hamiltonian above. We
consider the case of a spinless model, where the coefficients
V, and J,, in Eq. (AS) are scalars. Such a Hamiltonian emerges
when the above line of arguments is applied to a periodically
driven anharmonic oscillator, such as considered in Ref. [43].
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We expect that the “spinful” model arising from the qubit-
cavity system can be analyzed in a similar way.

To see how frequency locking arises in the spinless model,
we note that for a finite range of detuning dw = w — rQ2/q
the net potential energy V,, = V,, + |J,,| may have a nontrivial
minimum as a function of 7, as schematically illustrated in
Fig. 4(c) (the case of a maximum is similar). Near the min-
imum ng of V,, to lowest order in n — ng, H takes the form

k 5 J
Hmn ~ E(n - I’l()) Smn + E((Sm,n-‘rq + Sm,n—q - 2), (A6)

where J = J,,,, and the “spring constant” k can be computed
from Taylor expanding V, around n = ng. It is illuminating
to express the Hamiltonian above in terms of the variable ¢
conjugate to n — ng:

1

Hefp = —
2meff

95 + Jlcos(gep) — 11, (AT)

where mes = 1/k. Physically, since the index n measures
the value of 7, (i.e., the number of cavity mode photons)
up to a constant shift by ng [see Eq. (A4)], ¢ measures the
phase of the cavity mode. Thus, when n, & ny the effective
Hamiltonian for the phase of the cavity mode describes the
Hamiltonian of a free particle in a cosine potential V (¢) with
well spacing 2 /g and depth J, as depicted in Fig. 4(c).

Importantly, when the potential well depth J is sufficiently
large compared to that of kinetic energy of zero-point fluctu-
ations associated with the effective mass m¢, the effective
Hamiltonian above may support bound states where wave
function of the system (as a function of ¢) is confined to one
of the potential wells. In this state, with exponential accuracy,
the phase of the oscillator ¢ is locked to an integer multiple
of 21 /q.

We now demonstrate that these bound states can be used
to construct Floquet eigenstates of the qubit-cavity model
where the phase has locked to the driving field [recall that the
eigenstates in the photon lattice correspond to Floquet eigen-
states of the qubit-cavity system through Eq. (A1)]. Indeed,
from the bound states |v,)) localized in isolated potential
wells z, one can construct plane-wave combinations |V, )) =

2mizn .
\/Lﬁ Zz [, )e” ¢ . Due to Gaussian confinement of the wave

function in the bottom of the near-harmonic potential wells
in Eq. (A7), the energy differences between these distinct
combinations will be exponentially small in A%/&2, where
A = 21 /q denotes the well separation, and & = (Jmeg) ™'/
denotes the scale of the phase fluctuations around the potential
minimum.

Through the correspondence between eigenstates of Hp
and the Floquet eigenstates of the system, we conclude there
must exist families of g Floquet eigenstates, whose quasiener-
gies differ by an integer multiple of €2/g, up to a correction d&
exponentially small in A2/£2 ~ /Jmes/q*. This is in agree-
ment with the main text, where we indeed found multiplets
of Floquet eigenstates with exponentially close quasienergies
modulo 2/q.

APPENDIX B: FREQUENCY LOCKING AT OTHER
FREQUENCY RATIOS

Here we numerically demonstrate that quantum frequency
locking also occurs at ratios other than 3. For the same
model and realizations studied in Sec. V [see Fig. 1(c)], we
counted the number of frequency-locking Floquet eigenstates
at period multiplication ¢ for ¢ = 2,4,5,6, as a function
of the coupling strength n and cavity frequency .. The
frequency-locking states were identified from the quasienergy
level spacings (modulo €2/g), in the same way as for the
period-3 frequency-locking states (see Sec. V). Our counting
procedure identified a unique period multiplication for each
frequency-locking state, such that period-2 frequency-locking
eigenstates were not also double counted as a period-4 Floquet
eigenstate. In Fig. 5, we plot the obtained number of period-g
frequency-locking states. (Note that a different color scale is
used compared to Fig. 1, in order to heighten the contrast.)
Figure 5 clearly shows the same branch structure as Fig. 1(c),
with period-g frequency locking occurring whenever . /<2 is
close to r/q for integer r. This demonstrates that period-q
frequency locking can occur for any ¢, when w./$2 is close
enough to r/q for some integer r.

