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First-principles approach with a pseudohybrid density functional for extended Hubbard interactions
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For massive database-driven materials research, there are increasing demands for both fast and accurate
quantum mechanical computational tools. Contemporary density functional theory (DFT) methods can be fast,
sacrificing their accuracy, or be precise, consuming a significant amount of resources. Here, to overcome such
a problem, we present a DFT method that exploits self-consistent determinations of the on-site and intersite
Hubbard interactions (U and V ) simultaneously and obtain band gaps of diverse materials in the accuracy of the
GW method at a standard DFT computational cost. To achieve the self-consistent evaluation of U and V , we
adapt a recently proposed Agapito–Curtarolo–Buongiorno Nardelli pseudohybrid functional for U to implement
a density functional of V . This method is found to be appropriate for considering various interactions such as
local Coulomb repulsion, covalent hybridization, and their coexistence. We also obtain good agreements between
computed and measured band gaps of low-dimensional systems, thus meriting this approach for large-scale as
well as high-throughput calculations for various bulk and nanoscale materials with a higher accuracy.
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I. INTRODUCTION

Theoretical and computational methods based on the
density functional theory (DFT) [1,2] have been indispens-
able tools in understanding the physical properties of real
materials [3]. Although they fail quantitatively and some-
times qualitatively in calculating band gaps [3] with the
local density approximation (LDA) [2] or the generalized-
gradient approximation (GGA) [4], they are the only currently
available methods without significant computational costs
to offer fully quantum mechanical computational results
for diverse phenomena involved with many thousands of
electrons [3,5]. Thus, regardless of such shortcomings, DFT-
based approaches prevail in data-driven materials research [6]
spanning various areas such as energy materials [7–9], elec-
tronic applications [10–12], low-dimensional crystals [13],
and topological materials [14–17]. These databases with im-
proved accuracy will be of great benefit in advancing future
technology.

To build high-quality materials databases, it is vital to im-
prove the accuracy of DFT-based methods. Several methods
beyond LDA and GGA have been suggested so far. The local
Coulomb repulsion U was introduced in DFT + U to compen-
sate the overdelocalization of d or f electrons in LDA or GGA
[18,19]. Beyond the static correlation effectively treated in
DFT + U , DFT with the dynamical mean-field theory [20–22]
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has been used for strongly interacting materials. The quasi-
particle energy of semiconductors can be obtained accurately
with the GW approximations [23–25]. Hybrid function-
als such as Heyd-Scuseria-Ernzerhof (HSE) [26,27] and
LDA with the modified Becke-Johnson exchange potential
(mBJLDA) [28] are also popular. However, all the meth-
ods above except DFT + U and mBJLDA involve intensive
computations, discouraging their use in data-driven research.
Due to some limitations in the latter [29], we will focus on
improving the former for high-throughput calculations.

Two aspects in the DFT + U formalism are important
in obtaining accurate band gaps ab initio. First, the on-
site Hubbard U needs to be estimated self-consistently [30]
and various methods for this purpose [30–37] have been
suggested. Among them, the direct evaluation from the
Hartree-Fock (HF) formalism [35–37] is relevant here since
other methods involve additional expensive calculations. A
recent proposal by Agapito–Curtarolo–Buongiorno Nardelli
(ACBN0) [37] allows a direct self-consistent evaluation of U .
They demonstrated improved agreements with experiments
with a negligible increase in computational cost [37,38].
Second, the intersite Hubbard V between the localized orbital
of interest in DFT + U and its neighboring orbitals also needs
to be considered properly because it could lead to better de-
scriptions of the electronic structures of some solids [39–41].
Moreover, DFT + U hardly improves the LDA and GGA gaps
of simple semiconductors such as Si while DFT + U with
V does [40]. Therefore, by combining these advancements,
we may obtain an efficient large-scale and high-throughput
computational tool for materials research.

In this paper, we extend the ACBN0 functional for
DFT + U [37] to implement a density functional for the
intersite Coulomb interaction of V . With this, we achieve
excellent agreements between the self-consistent ab initio
band gaps of diverse semiconductors and insulators and those
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from experiments. Band gaps comparable to those from GW
methods [24,25] can be obtained within the standard DFT-
GGA computational time. Moreover, for low-dimensional
systems in which the screening of the Coulomb interaction
varies significantly, this method can also compute accurate
band gaps of few-layer black phosphorus and a Si(111)-
(2 × 1) surface, respectively, demonstrating its flexibility with
structural and dimensional variations. Considering the recent
explosive expansion of data-driven materials research using
the DFT [6–17], the improved accuracy in DFT computations
is of great importance in constructing useful and reliable
databases of materials. Thus, we expect that this approach
could accelerate efficient high-throughput calculations with
better accuracy for materials discoveries.

This paper is organized as follows. We first introduce our
formalism of the ACBN0-like functional for the intersite Hub-
bard interactions in Sec. II. Then, using the method described
in Sec. III, we present our computational results of energy
band gaps of various three-dimensional solids in Sec. IV and
those of low-dimensional systems in Sec. V. Finally, we dis-
cuss several aspects of this functional and conclude in Sec. VI.

