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Hierarchical mean-field T operator bounds on electromagnetic scattering: Upper bounds
on near-field radiative Purcell enhancement
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We present a general framework, based on Lagrange duality, for computing physical bounds on a wide array
of electromagnetic scattering problems. Namely, we show that, via projections into increasingly localized spatial
clusters, the central equality of scattering theory—the definition of the T operator—can be used to generate a
hierarchy of increasingly accurate mean-field approximations (enforcing local power conservation) that naturally
complement the standard design problem of optimizing some objective with respect to structural degrees of
freedom. Utilizing the systematic control over the spatial extent of local violations of physics offered by the
approach, proof-of-concept application to maximizing radiative Purcell enhancement for a dipolar current source
in the vicinity of a structured medium, an effect central to many sensing and quantum technologies, yields bounds
that are often more than an order of magnitude tighter than past results, highlighting the need for a theory
capable of accurately handling differing domain and field-localization length scales. Similar to related domain
decomposition and multigrid notions, analogous constructions are possible in any branch of wave physics,
providing a unified approach for investigating fundamental limits.
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I. INTRODUCTION

The study of structural design in photonics centers largely
around three interconnected aims: explaining shared response
features across many classes of geometries (e.g., effective
medium theory [1] and topological photonics [2]), discovering
particular geometries with notable response characteristics
(e.g., high-efficiency antennas [3] and light-trapping films
[4]), and characterizing the space of achievable responses
and its dependence on constraints (e.g., the existence of
fundamental limits [5] and scaling laws [6]). Accelerating
over the last decade, the continued adoption of large-scale
numerical methods has greatly simplified the collection of
challenges related to discovery. Techniques such as “den-
sity” (“topology”) or level-set optimization [7,8]—ideally
matching structural degrees of freedom to the underlying
computational discretization—have produced improved de-
signs for applications varying from enhanced polarization
control [9,10] and ultrathin optical elements [11-13] to wide
band-gap photonic crystals [14—16] and topological materials
[17-19]. However, because navigating the immense range
of allowed structures in such formulations necessitates re-
liance on local information (approximations based on function
evaluations, gradients, etc. [20]) and the relation between
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fields and structural variations set by Maxwell’s equations
is nonconvex [21], the increasingly widespread use of nu-
meric optimization has also sharpened several open questions.
Specifically, it is rarely known how close the structures dis-
covered by any particular algorithm approach the true (global)
optimum performance dictated by fundamental physical prin-
ciples (e.g., wave physics set by Maxwell’s equations) or
to what extent response characteristics are determined by
specific design choices (e.g., system length scales, material
susceptibility, and properties of the algorithm).

Recently, a number of promising proposals for addressing
this knowledge gap have been put forward by combining
Lagrange duality with physical consequences of scatter-
ing theory [6,22-24]—relaxing the local constraints implied
by Maxwell’s equations to global conservation principles
(Fig. 1). In particular, by exploiting a generalized version
of the optical theorem which requires that real and reac-
tive power be conserved on average over the entire device
structure [22,25], performance limits for propagating waves
that accurately anticipate the results of density optimiza-
tion for far-field absorption and scattering cross sections
(within factors of unity) have been demonstrated across a
variety of examples [6]. Yet, when applied to situations where
evanescent (near-field) wave effects dominate overall behav-
ior (Fig. 2), these prior techniques produce bounds that are
several orders of magnitude larger than, and exhibit markedly
different trends from, what has been observed in any actual ge-
ometry, including those discovered by density optimization.

Here, we remedy this issue, and elucidate fundamental
connections between scattering theory, performance bounds,
and structural optimization, by introducing the notion of
multiscale T operator constraint hierarchies. The approach
functions, in essence, as a collection of successively refined
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FIG. 1. Schematic hierarchical mean-field bounds and application to scattering cross sections. (a) Schematic of light scattering from a
source near a structured (light blue) object enclosed within a cubic domain, which is partitioned into various subdomains (clusters). Like
Maxwell’s equations, the definition of the scattering T operator, Eq. (1), imposes constraint relations that must be satisfied at every point in
real space. Present approaches to electromagnetic limits [6,22—24], however, only impose that this definition be respected on average, ignoring
the possibility of unphysical local field variations—graphically depicted by the red (positive) and blue (negative) violations in the value of
the imposed constraint equality within the smaller subdomains, otherwise satisfied on average when integrated over the entire volume. (b) By
enforcing the validity of the definition of the scattering T operator on successively smaller subdomains, dual bounds, G given by Eq. (7), acquire
a hierarchical order that mirrors the primal problem of optimizing some objective in terms of an increasing number of structural degrees of
freedom, £ in Eq. (5). When strong duality holds, covering every case we have tested, the convex relaxation given by Eq. (7) determines an
exact optimal mean-field solution respecting the associated set of constraints, and in the limit of point clusters and complete structural freedom,
the two problem statements become equivalent. (c) Upper bounds on plane-wave scattering for any structure bounded (contained) by a sphere
of radius R. Lighter-colored lines result by asserting that real and reactive power is conserved globally, as in Refs. [6,22]. Associated darker
lines are produced by enforcing similar equalities over eight, evenly spaced, radial subdomains. A profile of one of the density-optimized
structures is shown as an inset. Logarithmic color maps of the corresponding violation in the real part of Eq. (2), Re [(S|Ix|T)]Z/) versus
(T|Sym [UL]|T)Z/, for one, two, and four (evenly spaced) shell clusters, in the plane perpendicular to both the incoming wave vector and
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direction of polarization, are shown below the panel.

mean-field theories [26]. At the base of each hierarchy, only
the global (spatially integrated) real and reactive power con-
servation constraints studied in Refs. [6,22] are imposed on
the optimization, equating these prior results to a first-order
mean-field approximation. In every subsequent refinement,
the computational domain is partitioned into increasingly
small, nested, subdomains (clusters), which, through projec-
tion, induces a larger set of increasingly localized scattering
(power conservation) constraints, and in turn, a higher-order
“mean-field” (Fig. 1). Reminiscent of multigrid and multi-
scale methods [27,28], the order of the hierarchy thus acts as
a “resolution knob” for systematically controlling the spatial
extent of local violations of physics introduced in the pro-
cess of deriving asymptotics (i.e., the degree to which the
requirement that solutions satisfy Maxwell’s equations locally
is “relaxed”), allowing multiple length scales (beyond the size
of the domain) to be considered concurrently.