APPENDIX C: DERIVATION OF H IN
FLOQUET REGIME

Here we identify the conditions for the Floquet regime, and
derive the corresponding semiclassical effective Hamiltonian
Hesr(x, p) [Egs. (8) and (16)]. These results were quoted in
Sec. IIT A 2 of the main text.

1. Conditions for the Floquet regime

We begin by deriving the conditions for the Floquet regime
that we quoted in Sec. III A 2, namely,

n <0 p))T, v <Ay, (C1)

where 6(x, p) denotes the stroboscopic precession angle (see
Sec. IIT A 2), and A,y = /X2 + p? denotes the displacement
amplitude of the cavity mode.

To identify the conditions for Floquet locking, we consider
the spin’s dynamics [Eq. (12) in the main text] for fixed x and
p. In this case S(¢) evolves according to the Schrodinger-type
equation

Sty = =i ) H (x, p, 0Si(0), (€2)
!

where Hk(?)(x, p,t) = —in Zj hj(x, p,t)€jr is a 3 x 3 Her-
mitian matrix, with €;; denoting the Levi-Civita tensor. Due
to the Floquet theorem, Eq. (C2) has three complex-valued
orthonormal solutions of the form S(z) = n j(t)e‘isf’, where
n;(t) =n;(t + T). The antisymmetry of H(¢) implies that
one of the stationary solutions is real valued, with quasienergy
zero. We identify this solution as the vector ny(x, p, t) from
Sec. IIT A 2. Up to a prefactor, no(x, p,?) is the unique
T -periodic solution to Eq. (12), with x and p fixed. The re-
maining two orthogonal solutions are related to each other by
Hermitian conjugation, and have quasienergies +6(x, p)/T.
The above properties imply that the effective Hamiltonian
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FIG. 5. Number of period-q frequency-locking Floquet eigenstates

as a function of w, and 7, for the model depicted in Fig. 1(c), for g = 2

(a),g =4 (b),qg =5(c),and g = 6 (d). See Appendix B for further details.

associated with H®(x, p, t) is given by

HI™(x, p) = [0(x, p)/Tlalx, p) - S,

where we used ny(x, p,t) = a(x, p). Thus, we have related
a(x, p), no(x, p,t), and O(x, p) to the Floquet states and
quasienergy spectrum of the 3 x 3 antisymmetric Hamilto-
nian H®(x, p, t).

As quoted in Sec. IIT A 2 (see also Ref. [78]), the trajectory
of the spin S(¢) is locked to ny(x(#), p(¢), t) when the change
of the stroboscopic precession axis a(x, p) = ny(x, p, 0) due
to the motion of x and p is adiabatic with respect to the
quasienergy gap of the effective spin Hamiltonian de(x, p) =
#min (0(x, p), 27 — 20(x, p)):

(C3)

d
’Ea(x(t)’ pt))| K de(x(t), pt)), (C4)
where (with x, p, and ¢ suppressed)
d
—a = Xd.a + po,a. (C5)

dt

To identify the conditions under which Eq. (C4) holds, we
thus need to bound |0.a| and |9,a].

To bound d.a, we consider the Floquet operator
R(x, p, T), where R(x, p, t) = Te i hd H Pt denotes the
time-evolution operator generated by H®(x, p,t). Due to
the antisymmetry of H® (x, p,t), R(x, p,t) is an orthogo-
nal matrix. Below we show through standard perturbative
arguments that

2018, R(T
p.a] < AARON (o)
wée(x, p)T
where || - || refers to the spectral norm, and e (x, p) was de-

fined above Eq. (C4).

To prove Eq. (C6), note that R(T)a = a. Using the short-
hand R = R(T) here and below, we hence have 9,(Ra) = d,a.
Applying the chain rule, we also find 9,(Ra) = (d,R)a +
Ro.a. Equating these two expressions, we obtain

(0:R)a = (1 — R)o,a. (C7)

From the spectral decomposition of R, we have, for any vector
v, |(1 = R)v| > |e~¢T — 1||v|. Using this result along with
le7@ — 1| > am /2 (for a < pi) in the equation above, we ob-
tain |d,Ra| < 8T m|d.al/2. Using |d,Ra| < ||;R]|, Eq. (C6)
follows.