II. FORMALISM

Let us first consider the mean-field (MF) energy of the
Coulomb interaction between electrons in a pair of atoms I
and J with the HF approximation,

EMF = 1
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i j
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i φ
J
j
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In the abbreviated representation of pairwise HF energy in
Eq. (1), the general occupation matrix is written as

nIJσ
i j ≡ nI,n,l,J,n′,l ′,σ
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where fmk is the Fermi-Dirac function of the Bloch state |ψσ
mk〉

with a spin σ of the mth band at a momentum k and wmk
is the k-grid weight. The Löwdin orthonormalized atomic
wave function (|φI,n,l

i 〉) is used as a projector for the localized
atomic orbital having the principal, azimuthal, and angular
quantum numbers of n, l , and i, respectively, at an atom I .
We will use a brief notation for atom I representing specific
principal and azimuthal quantum numbers of n and l of the
Ith atomic element in a solid hereafter. We also note that the
diagonal terms in Eq. (2) are the usual on-site occupations for
DFT + U . In Eq. (1), we neglect other small pairwise inter-
actions, e.g., the cross-charge exchanges between neighbors
[40], and discuss their effects in Appendix A and in Table V.

Assuming the effective interactions of 〈Vee〉 in Eq. (1) are
all equal to their atomic average [40], the rotationally invariant
or angular momentum averaged form of EMF can be written
as EMF = EHub = EU + EV , where EU is for the case of I = J
and EV for I �= J . EU is the well-known energy functional for
U suggested by Dudarev et al. [42]. For the I �= J case where

atoms I and J locate at different positions, respectively,

EV = 1
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where the {I, J} indicates the summation for pairs of atoms I
and J of which the interatomic distance of dIJ is less than a
given cutoff. In Eq. (3), V IJ is the intersite Hubbard interac-
tion for the pair and will be determined based on the method
of ACBN0 [37].

To obtain a functional form of V IJ , as is discussed for U
in Ref. [37], we also follow a central ansatz by Mosey et al.
[35,36] that leads to a “renormalized” occupation number for
the pair such as
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where the summation performs for all the orbitals of a type I
atom with quantum number n and l [denoted by {I} in Eq. (4)]
and for a type J atom with n′ and l ′ (denoted by {J}) in a
given unit cell, respectively. Here, we note that the sum is
only obtained for all the given pairs within a specific distance.
Therefore, we can obtain the ACBN0-like functional for V IJ

that effectively accounts for the screening in the bond region
between the pair, e.g., the interaction between the lth orbital
of the I atom and the l ′th orbital of the J atom. Corresponding
to the ACBN0 functional [37] for U , we can replace nIJσ

i j in
Eq. (1) by a renormalized density matrix for the pair,
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i j =

∑
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wmk fnkNIJσ
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〉
. (5)

In the case where there are no electrons participating in the
bond between atoms I and J , the renormalized density matrix
of Eq. (5) for the pair automatically reduces to zero, thereby
nullifying the intersite effects. Note that I and J here also
implicitly include orbital indices.

The bare Coulomb interaction between electrons belong-
ing to the pair can be expressed by the electron repulsion
integral [37],

VERI ≡ (ik| jl ) ≡
∫

dr1dr2

φI∗
i (r1)φI

k (r1)φJ∗
j (r2)φJ

l (r2)

|r1 − r2| ,

(6)
where i and k are orbital indices belonging to atom I and j and
l to atom J . Using Eqs. (5) and (6), the ACBN0-like energy
expression (EV

ACBN0) for the intersite Hubbard interaction can
be written as

EV
ACBN0 = 1

4

∑
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σ,σ ′

[
PIIσ

ik PJJσ ′
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jk

]
×(ik| jl ), (7)

where the additional prefactor of 1/2 arises from a double
counting of the same pairs. Equating Eq. (3) to Eq. (7), we
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can then obtain a density functional form of V IJ ,

V IJ = 1
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An energy functional for V can be constructed by sub-
tracting a double-counting term (Edc

V ) from EV in Eq. (3).
Following the discussion in Ref. [40], we use the fully lo-
calized limit and then Edc

V = ∑
{I,J}

∑
i, j

∑
σ,σ ′

V IJ

2 nIIσ
ii nJJσ ′

j j .
With this, the final functional for the intersite interaction of
V can be written as

EV [{n}] = −1

2

∑
{I,J}

∑
σ

V IJ [{n}]Tr[nIJσ nJIσ ], (9)

where nIJσ is the matrix notation for the general occupation
in Eq. (2), {n} = {nIIσ , nIJσ } and V IJ [{n}] in Eq. (8). For the
on-site repulsion, we used the ACBN0 functionals in Eqs. (12)
and (13) of Ref. [37] so that we complete a construction of
the pseudohybrid-type functionals for the two essential Hub-
bard interactions. As discussed before [40], the minus sign in
EV [{n}] highlights the role of the intersite Hubbard interaction
that localizes electrons between atoms I and J . So, Eq. (9)
implemented in this study can improve the description of co-
valent bonding or augment the overlocalization [41] caused by
U in the case where the bonding between neighboring d and
p orbitals plays important roles for the various ground-state
properties of solids.