The method also acts as a “top-down” complement to
inverse design: The solution of any optimization problem in
the constraint hierarchy is always more optimal than what is
conceptually possible if wave physics is fully obeyed, whereas
inverse design in a finite number of structural degrees of
freedom is always suboptimal (any result can be improved,
in principle, by enlarging the range of accessible structures).
Moreover, in the limit of point clusters (infinite mean-field
order) and infinitesimal structural variations (vanishing “vox-
els”) the two problems are equivalent, and if strong duality

holds [29], as it does in every example we have studied, the
field discovered in calculating the dual bound determines a
globally optimal structure. More concretely, proof-of-concept
application of the method to radiative Purcell enhancement
for a dipolar current source in the near field (subwavelength
separations) of a structured medium, an effect crucial to opti-
cal sensing and quantum information technologies [30-32],
yields limits that come substantially closer, compared with
existing literature, to the values found by density optimization.

Notation. Throughout, I is used to denote the identity oper-
ator, and subscripts on operators (blackboard bold letters) are
used as a booking device for the domains and codomains of
definition. When only a single subscript is shown, the domain
and codomain are identical. The subscripts b and s mark spa-
tial locations as part of either the background (b) or scattering
object (s) within some predefined domain, 2. When an oper-
ator appears without subscripts, its domain and codomain are
Q. GO refers to the background Green’s function [6] and hence
depends on 2. V is used to denote the scattering potential, i.e.,
any polarizable medium not included in G°, where V = I x
for a homogeneous medium of electrical susceptibility x.

II. THEORETICAL FRAMEWORK

In this section, we provide an overview of the bounds
framework, discuss the nature of the various scattering relax-
ations and constraints used in establishing asymptotics, and
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FIG. 2. Upper bounds on radiative Purcell enhancement. Following the same conventions used in Fig. 1(c), but for a dipolar current source
in the near field of an object, the imposition of relatively simple (radial) shell constraints is shown to substantially alter both the conditions
under which resonant radiative Purcell enhancement (far-field emission compared to vacuum) can possibly occur [(a) and (b)] and to generally
reduce the dependence of calculated limits on material properties [(a)—(c)]. In all panels, darker lines indicate achievable enhancement, for any

structure fitting within a ball of radius R, calculated with eight shell clusters of radii rgen/R =

{0.97,0.95, 0.93,0.91, 0.89, 0.87, 0.85, 0.6}.

Fainter lines, often more than an order of magnitude larger, describe similar results but supposing only a single cluster comprising the
entire spherical domain. Dots mark enhancement values achieved by actual structures discovered through inverse design. Notable features are
described in the main text. Radiative Purcell enhancements achievable with weak materials, —1 < Re[x] < 1, are found to be unremarkable
and hence are omitted from (c). Profiles and cross cuts of two representative density-optimized structures are displayed below (a) and (b).
The color maps below (c) show spatial violations in the real part of the constraint equality of Eq. (2) for the parameter values marked in (b).
Crucially, strong duality holds in all examples, indicating that use of more varied clusters (e.g., breaking spherical symmetry) should lead to

even tighter bounds.

describe connections between mean-field problems and struc-
tural optimization. Finally, we present a high-level description
of the mechanics of the method as applied to power-transfer
objectives.

A. Spatial locality in scattering theory

In a scattering theory [33,34], the role typically played by
a wave equation (e.g., Maxwell’s equations) is taken by the T
operator, defined as

I, = ]IS(V_] - GO)Tsa (D
which, together with knowledge of G° and V, abstractly de-
termines all fields for a given source. This operational picture
lies at the heart of the hierarchical construction developed be-
low. Any number of manifestly true relations can be generated
by probing Eq. (1) with linearly independent combinations
of fields from the right and linear functionals from the left,
and by Lagrange duality, any set of constraints determines a
convex function bounding any given optimization objective
(so long as the dual can be solved) [29]. Therefore, because
every relation derived from Eq. (1) is physical, every such
collection of equalities generates some physical bound on any
wave process [6].

As may be expected, certain choices are more naturally
motivated than others, and the difficulty of the convex
optimization to be solved in each case depends closely on the
selected constraints. If every identity implied by Eq. (1) is
enforced over a complete basis, then the problem described
by the constraint set is equivalent to completely free structural

optimization, and in computing a solution to the dual (convex)
system an actual T operator must be nearly constructed. (The
collection of all input-output relationships defines an operator,
and so, the only caveat that makes this statement inexact is
that the solution of the dual problem may not satisfy every
constraint.) Correspondingly, making full use of Eq. (1) likely
results in an optimization problem comparable to standard
(bottom-up) inverse design [35,36]. On the other hand, if only
a select subset of the information contained in Eq. (1) is kept,
the simplicity of determining bounds can be greatly reduced,
at the cost of allowing the computed field to inevitably violate
local wave physics. However, unlike standard calculations,
where the implications of some approximate model on the
true system are often difficult to rigorously establish, solving
the dual of an optimization problem always gives a bound on
performance.

In the simplest case of a single source field, |S), it is most
natural to work with Eq. (1) from the perspective of either
the image (polarization field) resulting from the action of T,
T,|S) — |T) [6], or, with this image and the action of I on
[S), {TIS) = |T), I4IS) = [R)}. Letting R = {2}, denote
the sets of chosen subdomains, the first choice leads to the
cluster-constraint form

(V& € R)SIL, IT) = (T|UL, |T), @

where U = VT — G, so that Asym [U] is positive defi-
nite, and (F|G) = f d*xF(x)* - G(x) is a complex-conjugate

inner product (spatial integration over the entire domain). The
second choice allows for greater variety, and, (V2; € R), any
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combination of
(SIL, IR) = (RIL, IR), (S|, |T) = (R|L, |T),
(SIL, IR) = (T|UI, IR) 3

appears to be, at least currently, sensible.