Using the chain rule and the triangle inequality, one

can verify [|0,R(x, p, T)| < fOT dt||9.H®(x, p,t)||. Since
||8XH(](~X7 pv t)” < 77|axh| = 777 we then ﬁnd ”axR(-xv pa T)”

< nT. Thus, we conclude

2n

8l < ———.
786 (x, p)

(C8)
The same bound holds for |d,a| by similar arguments. Using
the above result along with x, p < 1 + §wA..y [see Egs. (10)
and (11)] and the triangle inequality, we finally obtain

d

4n
—al <
dr™| =

_ Acavdw).
n88(x,p)(n+ cavéw)

(€9

Hence, using 4/m ~ 1, the condition |da/dt| < ¢ is
satisfied when

8e* > 7]27 NéwAcay- (C10)

Using 8e ~ 0(x, p)/T, we see that the first condition above
is equivalent to n < 6/T, which is the first condition in
Eq. (C1). When 8¢ ~ 6(x, p)/T, the second condition above
(882 > NéwAcay) is met if dw < 6/T Acay; this is the second
condition in Eq. (C1). Thus, the Floquet regime arises when
the two conditions in Eq. (C1) are satisfied. This was what we
wanted to show.

2. Derivation of effective Hamiltonian

We now derive the effective Hamiltonian in Egs. (8) and
(16). In the Floquet regime, whose conditions were identified
above, the discussion in Sec. III A 2 implies that when the
spin is initially aligned or antialigned with the stroboscopic
precession axis S(0) = £a(x(0), p(0)), the resulting evolu-
tion satisfies S(r) = +ny(x, p, t). Using this in Egs. (10) and
(11), we obtain

X =v(x,p, 1), pP=-—v,x,p,t), (C11)

where, for s = x, p,
ue(x, p, 1) = dwp £ ndph() -mo(x, p,1),  (CI2)
vp(x, p, 1) = Sowx £ noch(t) -mo(x, p,1). (C13)

When the conditions for the Floquet regime [Eq. (C1)]
are satisfied, the stroboscopic motion of the cavity mode is
adiabatic; as a result, it can effectively be assumed stationary
within a driving period. Hence, using the same arguments as
in Sec. IIT A 1 (see also Ref. [77]), we may integrate out the
time dependence of v, (x, p, t), obtaining
(C14)

X~ T)x(x, p), P ~ l_)p(xv p)7
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where, for s = x, p,

T
B(r.p) = dws k2 f di dh(x, p,1) - no(x, p, 7). (C15)
0

In the remainder of this section, we seek to show that v, =
OpHeir(x, p) and ¥, = 0, Hefr (x, p), where Hegr (x, p) is given
in Egs. (8) and (16) of the main text. To do this, we first use
the chain rule to rewrite the integrand in the second term above
for s = p (the case s = x follows analogously):

9,h - ng = d,[h - ng] — h - 3,1y, (C16)

where we suppressed the above quantities” dependence on x,
p, and ¢ for brevity. We now consider the last term above.
Since ny obeys the Bloch equation [Eq. (12)] d;ng = —nh x
njy, we may write
1
h = Il()(h . l‘l()) — —INgy X 8;11(). (C17)
n
This result can be proven by directly inserting 9,n9 = —nh x
ny into the above, and using the cross-product identity a x
(bxc)=Db(a-c)—-c(a-b) along with ny-ng = 1. Using
the above result along with ng - d,ng = 0 (recall that ng is
normalized), we obtain
1
h-d,ng = ——(ng x 9;ng) - d,Ng. (C18)
n
Using (axb)-c=b-(cxa), and
Eq. (C16), we find

aph Ny = 8p[h . l’lo] +ng - (8tl'l() X Bpno).

substituting into

We identify the second term as the the x-Berry flux F;(x, p, 1)
associated with the mapping of R3 to the unit sphere de-

fined by ng(x, p,t). One can verify that fOTthx(x,p, 1) =
0py (x, p), where y(x, p) denotes the Berry phase associated
with the loop traversed by ng(x, p, t) on the unit sphere for
0<t<T.

Thus, we find

T 9 7 1
i/ dtaph-n():— 2/ dthn0+7y .
T Jo ap\T Jo T

Using this in Eq. (C15), we obtain

U (x, p) = x4+ + =y(x,
P ap\ 2 P Ty P

T
+ 1 / dth(x, p.1) - mo(x, p,t)),
T Jo

where we restored the dependence on x and p of the
quantities above.

