
PHYSICAL REVIEW RESEARCH 2, 043407 (2020)

Energy-scale cascade and correspondence between Mott and Kondo lattice physics
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We propose an energy-scale correspondence between the Mott physics and the Kondo lattice physics and
construct a tentative phase diagram of their correlated electrons with two characteristic energy scales ω∗ and �

marking the upper boundary of a low-energy regime with well-developed long-range coherence and the lower
boundary of localized spectral weight in the energy space, respectively. In between, there exists a crossover
region with emergent but damped quasiparticle excitations. We argue that the presence of two separate energy
scales is a generic property of correlated electrons on a lattice and reflects an intrinsic two-stage process of the
quasiparticle dynamics to build up the lattice coherence. For the Hubbard model, they correspond to the kink
and waterfall structures on the dispersion, while for the periodic Anderson model, they are associated with the
indirect and direct hybridization gaps. Our work reveals a deep connection between the Mott and Kondo lattice
physics and provides a basic ingredient for the study of many-body systems.
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In correlated electron systems, a “kink” denotes an abrupt
slope change of the dispersive band and has often been re-
garded as a fingerprint of the coupling between electronic
quasiparticles and collective bosonic excitations. It has been
intensively studied in cuprates [1–6], where its appearance
at an energy scale of around 30–90 meV has been attributed
to spin fluctuations or phonons, which may potentially par-
ticipate in the superconducting pairing. Different from these
“bosonic kinks”, which represent the characteristic energy
scales of the bosonic excitations, it has been shown later
that kink may also arise purely due to electronic mechanism
without involving bosonic excitations [7]. This “electronic
kink” was first seen in the Hubbard model (HM) within the
framework of the dynamical mean-field theory (DMFT) [8]
and then extended to other more complicated models [9–14].
It might explain the so-called high energy kink observed over
a wide energy range from 40 to 800 meV in cuprates and some
other transition-metal oxides [15–22].

Theoretically, the “electronic kink” has been argued to
mark an important energy scale of the Mott physics, namely
the boundary of its Fermi liquid ground state [7]. Roughly
speaking, the kink energy ω∗ constrains a low-energy region
of well-defined Landau quasiparticles and poses a threshold
for the application of the Fermi liquid theory. A higher energy
scale � has also been proposed as the boundary separating
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the many-body resonant state from the high-energy Hubbard
bands. ω∗ and � together define a cascade of key energy
scales in the HM. Their discovery has since stimulated many
debates concerning their true physical origin. Some suggested
that the kink should still be of bosonic origin due to emergent
collective spin fluctuations [23], while some associated it with
an effective Kondo energy scale [24]. A better understanding
of its origin will deepen our knowledge of the many-body
physics, but a consensus has yet to be reached. In particular, its
fundamental importance and potential implications have not
been fully recognized.

Here we point out their deep connection with the gen-
eral physics of quasiparticle emergence and coherence and
report a close correspondence between the energy scales of
the Mott and Kondo lattice physics. While the two phenom-
ena have mostly been studied separately in different families
of correlated systems based on either the HM or the peri-
odic Anderson model (PAM), there is increasing evidence
supporting an intimate underlying connection [25,26]. The
Kondo lattice physics has been argued to be a special case of
the (orbital-selective) Mott transition [27–30], and the Mott
physics in cuprates is itself a low-energy projection of the
Kondo-Heisenberg model [31]. In the lately-discovered nick-
elate superconductors, both seem to exist and determine the
properties of the ground state and low-energy excitations [32].

Our proposed correspondence is based on the simple ob-
servation that the two energy scales of the HM have the
simple relationship ω∗ ∝ Z and � ∝ Z1/2 with the renormal-
ization factor Z [7,33]. In comparison, the PAM also has
two well-known energy scales, namely the indirect and direct
hybridization gaps [34–37], which, in the mean-field approx-
imation, are related to an effective hybridization Ṽ through
�ind ∝ Ṽ 2 and �dir ∝ Ṽ . This is reminiscent of ω∗ and �
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in the HM. Since the hybridization gaps have well-defined
physical meanings, it is natural to ask if this similarity can
provide some insight on the physics of the HM or reveal
certain generic features of both models. In this work, we will
establish such a correspondence through systematic numerical
studies and explore their origin and potential implications on
the physics of correlated electrons. We will show that they
represent two distinct groups of related energy scales and
provide a good characterization of the energy boundaries sep-
arating the fully coherent and localized spectral weights with
an itinerant but damped crossover region in between. This
allows us to construct a tentative phase diagram in the energy
space. We argue that the separation of the two energy scales
reveals an instrinsic two-stage process of the quasiparticle
dynamics for building up the long-range spatial coherence and
represents a generic property of a typical class of correlated
electron physics on a lattice represented by the HM and PAM.
We note that the present work only concerns the paramag-
netic Fermi liquid side of the HM phase diagram but for the
whole spectrum beyond the Landau quasiparticle regime in
the energy space. There is a difference between the energy
domain and temperature domain. While the Fermi liquid is
usually realized at low temperatures, the two energy scales
should still be observed in the energy spectrum, reflecting
the critical charge or spin dynamics of low-lying quasiparticle
excitations.

