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Statistics of the spectral form factor in the self-dual kicked Ising model
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We compute the full probability distribution of the spectral form factor in the self-dual kicked Ising model by
providing an exact lower bound for each moment and verifying numerically that the latter is saturated. We show
that at long enough times the probability distribution agrees exactly with the prediction of random-matrix theory
if one identifies the appropriate ensemble of random matrices. We find that this ensemble is not the circular
orthogonal one—composed of symmetric random unitary matrices and associated with time-reversal-invariant
evolution operators—but is an ensemble of random matrices on a more restricted symmetric space [depending
on the parity of the number of sites this space is either Sp(N )/U (N ) or O(2N )/O(N )×O(N )]. Even if the
latter ensembles yield the same averaged spectral form factor as the circular orthogonal ensemble, they show
substantially enhanced fluctuations. This behavior is due to a recently identified additional antiunitary symmetry
of the self-dual kicked Ising model.
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I. INTRODUCTION

The quantum chaos conjecture [1–3] states that a quantum
system is chaotic if the correlations of its energy levels have
the same structure as those of random Hermitian matrices
[4,5]. This conjecture originates from studies on single-
particle quantum systems where the aforementioned property
can be connected to the conventional chaoticity of the system
(i.e., sensitivity of the system’s trajectories to initial condi-
tions) in the classical limit [6–11].

For quantum many-body systems with no well-defined
classical limit the quantum chaos conjecture can be taken as
a definition of quantum chaos. Indeed, an extensive number
of numerical studies (see, e.g., Refs. [12–15]) established
that systems with random-matrix spectral correlations dis-
play many features that are intuitively connected to chaos. In
particular, spectral correlations are a widespread diagnostic
tool to test numerically whether a many-body system is ex-
pected to be ergodic. Until recently, however, the theoretical
explanations of this phenomenon where extremely scarce:
No analytical method was known to deduce the spectral cor-
relations from the Hamiltonian of the system or from the
time-evolution operator.

The situation has changed drastically over the past few
years when a number of settings and methods have been
proposed to derive analytically the spectral form factor
(SFF) (i.e., the Fourier transform of the two-point correlation
function of energy levels). Specifically, Refs. [16,17] estab-
lished random-matrix spectral fluctuations in long-ranged (but
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non-mean-field) periodically driven spin chains. Further on,
Refs. [18–21] demonstrated the emergence of random-matrix
spectral correlations in periodically driven local random
circuits where the interactions are determined by random two-
site gates acting on neighboring sites and chosen (once and for
all) at the beginning of the evolution. In particular, analytical
results were provided in the limit of large local Hilbert space
dimension. Finally, Ref. [22] provided an exact result for the
spectral form factor in the self-dual kicked Ising model: A
system of spin-1/2 variables which are interacting locally
with an Ising Hamiltonian and are periodically kicked by a
longitudinal magnetic field. The term self-dual indicates that
the longitudinal field and the Ising coupling are set to specific
values. The key property to obtain the exact result is that, at
aforementioned specific values of the couplings, the problem
can be formulated in terms of a transfer matrix “in space” (i.e.,
propagating in the spatial direction rather than in the temporal
one) which is unitary.

The spectral form factor alone, however, is not a sufficient
evidence for claiming the chaoticity of a system. Indeed,
to invoke the quantum chaos conjecture one needs all the
spectral correlation functions not just the two-point one. The
goal of this paper is to provide such a result in the case
of the self-dual kicked Ising model. We will generalize the
space-transfer-matrix method of Ref. [22] to find expressions
for higher moments of the spectral form factor and use them
to obtain rigorous lower bounds. Then, we will demonstrate
numerically that the bounds are saturated.

The rest of the paper is laid out as follows. In Sec. II we
introduce the model and the quantities of interest (i.e., the
spectral form factor and its higher moments). In Sec. III we
identify the ensembles of random matrices which is relevant
for the self-dual kicked Ising model and provide a prediction
for the higher moments of the spectral form factor. In Sec. IV
we provide the aforementioned lower bounds on the higher
moments, and in Sec. V we show numerically that the bounds
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are saturated. Finally, Sec. VI contains our conclusions. The
Appendix reports some details on the spectrum of the space-
transfer matrix for short (finite) times.

II. THE MODEL

We consider the self-dual kicked Ising model [22,23], de-
scribed by the following time-dependent Hamiltonian:

HKI[h; t] = HI[h] + δp(t )HK, (1)

where δp(t ) =∑∞
m=−∞ δ(t − mτ ) is the periodic δ function

and,

HI[h] ≡ π

4τ

L∑
j=1

(
σ z

j σ
z
j+1 − 1L

)+ π

4τ

L∑
j=1

h jσ
z
j , (2)

HK ≡ π

4τ

L∑
j=1

σ x
j . (3)

Here τ is time interval between two kicks, L denotes
the volume of the system, 1x is the identity operator in
(C2)⊗x, {σα

j }α=x,y,z are Pauli matrices at position j, and we
impose

σα
L+1 = σα

1 . (4)

The parameter h = (h1, . . . , hL ) describes a position-
dependent longitudinal field measured in units of τ−1. From
now on τ is set to 1 to simplify the notation.

The Floquet operator generated by (1) reads as

UKI[h] = T exp

[
−i
∫ 1

0
ds HKI[h; s]

]
= e−iHK e−iHI[h]. (5)

In Floquet systems it is customary to introduce quasienergies
{ϕn} defined as the phases of the eigenvalues of the Floquet
operator. The quasienergies take values in the interval [0, 2π ],
and their number N = 2L is the dimension of the Hilbert
space where (1) acts, namely,

HL = (C2)⊗L. (6)

To characterize the distribution of quasienergies (and es-
pecially the correlations among them) it is convenient to
consider the SFF,

K (t, L) ≡ ∣∣tr[Ut
KI[h]

]∣∣2. (7)

This quantity represents an efficient diagnostic tool able to
tell apart chaotic (nonintegrable) systems from integrable ones
even in the thermodynamic limit (L → ∞). Indeed, the for-
mer are believed to show uncorrelated (Poisson distributed)
quasienergies [24], whereas the latter are believed to dis-
play quasienergies distributed as in random unitary matrices
[12–22]. In the first case the SFF (7) is independent of time,
whereas it shows a linear ramp in the second.

Importantly, the probability distribution of the SFF does
not become a δ function in the thermodynamic limit
[25,26] (this property is commonly referred to as “non-
self-averaging” property [26]). This means that, to have a
meaningful comparison with the prediction of random matrix
theory (RMT), one has to study the probability distribution of
the SFF over an ensemble of systems. The ensemble can be

formed by considering similar systems with different numer-
ical values of the parameters or the same system at different
times. Here we follow Ref. [22] and consider the distribution
of (7) in an ensemble formed by self-dual kicked Ising models
(1) with random longitudinal fields. Specifically we assume
that the longitudinal magnetic fields at different spatial points
h j are independently distributed Gaussian variables with mean
value h̄ and variance σ 2 > 0. Differently from Ref. [22], how-
ever, here we are interested in the thermodynamic limit of
all moments of the distribution of |tr[Ut

KI[h]]|2 not just in the
average. Namely, we consider

Kn(t ) ≡ lim
L→∞

Eh
[∣∣tr[Ut

KI[h]
]∣∣2n]

, n � 1, (8)

where the symbol Eh[·] denotes the average over the longitu-
dinal fields,

Eh[ f (h)] =
∫ ∞

−∞
f (h)

L∏
j=1

e−(h j−h̄)2/2σ 2 dh j√
2πσ

. (9)

In this language the thermodynamic limit of the SFF corre-
sponds to K1(t ).