III. COMPUTATIONAL METHODS

We implemented EV [{n}] in Eq. (9), ACBN0 function-
als, and other related quantities in the QUANTUM ESPRESSO

package [43]. For the Kohn-Sham potential corresponding to
Eq. (9), we used Eq. (13) in Ref. [40]. To compute VERI in
Eq. (6), we used the pseudo-atomic orbitals (PAO) expressed
as a linear combination of Gaussian-type functions (PAO-3G)
for the basis set as in Ref. [37]. With the aid of the PyQuante
package [44], the integrals were done quickly in an analytical
way. For all calculations here, the cutoff for dIJ sets within the
second-nearest neighbors. We will discuss the effects of dIJ

later. The on-site interactions for s orbitals were neglected for
all materials considered here while for intersite interactions,
s orbitals were included. Fully converged U and V were ob-
tained when the difference in energy between two consecutive
self-consistent steps is less than 10-8 Ry. We used the Garrity-
Bennett-Rabe-Vanderbilt (GBRV) ultrasoft pseudopotentials
[45]. Regarding the pseudopotential dependence of ACBN0
functionals [38], we tested the norm-conserving pseudopoten-
tials provided by the PseudoDoJo project [46] and will discuss
its effects in Appendix B. The kinetic energy cutoff was set to
160 Ry to fix the value for all materials. The Brillouin zone
(BZ) integration was performed with a �-centered k-point
grid spacing of 0.2 Å−1. The lattice structures are chosen from
the experimentally available data for comparison to the results
with other computational methods and otherwise are relaxed
within a standard DFT scheme. For low-dimensional materials
discussed in Sec. V, we used slightly modified setups for com-

TABLE I. Calculated band gaps (in eV). For comparison, gaps
from experiments and other methods are also shown. Structures
denoted by the strukturbericht designation are in parentheses, except
monoclinic ZrO2. Experimental data are from Refs. [28,29,37,47]
and references therein.

Solid GGAa ACBN0 This work HSEb GW c Expt.

C (A4) 4.15 4.17 5.50 5.43 6.18 5.50
Si (A4) 0.58 0.52 1.36 1.21 1.41 1.17
Ge (A4) 0.00 0.00 0.61 0.80 0.95 0.74
BP (B3) 1.25 1.24 2.27 2.13 2.20 2.40
AlP (B3) 1.59 2.00 2.66 2.42 2.90 2.50
GaP (B3) 1.60 1.74 2.47 2.39 2.80 2.35
InP (B3) 0.67 0.94 1.46 1.77 1.44 1.42
AlAs (B3) 1.43 1.75 2.43 2.13 2.18 2.23
GaAs (B3) 0.55 0.68 1.28 1.11 1.85 1.52
InAs (B3) 0.00 0.00 0.46 0.57 0.31 0.42
SiC (B3) 1.37 1.74 2.49 2.32 2.88 2.42
BN (B3) 4.48 5.14 6.31 5.91 7.14 6.36
ZnS (B3) 2.09 3.43 3.71 3.44 4.15 3.80
ZnSe (B3) 1.28 2.32 2.60 2.38 2.66 2.82
ZnTe (B3) 1.31 1.99 2.30 2.34 2.15 2.39
LiF (B1) 9.12 13.74 14.26 13.28 15.90 14.20
MgO (B1) 4.80 8.84 10.06 6.59 9.16 7.90
ZrO2

d 3.74 5.10 5.97 5.20 5.34 5.50
TiO2 (C4) 1.89 3.02 4.18 3.25 4.48 3.30
MnO (B1) 0.91 2.56 2.73 4.77 3.50 3.60
NiO (B1) 0.96 3.70 3.90 4.09 4.80 4.30
ZnO (B4) 0.89 3.62 3.88 2.11 3.80 3.44
Cu2O (C3) 0.55 1.28 1.52 2.02 1.97 2.17

MARE (%) 52.71 30.26 10.64 11.83 13.62
MRE (%) −52.71 −28.78 0.47 −2.61 7.76

aGGA by Perdew-Burke-Ernzerhof (PBE) [4].
bAll data from HSE06 results in Ref. [48] except ZrO2 from HSE06
in Ref. [49], TiO2 from HSE03 in Ref. [50], ZnO from HSE03 in
Ref. [51], and Cu2O from HSE06 in Ref. [52].
cAll data from self-consistent GW (scGW ) calculation results in
Ref. [25] except GaP, InP, AlAs from scGW in Ref. [53], ZnSe
from a partially self-consistent GW (GW0) in Ref. [54], BP from GW0

in Ref. [55], ZrO2 from scGW in Ref. [56], TiO2 from scGW in
Ref. [57], and Cu2O from scGW in Ref. [58].
dMonoclinic structure.

putations and presented detailed methods in the corresponding
sections.