Both Egs. (2) and (3) follow from Eq. (1) based
on the properties of I, T,, and the commutativity of
spatial projection. (YU, V C R")U NV =V NU, and so,
as I, and ]Iﬂj both denote projections into spatial loca-
tions, ]Igj I, = ]Imﬂj = ]IX]IQ],, implying that (for any Q; C
Q) ]IS]IQ,_ = ]If]lﬂf = HS]IQJ_]IS, I[Q]TS = ]IQ]_]IJTS = ]IJI[Q]TS, and
I Iy =T, T UL = TJU]IQJ, I,. If only a single cluster cor-
responding to the entire domain €2 is used, then Eq. (2)
reduces to the constraints examined in Ref. [6], with the sym-
metric (Hermitian) and antisymmetric (skew-Hermitian) parts
of Eq. (2), Im[(S|T)] = (T| Asym [U]|T) and Re [(S|T)] =
(T| Sym [U]|T), representing the global (averaged over the
entire scatterer) conservation of real and reactive power, re-
spectively.

Every equality of the form of Eq. (2) represents a simi-
lar requirement on how power may be transferred between
an exciting field and the response (polarization) current it
generates. As verified in Fig. 2, such additions are crucial
for properly describing near-field interactions. When no con-
straints beyond global conservation of real and reactive power
are taken into account, the optimal |T) discovered via the
method presented in Refs. [6,22] conserves power only by
canceling equally large positive and negative violations over
Q (Fig. 1): Locally, the power drawn from the incident field is
either far greater or far smaller than what can be accounted for
by absorption and scattering. By successively subdividing the
domain, the scale over which such cancellations of unphysical
behavior can occur is continually reduced, and because there
is always an implicit interaction length scale in U set by ma-
terial loss and the background Green’s function, these tighter
requirements ultimately lead to increasingly physical fields.
Intuitively, beyond a certain critical size, the characteristics
produced by rapid spatial fluctuations of violation cannot be
readily distinguished from the characteristics of an averaged
(mean) field which respects the theory at all spatial points.

Though notionally similar, the role of Eq. (1) in Eq. (3)
(second line) requires a distinct interpretation. These relations
state that within the scattering object, U must effectively
invert |T), reproducing the projection of the source into the
scattering object, |R). If Eq. (3) were true pointwise, instead
of on average over some finite collection of subsets, then both
|IR) and |T) would be produced by a geometry with material
at all locations x where R(x) = S(x), equating this limit with
structural design.

B. Hierarchy and the mean-field interpretation

Through Egs. (2) and (3), any set of subregions in 2 defines
a collection of constraints on any observable property of the
associated scattering theory and, therefore, an optimization
problem that bounds the observable, along with a dual so-
lution field |T,) or {|T4), |R,)}. Take C to be the collection
of all subregions, the power set of €2, and R = {€;}¢ to be
any particular collection of clusters such that |, € = Q and

(Vk # )% NQ; = 9. Call R arefinement of R, R’ > R, if
(V& e R)IHQ;}, CR > = Ujej ;, giving C a partial
ordering. Plainly, the relation between collections of spatial
sets and bounds on a given observable described above is
monotonic. If R’ > R, then the associated bound for R’ is
at least as tight (bigger or smaller depending on the objective)
as the bound for R. Every refinement, R’ > R in C, results in
a splitting of the multipliers of the optimization Lagrangian,
as each constraint is decomposed into a set of constraints
over the matching subregions. Whence, the codomain of the
dual function corresponding to R’ contains the codomain of
the dual function corresponding to R, and so its minima
(respectively maxima) maintain the ordering of C (Fig. 1).
As such, successive division of the spatial regions used in
generating constraints via Eq. (1) yields a well-defined hier-
archy of T operator bounds, approximating any optimization
problem with increasing accuracy. Furthermore, less refined
solutions are always dual feasible points for more refined
optimizations, and by evaluating the pointwise versions of
Egs. (2) and (3) that would hold under complete compliance
with the scattering theory for any given dual solution |T,)
(respectively {|T;), |[R4)}), as in the heat maps of Figs. 1 and
2, it is possible to assess where inconsistency is occurring and
use this knowledge to inform further regional decompositions.

The hierarchy construction amounts, elementally, to a set
of successively higher order mean-field theories [37-39]. One
of the traditional ways in which mean-field theories are con-
structed is to minimize the Gibb’s free energy of a system
over the collection of all possible statistical distributions,
treating the moments of the distribution (expectation values,
two-point correlations, etc.) as free parameters. To make the
problem tractable, the form of the distribution is typically
simplified in some way (e.g., partitioning the true system
into effectively interacting spatial clusters, making an ansatz,
etc.) before carrying out a local optimization on the resulting
(generally nonconvex) problem. The resulting distribution,
stationary and self-consistent with respect to the considered
moments, is then referred to as mean field since to lowest
order it describes each component of the system as interacting
with one other effective body. Broadly, the program described
here is conceptually analogous. By switching to a scattering-
theory perspective, the most apparent means of simplification
are shifted from the class of included distributions to the set
of imposed constraints, but the essence of the approach and
the physical interpretation of the solution remain virtually
unaltered. To lowest order, the hierarchy construction treats
the entire domain as a single effective body interacting with
a known external field. When subdomains are introduced,
higher-order moments of the response are implicitly included
through the averaged interaction of the local response cur-
rent within the subdomain with the total generated field.
In either case, a solution is a field that is self-consistent
if certain variations (fluctuations) around average values are
neglected.