In both models, the Hamiltonians include two parts:
H = HK + HU . The potential energy has the form, HU =
U

∑
i (ni↑ − 1

2 )(ni↓ − 1
2 ), where U is the onsite Coulomb

interaction and niσ is the density operator of the lo-
cal orbital. There are two general ways to delocalize the
f electrons. In the HM, one introduces a direct hopping
between neighoring lattice sites, giving rise to a kinetic en-
ergy, HK = ∑

kσ εk f †
kσ

fkσ , where f †
kσ

( fkσ ) are the creation
(annihilation) operator of the f electrons. In the PAM, the
f orbitals remain local and the delocalization is achieved
by hybridizing with an additional conduction band such that
HK = ∑

kσ εkc†
kσ

ckσ + V
∑

iσ ( f †
iσ ciσ + H.c.), where c†

kσ
(ckσ )

are the creation (annihilation) operator of the conduction
electrons and V is the bare hybridization parameter. For
simplicity, we focus on the paramagnetic state in the half-
filled one-band case with particle-hole symmetry and use
the numerical renormalization group (NRG) [38,39] as the
impurity solver within the DMFT framework [40–43]. The
local self-energy of the f electrons is calculated using
�(ω) = UF (ω)/G(ω) with G(ω) = 〈〈 fiσ ; f †

iσ 〉〉ω and F (ω) =
〈〈 fiσ (niσ − 1/2); f †

iσ 〉〉ω [44]. We then solve the DMFT
self-consistent equation G(ω) = ∫

dερ0(ε)/[ω − ε − �(ω)]
for the HM and G(ω) = ∫

dερ0(ε)/[ω − V 2/(ω − ε + iη) −
�(ω)] for the PAM [45,46], where ρ0(ε) = e−(ε/t )2

/(
√

πt ) is
the noninteracting density of states for a hypercubic lattice
with the dimensionality d → ∞. We set t = 1 as the energy
unit and choose the logarithmic discretization parameter � =
2 and a total number of stored states Ns = 800 for the NRG
calculations. Our calculations are limited in the paramagnetic
phase concerning the emergence and development of quasi-
particle coherence. Magnetic instabilities are additional issues
beyond the current work.

FIG. 1. Illustration of different energy scales identified from the
f electron DOS ρ(ω) = −ImG(ω)/π , the real part of the f electron
self-energy Re�(ω) and its slope Re�′(ω), and the real part of the
Green function ReG(ω) for (a) the HM with U = 3 and (b) the PAM
with U = 5.6 and V 2 = 0.4. ω∗ and ωm are estimated from the kink
in Re�(ω) and the maximum of ReG(ω), respectively. For the HM,
� is defined from the maximum of Re�′(ω). For the PAM, �ind,
�dir , and � are obtained from the dispersion in Fig. 3. The insets are
the enlarged plots for the low energy scales: ω∗, ωm, and �ind.

Figure 1 illustrates how the different energy scales can
be identified from the f electron density of states (DOS)
ρ(ω) = −ImG(ω)/π , the real part of the self-energy Re�(ω)
and its ω derivative Re�′(ω), and the real part of the Green
function, ReG(ω). For the HM, the DOS has a three-peak
structure including two Hubbard peaks at higher energy and
a quasiparticle peak around zero energy. The larger scale �

is defined here from the maximum of Re�′(ω). In Ref. [7], it
was defined from the minimum of Re�(ω), which, however,
only follows the proposed scaling near the Mott transition
with a small Z . Nonetheless, both reflect the same physics
and separate roughly the quasiparticle peak and the Hubbard
peaks in the DOS. The lower scale ω∗ can be defined from
an additional slope change or the kink in Re�(ω) that con-
strains a low-energy region for quasiparticle excitations. A
different scale ωm may be introduced from the maximum of
ReG(ω). ω∗ and ωm are of the same origin and related through
ω∗ ≈ (