IV. ENERGY GAPS OF THREE-DIMENSIONAL SOLIDS

We first tested our method for selected bulk solids with
diverse characteristics. Table I and Fig. 1 summarize the
calculated band gaps of 23 solids. We also listed the re-
sults from other calculations and measurements. We select
solids from group IV, group III-V semiconductors, ionic
insulators, metal chalcogenides, and metal oxides. Our calcu-
lated band gaps are in excellent agreement with experiments
and are as accurate as those from the HSE and GW meth-
ods as shown in Table I. The mean absolute relative error
(MARE) with respect to the experimental data indicates that
our method, and the HSE and GW methods are closer to ex-
periments than Perdew-Burke-Ernzerhof (PBE) and ACBN0.
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FIG. 1. Experimental vs theoretical band gaps in Table I. Metal
oxides are marked and all other materials considered here are almost
right on top of the experimental values.

The mean relative error (MRE) shows that PBE and ACBN0
underestimate the gaps (minus sign) while the GW method
overestimates them. Hereafter, we mainly focus on the calcu-
lated gap values and, for future reference, the band structures
of all solids are displayed in the Supplemental Material
(SM) [59].

For the group IV semiconductors, the effect of U on the
band gaps is almost negligible as shown in Table I (see the
ACBN0 column) while the intersite Hubbard terms improve
the band gaps dramatically, as was also discussed in a previous
study using the linear-response theory [40].

For the group III-V semiconductors, both U and V affect
their electronic structures because of their mixed covalent and
ionic bonding characters. Therefore, ACBN0 improves the
PBE gaps and the intersite terms increase these further to
match the experimental values. Details of computations such
as self-consistent U and V for Si and GaAs compared with
Ref. [40] are discussed below. We note that PBE and ACBN0
incorrectly describe Ge and InAs as a metal and a topological
insulator, respectively, while our method confirms them as
semiconductors such as HSE and GW results.

We present the calculated U and V values for Si and GaAs
to compare with the values obtained by the linear-response
approach [40]. Table II shows the calculated results. Our on-
site U value for the p orbital of Si is larger than that reported
in a previous study [40]. All the other intersite terms except
one between p orbitals are smaller than those from the linear-
response approach [40]. We note here that the on-site term for
Si has no effect on the band gap at all. Despite the differences
in the Hubbard parameters, the calculated band gap of Si is
in good agreement with the previous linear-response theory
work [40] and experimental value. In the case of GaAs, our
on-site interactions for the p orbitals of Ga and As, respec-
tively, are all smaller than the previous results [40]. As the
Si case, our intersite values are also smaller than the previous
results except for the one between the p orbitals. Nevertheless,
our computed band gap of 1.28 eV for GaAs is larger than

TABLE II. Calculated U and V between s and p orbitals of the
first nearest neighbors of Si and GaAs (in eV). Here, we compare
our results with those based on the linear-response theory (LRT). For
GaAs, the first (second) Up for on-site Hubbard interactions on the
Ga (As) p orbital. Vsp (Vps) corresponds to intersite terms between
the Ga s(p) orbital and As p(s) orbital. Vpp denotes the intersite
interaction between the Ga p orbital and As p orbital.

Up Vss Vsp Vps Vpp

Si This work 3.50 0.90 0.72 0.72 1.85
LRTa 2.82 1.40 1.36 1.36 1.34

GaAs This work 0.37, 1.88 0.91 1.26 0.80 1.75
LRTa 3.14, 4.24 1.75 1.76 1.68 1.72

aReference [40].

the value of 0.90 eV reported in Ref. [40] and is close to the
experimental gap of 1.52 eV (see Table I).

In the case of the ionic compound LiF, the on-site U
improves the PBE band gap significantly because of its
strong local Coulomb repulsion. Nonetheless, the intersite
V still increases the ACBN0 gap further to match with an
experimental value.

A similar trend is also found in metal monochalcogenides
(here Zn compounds only). For these compounds, the U and
V functionals play similar roles as they do for LiF so that
our results with U and V are quite closer to experimental
values than those with U only. We note that the calculated
gaps depend on the choice of the pseudopotential of Zn while
there is no such dependence in the cases of IV and III-V
semiconductors. We will discuss this further for cases of metal
oxides below.

Regarding metal oxides, our results agree with the calcula-
tions by other advanced methods. For TiO2, MnO, NiO, and
ZnO in Table I, our ACBN0 results already improve the PBE
gaps significantly, similar with previous studies [37,38,60]
that calculated the detailed electronic structures with ACBN0.
Our gaps are slightly larger than the values in other works
[37,38,60]. These discrepancies originate from the different
self-consistent U values. With the intersite V included, the
changes in the on-site U lead to an increase in the ACBN0
gaps of TiO2, MnO, ZnO, and NiO as shown in Table III. We
note that the gaps of the metal oxides depend on the choice of
pseudopotentials. With the potentials from the PseudoDoJo
project [46], we achieve a better agreement (Table VI in
Appendix B). Because the effects of on-site and intersite
interactions depend on the degree of localization or cutoff
in the projector for the localized orbital [38], it is important
to select or generate pseudopotentials with care to obtain
accurate results [61] or to develop a computational method
for the on- and intersite Hubbard interactions that do not
depend on projectors.