C. Bounds on power transfer

As an outline of how bounds may be computed utilizing
T operator cluster constraints, under Eq. (2), suppose an
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optimization objective of the form

max

i) ImHQIT)] — (TIOIT), “

with |T) = T|S), and |Q) a second (possibly identical) source
field. (Such objectives, as described in Ref. [6], encompass all
net-power-transfer objectives and are thus of principal interest
in a variety of technological applications.) Grouping |S) and
|Q) together as the supersource |S), the corresponding opti-
mization Lagrangian, including any finite number of cluster
constraints, is then a sesquilinear form

e =z 2 ||T)
cllel) (o)) =rersn[ 52 g
&)
where the Z—- operators package the linear (multiplier depen-
dent) couplings between the various fields
Zm =0+ ol Sym[UL, | + o’ Asym [UI, |
kekK
= O + Sym[UR™] + Asym[UR®)],

(1) Q) )
o o R iR
e =757 =) -+ —+£1, =— :
% 2 + 2 2 + 2
Zre = gor* — %H, ©6)

with

1 (1) 2 2)
R“:Zak I, . R“:Zak I,
keK keK

and {oz,El) } and {a,ﬁz)} are the sets of Lagrange multipliers for
the respective symmetric and anti-symmetric components of
the cluster constraints.

Bounds on Eq. (5) can then be found by minimizing the
dual (convex) function defined by

max
=m*~

such that Im[(S|T)] — (T| Asym [U]|T) > 0, (7)

which is discussed in Sec. IV, using Newtonian gradient
descent. Importantly, in all situations we have tested, strong
duality between the primal optimization described by choos-
ing some collection of clusters for Eq. (5) and the minimum of
Eq. (7) holds, so that by minimizing Eq. (7) the quadratically
constrained quadratic program (QCQP) of Eq. (5) is solved
exactly. Although the spherical examples we have investigated
are admittedly rather special, naively, it seems reasonable to
expect that this feature of Eq. (5) persists for general design
regions and cluster geometries.

III. BOUNDS ON RADIATIVE PURCELL ENHANCEMENT

From the equalities derived in Ref. [6], the question of
maximizing the radiative (propagating) emission of a dipolar
current source (radiative Purcell enhancement) via the ge-
ometry of a near-field scatterer can be placed in the form
of Eq. (4) by setting @ = Asym[V~!T], |S) = G°|J), and
|Q) = G°|J,), with |J) being the dipolar current, oriented

perpendicular to the bounding sphere of the design domain.
As an initial exploration of how the introduction of spatially
localized constraint hierarchies influences T operator bounds,
under Eq. (2), Fig. 2 depicts enhancement limits for (con-
centric) shell clusters over a spherically bounded domain,
compared with past global (integrated) conservation T oper-
ator bounds for a few illustrative susceptibility values [6,22].
That is, supposing that the structured medium must fit within
a ball of radius R which is separated from the dipole by
a distance d, to what extent can the radiative emission be
enhanced relative to the vacuum value?

For these cases, where possible constraint clusters are lim-
ited to spherical shells as described in the caption of Fig. 2,
working in terms of spherical vector harmonics allows for
meaningful computational simplifications [40] (see Sec. IV),
and in this context it is useful to know that the the field of
a dipole oriented perpendicular to spherical domain can be
represented as

'+1

ik
R, d)=—== 2 1
L Rd)=—=) ) @+

 v=0—1

6l +3
2000+ 1)

y il"”wz +0W+1)—vw+1)
2

, 2
x (5 o (”)) bR+ d)RN,o(F), (8)
where h(vl)(R + d) is the first spherical Hankel function, d
is the wave vector normalized distance of the dipole from
the spherical boundary, and R is the wave vector normalized
radius of the bounding sphere [41]. (The limits of the sums
in this expression are set explicitly based on the Wigner-3-j
selection rules.)

Even with this simplified selection of clusters, which limits
the extent to which constraint violations can be localized, two
promising trends are observed. First, the number of material
and domain size combinations displaying resonant response
characteristics, as qualified by a roughly inverse scaling be-
tween radiative enhancement and material loss (Im[x]), is
significantly reduced. To the best of our knowledge, no com-
pact, single-material, dielectric (Re[x] > 0) device design
exhibits such behavior for values of Im[x] comparable to
those considered in Fig. 2, leading to potentially gigantic
gaps between calculated limits and the findings of density
optimization [Fig. 2(a)]. When the size of the confining ball is
sufficiently subwavelength, below R/A = 0.3, the dependence
of the shell-cluster bounds on Im[ x ] is greatly suppressed, and
when an inverse relation between Im[ x ] and enhancement is
eventually observed, the corresponding optimal polarization
field, |T), exhibits large local constraint violations, as shown
by the spatial color maps of the real part of Eq. (2) included
below Fig. 2(c). The presence of these large deviations from
true scattering behavior naively implies that tighter bounds
(quite possibly several orders of magnitude smaller than those
shown here) could be produced by considering symmetry-
breaking clusters. Second [Figs. 2(b) and 2(c)], for separations
as small as d/A = 1072 and domains as large as R/A = 1,
the bounds calculated with spherical shell clusters are sub-
stantially smaller (typically an order of magnitude or more)
for strong metallic and dielectric materials, |Re[x]| > 1.
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Although the limits remain more than two orders of magni-
tude larger than those of the corresponding density-optimized
devices (discovered by the algorithm described in Ref. [32])
when such values of yx are supposed [e.g., Fig. 2(b)], the fact
that strong duality is nevertheless present in all cases suggests
that these differences may be an artifact of the special shell
clusters which have been employed. Testing this supposition,
and exploiting the resulting bounds to accelerate the inverse-
design process [21], rest as important tasks to be undertaken
in future work.

IV. COMPUTATIONAL MECHANICS

In this section, we provide technical details of the pro-
cedures and algorithms used to generate the results given in
Sec. III.