√
2 − 1)ωm for the HM [7]. A third definition may be

found from the maximum (ωs) of the local spin susceptibility
as discussed later in Fig. 4. The relationship of these scales
can be established if we tune the local Coulomb interaction
U and plot their variations with the renormalization factor,
Z−1 = 1 − Re�′(0). The results are summarized in Fig. 2(a).
We see that ω∗ ∝ ωm ∝ Z and � ∝ Z1/2 over a wide range of
Z . Thus, ω∗ and � represent two distinct groups of related
energy scales. The different definitions originate from the
crossover nature of the underlying physics.

For comparison, Fig. 1(b) shows the energy scales in the
PAM. The indirect hybridization gap �ind is determined by
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FIG. 2. The scaling relation of different energy scales with re-
spect to the renormalization factor Z for (a) the HM and (b) the PAM
with tuning Coulomb interaction U . For the PAM, the hybridization
strength is set to V 2 = 0.4.

the DOS gap and coincides with the additional minimum
of ReG(ω), while the direct hybridization gap �dir cannot
be clearly discerned in these quantities and is best seen
in Fig. 3 from the spectral function, Ak (ω) = −π−1Im[ω −
�(ω) − V 2

ω−εk+iη ]−1. The plot implies two separated hybridiza-
tion bands for the PAM. The indirect gap �ind is the energy
difference between the bottom of the upper band and the top
of the lower band and marks the boundary for the low-energy
gap. Although the PAM is in a Kondo insulating state, the
self-energy below �ind behaves as that of a Fermi liquid [46],
reflecting the establishment of full coherence on the Kondo
lattice [47,48]. By contrast, the direct hybridization gap �dir

measures the minimal energy difference between the two hy-
bridization bands, below which the spectra are governed by
the itinerant f character. The energy scales ω∗ and ωm can still
be defined similarly as in the HM and contain the flat part of
the hybridization bands. We obtain ω∗ ∝ ωm ∝ �ind. On the
other hand, the maximum of Re�′(ω) changes slightly with
varying U and is no longer a meaningful quantity separating
the boundary of the itinerant and localized regions. Rather, we
find it is better to define the larger energy � from the devia-
tion of the hybridization bands from the original conduction
bands. In Fig. 3, it is seen that � sets roughly the outmost
boundary of the itinerant f electron spectral weight. Both �

and �dir reflect the separation of the hybridized (itinerant) and
unhybridized (localized) spectral regions of the f electrons in
the energy space.

The scaling results for the PAM are summarized in
Fig. 2(b). Similarly, we have ω∗ ∝ ωm ∝ �ind ∝ Z and � ∝

FIG. 3. Different energy scales on the intensity plot of the re-
solved spectral functions for the HM and PAM. The background
colors reflect the magnitude of the f electron spectral weight Ak (ω).
The blue dashed lines denote the dispersion Zεk for the HM and εk

for the PAM. The parameters are the same as in Fig. 1. For the PAM,
the localized flat f bands are outside the plotted energy window.

�dir ∝ Z1/2 over a wide range of Z . The obtained scaling
relations link ω∗ and � to �ind and �dir and suggest that
they reflect similar physics in the PAM. However, unlike ω∗
and �, which are in reality hard to measure, the indirect and
direct hybridization gaps have unambiguous physical mean-
ing and can be directly probed in experiment. Their scaling
relations in the PAM can be derived from the pole properties
of the Green function, Gk (ω) = [ω − �(ω) − V 2

ω−εk+iη ]−1. If
we make the lowest order approximation, Re�(ω) ≈ (1 −
Z−1)ω, the poles are determined by Z−1ω − V 2

ω−εk
= 0. The

direct gap is defined as the energy differences of the two poles
at εk = 0, while the indirect gap is the energy difference at
the band edges (εk = ±D). We have �dir = Z1/2V and �ind =
ZV 2/D, confirming their relationship with Z . The relative
deviation of the hybridization bands from the conduction band
may be estimated to be δ = (ω − εk )/ω = ZV 2/ω2. We have
thus � ≈ Z1/2V/δ1/2 for a chosen small cutoff δ, at which the
f electron spectral weight on the dispersion is also reduced
to the order of Zδ. Since all these energy scales diminish
at V = 0, their presence reflects the delocalization of the
f electrons on the lattice driven by the hybridization with con-
duction electrons. In this respect, the larger scale � constrains
the major spectral region of delocalized f electrons, while
ω∗ puts a further restriction for well-established long-range
coherence.