For Cu2O and Zr2O, our results are comparable to those
from HSE and GW calculations. We note here that for Cu2O
the calculated energetic position of fully filled d orbitals is
lower than that of the HSE value [52] by ∼0.9 eV (Fig. S7 in
SM). Since the degree of screening depends on the occupancy
of orbitals in the ACBN0 formalism, the weak screening
for the fully filled d orbitals such as cuprite seems to be
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TABLE III. Self-consistent on-site energies of 3d orbitals of the
transition metal (Ud ) and 2p orbitals of oxygen (Up) and direct band
gaps (Eg) of selected transition metal oxides within the ACBN0 for-
malism (in eV). We also list the self-consistent on-site and intersite
Hubbard interactions (Vd p) between the metal d and oxide p orbitals,
and Eg using the current method.

Solids Ud Up Vd p Eg

TiO2 This worka 0.27 8.49 3.02
ACBN0b 0.15 7.34 2.83
ACBN0c 0.96 10.18 3.21

This workd 0.37 8.21 2.94 4.18

MnO This worka 5.11 2.99 3.05
ACBN0b 4.67 2.68 2.83
ACBN0c 4.68 5.18 2.65

This workd 5.31 2.94 2.72 3.60

NiO This worka 8.22 2.83 4.66
ACBN0b 7.63 3.00 4.29
ACBN0c 6.93 2.68 4.14

This workd 7.77 2.37 2.93 5.13

ZnO This worka 15.06 7.30 3.62
ACBN0b 12.80 5.29 2.91
ACBN0c 13.30 5.95 3.04

This workd 14.96 7.07 3.01 3.88

aDFT + U .
bReference [37].
cReference [38].
dDFT + U + V .

inevitable. Thus, it needs to improve the way it treats the com-
pletely filled d orbitals with U and V within this formalism.
Regardless of its limitation, we found that our computed gaps
with V are considerably improved if compared with those
from ACBN0 and mBJLDA. Considering limits in mBJLDA
to obtain gaps for these compounds [29], our method could be
a good alternative tool for studying zirconia and cuprite.

To compare with the previous ACBN0 studies on metal
oxides [37,38], we consider the on-site Hubbard interaction
of Ud for the d electrons of metals and Up for the p electrons
of oxygen in TiO2, MnO, NiO, and ZnO, respectively. We also
provide those values and the first-nearest-neighbor intersite
Hubbard interaction terms (the d-p interactions) calculated
with our method. The results are summarized in Table III.
We note that except for TiO2 our on-site repulsions for the
d orbitals of metals are rather larger than the values from pre-
vious works [37,38] while the repulsions for oxide p orbitals
are similar with previous studies. Since the size of the on-site
repulsion of the d orbital is almost proportional to the size of
the gap, our larger estimations of Ud result in relatively larger
direct energy gaps for MnO, NiO, and ZnO, respectively, if
compared with the previous studies [37,38]. By including the
intersite Vd p, the gaps increase further because of a reduction
in the energetic position of the conduction band maximum at
the � point (see Fig. S6 in SM). As mentioned in Ref. [38],
the discrepancies of Ud , Up, and Eg may be attributed to the
way the Coulomb integrals are calculated and the treatment of
the localized orbitals. As shown in Table VI, our gap values
also change according to the different choice of pseudopoten-
tials. Therefore, a further study on this problem is required

FIG. 2. The cross-sectional views of optimized atomic structures
for two energetically degenerate buckled structures are shown in
(a) and (b). Si atom (solid circles) relaxed down to (up away from) the
surface is denoted by Sid and Siu, respectively. (c) Averaged surface
band structures projected to the first four layers of Si(111)-(2 × 1)
where the scale on the right-hand side denotes the local density
of states in an arbitrary unit. The energetic position of the bulk
valence band maximum at � is set to zero. Black open circles are
experimental data from direct [66] and inverse [67] photoemission
spectroscopic experiments. The inset describes the BZ.

to obtain a better description of the electronic structures of
metal oxides.

V. ENERGY GAPS IN LOW-DIMENSIONAL MATERIALS

Now, we consider low-dimensional systems where the
screening of the Coulomb interaction varies rapidly. The GW
approximation calculates the quasiparticle gaps quite accu-
rately but its convergence is very slow with respect to the
k-point density and other parameters [62,63]. The hybrid
functional methods do not suffer such an issue but they pro-
duce unreliable gap values with structural or dimensional
variations [64]. The mBJLDA, another low-cost alternative
for bulk solids, also suffers a similar problem as hybrid
functionals [65]. However, with our method, self-consistently
computed occupations of atoms at the boundary and bulk
reflect the screening of the Coulomb interaction through
Eqs. (4), (5), and (8). Hence, we expect that the current
method may overcome the aforementioned difficulties for
low-dimensional materials.