III. PREDICTION OF RANDOM-MATRIX THEORY

Before computing (8) in the self-dual kicked Ising model
we compute the moments for an ensemble of random unitary
matrices subject to the same constraints—or symmetries—as
the Floquet operator UKI[h] [cf. Eq. (5)]. Indeed, due to some
special symmetries of UKI[h], such an ensemble is not the
“standard” circular orthogonal ensemble (COE)—composed
of symmetric unitary matrices. To see that let us start by
reviewing the symmetries of UKI[h].

A. Symmetries of the time-evolution operator

To analyze the symmetries of (5) it is convenient to make
the following basis transformation:

UKI[h] �→ e−iHK/2UKI[h]eiHK/2 ≡ ŪKI[h]. (10)

This transformation leaves (8) invariant and brings the opera-
tor in a manifestly symmetric form

ŪKI[h] = Ū T
KI[h]. (11)

Since ŪKI[h] is unitary and symmetric we immediately have

C†ŪKI [h]C = Ū ∗
KI[h] = Ū −1

KI [h], (12)

where (·)∗ denotes complex conjugation in the computational
basis (the standard Pauli basis where both matrices σ x and
σ z are real) and C is the antiunitary operator implementing
it in the Hilbert space. This is the most obvious antiunitary
symmetry of the time-evolution operator and corresponds to
the standard time-reversal symmetry T (with T 2 = 1).

As observed in Ref. [27], however, T is not the only antiu-
nitary symmetry of ŪKI[h]. Indeed, defining

Fy ≡
L∏

j=1

σ
y
j = (σ y)⊗L = F †

y = F−1
y , (13)

U ≡ exp

[
i
π

4

L∑
j=1

(
σ z

j σ
z
j+1 − 1L

)]
, (14)
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and noting

Fyσ
x,z
j F †

y = −σ x,z
j , (15)

U 2 = 1L, (16)

one readily finds

F †
y ŪKI [h]Fy = Ū ∗

KI[h] = Ū −1
KI [h]. (17)

This equation shows that ŪKI [h] and Ū ∗
KI[h] are related by

a similarity transformation and, therefore, it implies that the
spectrum of ŪKI [h] is symmetric around the real axis, i.e.,
Sp(ŪKI[h]) = Sp(Ū ∗

KI[h]) = Sp(ŪKI[h])∗, i.e., all quasiener-
gies form pairs {ϕn,−ϕn}.

Reshaping (11) and (17) we will now see that they
correspond to the constraints on random-matrix ensembles
associated with two compact symmetric spaces [28,29] (two
different symmetric spaces will correspond to even and odd
L’s). To see this, we note that, permuting the computational
basis, Fy can be brought to one of the two following block-
diagonal forms, depending on the parity of L,

P1FyPT
1 =

⎡
⎢⎢⎣

σ y 0 · · · 0
0 σ y · · · 0
...

...
. . .

...

0 0 · · · σ y

⎤
⎥⎥⎦, L odd, (18)

P2FyPT
2 =

⎡
⎢⎢⎣

s1σ
x 0 · · · 0

0 s2σ
x · · · 0

...
...

. . .
...

0 0 · · · sN ′σ x

⎤
⎥⎥⎦, L even,

(19)

where P1PT
1 = P2PT

2 = 1L, N ′ = N /2, and {s j}N ′
j=1 is a spe-

cific string of +1s and −1s.

1. L odd

The matrix (18) is a nonsingular real skew-symmetric ma-
trix (i.e., �N ′ = −�T

N ′ ) multiplied by iL, this means that
defining

ÛKI[h] ≡ P1ŪKI[h]PT
1 , L odd, (20)

we have that (11) and (17) become

ÛKI[h] = Û T
KI[h], (21)

Û −1
KI [h] = �T

N ′Û T
KI[h]�N ′ . (22)

Namely, the unitary matrix ÛKI[h] is constrained to be
symmetric and symplectic. The compact symmetric space
characterized by this constraint is

S−(N ′) ≡ Sp(N ′)/U (N ′), (23)

and corresponds to CI in Cartan’s classification [28,29].
Note that here we denoted by Sp(N ) ⊂ U (2N ) the unitary-
symplectic group of 2N × 2N unitary matrices m fulfilling
m−1 = �T

N mT �N , sometimes denoted also by USp(2N ).

As shown in Refs. [28,29] matrices belonging to this sym-
metric space can be parametrized by

g

[
1L−1 0

0 −1L−1

]
g−1

[
1L−1 0

0 −1L−1

]
, g ∈ Sp(N ′).

(24)

2. L even

The matrix on the right-hand side of (19), instead, can be
written as the square of

S = e−i(π/4)

⎡
⎢⎢⎣

eiπs1σ
x/4 0 · · · 0

0 eiπs2σ
x/4 · · · 0

...
...

. . .
...

0 0 · · · eiπsN ′ σ x/4

⎤
⎥⎥⎦. (25)

Moreover, it can be brought to the following diagonal form by
means of an orthogonal transformation P3:

P3S2PT
3 =

[
1L−1 0

0 −1L−1

]
. (26)

So that defining

ÛKI[h] ≡ P3S∗P2ŪKI[h]PT
2 SPT

3 , L even, (27)

we have

ÛKI[h] = Û ∗
KI[h], (28)

ÛKI[h] =
[
1L−1 0

0 −1L−1

]
Û T

KI[h]

[
1L−1 0

0 −1L−1

]
. (29)

This means that the unitary matrix ÛKI[h] is constrained to be
real orthogonal and fulfill (29). The compact symmetric space
characterized by these constraints is

S+(N ′) ≡ O(2N ′)/[O(N ′)O(N ′)], (30)

and corresponds to BDI in Cartan’s classification [28,29]. As
shown in Refs. [28,29] the matrices in this symmetric space
can be parametrized by

g

[
1L−1 0

0 −1L−1

]
g−1

[
1L−1 0

0 −1L−1

]
, g ∈ O(2N ′).

(31)

B. Relevant random-matrix ensembles

The random-matrix ensembles corresponding to the sym-
metric spaces S−(N ′) and S+(N ′) have been introduced in
Refs. [28,29]: For both ensembles one finds that the quasiener-
gies come in pairs of opposite values {ϕ j,−ϕ j}N ′

j=1. Moreover,
from the probability measure induced by the Riemannian
metric of the symmetric spaces one finds the following (joint)
probability distributions for ϕ = {ϕ j}N ′

j=1 ∈ [0, π ]N
′
,

P−(ϕ) ∝
∏

1�i< j�N ′
| cos ϕi − cos ϕ j |

N ′∏
i=1

sin ϕi, (32)

P+(ϕ) ∝
∏

1�i< j�N ′
| cos ϕi − cos ϕ j |, (33)

where the proportionality constant is chosen to ensure that
their integral over [0, π ]N

′
is one. Changing variables from
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ϕ j to x j = cos ϕ j ∈ [−1, 1], both (32) and (33) are brought
into the so-called Jacobi-ensemble form [30]

PJ
ab(x) ∝

∏
1�i< j�N ′

|xi − x j |β
N ′∏
i=1

(1 − xi )
aβ/2(1 + xi )

bβ/2,

(34)
with β = 1 and, respectively, a = b = 0 for S−(N ′) and
a = b = −1 for S+(N ′).