The final step is to show that the second term inside the
parentheses above equals 0 (x, p)/2T . To show this, we recall
that the Bloch equation 9,S(#) = —nh(z) x S(#) describes the
evolution of the expectation value of S with the T-periodic
spin—% Hamiltonian H,(r) = nh(z) - S (here we suppressed
the dependence of h and A, on x and p). Noting that the
stroboscopic time evolution of (S) is generated by a rotation
by the angle ¢yT around the axis ng [see Eq. (C3)], we con-
clude that the Floquet operator generated by H,(¢) is a 2 x 2

unitary matrix given by Uy(T) = e~ #®PmO8/2 Thys, we

identify 0(x, p)/2T as the (positive) quasienergy associated
with H,(t).

To obtain an expression for e, we note that |y (f)) =
e ¢, (t)) solves the Schrodinger equation generated by
H,(1), where |¢+(¢)) denotes the Floquet state of H,(t) with
quasienergy ¢. Thus, by direct substitution, one can verify that

. T . T
€= i~/ dt (Y ()]0, ¢ (1)) — Lf dr (¢4 ()]0, 14 (1)).
T Jo T Jo
(C19)

We have (Y (¢)|0;|v¥(t)) = inn(¢) - h(¢), where n(¢z) denotes
the Bloch vector of the state |y (¢)), which obeys the Bloch
equation in Eq. (12). Note that n(¢) is also identical to the
Bloch vector of |¢4(¢)). Since |¢(¢)) is time periodic, n(t)
is thus a time-periodic solution to the Bloch equation (12),
and we identify n(z) = ny(¢) (the sign follows from the initial
conditions). Identifying the latter term above as the Berry
phase y (x, p) (with a factor of 1/7'), and restoring x and p,
we conclude

0(x, p) _n

7
1

= — | dth(, p,t)- Do)+ =v(x, p).

7F T./o (x, p,t) -ng(x, p )+T)/(x P)

(C20)

A similar result holds for v,. This was what we wanted to
show, and concludes this Appendix.

APPENDIX D: DERIVATION OF
QUASIENERGY LOCKING

In this Appendix, we show how quasienergy locking
arises in the frequency-locked regime of the driven qubit-
cavity system, using a more rigorous line of arguments than
those presented in the main text. The discussion proceeds
as follows: In Appendix D 1, we first consider the qualita-
tive behavior of the qubit-cavity system in the regime. In
Appendix D2, by reconciling this behavior with Flo-
quet eigenstate decomposition of the time evolution (see
Sec. IV A), we conclude that such nontrivial extrema of
Hegr(x, p) imply the existence of multiplets of quasienergy
levels of the form in Eq. (17) in the main text, whose cor-
responding Floquet states take the form in Egs. (18) and (19).

1. Wave-packet dynamics in g-fold potential wells

To show how quasienergy locking arises, we consider the
semiclassical effective Hamiltonian of the cavity mode in
the regime Hegr(x, p) (see Sec. III A); i.e., in the Floquet or
adiabatic regimes, for parameters where Heg (X, p) acquires
extrema at finite amplitude in phase space. As explained in
Sec. IV B in the main text, Heg (X, p) has a built-in symmetry
of discrete rotation by 27 /g in phase space. As a result,
each potential well of this Hamiltonian (at finite displacement
amplitude) forms part of a ring of g potential wells that are
related to each other through phase space rotations by 27 /q.

We consider the rotating-frame time evolution [ (1)) of a
wave packet |/(0)) initialized in one of the potential wells
of Hegr(x, p), referred to as well O in the following. For
example, |/(0)) may describe a direct-product state where
the cavity mode is in a coherent state whose center in phase
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space (xg, po) is located in well O, while the spin is initial-
ized along or against either h(xp, po, 0) (for the adiabatic
regime) or a(xg, po) (for the Floquet regime) [76]. Note that
the corresponding initial state of the system in the laboratory
frame, |y (0)), coincides with |/(0)) (see Sec. IIT A). Since
[ (¢)) must propagate along the constant-value contours of
Hes (x, p), we expect that |1Z(t)) remains confined within well
0 up to the timescale of quantum tunneling between the poten-
tial wells of Hegr, T. We expect the rate of quantum tunneling
1/t to be exponentially suppressed in d/&, where d denotes
the separation between the potential wells in phase space, and
& ~ 1 denotes the scale of quantum fluctuations. Hence, the
duration of the confinement 7 scales exponentially with d/&.