To test this method, we first calculated the electronic struc-
tures of a Si(111)-(2 × 1) surface. Because of a unique surface
reconstruction resulting in a quasi-one-dimensional π -bonded
chain of Si pz orbitals [68] and a large difference between the
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FIG. 3. Band gaps of black phosphorus as a function of a number
of layers. We also list other gaps from PBE, HSE06 [65], mBJLDA
[65], GW0 [72], G0W0 [73], and GW -BSE [73]. An experimental band
gap [74] is denoted with a black cross.

screenings on the surface and in bulk, it is a good test bed for
a method to compute the surface and bulk gap simultaneously
[64,69]. A 24-layer slab with ∼15 Å vacuum was optimized
with GGA until the residual forces on the atoms are less than
10−4 Ry/Å. The kinetic energy cutoff is set to 80 Ry and
dIJ to the nearest neighbors. The surface has two degenerate
and coexisting reconstructions [70,71] as shown in Figs. 2(a)
and 2(b) so that we compute the averaged surface band struc-
tures to compare with experiments. As shown in Fig. 2(c),
the calculated averaged surface gap is 0.83 eV, agreeing well
with the experimental value of 0.75 eV [66,67], together with
an accurate bulk gap. We note that the converged Hubbard
parameters of Si atoms change spatially, reflecting the local
variation of screening such that the calculated U and V are
confirmed to gradually increase from the inside to the surface
(not shown here).

Next, few-layer black phosphorus (BP) was chosen to test
our method (Fig. 3). We used fully relaxed crystal structures
using the revised van der Waals density functional (rev-vdW-
DF2) [75,76]. All intersite interactions between valence s and
p electrons of the P atom within the plane are considered.
Figure 3 shows the calculated band gaps in terms of the
number of layers, together with other calculations and exper-
iments. It is noticeable that, without including V , all ACBN0
gaps are quite smaller than the GW gaps, and that HSE [65],
mBJLDA [65], and ACBN0 produce the gaps close to the op-
tical gaps by the GW -Bethe-Salpeter equation (BSE) method
[73]. Considering the qualitative difference in shape of the
optical spectrum between GW -BSE and HSE or other hybrid
functionals [64,77], we conclude that they underestimate the
band gaps.

As shown in Fig. 3, our results are consistent with GW
results [72,73] and an available experiment [74]. We note
that the computed band gaps of pure two-dimensional (2D)
materials such as single-layer BP have a slight dependence on
the range of the intersite Hubbard interaction (which will be

1.0
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3.0

4.0

5.0

6.0

 1  2  3  4

E g
 (e

V
)

n

Si
GaAs
MnO

BN
single−layer BP

FIG. 4. Energy gap variations of Si, GaAs, MnO, BN, and a
single-layer BP as a function of the distance between the pair atoms
for the intersite Hubbard interaction. The abscissa denotes the nth
nearest neighbor and the ordinate shows the gap with including V ’s
up to the nth neighbor.

discussed in the next section), reflecting the complex nature
of screening in low-dimensional materials [62]. Considering a
large number of atoms in typical nanostructures, our method
will have merit over the other computational methods that
require quite expensive computational resources.

VI. DISCUSSION AND CONCLUSION

The only empirical parameter in the present formalism is
dIJ that determines the range of a pair for the intersite V in
Eqs. (3) and (9). For the three-dimensional (3D) solids studied
here, we find that the nearest-neighbor intersite interaction is
enough to obtain the converged band-gap values. As shown in
Fig. 4, the energy band gaps of 3D Si, GaAs, and MnO crystals
show a negligible variation as increasing dIJ while the zinc-
blende structure BN shows a converged gap after including the
second nearest neighbors. Unlike most 3D cases, the energy
gaps for some low-dimensional systems show rather larger
variations as a function of dIJ than do 3D materials. For the
case of the reconstructed Si(111)-(2 × 1) surface discussed in
the previous section, we do not need to include an intersite
V for the next-nearest-neighboring Si atoms. However, for
a single-layer BP shown in Fig. 4, the gap with V for the
nearest neighbors is smaller (about 10%) than one with V for
the next ones. Beyond this, the gap varies a little so that at
least two sets of V with different dIJ are required to obtain
a reasonably converged band gap of the single-layer BP. We
note here that the increase in computational time with a longer
dIJ amounts to the increase in the DFT-GGA computation for
a corresponding larger supercell case.

The role of self-consistent intersite Hubbard interactions
on magnetic moments is also an interesting issue. For this,
we calculated the magnetic moments of antiferromagnetic
MnO and NiO. As shown in Table IV, the calculated mag-
netic moments are slightly reduced from the values using the
ACBN0-PBE method [60] where the on-site U enhances the
localization of electrons at the atomic sites. On the other hand,
the intersite V reduces the on-site localization and shifts elec-
trons to the bonding sites. Therefore, the competition between
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TABLE IV. Calculated magnetic moments in μB of antiferro-
mangetic MnO and NiO and their comparisons with other works and
experiments. Here, the moments are projected values for one spin
orientation.

MnO NiO

This work (+V ) 4.69 1.78
HSE [78] 4.5 1.5
ACBN0-PBE [60] 4.79 1.83
Experiments 4.58 [79], 4.79 [80] 1.77 [80], 1.90 [79,81]

U and V gives rise to the reduced magnetic moments com-
pared with the ACBN0 method and the calculated moments
are in excellent agreement with experiments [79–81].