C. Thermodynamic limit of the moments

Let us now turn to the main objective of this section:
Computing the moments of SFF (8) where the matrix UKI[h] is
replaced by a random matrix in U ∈ S±(N ′) and the average
Eh[·] is replaced by

E±
ϕ [ f ] =

∫
[0,π]N ′

f (ϕ)P±(ϕ)
N ′∏
j=1

dϕ j, (35)

where +/− are, respectively, chosen for L even/odd. To
compute the moments (8) it is convenient to find the full
probability distribution of the linear statistics,

Tt,L = tr[Ut ] =
N∑
j=1

eitϕ j = 2
N ′∑
j=1

cos(tϕ j ), (36)

where ϕ j are the quasienergies of U and in the last step we
used that they can only appear in complex-conjugated pairs.
An immediate consequence of this relation is that, as opposed
to what happens in the COE, the random variable Tt,L is real.

Let us start by considering the average of (36). First we
note that, introducing the n-point function of the density of
quasienergies,

ρ±,n(x1, . . . , xn) = E±
ϕ

[ N∑
j1 =···= jn=1

n∏
k=1

δ(xk − ϕ jk )

]
, (37)

the average can be expressed as

E±
ϕ [Tt,L] =

∫
dϕ 2 cos(ϕt )ρ±,1(ϕ). (38)

Since we are interested in the thermodynamic limit (L → ∞)
we do not need to find the statistics of Tt,L exactly: It is
sufficient to find its leading behavior for large N ′ = 2L−1.
This can be efficiently performed using “log-gas methods”
[5,30,31], i.e., studying the statistical mechanics of quasiener-
gies through the formal analogy with a gas of charged particles
in two dimensions (confined in a one-dimensional domain).
Specifically, here we will follow the treatment of Ref. [30].

First we observe that the probability distribution (34) of
the Jacobi ensemble is equivalent to the Boltzmann factor of
a one-component log-potential gas confined to the interval
[−1, 1] with particles of unit charge at positions {x1, . . . , xN ′ }
and a neutralizing background charge density,

ρb(x) = −N ′ + 2/β − 1 + (a + b)/2

π (1 − x2)1/2

+
[

a − 1

2
+ 1

β

]
δ(x − 1) +

[
b − 1

2
+ 1

β

]
δ(x + 1),

(39)

where we neglected O(1/N ′). This statement is proven in
Proposition 3.6.3 of Ref. [30] (see also Exercises 14.2). Equa-
tion (39) can be used to fix the density of the gas by requiring
that, in the thermodynamic limit, the system is locally neutral
so that

lim
N ′→∞

ρb(x) + ρ±,1(x) = 0. (40)

In particular, changing variables to ϕ = cos−1x and setting
β = 1 and a = b = 1(0) for U ∈ S+(−)(N ′) we find

lim
L→∞

ρ±,1(ϕ) − N ′

π
= ±

[
1

2
δ(ϕ) + 1

2
δ(ϕ − π ) − 1

2π

]
.

(41)
This result agrees with the infinite L limit of the exact one-
point function in the Jacobi ensemble (cf. Proposition 6.3.3 of
Ref. [30]). Moreover, it also implies

lim
L→∞

E±
ϕ [Tt,L] = ±1 + (−1)t

2
= ±mod(t + 1, 2), (42)

where mod(n, m) = n mod m is the mod function.
Next, we consider the variance,

Var±(Tt,L ) ≡ E±
ϕ

[
T 2

t,L

]− E±
ϕ [Tt,L]2 = 4

∫
[0,π]2

dϕ1dϕ2 cos(ϕ1t ) cos(ϕ2t )
[
ρc

±,2(ϕ1, ϕ2) + ρ±,1(ϕ1)δ(ϕ1 − ϕ2)
]
, (43)

where ρc
±,2(ϕ1, ϕ2) is the connected two-point function,

ρc
±,2(ϕ1, ϕ2) ≡ ρ±,2(ϕ1, ϕ2) − ρ±,1(ϕ1)ρ±,1(ϕ2). (44)

The large-L behavior of the quantity,

K (ϕ1, ϕ2) ≡ ρc
±,2(ϕ1, ϕ2) + ρ±,1(ϕ1)δ(ϕ1 − ϕ2) (45)

can again be computed in the log-gas framework. In this
case one uses a linear-response argument (see Chap. 14.3 of
Ref. [30]). In essence one imagines to add an infinitesimal
charge δq to the log-gas system, which is assumed to behave
like a perfect conductor. Therefore, the charges in the log gas
redistribute to screen δq. In this setting one can show that
K (ϕ1, ϕ2) is proportional to the to crossed derivative (in both
ϕ1 and ϕ2) of the electronic potential created by the displaced
charges. In the case of the Jacobi ensemble this leads to

lim
L→∞

K (ϕ1, ϕ2) = − 1

βπ2

1

sin ϕ1

∂2

∂ϕ1∂ϕ2
sin ϕ2 log | cos ϕ1 − cos ϕ2|. (46)
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Substituting in (43) one finds

lim
L→∞

Var±(Tt,L ) = 4t

βπ2

∫
[0,π]

dϕ1 cos(ϕ1t )
∫

[0,π]
dϕ2

sin(ϕ2t ) sin ϕ2

cos ϕ1 − cos ϕ2
. (47)

Note that, with the change in variables cos ϕ1 → x and
cos ϕ2 → y, this expression corresponds to Eq. (14.56) of
Ref. [30] with a(cos θ ) = 2 cos(tθ ) and β = 1. Carrying on
the integrals we find

lim
L→∞

Var±(Tt,L ) = 2t . (48)

Using the results for mean and variance we can now deduce
the large-L limit of the full probability distribution of Tt,L,
namely,

P±,T (x) ≡
∫

[0,π]N ′
δ(x − Tt,L )P±(ϕ)

N ′∏
j=1

dϕ j . (49)

Indeed, using again a linear-response argument (see Chap.
14.4 of Ref. [30]), one can show that in this limit P±,T (x)
becomes Gaussian (see Eq. (14.68) of Ref. [30]) so that we
finally obtain

lim
L→∞

P±,T (x) = 1√
4πt

exp

[
− [x ∓ mod(t + 1, 2)]2

4t

]
. (50)

The probability distribution (50) produces the following cen-
tral moments in the thermodynamic limit,

Cn(t ) = lim
L→∞

E±
ϕ [|Tt,L − E±

ϕ [Tt,L]|2n] = (2t )n(2n − 1)!!,

(51)

and, therefore, (8) reads as

Kn(t ) =
{∑n

k=0

(2n
2k

)
Ck (t ), t even,

Cn(t ), t odd.
(52)

The result (52) is very different from the one found for
U ∈ COE. Indeed, in the latter case the expression (36) is
complex, and Ref. [25] found the following joint distribution
for its real and imaginary parts (x and y, respectively ) in the
thermodynamic limit,

lim
L→∞

PT (x, y) = 1

2πt
exp

(
−x2 + y2

2t

)
. (53)

This distribution yields

Kn(t ) = (2t )nn!. (54)

We see that, even though (54) and (52) agree for n = 1 and
t odd, they are generically very different. In particular the
moments (52) are much larger that (54) indicating that the
fluctuations in the ensembles S±(N ′) are larger than those in
the COE.

IV. LOWER BOUND FROM THE
SPACE-TRANSFER-MATRIX APPROACH

Equipped with the random-matrix theory prediction (52)
we can now move on to our main goal: Computing the
moments Kn(t ) in the self-dual kicked Ising model. In

this section we will determine a rigorous lower bound
for Kn(t ).

A. Transfer matrix in space

To derive the lower bound we will follow Ref. [22] and
use the transfer matrix in space. The starting point is the
following identity, which holds for the self-dual kicked Ising
model [22,23],

tr[UKI[h]t ] = tr

(
L∏

j=1

ŨKI[h jε]

)
. (55)

Here ε is a vector with t entries equal to one, and ŨKI[h] takes
the form (5) with the only difference that the size L is replaced
by t in (2) and (3). Note that the trace on the right-hand side
of Eq. (55) is over Ht = (C2)⊗t .