A. Operator representation

The formulation laid out in Secs. II and III, as discussed in
greater detail in Sec. IV B, relies on the computation of vector
images under the action of the linear coefficient operator Z’"
[Eq. (6)]. Depending on the symmetry of the domain, the
representation of GO [40,42,43], and the specific cluster con-
straints one chooses to consider, there are a number of ways
in which this task can be accomplished. Different choices may
alter numerical accuracy, and so, to facilitate reproduction and

J

[eS) l
oy == [sx-yrei+id 3 1 [
y

=1 m=—¢

with RN and RM denoting regular waves and N and M
denoting outgoing waves, and so the basis-generation proce-
dure needed to capture the complete set of images that can
be generated by Z’" when computing T operator bounds
is nearly the same as what is described in Ref. [6]. (The
letter variables x and y appearing in Eq. (9) are the wave
vector normalized radial vectors of the domain and codomain,
ie., x = (2nr/Xx, 0, ¢), with x and y used for the corre-
sponding radial parts. The subscript y is taken to mean
integration over the y coordinate, and £ and m are the usual
angular momentum numbers.) For a given polarization and
pair of angular momentum numbers, any current distribu-
tion within an inner shell can only produce outgoing waves
in any outer shell, while any current distribution within
an outer shell can only produce regular waves in any in-
ner shell. Therefore, to generate a complete Arnoldi basis
for radiative waves, only images resulting from these two
types of waves, projected into the various shells, need to
be considered (totaling four types, taking the two distinct,
orthogonal, polarizations into account). The termination cri-
teria for a given angular momentum number, as explained
in Sec. IV D, remain exactly as given in Ref. [6]. Following
this method, the representation of all projection operators
is exact by construction, and the basis of each shell is
orthogonal.

My, (X)RM, 1 (¥) + N, (X)RNg,  (¥),
RMl,m (X)ME,—m(y) + RNZ,m(X)N(Z,—m(Y)»

extension of our findings, the approach we have used is set out
below.

Within any region of space that does not enclose cur-
rent sources (free currents), any electromagnetic field can
be completely represented by the eigenvectors (radiation
modes [22,40,44]) of Asym [GP] with nonzero eigenvalues.
(Throughout the remainder of the text, GV is assumed to be the
vacuum Green’s function.) As such, the collection of radiation
modes of the total design domain, “chopped” (projected) into
the respective clusters, serves as an instinctive starting point
for representing the various operators that may appear in any
particular implementation. Notably, this set is not a complete
basis and, in particular, describes only a portion of Sym [G°].
However, as shown Secs. IV B and IV D, it is sufficient, pro-
vided that basic characteristics of the missing subspace are
properly accounted for.

To expedite dissemination, the example domains and con-
straint clusters we have provided in Sec. III are artificially
limited to balls and concentric shells. Working within this
maximally symmetric collection not only greatly simplifies
computation but also limits the extent to which refinements
can localize violation (e.g., it is not possible to remove any
violation with a profile mirroring some spherical harmonic).
Specifically, based on the expansion of the Green’s function in
spherical coordinates [33,45], including an additional normal-
izing factor of k> = (27 /1)> compared with most references,

x>y

(€))

x <y,

[
B. Partial dual function

To date, systematic formulations for photonic limits [6,22—
24] have predominantly relied on the use of “standard” du-
ality [29], treating both real and reactive power conservation
constraints in primal optimization problems as unknown mul-
tipliers to be minimized over. Employing this transformation,
any dual optimization must terminate once it crosses the
boundary of dual feasibility, as the dual function becomes
unbounded [29]. To circumvent the associated numerical dif-
ficulties of this picture, we instead use the “partial” dual
Gy Ei x R% — R defined by

max

Ga(IS). A) = TprLAS). A, T))

such that Im[(S|T)] — (T|E|T) >0, (10)

where &, denotes the space of complex three-dimensional
vector fields over the domain €2, |S) is a “supersource”
vector in Ei (as in the definition given in Sec. III), A =
{{aﬁl)}, {ozj.z)}} is the set of Lagrange multipliers (indexed by
J), L is as in Eq. (11), and E is any positive definite (“ex-
tinction”) operator such that all fields of the primal problem
obey the stated relation (in practice, E = Asym [U] is most
sensible, but [E will nevertheless be used for notational conve-
nience). Like G, the value of G, for any given |S), is always
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a bound on the primal optimization problem, as the additional
constraint defining the convex optimization set necessarily
includes all possible primal solutions [6]. Additionally, for a
fixed |S), it is also a convex function of A, since it is a sum of
affine functions (of the multipliers) composed with the max
function restricted to a convex set. However, in contrast to
g, G, imposes no restrictions on the dual feasible domain.
By constraining the optimization over |T) to the convex set
defined by the added “extinction” relation, G, is guaranteed
to be finite (and continuous) for any bounded combination of
multipliers.

The trade-off for this favorable change of characteristics
is that the value of G, is more difficult to determine than
the value of G. Subsuming the additional constraint into the
general Lagrangian form given in Sec. II C (hereafter denoted
by the multiplier ¢), let

—zy oz
£3(8). A, IT)) = [(T| <§|][ o ]“3] an
: s

continuing to use symbols without the d subscript as be-
fore. Varying Eq. (11) with respect to |T), as stationarity
is a necessary condition for an optima given that the set
Im[(S|T)] — (T|E|T) > 0is compact and L; is differentiable,
at any extremuin,

Zy'|T) = Z;'18) = Zy’1S) + Z;°1Q).

Including the possibility that Z}" has a nontrivial kernel, the
general solution of this equation is

* rr|~1 T8
T =25 | L,.Z51S) + K), (12)

where |K) € kerZj" (dependent on the value of ¢), I de-

notes projection into the codomain of Z}", and ZgTL;g' is
the inverse of Z}" restricted to its image, the Moore-Penrose
pseudoinverse. Noting that for C; to sensibly enforce the
boundary of a convex set where L is increasing { > 0 [46],
solutions of Eq. (12) break into two classes, depending on
whether Z7 is positive definite or not.