In conclusion, we report an alternative ab initio method
for the electronic structures of solids employing a pseudo-
hybrid density functional for extended Hubbard Coulomb
interactions. We demonstrate that this method significantly
improves the original ACBN0 functional in obtaining the band
gaps of bulk and low-dimensional materials. Its self-consistent
calculation can be done with a computational time comparable
to DFT-GGA. With further validations with other methods
[82,83] and improvements of the current method such as
noncollinear spin and forces [38], our method could fulfill
requirements [6] for first-principles simulations suitable for
massive database-driven materials research with an improved
accuracy.
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APPENDIX A: EFFECTS OF CROSS-EXCHANGE
INTERACTIONS BETWEEN ORBITALS

The mean-field (MF) expression of the electronic interac-
tion energy in terms of atomic orbitals in its most general form
can be written as

EMF = 1

2

∑
I,J,K,L

∑
i jkl

∑
σσ ′

EIJKL
i jkl,σσ ′ , (A1)

where
EIJKL

i jkl,σσ ′ = 〈
φI

i φ
J
j

∣∣Vee

∣∣φK
k φL

l

〉(
nKIσ

ki nLJσ ′
l j − δσσ ′nKJσ

k j nLIσ ′
li

)
,

(A2)
where nIJσ

i j is defined in Eq. (2).
Considering EIJKL

i jkl,σσ ′ , there are many possible arrange-
ments for IJKL and i jkl [40], respectively. Among them,
here we consider the first three large contributions, EIIII

i ji j,σσ ′ ,
EIJIJ

i ji j,σσ ′ , and EIJJI
i j ji,σσ ′ where I �= J . The first and second terms

were discussed in the main text and correspond to on-site and
intersite Hubbard interactions, respectively. The last one is the
cross-charge exchanges between the neighboring atoms I and

TABLE V. Calculated band gaps (in eV) with and without the
cross-charge exchange in Eq. (A6). The “+V ” column summarizes
the band gap with V IJ and without KIJ while the “+Veff” column with
V IJ

eff = V IJ − KIJ . Experimental data for the energy gaps are from
Refs. [28,29,37,47,84,85].

Solid ACBN0 This work This work GW Expt.
(+V ) (+Veff)

C (A4) 4.17 5.50 5.36 6.18 5.50
Si (A4) 0.52 1.36 1.24 1.41 1.17
Ge (A4) 0.00 0.61 0.48 0.95 0.74
BP (B3) 1.24 2.27 2.14 2.20 2.40
AlP (B3) 2.00 2.66 2.58 2.90 2.50
GaP (B3) 1.74 2.47 2.39 2.80 2.35
InP (B3) 0.94 1.46 1.41 1.44 1.42
AlAs (B3) 1.75 2.43 2.35 2.18 2.23
GaAs (B3) 0.68 1.28 1.21 1.85 1.52
InAs (B3) 0.00 0.46 0.41 0.31 0.42
SiC (B3) 1.74 2.49 2.39 2.88 2.42
BN (B3) 5.14 6.31 6.17 7.14 6.36
ZnS (B3) 3.43 3.71 3.68 4.15 3.80
ZnSe (B3) 2.32 2.60 2.57 2.66 2.82
ZnTe (B3) 1.99 2.30 2.28 2.15 2.39
LiF (B1) 13.74 14.26 14.22 15.90 14.20
MgO (B1) 8.84 10.06 9.93 9.16 7.90
ZrO2 5.10 5.97 5.95 5.34 5.50
TiO2 (C4) 3.02 4.18 4.16 4.48 3.30
MnO (B1) 2.56 2.73 2.71 3.50 3.60
NiO (B1) 3.70 3.90 3.80 4.80 4.30
ZnO (B4) 3.62 3.88 3.86 3.80 3.44
Cu2O (C3) 1.28 1.52 1.50 1.97 2.17

MARE (%) 30.26 10.64 10.81 13.62
MRE (%) −28.78 0.47 −3.11 7.76

a All data from self-consistent GW (scGW ) calculation results in
Ref. [25] except GaP, InP, AlAs from scGW in Ref. [53], ZnSe from
G0W0 in Ref. [54], ZrO2 from scGW in Ref. [56], TiO2 from scGW
in Ref. [57], and Cu2O from scGW in Ref. [58].

J [40]. The first case where all IJKL are equal will lead to
the well-known Hubbard density functional for the LDA + U
method, and if we use a rotationally invariant on-site inter-
action (EI

U ), Eq. (A1) will become the Dudarev U functional
[42]. The second term becomes the intersite Hubbard interac-
tion as discussed in the main text.

Now, we consider the second and third ones
together. If we use rotationally invariant forms for
〈φI

i φ
J
j |Vee|φK

k φL
l 〉 in Eq. (A2), we can rewrite the second

interaction using 〈φI
i φ

J
j |Vee|φK

k φL
l 〉 = V IJδIKδJLδikδ jl

and NIJV IJ = ∑
i, j〈φI

i φ
J
j |Vee|φI

i φ
J
j 〉, where NIJ is a

number of degeneracy of the angular momentum for
atoms I and J [40]. Likewise, for the third interactions,
we can use 〈φI

i φ
J
j |Vee|φK

k φL
l 〉 = KIJδILδJKδilδ jk and

NIJKIJ = ∑
i, j〈φI

i φ
J
j |Vee|φJ

j φ
I
i 〉. With these considerations,

the MF energy in Eq. (A1) can be written as

EHub = 1

2

[∑
I

E I
U +

∑
{I,J}

EIJ
V +

∑
{I,J}

EIJ
K

]
, (A3)

where the {I, J} indicates the summation for a pair of atoms I
and J within a given cutoff of dIJ .
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TABLE VI. Calculated band gaps (in eV) with two different
sets of pseudopotentials. We tested the GBRV ultrasoft pseudopo-
tentials [45] and the norm-conserving pseudopotentials provided by
the PseudoDoJo project [46]. The two “V ” columns summarize the
calculated band gaps with the current method. Experimental data for
the energy gaps are from Refs. [28,29,37,47,84,85].