Equation (55) can be used to rewrite the nth moment of the
SFF as follows:

Kn(t ) = lim
L→∞

tr
(
T L

2n

)
, (56)

with T2n ∈ End(H⊗2n
t ) defined as

T2n = Eh[(ŨKI[h jε] ⊗ Ũ ∗
KI[h jε])⊗n]. (57)

By looking at the graphical representation in Fig. 1 we see that
T2n plays the role of a space-transfer matrix on a multisheeted
two-dimensional lattice. The simplification in Eq. (56) is
possible because the matrices UKI[h jε] on the right-hand side
of Eq. (55) depend on longitudinal magnetic fields at different
positions (which we assumed to be independently distributed),
and the average factorizes. Moreover, the Gaussian integral
can be computed analytically yielding

T2n = ŨKI,n ⊗ Ũ∗
KI,nOn,n, (58)

where we introduced

On,m ≡ exp

[
− σ

2
(Mα,n ⊗ 1tm − 1tn ⊗ Mα,m)2

]
, (59)

Mα,n ≡
n∑

j=1

1⊗( j−1)
t ⊗ Mα ⊗ 1⊗(n− j)

t , (60)

ŨKI,n ≡ (ŨKI)
⊗n. (61)

Note that here,

ŨKI ≡ ŨKI[h̄ε] (62)

is the transfer matrix in space at the average magnetic field,
and

Mα ≡
t∑

τ=1

σα
τ (63)

is the magnetization (in the α direction) for a chain of
length t .
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FIG. 1. An illustration of the nth moment of the spectral form
factor Kn(t ). The lattice depicts a system of L spins that are prop-
agated to time t . T2n acts as a transfer matrix on 2n copies of the
lattice. The average (Eh j ) is performed over the longitudinal mag-
netic fields hj . The loops on the edges of the lattice indicate that we
need to compute the trace of T2n to get the nth moment of the spectral
form factor.

B. Trace of Ut
KI[h]

Before embarking on the analysis of Eq. (56) it is useful to
look at a simpler observable that can be studied with the same
method, namely,

B(t ) ≡ lim
L→∞

Eh
[
tr
[
Ut

KI[h]
]]

. (64)

Indeed, the RMT prediction for this quantity is nontrivial [cf.
Eq. (42)] and offers a convenient opportunity for testing the
quantum chaos conjecture. Moreover, performing the calcu-
lation in this simple example will best illustrate some of the
main ideas.

Considering (64) and using (55) we have

B(t ) = lim
L→∞

tr[T L], (65)

where in this case the space-transfer matrix reads as

T = ŨKI exp

[
−σ

2
M2

z

]
≡ ŨKIO1,0. (66)

The limit (65) can be computed as follows. First we ob-
serve that the eigenvalues of the transfer-matrix T are at most
of unit magnitude and, additionally, geometric and algebraic
multiplicity of any eigenvalue with magnitude one coincide.
This can be seen by using the relation,

T †T = O†
1,0Ũ

†
KIŨKIO1,0 = O†

1,0O1,0 = O2
1,0 , (67)

and reasoning as in the proof of Property 1 of Ref. [22]. More-
over, following Ref. [22], we assume that the spectral gap  =
1 − max|λ|<1

λ∈Sp(T )|λ| remains finite for all times [Sp(A) denotes

the spectrum of A]. This is confirmed by exact diagonalization
of T for short times, see the left panel of Fig. 2. Putting all
together we conclude that B(t ) is given by the number of
eigenvectors |A〉 corresponding to unimodular eigenvalues.

Next, we observe that—because of Eq. (67)—all uni-
modular eigenvalues of T lie in the eigenspace of O1,0

corresponding to eigenvalue one. Given the form of the op-
erator O1,0, this means that all relevant eigenvectors |A〉 must
be in the kernel of the operator Mz, i.e.,

Mz|A〉 = 0. (68)

This relation allows us to conclude the analysis of odd times.
Indeed, since in that case there can be no vectors in the
kernel of Mz (a spin-1/2 chain of odd length cannot have zero
magnetization), we find immediately that B(t ) vanishes.

To find the result for even t we continue by acting on |A〉
with T , this yields

ŨKI|A〉 = eiϕ |A〉. (69)

This equation, together with (68), implies

Mα|A〉 = 0, α ∈ {x, y, z}, (70)

Ũ |A〉 = exp
[
i
(
ϕ + π

4
t
)]

|A〉, ϕ ∈ [0, 2π ), (71)

where Ũ is defined as in (14) but with L replaced by t . The
first of these equations can be verified by using the identities,

ŨKIMzŨ
†
KI = −My, (72)

exp

(
i
π

4
Mz

)
My exp

(
− i

π

4
Mz

)
= Mx, (73)

whereas the second follows from Eqs. (70) and (69).
Since the operator Ũ squares to 1t we have

eiϕ = ±1. (74)

A state that satisfies Eqs (70) and (71) is directly identified as

|ψ〉 = 1

2t

t/2∏
τ=1

(1 − Pτ,τ+t/2)| ↑↑ · · · ↑↓↓ · · · ↓〉, (75)

with Pi, j = 1
21 + 1

2

∑
α σα

i σα
j being the transposition of the

spins on sites i and j. In particular, it is easy to verify that (75)
fulfills (70) and (71) with

eiϕ = −1. (76)

Assuming that (75) is the only eigenvector of T corresponding
to unit-magnitude eigenvalues we have

B(t ) =
{−mod(t + 1, 2), L odd,

mod(t + 1, 2), L even,
(77)

which agrees with the RMT prediction (42). Note that, for
even values of L, Eq. (77) gives a lower bound for B(t ).
Indeed, given the general structure (74) of the unit-magnitude
eigenvalues one can immediately see that the contribution of
each eigenvalue to B(t ) is always positive for L even.

Numerical checks

The prediction (77) can be checked by finding numerically
all unimodular eigenvalues of T for short times. The results
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FIG. 2. Spectral gap of transfer-matrix T , Eq. (66) (a), and transfer-matrix T4, Eq. (58) (b) as a function of the disorder strength σ for
different times t . The average of the disorder is set to zero, h̄ = 0.

for times up to t = 25 are shown in Table I. No eigenvectors
are found for odd t whereas for even t the only eigenvalue is
the one given in Eq. (76) [corresponding to the eigenvector
(75)]. The only exceptions are for t = 6 and t = 10. In these
two cases we find an additional unit-magnitude eigenvalue,

eiϕ = 1, (78)

and its corresponding eigenvectors have been identified in
Ref. [22] [cf. Eqs. (171) and (175) of the Supplemental Ma-
terial]. As no other additional eigenvector can be found for
t > 10 we conjecture that the presence of (78) is a short-time
fluke.

C. Higher moments of the spectral form factor

Let us now move on to the main objective of this section
and consider the moments (56). The steps to determine a lower
bound for these quantities are similar to the ones taken in the
previous subsection. In particular, a relation analog to Eq. (67)
still holds with T and O1,0 replaced by T2n and On,n, namely,

T †
2nT2n = O2

n,n. (79)

As a consequence, the eigenvalues of T2n have again mag-
nitude bounded by one and those with unit magnitude have
coinciding algebraic and geometric multiplicity (whereas the
other eigenvalues remain at a finite distance from the edge of
the unit circle, see the right panel of Fig. 2 for a representative
example). Another aspect that is unchanged is that the eigen-
vectors corresponding to the eigenvalues with unit magnitude
belong to the eigenspace of On,n with eigenvalue one. This
immediately leads to the following two conditions on the
relevant (i.e., corresponding to unit-magnitude eigenvalues)

TABLE I. Unit-magnitude eigenvalues λ of T for even times t �
24. There are no such eigenvalues at odd times for t � 25.