If Z" is positive definite, then Z})" = Z" + ¢E is also
positive definite, and so, |K) =]0), Zgﬂ;; = ZQT_I, and
I,,, = I. Setting ¢ = 0, a given |T*) = ZET_IZ?@) may then
either lie within the extinction constraint set or not. If it does,
there is nothing more to do, and

Gy(I8), A) = G(IS), A) = (SIZ 21 Z7s|8).  (13)

If it does not, then the value of ¢ must be determined via the
implicit dependence of |T*) on ¢ through ZgT_l. Calculation
of the partial derivative of

C.(IT*)) = Im[(S|T*)] — (T*|E|T*) (14)
with respect to ¢ gives

C _ (S| ... Y L ——
5_2(7—1<T|E>Za <2+zE|T>>, 15

while the second partial derivative of Eq. (14) with respect to
¢ results in the negative definite form

BZC; <S| .k -1 —1
= 6(7 — T |]E)Z§T EZ!"

x <? + iIEl|T*)). (16)

Hence, so long as Zg’fl is everywhere defined, there are at
most two values of ¢ such that Eq. (14) is satisfied, and so long
as there is a value of ¢ for which Eq. (14) is positive, there is at
least one. Taking the approximation that (V) > {a;”, aj.z)},
implying that Z7s|S) ~ £S) and Z" ' ~ (¢E)~', Eq. (14)
asymptotically approaches

C.(IT) ~ (SIE™'IS) /4.

Thus, when a nonzero ¢ is required for a positive definite
77, the proper L£-maximizing value of ¢ = ¢, is given by the
unique zero crossing, since any additional zero crossing would
necessarily require Eq. (16) to change sign. In such cases, G,
is given by

Gs(1S), A) = (SIZY 2 ' Z1°18). (17)

If Z'" is not positive definite, it may have a nontrivial kernel
or acquire a nontrivial kernel under the addition of ¢{[E (for
specially selected values of ¢). Correspondingly, additional
solution possibilities beyond the cases discussed above must
be taken into account. Suppose that ¢, is one of the special
values such that the kernel of Z' is nontrivial. Setting ¢ = ¢,
let

) =z57| ',

e L5 |S). (18)

If there exists a |K) € kerZ}" such that C,(|T°) + [K)), as
defined by Eq. (14), is greater than zero, then |T°) 4 |K), with
o as defined below, may lead to a larger objective value than
|T°) and is an element of the extinction set. Rewriting L as

Ly = —(T°|Z37|T°) + 2Re[(S|Z [K)], (19)

the optimal |K) is determined by solving

max o
IK) e ker z77 2Re[ (S1Z;K)]
such that C, (|T°) + |K)) = 0. (20)

The solution of Eq. (20) is
VAS i
K) = Elkﬂ‘ﬂke(%@ +518) - E|TO>), @1

with o, an additional multiplier distinct from ¢, determined
by solving C,(|T°) + |K)) =0, I, standing for projection
intoker Z}",i.e., I, + I, =I,and E|_' denoting the inverse
of the restriction of [E to ker Z}". The characteristics of this
relation are much like those of Eq. (14). The partial derivative
with respect to o is

3C,(IT°) + |K)) _ 2(SIZy L E| I, Z;'IS)
oo - o3

,  (2)
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while in the limit of large o,

Co(IT%) + [K))

~C (IT°) + ( —(T°|E — <S|§)

x IP’kerElkerlPke,( —EIT) + %|s>>. 23)
As such, so long as Eq. (23) is positive, there is again a single
unique solution for o. Otherwise, no stationary solution with
|K) € ker Z}" exists.

Now, given a stationary point solution, Eq. (12) (associated
with some ¢, or ¢,), consider the value of £ in terms of an
expansion into the eigenvectors of Zj" |’“g1 In any eigenvector,
L, can be decomposed as

Ly = LY +2Relzj1] + Relziki1) — millt 112, (24)

where /jgl denotes the portion of L; that is independent of
the selected eigenvector, n; is the associated eigenvalue, and
Zn, In, and k, are the expansion coefficients of Z;*|S), |T°),
and |K), respectively. Similarly, the constraint C, (]T*)) can
be decomposed as

Co =C)' + Im[sk;] — enlltylI3

— 2Re|:<%s}k + Zt,’;emz + Zk;,kcnl>ll:|y (25)

m#l n

where s, and e, are the expansion coefficients of |S) and
E. Using Eq. (18), t; = z;/n;. Therefore, if 1, is negative, the
second term in Eq. (24) is nonpositive. Such a point can never
be a maximum of L. Viewing ¢, z;, and

w; = 55‘1 - [mle - €nCyy

m#l n

as phasors, presently disregarding the possible null set of
multiplier values where w; and #; are in fact aligned, it is
always possible to alter the phase of # such that Re[w;]
remains fixed, and z; and #; are not antialigned. From Eq. (25),
applying this procedure does not alter the value of the ex-
tinction constraint C,(|T*)), but improves the value of Lj
so long as z; # 0, and so, if a negative eigenvalue of Z}"
exists, the corresponding stationary point is a saddle, and not
a maximum. Furthermore, since £, is a continuous function
of Z7s|S), we may consider this true vector as the large o
limit of a collection F = {|F);}, which for every i has some
projection into every eigenvector of Zj", and z; and w; are
not antialigned. For each i, the solution of Eq. (10) is then
given by either the special value ¢, (and associated null space)
such that Z}" becomes positive semidefinite or the “regular”
solution of |[T*) = ZST_IZ"5|§) with ¢, > ¢, as it will later
be shown that one of these two solutions always exists.

Therefore, by continuity, these solutions are also sufficient
to determine the value of Gj. Via the equality

Zgr =77 +¢E = E%(E_%Z”E_% + {H)E%, (26)

the appropriate value of ¢, for any collection of multipliers is
the most negative eigenvalue of E-:Z7E":.