We now consider the corresponding evolution of the sys-
tem in the laboratory frame [y (¢)). We recall from Sec. IIT A
that |y (7)) is obtained from | (z)) through a phase space
rotation by 2mrt/qT. Hence, for integer k where k < t/T,
the support of | (k7)) in the phase space (of the cavity mode)
is confined to the potential well of H¢g which is located at an
angle 2rrk/q from well O in phase space; we refer to this
potential well as well k in the following.

2. Implications for Floquet eigenstates

Above we showed that, in the quantum regime, the qubit-
cavity system supports solutions that remain confined to
potential well k of Heg at time r = kT (for integer k). The
confinement persists for times ¢ < t, where 7 is the exponen-
tially long timescale for tunneling between the potential wells
of H.gr. In this section, we show how the resolvability of such
a confined solution |1 (¢)) in terms of Floquet eigenstates

W KT)) =Y cae™ " [y, (D1)

n

dictates the behavior of Floquet eigenstates and quasienergies
of the system. Specifically, each Floquet eigenstate which
significantly overlaps with | (0)) must form a part of a mul-
tiplet of g Floquet eigenstates of the form in Eqs. (18) and
(19), while the corresponding quasienergies are of the form
in Eq. (17).

To simplify the analysis, we restrict the cavity mode’s
phase space to the region where | (¢)) has its support: we
let rmax denote the maximal distance r from the origin in
the cavity mode’s phase space where |{(¢)) has significant
support, and discard all states in the Hilbert space with more
than R? photons of the cavity mode, for some R > riax. This
truncation effectively discards the region of phase space lo-
cated more than a distance R from the origin; hence, we do not
expect it to significantly affect |y (¢)). Moreover, we expect
the Floquet eigenstates (and their corresponding quasiener-
gies) to remain nearly unaffected by the truncation when they
have full support well within a distance R from the origin
of phase space (up to exponentially small corrections). We
assume R can be chosen several orders of magnitude smaller
than (t/T)!'/3, while still remaining much larger than rpgy.
This is safe to assume since, as we recall from Appendix D 1,
T ~ ¢%/% where £ ~ 1 is the scale of quantum fluctuations,
and d the distance of the potential wells from the origin. In

contrast, rrznax only scales quadratically with d/&.

To characterize the properties of the Floquet eigenstates
of the system with the truncated Hilbert space, we consider
the stroboscopic time evolution of the confined wave packet
| (mT)), for m =0,1,...N for some N. For sufficiently
large N (see below for specific conditions), we may use this to
compute any Floquet eigenstate |y,,) whose overlap with the
initial state ¢, = (¥,|¥ (0)) is significant:

1 & ‘
V) = —= DI (mT))e™" +O(le,Noe,T1™). (D2)
m=0

Cn

Here ¢, denotes the quasienergy corresponding to |y,), and
d¢e, = min,, |&, — &,| denotes the distance to the nearest adja-
cent quasienergy from ¢,. In the above, O(x) denotes a state
with norm <|x|. The above result can be verified by direct
insertion of Eq. (D1) into the right-hand side above.

Since the truncated system has 2R’ quasienergy levels,
uniformly distributed over the interval between O and €,
the quasienergy spacing satisfies 8¢, ~ O([R*T]~"). We refer
to the overlap coefficient ¢, as being significant if |c,| >
1/~/2R? [at least one such Floquet eigenstate state should
exist, due to the normalization of |¥(0)) which implies
Ziizl |ca|? = 1]. Hence, for significantly overlapping Floquet
eigenstates, the correction in Eq. (D2) is, at most, of order
R3 /N. We choose N to be much smaller than, but still of
same magnitude as, /7. With this choice, N is much larger
than R* [due to our assumption above that R could be chosen
much smaller than (t/ T)l/ 5 and R > 1]; hence, for each sig-
nificantly overlapping Floquet eigenstate |,), the correction
in Eq. (D2) is of order <R*T /7, and hence much smaller than
1.