Time 2 4 6 8 10 12 14 16 18 20 22 24

|λ| = 1 −1 −1 ±1 −1 ±1 −1 −1 −1 −1 −1 −1 −1

eigenvectors of T2n:

(Mz,n ⊗ 1tn − 1tn ⊗ Mz,n)|A〉 = 0, (80)

ŨKI,n ⊗ Ũ∗
KI,n|A〉 = eiϕ |A〉. (81)

Reasoning along the lines of the previous subsection, one can
readily prove that (80) and (81) are equivalent to

(Mα,n ⊗ 1tn − 1tn ⊗ M∗
α,n)|A〉 = 0, (82)

Ũn ⊗ Ũ∗
n |A〉 = eiϕ |A〉, (83)

where we defined

Ũn ≡ Ũ ⊗n. (84)

Again, using Ũ 2 = 1t , we have eiϕ = ±1.
To find a set of eigenvectors {|A〉} fulfilling (82) and (83) is

useful to follow Ref. [22] and introduce the state-to-operator
map. This is implemented as follows. First we consider the
coefficients Ai1,...,i2n of |A〉 in the basis:

{|i1, i2, . . . , i2n−1, i2n〉}, (85)

where {|i〉} is the computational basis of Ht . Namely,

Ai1,...,i2n ≡ 〈i1, i2, . . . , i2n−1, i2n|A〉 . (86)

Then, we define the operator An in End(H⊗n
t ) by means of the

following matrix elements:

〈i1 · · · in| An| j1 · · · jn〉 = Ai1,...,in, j1,..., jn . (87)

In this way we can express the conditions (82) and (83) as

[An,Mα,n] = 0, (88)

ŨnAnŨ†
n = ±An. (89)

The first observation is that, even though both +1 and −1 are
possible eigenvalues of Ũ , it is reasonable to restrict ourselves
to the case of positive eigenvalues. Indeed, as we will see in
the following, negative eigenvalues are expected to be rare
and appear only for short times. Moreover, considering only
positive eigenvalues produces a lower bound for (56) if we
only focus on even lengths. For this reason, we get rid of the
contribution of negative eigenvalues by averaging the results
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for even and odd lengths, i.e., we define

K̄n(t ) = lim
L→∞

tr
(
T 2L

2n

)+ tr
(
T 2L+1

2n

)
2

. (90)

A set of eigenvectors with eigenvalue one can be determined
by finding the number of all linearly independent operators
that commute with the set of operators {Un,Mα,n}. This set
can be found by observing that as shown in Ref. [22] the
elements of the dihedral group Gt commute with the set of
operators {U, Mα}. The group Gt is a symmetry group of a
polygon with t vertices and its elements be expressed as

{�pRm; p ∈ {0, t − 1}, m ∈ {0, 1}}, (91)

with � denoting the periodic shift for one site and R reflection.
These operators are represented in End(H⊗n

t ) as

� =
t−1∏
τ=1

Pτ,τ+1 and R =
[t/2]∏
τ=1

Pτ,t+1−τ , (92)

where Pi, j is the transposition. The number of linearly inde-
pendent elements of this representation of the dihedral group
is [22]

|Gt | =
⎧⎨
⎩

2t, t � 6,

2t − 1, t ∈ {1, 3, 4, 5},
2, t = 2.

(93)

The above facts imply that any operator written as

B =
1∑

mj=0

t−1∑
p j=0

Bp,m�p1 Rm1 ⊗ · · · ⊗ �pnRmn (94)

commutes with {Un,Mα,n}.
This means that the number of operators commuting with

{Un,Mα,n} is, at least, the number of elements of the dihedral
group to the power n. There is, however, an additional combi-
natorial prefactor that one should take into account to attain a
tighter lower bound. The combinatorial prefactor arises from
an arbitrariness in the definition (87) of the operator A. In-
deed, it is easy to see that defining

〈i1 · · · in|A(τσ )
n | j1 · · · jn〉 = Aiτ (1), jσ (1),...,iτ (n), jσ (n) , (95)

with τ, σ ∈ Sn permutations of n elements, leads to operators
fulfilling (101) and (102) for any τ and σ . These operators are
not all linearly independent: Since the set of all operators B
[cf. (94)] is invariant under permutations of the copies in the
tensor product, only A1σ can be independent. This leads to
a combinatorial prefactor n!. Such a combinatorial prefactor
leads to a lower bound on the higher moments of the SFF that
agrees with the standard COE prediction.

The fact that Ũ = Ũ †, however, implies that the combina-
torial prefactor is actually higher. Indeed, also

〈i1 · · · in| Ā(σ )
n |in+1 · · · i2n〉 = Aiσ (1),...,iσ (2n) , (96)

fulfill (101) and (102) for any permutation of 2n elements σ .
To see this we first note that considering the unitary mapping,

|A〉 �→ |A′〉 = 12tn ⊗ F̃y,n |A〉 , (97)

with

F̃y,n ≡ F̃y ⊗ · · · ⊗ F̃y︸ ︷︷ ︸
n

, (98)

and F̃y,n defined as in (13) with L replaced with t , the condi-
tions (82) and (83) become

(Mα,n ⊗ 1tn + 1tn ⊗ Mα,n)|A′〉 = 0, (99)

Ũn ⊗ Ũ∗
n |A′〉 = eiϕ |A′〉. (100)

Mapping these into relations for operators by means of the
definition (96) (with A replaced by A′) we then find{

Ā′(σ )
n ,M∗

α,n

} = 0, (101)

ŨnĀ′(σ )
n Ũ†

n = ±Ā′(σ )
n . (102)

Finally, defining

Ā(σ )
n = F̃y,nĀ′(σ )

n , (103)

we find that it fulfills (101) and (102) for all σ ∈ S2n.
Taking again into account the invariance of the set {B}

under permutations of the copies in the tensor product and
noting that the set is also invariant under transposition in each
single copy we obtain the following combinatorial prefactor:

(2n)!

2n n!
= (2n − 1)!!. (104)

Together with this additional factor a lower bound for K̄n(t )
can then be expressed as

K̄n(t ) �

⎧⎨
⎩

(2t )n(2n − 1)!!, t � 6,

(2t − 1)n(2n − 1)!!, t ∈ {1, 3, 4, 5},
2n(2n − 1)!!, t = 2.

(105)

We see that for odd times larger than five this bound agrees
with the RMT prediction (52) and, therefore, we expect it to be
tight. For even times we can find additional operators fulfilling
(101) and (102) by considering |ψ〉 〈ψ | with |ψ〉 given in (75).
In particular we find the following additional solutions,

B(k) =
1∑

mj=0

t−1∑
p j=0

Bp,m�p1 Rm1 ⊗ · · · ⊗ �pk Rmk ⊗ |ψ〉 〈ψ | · · · |ψ〉 〈ψ | , k = 0, . . . , 2n − 1, (106)

with a combinatorial prefactor of(
2n

2k

)
(2k − 1)!!. (107)

Taking into account also these solutions we have that the
bound agrees with the RMT prediction (52) for all times larger
than six.
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TABLE II. Number of eigenvectors of T4 with eigenvalue +1 or
−1 obtained via the power method. For comparison, the first row
contains the lower bound given in Eq. (105).

t 2 3 4 5 6 7

Lower bound Eq. (105) 12 75 147 243 432 588
N+1 14 59 177 243 507 587
N−1 0 0 4 0 132 0

Numerical checks

The arguments of this section can again be tested (for
short times) by identifying numerically all eigenvectors of
the space-transfer matrix that have eigenvalues equal to ±1.
Here we present an analysis of the simplest nontrivial case,
i.e., n = 2. By repeatedly applying T4 to a random state
and then projecting to different fixed-momentum subspaces
(power method) we enumerated all its unimodular eigenvec-
tors up to t = 7: The results are gathered in Table II.