Similar analyses may help to understand ω∗ and � in the
HM. Figure 3 also plots the dispersion Ak (ω) = −π−1Im[ω −
εk − �(ω)]−1 of the HM. Indeed, we see that ω∗ marks the
boundary of well-defined Landau quasiparticles, above which
the dispersion has a different renormalization factor, while
� separates the low-energy many-body states and the high en-
ergy incoherent region, beyond which the f electron weights
are localized. The presence of both ω∗ and � is a reflection
of the special cascade structure of Re�′(ω), which, as shown
in the middle panel of Fig. 1(a), has a maximum at � but,
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FIG. 4. The imaginary part of the local spin susceptibility, show-
ing a maximum at ωs for both models. The parameters are the same
as in Fig. 1. The inset plots ωs as functions of Z with V 2 = 0.4 (PAM)
and varying U .

with lowering energy, decreases first to a plateau (or local
minimum) on the hillside before it eventually reaches the val-
ley floor below ω∗ and ωm. Interestingly, � lies roughly at the
waterfall structure connecting the quasiparticle and Hubbard
bands [49,50]. This poses a question concerning the relation
of the two properties. For this, we note that the waterfall
is an abrupt change of the pole of the Green function with
increasing εk . It can only occur around the inflection point
of ω − Re�(ω) if one wants to tentatively avoid multiple
poles. This immediately implies Re�′′(�) ≈ 0 or a maximum
(minimum) in Re�′(�). Thus, � defined here is indeed asso-
ciated with the waterfall structure in the HM. We conclude
that the two energy scales correspond to two features of the
dispersion: ω∗ for the kink and � for the waterfall, which
also reflect the boundaries for the low-energy fully coherent
region and the high-energy localized region. The fact that
� connects two regions with opposite energy dependence in
the self-energy implies Z−1� ∼ �−1 or � ∝ Z1/2, similar to
that in the PAM.

Further insight on ω∗ may be obtained if we consider that
�ind in the PAM is related to the spin screening, ω∗ ∝ �ind ∝
TK where TK is the lattice Kondo temperature [51,52]. The
effect of spin screening might be best seen from the local sus-
ceptibility, χs(ω) = 〈〈Sz

i ; Sz
i 〉〉ω with Sz

i = 1
2 (ni↑ − ni↓) [53].

Figure 4 plots the imaginary part of the local spin suscepti-
bilities for the HM and PAM using the same parameters as
in Fig. 1. Both exhibit a maximum at ωs, which, as shown in
the inset, varies linearly with Z as those of ω∗ and �ind. In
fact, we find ωs ≈ ω∗ in both models (Fig. 3). Away from half
filling, this kink or hybridization energy scale ω∗ still exists
and retains the same relation with ωs [10,11]. Below ωs the
local susceptibility is suppressed due to the spin screening. It
is therefore natural to associate the kink with an effective spin
screening scale as proposed in Ref. [24]. We should empha-
size, however, that the presence of both ω∗ and � is a property
of the lattice but not in the usual single-impurity Kondo model
where only the Kondo scale exists. This implies that the lat-
tice feedback is crucial for separating ω∗ and � and causing

Z > 0Z = 0
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Ω ~ Z
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FIG. 5. A tentative phase diagram of the HM and PAM in the
energy space as a function of the renormalization factor Z , show-
ing different regions of correlated electron spectral weights. In the
shadow region, the f electrons become completely localized so that
the HM is in a Mott state and the PAM is in an orbital-selective
Mott state.

the cascade structure of Re�′(ω). Although DMFT does not
contain explicit spatial correlations, it necessarily includes im-
portant lattice information through the self-consistent iterative
procedure.