Since we chose N much smaller than 7 /T, for each m
between 0 and N, |¥(mT)) is still confined within well
m (mod q) of Heg (X, p). Thus, |1,) can be written as

q
W) = Y |xf) + OR’T /7).,

k=1

(D3)

where | X,]f) consists of all terms in Eq. (D2) where m =
k (mod ¢g) and hence only has support only in potential well k
of phase space.

The states {| X,]f )} transform nontrivially under time trans-
lation by one period: using that U1y (mT)) = |y ([m +
1]T)), one can verify that

UT)|xy) ="
where | x,! +1) =| X,})- Due to their separate regions of support
in phase space, the states {| X,f)} are mutually orthogonal.
Since the right-hand side of Eq. (D3) must have unit norm, the
orthogonality of the states {| X,]f)} along with Eq. (D4) require
that (x*|x*) = 1/qg + O(R*T /7) for each k.

We now use the states {| X,’;)} to identify a family of Flo-
quet eigenstates (including |v,)), whose quasienergies are
separated from each other by integer multiples of /g (up
to corrections of order 1/7) thus establishing the presence of
quasienergy locking in the system. To this end, we consider
the states |y)), ... |¥), where |f) = D71, e 2mitk/a|y k).
Using Eq. (D4), we see that

UYL = e "@HUOT |l + O(RT /7).

X+ oR’T /v), (D4)

(D5)
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FIG. 6. Wigner functions of two additional period-3
quasienergy-locked Floquet eigenstates for the same system as
depicted in Fig. 2(d), with support in a well distinct from the
eigenstate in Fig. 2(d).

Moreover, [¢f) has norm 1+ O(R*T/7), due to the orthog-
onality and near normalization of the states {|x;')} [see text
above Eq. (D4)]. Thus, up to a correction of order R3T/,
[¥f) is a normalized Floquet eigenstate of the system. The
existence of the approximate Floquet eigenstate [¢%), along
with the finite quasienergy level spacing, dictates [87] that
there must exist an exact Floquet eigenstate of the system
[¥f) &~ |f) whose quasienergy is approximately given by
en + €82/q. Specifically, |¢) can be written

q
W) =Y e Mty + ORT /7),  (D6)
k=1
while the corresponding quasienergy is given by
en +LQ/q + OR’T /7). (D7)

For each Floquet eigenstate |,) that significantly overlaps
with the state |1/ (0)) (according to the definition above), this
construction can be made for each £ =1,...q (note that

[y = |4,)); hence, each Floquet eigenstate with significant
support in the potential wells of Hei must form a part of
a multiplet of g Floquet states with the properties outlined
in Egs. (17)—(19) from the main text. This establishes the
presence of quasienergy locking of the qubit-cavity system in
the regimes, and concludes this Appendix.

APPENDIX E: FLOQUET EIGENSTATES WITH SUPPORT
IN DISTINCT POTENTIAL WELLS

In this Appendix, we show Wigner functions for addi-
tional period-3 quasienergy-locked Floquet eigenstates of the
qubit-cavity model for the parameters considered in Figs. 2(b)
and 2(d) (see main text for further details). These plots
demonstrate that the distinct potential wells of Heg(x, p) for
these parameters [see Fig. 2(b)] support distinct triplets of
quasienergy-locked Floquet eigenstates, and moreover that
the same well may support several triplets.

In Fig. 6, we depict the Wigner functions for two
quasienergy-locked Floquet eigenstates of the system distinct
from the one depicted in Fig. 2(d). Each of the Floquet eigen-
states depicted in Fig. 6 forms a part of its own triplet of
quasienergy-locked Floquet eigenstates which, respectively,
have (nearly) identical Wigner functions to the Wigner func-
tions depicted in Fig. 6.

Note that the two Floquet eigenstates shown in Fig. 6 have
support in the same well, and that this well is distinct from
the one where the eigenstate shown in Fig. 2(d) has support.
This confirms that the distinct potential wells of Heg(x, p)
support distinct triplets of quasienergy-locked Floquet eigen-
states, and that the same well may support multiple triplets.

We finally note that the nodal lines of the Wigner func-
tions in Fig. 6 coincide very closely with the contours of
Hesr(x, p) (gray lines), hence further supporting the discus-
sion in Sec. IIT A.
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