The first point to note is that negative eigenvalues are less
common than positive ones. For odd times we did not find
any eigenvalue −1. The next observation is that as expected
the number of eigenvectors is much bigger than the standard
COE prediction.

However, since we can only investigate the short-time be-
havior, we observe some short-time effects that we believe
will disappear for longer times. In particular, we observe two
main phenomena. First, the number of linearly independent
vectors in some subspaces is smaller than expected because
vectors are “not long enough.” In other words, for short times
the operators identified in the previous section are not all
linearly independent. Second, for short even times there are
some additional eigenstates (similar to what happens for t = 6
and t = 10 in Sec. IV B). Since these special states seem to
appear only for even times we can avoid this complication
by considering only odd times. The first phenomenon, how-
ever, remains also there. An example can be readily observed
for t = 3. In this case we find only 59 eigenvectors with
eigenvalue +1 even though the lower bound from Eq. (105)
predicts, at least, 75 of them. A similar effect can be seen for
t = 7 where we found 587 eigenvectors, whereas the expected
lower bound is higher by one. On the other hand at t = 5 the
number of eigenvectors matches the predicted lower bound.

To obtain more detailed information we note that T4 com-
mutes with the four translation operators,

T1 = � ⊗ 1 ⊗ 1 ⊗ 1, T2 = 1 ⊗ � ⊗ 1 ⊗ 1,

T3 = 1 ⊗ 1 ⊗ � ⊗ 1, T4 = 1 ⊗ 1 ⊗ 1 ⊗ �,

(108)

and count how many linearly independent eigenvectors with
unit-magnitude eigenvalues exist in each subspace with fixed
four-quasi-momentum {k1, k2, k3, k4} (see the Appendix for
more details). By analyzing the results—reported in the
Tables III–VIII—we identify the following general structure:

(1) The relevant eigenvectors appear in sectors where
four-momenta can be arranged into two pairs. Each pair
(k1, k2) contains two equal momenta k1 = k2 or two-momenta
in the relation k1 = t − k2 ≡ −k2.

TABLE III. Eigenvectors with unit eigenvalues for t = 2.
P (in bold) denotes the number of possible permutations of a given
set of momenta (k1, k2, k3, k4), while D denotes the number of
linearly independent vectors in each subspace (see Appendix for
details).

(k1, k2, k3, k4) D × P

(0, 0, 0, 0) 3 × 1
(0, 0, 0, 1) 1 × 4
(0, 0, 1, 1) 1 × 6
(1, 1, 1, 1) 1 × 1
(1, 1, 1, 0) 0
Total (t = 2) 14

(2) The number of linearly independent vectors in a sector
is the same as the number of ways in which four-momenta
can be grouped into two pairs. This means that we can get the
degeneracies one or three in a typical sector. For example,

{k1, k1, k2, k2}, k1 �= k2 �= t − k2.
, (109)

{k1, k1, k1, k1}, {k1, k1, k1, k1}, {k1, k1, k1, k1}.
. (110)

The total number of vectors in a sector is, therefore, always
given by the product of two numbers: the number of all possi-
ble pairs and that of all possible permutations of the momenta.

(3) When a sector has momenta k/2 or 0, one gets
independent contributions from even and odd reflection
eigenspaces.

For short times, however, some of the reflection
eigenspaces can vanish or be smaller than expected. For ex-
ample, at t = 7 in the reflection odd part of the sector with
all four-momenta equal to zero, we obtain only two indepen-
dent vectors instead of the expected three. The same problem
occurs for t = 3 in almost all sectors. The number of sectors
where this happens decreased when t increases, and this prob-
lem is expected to disappear for longer times.

It is interesting to check if by applying the above principles
we can calculate the final result for the number of eigen-
vectors. For (large enough) odd times the result is exactly
12t2, whereas for even times we get 12t2 + 12t + 1 (see the
Appendix). Both results agree with the lower bound (105) and
with the RMT prediction (52).

TABLE IV. Eigenvectors with unit eigenvalues for t = 3.

(k1, k2, k3, k4) D × P

(0, 0, 1, 2) 1 × 12
(0, 0, 1, 1) 1 × 6
(0, 0, 2, 2) 1 × 6
(1, 1, 1, 1) 2 × 1
(1, 1, 1, 2) 2 × 4
(1, 1, 2, 2) 2 × 6
(2, 2, 2, 1) 2 × 4
(2, 2, 2, 2) 2 × 1
(0, 0, 0, 0) 3 × 1
Total (t = 3) 59

043403-9



FLACK, BERTINI, AND PROSEN PHYSICAL REVIEW RESEARCH 2, 043403 (2020)

TABLE V. The number of eigenvectors corresponding to the
unimodular eigenvalues for t = 4. In sector (2, 2, 2, 2), there are
four eigenvalues −1, which are denoted by (−).

(k1, k2, k3, k4) D × P

(1, 1, 1, 2) 1 × 4
(3, 3, 3, 2) 1 × 4
(0, 0, 3, 3) 1 × 6
(0, 0, 1, 1) 1 × 6
(1, 2, 3, 3) 1 × 12
(1, 1, 3, 2) 1 × 12
(0, 0, 3, 1) 1 × 12
(0, 0, 2, 2) 2 × 6
(1, 1, 2, 2) 2 × 6
(1, 2, 2, 3) 2 × 12
(2, 2, 3, 3) 2 × 6
(1, 3, 1, 1) 3 × 4
(1, 1, 3, 3) 3 × 6
(1, 3, 3, 3) 1 × 4
(1, 1, 1, 1) 3 × 1
(3, 3, 3, 3) 3 × 1
(0, 0, 0, 0) 3 × 1
(2, 2, 2, 2) 10(+) + 4(−) × 1
Total (t = 4) 177(+) and 4(−)

TABLE VI. The number of eigenvectors corresponding to the
unimodular eigenvalues for t = 5.

(k1, k2, k3, k4) D × P

(0, 0, 1, 1) 1 × 6
(0, 0, 1, 4) 1 × 12
(0, 0, 2, 2) 1 × 6
(0, 0, 2, 3) 1 × 12
(0, 0, 3, 3) 1 × 6
(0, 0, 4, 4) 1 × 6
(1, 1, 2, 2) 1 × 6
(1, 1, 2, 3) 1 × 12
(1, 1, 3, 3) 1 × 6
(1, 2, 2, 4) 1 × 12
(1, 2, 3, 4) 1 × 24
(1, 3, 3, 4) 1 × 12
(2, 2, 4, 4) 1 × 6
(2, 3, 4, 4) 1 × 12
(3, 3, 4, 4) 1 × 6
(0, 0, 0, 0) 3 × 6
(1, 1, 1, 1) 3 × 6
(1, 1, 1, 4) 3 × 4
(1, 1, 4, 4) 3 × 6
(1, 4, 4, 4) 3 × 4
(2, 2, 2, 2) 3 × 1
(2, 2, 2, 3) 3 × 4
(2, 2, 3, 3) 3 × 6
(2, 3, 3, 3) 3 × 4
(3, 3, 3, 3) 3 × 1
(4, 4, 4, 4) 3 × 1
Total (t = 5) 243

TABLE VII. The number of eigenvectors corresponding to the
unimodular eigenvalues for t = 6.