Solid ACBN0a ACBN0b +V c +V d Expt.

C (A4) 4.21 4.17 5.54 5.50 5.50
Si (A4) 0.52 0.52 1.35 1.36 1.17
Ge (A4) 0.00 0.00 0.60 0.61 0.74
BP (B3) 1.24 1.24 2.27 2.27 2.40
AlP (B3) 1.99 2.00 2.66 2.66 2.50
GaP (B3) 1.78 1.74 2.47 2.47 2.35
InP (B3) 1.00 0.94 1.46 1.46 1.42
AlAs (B3) 1.76 1.75 2.43 2.43 2.23
GaAs (B3) 0.70 0.68 1.22 1.28 1.52
InAs (B3) 0.00 0.00 0.44 0.46 0.42
SiC (B3) 1.73 1.74 2.49 2.49 2.42
BN (B3) 5.21 5.14 6.39 6.31 6.36
ZnS (B3) 4.30 3.43 4.77 3.71 3.80
ZnSe (B3) 3.16 2.32 3.62 2.60 2.82
ZnTe (B3) 2.73 1.99 3.28 2.30 2.39
LiF (B1) 14.88 13.74 16.01 14.26 14.20
MgO (B1) 8.89 8.84 10.16 10.06 7.90
ZrO2 5.32 5.10 6.19 5.97 5.50
TiO2 (C4) 2.89 3.02 4.08 4.18 3.30
MnO (B1) 2.88 2.56 3.55 2.73 3.60
NiO (B1) 4.30 3.70 4.82 3.90 4.30
ZnO (B4) 4.38 3.62 4.91 3.88 3.44
Cu2O (C3) 1.63 1.28 2.02 1.52 2.17

MARE (%) 29.04 30.26 14.06 10.64
MRE (%) −21.73 −28.78 9.51 0.47

aPseudoDoJo pseudopotential.
bGBRV ultrasoft pseudopotential.
cPseudoDoJo pseudopotential.
dGBRV ultrasoft pseudopotential.

Using the matrix notations of nIJ = ∑
σ nIJσ and nI =∑

σ

∑
i nIIσ

ii for the general occupation in Eq. (2),

EIJ
V + EIJ

K = V IJ

[
nI nJ −

∑
σ

Tr
[
nIJσ nJIσ

]]

+ KIJ

[
Tr

[
nIJnJI

] −
∑

σ

[
nIσ nJσ

]]
. (A4)

We assume the fully localized limit for double counting as
was also discussed in a previous work [40], so that the final
expression for Hubbard pairwise energy is given by

EIJ
V + EIJ

K − Edc = −V IJ
∑

σ

Tr[nIJσ nJIσ ] + KIJTr[nIJnJI ]

	 − (V IJ − KIJ )
∑

σ

Tr[nIJσ nJIσ ], (A5)

where we neglect KIJ
∑

σ �=σ ′ Tr[nIJσ nJIσ ′
] owing to

V IJ − KIJ 
 KIJ .
If we compare Eq. (A5) with the intersite Hubbard func-

tional shown in Eq. (9) in the main text, we immediately
notice that a replacement of V IJ by V IJ

eff = V IJ − KIJ is
enough for including the effects of cross-charge exchange
between the pair of atoms I and J .

Now, using Eqs. (4)–(6) in the main text, a pseudohybrid
or ACBN0-like functional expression for KIJ can be obtained
in a straightforward way and the final expression can be
written as

KIJ = 1

2

∑
σ,σ ′

∑
i jkl

[
δσσ ′PIIσ

ik PJJσ ′
jl − PIJσ

il PJIσ ′
jk

]
(il| jk)∑

σσ ′
∑

i j

[
δσσ ′nIIσ

ii nJJσ ′
j j − nIJσ

i j nJIσ ′
ji

] .

(A6)

The effects of cross-exchange interactions on band gaps are
summarized in Table S1. As shown in Table V, the calculated
band gaps with and without the effects of K are negligible. For
the solids considered here, all computed gaps with K are little
bit smaller than the gap without K .

APPENDIX B: EFFECTS OF CHOICE OF
PSEUDOPOTENTIALS

In this work, we used two kinds of pseudopotentials:
PseudoDoJo norm-conserving [46] and GBRV ultrasoft [45]
pseudopotentials. Table VI shows the effects of the choice
of pseudopotentials. Almost all s and p electron systems
considered here are not affected by the choice. However, par-
ticularly in the case of the Zn compound, the discrepancies are
quite large.
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