Having reduced Eq. (10) to these two solution possibilities,
a “kernel” solution of Eq. (12) with ¢, determined by Z}"
becoming positive semidefinite or a “regular” solution |T*) =
Zy'72%1S) with ¢, > ¢, further analysis ramifies into one
of two branches: Setting ¢ = ¢, either I, Z;*|S) = |0) or it
does not. If ]IkerZ? |S) # |0), then a stationary regular solution
with ¢, > ¢, is guaranteed. Working again in the eigenvectors
of Z}", returning to the notation given above, the constraint
relation of Eq. (14) for the form of the regular solution (for
any given ¢) is

C:(IT*)) =Y " Imlsiz]1/m — cullzll3/n}
1

— 2 ) Relzfcimznl /i) (27)

l,m>I

As ¢ — ¢, from the above, under the assumption that ||z/||%
does not tend to zero for all vectors that become part of the
kernel, the fact that [E is positive definite means that C, (]T*))
becomes arbitrarily negative. Therefore, by Eqs. (15) and
(16), a stationary point for the regular solution exists with
g, > ¢. Requiring that ¢ > ¢, this regular solution is also a
maximum. For any € > 0 the condition that ¢ > ¢, + €, from
the Lagrangian perspective, can be viewed as redefining ¢ as
¢ =y + (¢ + €) with y becoming the free multiplier defin-
ing Z}" and Z'" becoming positive definite. This problem is
equivalent to the first case investigated at the beginning of the
present section, and from Eq. (27), it is clear that for small
enough € a nonzero value of y will be required. [Alternatively,
when ¢ > ¢, £5(IS), A, |T)) is concave, and the existence
of the stationary point at ¢, implies that this is the maximal
value.] Hence the regular solution is the unique maximal
point under the specification that ¢ > ¢,. With this in mind,
suppose that ¢, > ¢ > ¢, is treated as a free variable, and
|T) = |T*) + |K), which is neither guaranteed to be stationary
nor even guaranteed to be feasible, is specified by

IT*) = Z3' Z'*|8) (28)

Lt
eigSuc eigSuc

(t; = z;/n;, with n; implicitly dependent on the value of ¢)

in all but the smallest eigenvalue subspace, where it is deter-
mined by solving (or attempting to solve)

max s 5
IK) € cightin z77 2Re[(SIZ5 IK)] — .., 1K) I3
such that C, (|T®) + |K)) = 0. (29)

Here, the subscript eigMin denotes the (potentially degener-
ate) subspace spanned by the smallest eigenvectors of Zj",
and the subscript eigSuc denotes the complement of this
space, the subspace spanned by all other eigenvectors of Zj".
The solution of Eq. (29), if it exists, is

1K) = (1, + Eligin) ™ Lot
z i .
x [ =218) + =IS) —E[T*) ). (30)
o 2

In the limit that { — ¢, from above, the continuity of the
defining linear relations dictates that [T*) — |T°), I, —
L., and E|..., = E[.. As the regular solution is maxi-

mal whenever ¢ > ¢, for all ¢, > ¢ > ¢, the |T) given by
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Egs. (28) and (30), whenever feasible, necessarily leads to a
smaller value of £, than the regular solution. Directly, again
by continuity, the special solution can never be more optimal,
and Gy, in such instances, can be set exactly as in Eq. (17),
with additional knowledge that ¢, > ¢,.

Conversely, if I, Z:*|S) = |0), the regular solution may
not exist. Nevertheless, when it does, the argument given
above continues to imply that it is maximal. If it does not, then
(V¢ > ¢ )C:(T°)) > 0, and so the special solution of { = ¢,
exists by Eq. (23), and

Go(18), A) = (SIZ' L, Z} |_l L.Zy1S), €29

using the specifications that |K) is in the kernel of Z}" and
does not couple to Z75|S).

In summary, the value of G, can thus be generally com-
puted as follows. Making use of the decomposition given
in Eq. (26), determine whether Z'" is positive definite, si-
multaneously finding the minimal eigenvalue ¢, . If Z77 is
positive definite, set { = 0 and test whether Cy(|T)) > 0, with
|T) = Z77—1Z7s|8). If it is, then G, is given by Eq. (13). If
it is not, then G, is given by Eq. (17), with ¢, set by solving
Eq. (14). If Z'" is not positive definite, set { = ¢, + € and
test whether there exists € > 0 such that C,(|]T)) < 0 with
IT) = ZSFIZQHS). If there is, then G is again given by
Eq. (17), with ¢, > ¢, set by solving Eq. (14). If there is not,
then the value of G; is given by Eq. (31) with { = ¢,.

Remarkably, these characteristics of G; mean that a par-
tial derivative with respect to a given multiplier will often
reproduce its corresponding constraint. Returning to Eq. (11),
use of Eq. (12), and the fact that when a kernel solution is
needed it does not couple to Z7$|S), shows that for an arbitrary
multiplier 8, when defined,

_ZTT T8 T*)
(O IRCIEN I L) B S
9, Yzy o 0 7B
8/3 N —7rT TS
R L DR

with ¢, or ¢, implicitly determined by the given set of multi-
pliers entering Gy. The partial derivative of the operator Z with
respect to B picks out the sum of associated constraint, Rg,
and the extinction constraint through the implicit dependence
of ¢:

Ik 3§R %
aa_% {RﬁuT N+ 55C, (IT) 3

~ | Rpaen + L (1)),

If ¢ = ¢, the additional implicit contribution is zero. If |T*)
lies within the convex set, then ¢ = 0, and an infinitesimal
change in any multiplier does not alter this fact, implying
a¢/ap = 0. If |T*) lies on the boundary, then Im[(S|T*)] =
(T*|E|T*). On the other hand, if ¢ = ¢, perturbation theory
[47] shows that

0,
ap

. NN VAL
= —min| { (M;E™2
ap

E—5|M>,”, (34)

where the minimum is taken over all eigenvectors |M)i in
the subspace of E-:Z"E"2 corresponding to the smallest
eigenvalue, and C; _(|T°)) may not necessarily equal zero.