(k1, k2, k3, k4) D × P (k1, k2, k3, k4) D × P

(1, 1, 2, 2) 1 × 6 (2, 2, 4, 4) 3 × 6
(1, 1, 2, 4) 1 × 12 (2, 3, 3, 4) 3 × 12
(1, 1, 4, 4) 1 × 6 (2, 4, 4, 4) 3 × 4
(1, 2, 2, 5) 1 × 12 (3, 3, 4, 4) 3 × 6
(1, 2, 4, 5) 1 × 24 (3, 3, 5, 5) 3 × 6
(1, 4, 4, 5) 1 × 12 (4, 4, 4, 4) 3 × 1
(2, 2, 5, 5) 1 × 6 (5, 5, 5, 5) 3 × 1
(2, 4, 5, 5) 1 × 6 (0, 0, 0, 0) 10 × 1
(4, 4, 5, 5) 1 × 6 (0, 0, 3, 3) 6 × 6
(0, 0, 1, 5) 2 × 12 (3, 3, 3, 3) 25(+) + 4(−) × 1
(0, 0, 2, 2) 2 × 6 (0, 3, 3, 3) 4(−) + 1(+) × 4
(0, 0, 2, 4) 2 × 12 (0, 0, 0, 3) 4(−) × 4
(0, 0, 4, 4) 2 × 6 (2, 2, 3, 3) 3 × 6
(0, 0, 5, 5) 2 × 6 (2, 2, 2, 4) 3 × 4
(0, 0, 1, 1) 2 × 6 (2, 2, 2, 2) 3 × 1
(1, 1, 1, 1) 3 × 1 (1, 5, 5, 5) 3 × 4
(1, 1, 1, 5) 3 × 4 (1, 3, 3, 5) 3 × 12
(1, 1, 3, 3) 3 × 6 (1, 1, 5, 5) 3 × 6
(0, 3, 1, 1) 1(−) × 12 (0, 3, 2, 2) 1(−) × 12
(0, 3, 4, 4) 1(−) × 12 (0, 3, 5, 5) 1(−) × 12
(0, 3, 1, 5) 1(−) × 24 (0, 3, 2, 4) 1(−) × 24

Total (t = 6) 507(+) + 132(−)

TABLE VIII. Eigenvectors belonging to the unit eigenvalues
for t = 7.

(k1, k2, k3, k4) D × P (k1, k2, k3, k4) D × P

(1, 1, 2, 2) 1 × 6 (0, 0, 0, 0) 11 × 1
(1, 1, 2, 5) 1 × 12 (0, 0, 1, 1) 2 × 6
(1, 1, 3, 3) 1 × 6 (0, 0, 2, 2) 2 × 6
(1, 1, 3, 4) 1 × 12 (0, 0, 3, 3) 2 × 6
(1, 1, 4, 4) 1 × 6 (0, 0, 4, 4) 2 × 6
(1, 1, 5, 5) 1 × 6 (0, 0, 5, 5) 2 × 6
(1, 2, 2, 6) 1 × 12 (0, 0, 6, 6) 2 × 6
(1, 2, 5, 6) 1 × 24 (6, 6, 6, 6) 3 × 1
(1, 3, 3, 6) 1 × 12 (5, 5, 5, 5) 3 × 1
(1, 3, 4, 6) 1 × 24 (4, 4, 4, 4) 3 × 1
(1, 4, 4, 6) 1 × 12 (3, 4, 4, 4) 3 × 4
(1, 5, 5, 6) 1 × 12 (3, 3, 4, 4) 3 × 6
(2, 2, 3, 3) 1 × 6 (3, 3, 3, 4) 3 × 4
(2, 2, 3, 4) 1 × 12 (3, 3, 3, 3) 3 × 1
(2, 2, 4, 4) 1 × 6 (2, 5, 5, 5) 3 × 4
(2, 2, 6, 6) 1 × 6 (2, 2, 5, 5) 3 × 6
(2, 3, 3, 5) 1 × 12 (2, 2, 2, 5) 3 × 4
(2, 3, 4, 5) 1 × 24 (2, 2, 2, 2) 3 × 1
(2, 4, 4, 5) 1 × 12 (1, 6, 6, 6) 3 × 4
(2, 5, 6, 6) 1 × 12 (1, 1, 6, 6) 3 × 6
(3, 3, 5, 5) 1 × 6 (1, 1, 1, 6) 3 × 4
(3, 3, 6, 6) 1 × 6 (1, 1, 1, 1) 3 × 1
(3, 4, 5, 5) 1 × 12 (0, 0, 3, 4) 2 × 12
(3, 4, 6, 6) 1 × 12 (0, 0, 2, 5) 2 × 12
(4, 4, 5, 5) 1 × 6 (0, 0, 1, 6) 2 × 12
(4, 4, 6, 6) 1 × 6 (5, 5, 6, 6) 1 × 6

Total (t = 7) 587
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V. MONTE CARLO SIMULATIONS

In this section we present numerical evidence substantiat-
ing the tightness of the bound (105). Our numerical results
are obtained by means of simple Monte Carlo simulations
based on direct time propagation with UKI[h] followed by
an average over different configurations of the longitudinal
magnetic-fields h j .

The trace of Ut
KI[h] is computed by restricting the sum to a

set R containing m random states of CN . The states |r〉 ∈ R
are obtained by producing and normalizing vectors with inde-
pendent and identically distributed complex Gaussian random
variables. The number of states m can be much smaller than
2L, and we expect fluctuations in the order of O(1/

√
m). For

example, for n = 2 the trace is approximated by

∣∣tr[Ut
KI[h]]

∣∣4 ≈ 24L

m(m − 1)(m − 2)(m − 3)

∑
{r j}∈R

〈r1|Ut
KI[h]|r1〉〈r2|Ut

KI[h]|r2〉∗〈r3|Ut
KI[h]|r3〉〈r4|Ut

KI[h]|r4〉∗, (111)

and r1 = r2 = r3 = r4. The results are obtained for finite-
length chains and, consequently, the thermodynamic limit
behavior can only be observed for times t < L.

Figure 3 reports the results of the Monte Carlo simulations
for K1(t ), K2(t ), and K3(t ). As we see these results indicate
that the first, the second, and the third moments of the SFF
grow with time as predicted by Eq. (105). Note that small
deviations from the predicted asymptotics are due to finite-
size effects (we set L = 13 and L = 15 in these simulations)
which are clearly dominating over the statistical Monte Carlo
errors (of the order of data point symbol sizes or smaller) and
prohibit to resolve corrections to asymptotics for even times.

For comparison we also plotted the results for the time-
reversal invariant dual-unitary circuits with random gates.
The Floquet propagator has the form described in Ref. [32]

FIG. 3. A comparison between the Kn(t ) with n ∈ {1–3} and
the expected results. The solid straight lines are from bottom to
top: y = 2t (black), y = 8t2 (green), y = 12t2 (orange), y = 48t3

(blue), and y = 120t3 (red). The crosses are the data obtained for the
self-dual kicked Ising model, and the dots represent results for the
time-reversal invariant dual-unitary circuits determined by φ = J =
0 and u+ = v− = e−ih jσz , u− = e−i π

4 σx , v+ = 12. For both models
for K3(t ) the system size is L = 13, the averaging is performed over
5160 005 configurations of the fields h, and the trace is computed by
definition. For K1(t ) and K2(t ) the system size is L = 15, m = 128,
and the average is obtained by taking ≈200 000 configurations of h.
For all n the fields hj are distributed independently with a Gaussian
distribution determined by σ = 100π and h̄ = 0.6.

[Eqs. (23) and (24)] with J = 0 and

u+ = v− = e−ihσz , u− = e−i π
4 σx , v+ = 12. (112)

We see that, unlike for the self-dual kicked Ising, the moments
agree with the COE predictions.