Thus, all energy scales can be classified into two cate-
gories, a lower one ω∗ ∝ Z and a higher one � ∝ Z1/2, which
separate the f electron spectral weight into different regions
of distinct properties. If we start from localized f electrons,
we may conclude that their spin screening and consequential
delocalization is an energy-dependent process marked by the
two scales. While � sets the outmost boundary for the many-
body resonant states and covers the full energy range with
delocalized f electron spectral weight, ω∗ is a lower boundary
for quasiparticle excitations with well-established long-range
coherence. This is common for both PAM and HM and may
be best seen if we construct a tentative phase diagram in Fig. 5
in the energy space based on the properties of the f electron
spectra. For Z > 0, the ω∗ ∝ Z line indicates a screening scale
and marks the upper boundary of a well-developed coherent
region irrespective of the Fermi liquid or Kondo insulating
state, while � ∝ Z1/2 marks the lower boundary of an inco-
herent region with localized f spectral weight. In between,
there exists a crossover region with itinerant but strongly
damped excitations of the f character. With decreasing Z to
zero, the system enters a Mott insulating state for the HM or
an orbital-selective Mott state for the PAM, where the many-
body resonance is suppressed and all f electrons turn into
fully localized magnetic moments. Since Z is dimensionless,
the scaling relations suggest constant prefactors roughly given
by D or V 2/D. Major correlation effects in both properties are
encapsulated in the renormalization factor Z (as a function of
U/D) over a wide parameter region.

We remark again that the presence of the two energy scales
represents two related but distinct features of the correlated
electron physics. It is not just a matter of theory but has
real implications and observable consequences in experiment.
To see this, we may consider the gradual delocalization of
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the f electrons with lowering temperature. The two energy
scales then turn into two temperature scales, as observed in re-
cent pump-probe experiment on the heavy fermion compound
CeCoIn5 [47]. Determinate quantum Monte Carlo simula-
tions taking into account spatial degree of freedom for the
PAM have confirmed two distinct stages of hybridization
dynamics, namely, the onset of precursor hybridization fluctu-
ations and the eventual establishment of a long-range coherent
(Kondo insulating) state [48]. In the HM, the two energy
scales are also expected to represent two succeeding stages
of the (nonequilibrium) quasiparticle dynamics, namely, a
Fermi liquid phase with well-established Landau quasiparti-
cles and a higher crossover region with itinerant but damped
quasiparticles (bad metal) [54–56]. It might also be reflected
in the temperature or time evolution of the doublon-holon ex-
citations. Exact lattice simulations on the HM may help clarify
this issue but are often limited by the numerical accuracy due
to small lattice size. At even higher temperatures, the localized
spectral weight might be thermally excited and contribute to
physical properties, but whether or not (and how) the highly
damped electrons can become Anderson localized requires
more rigorous study [57].

Along this line of thought, we anticipate that the existence
and separation of two energy scales reflect a generic two-stage
development of the electronic coherence and is an intrin-
sic property of correlated electrons. Before the long-range
coherence is eventually established, there exists a precur-
sor stage where the electrons become partially delocalized
with damped quasiparticle excitations. On the other hand,
the usual Mott transition also exists in other models such as
the Falicov-Kimball model, the Ising-Kondo model, and the
Hatsugai-Kohmoto model, which do not seem to possess the
two energy scales. A closer inspection suggests that the Mott
transitions in these models are different from that in the HM.
In the Falicov-Kimball model and the Ising-Kondo model,

the ground state near the transition is not a Fermi liquid due
to “disorder scattering” [58,59], while the Hatsugai-Kohmoto
model lacks the so-called dynamical spectral weight transfer,
which is a key feature of the HM [60]. Thus the presence of
two energy scales should not be viewed as a generic property
of the Mott transition. Rather, they are associated with the
emergence and establishment of coherent quasiparticles on the
lattice, possibly induced by the spectral weight transfer from
the high-energy localized part to the low-energy itinerant part.
More elaborate studies are required to establish this important
distinction.

To summarize, we report systematic analyses of the
energy-scale cascade in the HM and the PAM and reveal a
deep connection between the Mott and Kondo lattice physics.
This allows us to construct a tentative phase diagram for
correlated electrons based on two energy scales marking the
upper boundary of the fully coherent low-energy states and
the lower boundary of the incoherent regime with localized
spectral weight in the energy space. For the HM, these corre-
spond to the kink and waterfall structures on the dispersion.
For the PAM, they are associated with the indirect and direct
hybridization gaps. The separation of two energy scales is an
intrinsic property of the lattice models and reflects a two-stage
dynamical process to build up the lattice coherence of itinerant
quasiparticles. Our work clarifies the origin of these energy
scales and reveals a potentially basic and generic property for
understanding the key of correlated electrons on a lattice.
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