Finally, in order to see whether all eigenvectors are iden-
tified, in Fig. 4 we compare the Monte Carlo simulation with
the results from Table II. The result agrees well for all times
except for t = 6 and L even. This might indicate that some
additional eigenvectors with eigenvalues +1 and −1 are not
identified. Other causes of disagreement might be finite-size
corrections in the Monte Carlo simulation or fluctuations due
to the finite number of realizations.

VI. CONCLUSIONS

In this paper we computed the statistics of the spectral
form factor in the self-dual kicked Ising model. Our strategy
has been to establish a rigorous lower bound on the higher
moments (generalizing the space-transfer matrix method of
Ref. [22]) and to check its saturation numerically (via Monte
Carlo simulations). We found that, even though the spectral
form factor takes the standard COE form, the fluctuations

FIG. 4. A comparison between the numbers from Table II (black)
and Monte Carlo simulation (blue, orange, green, and red triangles)
for L = 13, 14, 15, 16. The averaging is performed over ≈20 000
configurations of the magnetic-fields hj . The parameters are h̄ = 0.6
and σ = 100π .

043403-11



FLACK, BERTINI, AND PROSEN PHYSICAL REVIEW RESEARCH 2, 043403 (2020)

TABLE IX. The table contains the information about different types of sectors. The column Sectors reports the number of sectors with
nonzero eigenvectors associated to unimodular eigenvalues are of a certain type. The column Pairings reports the number of ways in which
one can construct two pairs in a sector. The column Permutations contains the number possible permutations.

Type Sectors Pairings

k, k′ /∈ {0, t/2}, k = k′, and k = −k′ t odd t even t odd t even Permutations

{•, •, •, •} {0, 0, 0, 0} 1 1 12 12 1
{t/2, t/2, t/2, t/2} 1 27

{k, k, k, k} t − 1 t − 2 3 3

{•, •, •, •′} {k, k, k, −k} t − 1 t − 2 3 3 4

{•, •, •′, •′} {k, k, −k, −k} t−1
2

t−2
2 3 3 6

{k, k, 0, 0} t − 1 t − 2 2 2
{t/2, t/2, k, k} t − 2 3
{t/2, t/2, 0, 0} 1 6
{k, k, k′, k′} (t−1)(t−3)

2
(t−2)(t−4)

2 1 1

{•, •, •′, •′′} {0, 0, k, −k} t−1
2

t−2
2 2 2 12

{t/2, t/2, k, −k} t−2
2 3

{k, k, k′, −k′} (t−1)(t−3)
2

(t−2)(t−4)
2 1 1

{•, •′, •′′, •′′′} {k, −k, k′,−k′} (t−1)(t−3)
8

(t−2)(t−4)
8 1 1 24

are consistently higher. We explained this result by noting
that since the self-dual kicked Ising model has two antiuni-
tary symmetries [27], the relevant random-matrix ensemble is
not the COE but is defined on a more restricted symmetric
space. We found that this space is either Sp(N )/U (N ) or
O(2N )/O(N )O(N ) depending on the parity of the number of
sites. Moreover, we found that these ensembles describe the
statistics of the spectral form factor in the thermodynamic
limit and for all times larger than six. In particular, this implies
that in the self-dual kicked Ising model the Thouless time is L
independent and is the same for all cumulants of the spectral
form factor.

Our paper suggests several possible directions for future
research. An obvious one is to prove rigorously the findings
of this paper in the spirit of Ref. [22]. Namely, devise a
mathematical proof of the bound’s saturation. Our numeri-
cal analysis of the short-time behavior suggests that such a
proof is concretely within reach, at least, in the case of odd
times.

Moreover, it is interesting to apply the method adopted
here to the study of the spectral-form-factor statistics in other
systems. Our numerical results, together with recent com-
pelling analytical evidence [32–40], suggest that dual-unitary
circuits [32] provide a very convenient framework where these
questions can be investigated analytically. Indeed, preliminary
results indicate that all circuits in this class are character-
ized by a vanishing Thouless time, meaning that there is no
characteristic timescale other than the Heisenberg time given
by the dimension of the Hilbert space. In fact, they seem
to provide an arena where one can generate many-different
random-matrix ensembles by including increasingly more an-
tiunitary symmetries in the local gates.

Finally, it is interesting to ask whether the method of this
paper can be successfully applied to “generic systems” with
nonunitary space-transfer matrix. There a meaningful compar-
ison with RMT can only be performed in a finite volume due
to a Thouless time increasing monotonically with the volume
[16,19].
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APPENDIX: UNIMODULAR EIGENVALUES OF T4

The number of linearly independent eigenvectors associ-
ated to unimodular eigenvalues of T4 for times t ∈ {2–7} are
reported in Tables III–VIII. Since T4 commutes with the four
translation operators,

T1 = � ⊗ 1 ⊗ 1 ⊗ 1, T2 = 1 ⊗ � ⊗ 1 ⊗ 1,

T3 = 1 ⊗ 1 ⊗ � ⊗ 1, T4 = 1 ⊗ 1 ⊗ 1 ⊗ �, (A1)

its eigenvectors can be labeled using four-(quasi)momenta
{k1, k2, k3, k4}. The number of vectors in a sector is the same
regardless of the order of the momenta and, therefore, each
combination of four k’s is found only once in each table. P
is the number of all possible permutations of a certain set of
momenta. D is the number of linearly independent vectors in
a specific subspace. No additional sign means that only eigen-
values +1 are present. If some eigenvalues −1 are present,
there is a sign (−) beside the number of such eigenvalues and
a sign (+) beside the number of eigenvectors belonging to the
positive eigenvalue.

By looking at the tables we see a demonstration of the rules
described in Sec. IV C 1. To explain results for the special
cases where two- or four-momenta are equal to zero, we
note that the states belonging to the reflection symmetric and
antisymmetric subspaces are linearly independent for t � 6.
If 0+ stands for the reflection symmetric subspace and 0−
stands for the antisymmetric subspace, we expect to find three
linearly independent states in the sector {0−, 0−, 0−, 0−},
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another three in the subspace {0+, 0+, 0+, 0+}, and one vector
in {0−, 0−, 0+, 0+}. However, in the last case there are six
possible permutations and, therefore, the total number of lin-
early independent eigenvectors with {0, 0, 0, 0} is 12. When
only two momenta are equal to zero, the number of expected
eigenvectors is 2. One is in the subspace {k, k′, 0−, 0−}, and
the other is in {k, k′, 0+, 0+}.

The same happens for even t in sectors with momentum
k = t/2 because even and odd reflection sectors are both non-
trivial for t � 4. Furthermore, there is the additional state |ψ〉
[Eq. (75)] and it belongs to reflection-symmetric or reflection-
anti-symmetric subspace depending on parity of t . When all
four-momenta are equal to t/2 we expect 25 linearly indepen-
dent vectors. By applying the same reasoning as for k = 0, we
get 12 vectors, the additional 13 linearly independent vectors
contain the state |ψ〉. When only two-momenta are equal to

t/2, we get three independent vectors. Two of them are due to
the same reasons as for k = 0 and the additional one contains
state |ψ〉.

All information about different types of sectors and the
number of linearly independent vectors is summarised in
Table IX. In the first column we report all possible types
of sectors. The column “Sectors” reports the number of
sectors of each type and the column “Pairings” contains in-
formation about the number of expected linearly independent
eigenvectors in the corresponding sector. Finally the column
“Permutations” reports the number of possible permutations
of the four-momenta. In order to obtain the lower bound of
the spectral form factor one has to multiply the numbers in
each row (choosing t either even or odd) and sum together the
results of each row. This method gives the result 12t2 for odd
times and 12t2 + 12t + 1 for even times.
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