Equation (33) indicates that strong duality would hold gen-
erally if the partial derivatives were everywhere defined and
continuous. Unfortunately, these qualities are not universal
[48], and so some additional comments are in order. To begin,
let Reg : E2 x R — R be defined by

Reg(8) A) = max(s,, —sMin(E~+27E )]
+VMin(E_%ZT7E—%), 35)

where vMin denotes the minimum eigenvalue of the enclosed
operator, and note that Reg(|S), ), fixing |S), is a continu-
ous, differentiable, function. From the definition of C;, ¢, is
also a continuous, differentiable, function of both A and |S)
whenever it is greater than —vMin(IE‘%ZTTIE‘%), which is
also continuous based on its definition in terms of composed
linear operations. From Eq. (35), the space of multiplier values
where G5 (|S), A) is certainly given by the regular solution,

R(IS)) = Reg|;'[(0, 00)], (36)

is open, while its complement, the space of multiplier values
where Gy is potentially given by a kernel solution,

K(S)) = Reg| /' ({0}), (37

as Reg||;1[(—oo, 0)] is empty, is closed. {For every regular

value of Reg, the level set given by Reg™!({p}) is a (2j — 1)-
dimensional regular submanifold [49].}

Within either R(|S)) or K(|S)), the forms given by
Egs. (32) and (33) show that partial derivatives of G;(|S), A)
with respect to any given multiplier in A are continuous.
However, when switching between these two spaces, there
may be discontinuity, and this is where strong duality may
be lost. [The forms for ¢, in Egs. (32) and (33), technically,
are poorly defined, since they do not take into account the
possibility that the solution of G; may switch from K(|S))
to R(|S)). Nevertheless, since G, is convex everywhere, this
detail is numerically insignificant.] Specifically, G;(|S), A),
for any fixed |S), is a convex function of A, and whenever
A € R(|S)), it also possesses continuous derivatives, which
are equal to the values of the constraints. Therefore, if a min-
imizer of G, exists in R(|S)), or the partial derivatives of G,
with respect to the constraints are globally continuous, strong
duality holds: The minimizer must be a stationary point of
G5(|S), -), and this implies that every constraint is in fact sat-
isfied. [Pictorially, K(|S)) can be imagined much like a charge
density in Maxwell’s equations.] Interestingly, this reasoning
also gives a criterion for situations in which strong duality is
lost. Namely, if strong duality is lost, then for every collection
of 7 ={|F),} that approaches [S) in the limit of large i,
using for instance the uniform norm of Ei, there must be an
integer n beyond which every minimizer of G,(|F);, -) must
lie in K(|F),). If not, since G,(-, A) is a continuous function
via the Lagrangian, there are multiplier values A; such that
G(|S), A;) comes arbitrarily close to satisfying strong duality,
and so, it does in fact hold.
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C. Jacobian and Hessian

The most efficient computational approaches for determin-
ing the optimal multiplier values (that we have tested) rely on
knowledge of the Hessian and Jacobian of Gy. From Sec. IV B,
the partial derivative of Gy with respect to any given multiplier
reproduces the associated constraint plus an implicit depen-
dence on ¢, or ¢, which are given by Eq. (34) and

9 (3C/9P)
ap (9Cc/3¢)
The Hessian of G, then can be found taking partial derivatives

of the optimal fields appearing in these relations. Using the
projection equalities (e.g., [+ L1 =11 I =0,etc),

Ker img ker “img

(38)

BHimg _ 8chr
g A’
B]Iker _ g oLy I
8/3 a ime 8,3 ker ?
8IE'I;rl _ a]Ikel |— |_
3/3 - 3,3 ker aﬂ ker
-1
0z3y" ol 107" _
ker _ _Mmg ZgT . 1 i) ; | 1, (39)
Y ap ime 9 img
and by the matrix forms given in Sec. II C,
oz 07.7s 1
_aalil) = Sym [U]Iﬂk]’ aa—lil) = E )
ozrr ozL"s i

In our implementation, only gradient information is used
whenever a kernel solution of Eq. (10) is encountered. Hence,
when the Hessian is computed, the only extra information
required is the partial derivative of |T*) = ZgT_lZU 1S).

D. Characteristics of G° for electromagnetics

In a Fourier space representation, the Green’s function GY
can be decomposed into three mutually orthogonal diagonal

operators:
_ _/ 1p) ® (Pl I8) ® (8l
e~>0+ k2—(l+le) k2 — (1 +ie)

——, 41
1+ ie “h

where, mixing Cartesian and spherical coordinates,
§ = (—sin(¢), cos(¢), 0),
P = (—cos(8)cos(¢), —cos(8)sin(¢), sin(h)), 42)
k= (sin(@)cos(¢), sin()sin(¢), cos(d)).

Equation (41) reveals two important pieces of information re-
lated to the Arnoldi representation of G in terms of radiative
waves described in Sec. IV A. First, by restricting any wave of
the form f(r) = exp(ik; - r) (in any one of the three classes)
to a shell with inner radius 7; and outer radius r,, the resulting
Fourier basis expansion becomes nonzero (within the selected

family) almost everywhere:

fk) =

(fcr1 cos(kry) — krycos(kry)
— sin(kry) =+ sin(kr,)), 43)

with ¥ = |ky — K|. Hence, by using the radiative, ||k||% =1,
|p)- and |s)-type waves as initial “seeds,” a numerically com-
plete basis for these classes is in fact generated. Moreover,
the radiative waves are also seen to naturally probe the most
positive and negative eigenvalues of G° and should therefore
be expected to have favorable convergence criteria, in terms
of the number of vectors needed to effectively capture the
characteristics of G° for a given design domain, compared
with other possible representation choices. Second, since G°
is a constant operator for |Kk)-type waves, explicitly handling
the missing nonradiative subspace is quite simple. Spatial
projections do not mix the |k), |p), and |s) classes, and so, U
and Z}" are also constant operators for the |k) subspace within
any particular subdomain. Tracing through the prescription
for evaluating G, given in Sec. IV B, this feature means that
multiplier values alone are sufficient to characterize the small-
est eigenvalues of Z'" and evaluate G,, without the need to
reference any specific vectors.

V. SUMMARY

In summary, we have connected the necessity of imposing
local field constraints to properly describe general scattering
phenomena with the present shortcomings of recently de-
veloped programs for calculating fundamental performance
limits on photonic devices via Lagrange duality [6,22-24],
currently encompassing applications such as solar light trap-
ping, enhancing radiative emission, near-field quenching, and
a host of other engineering challenges related to electromag-
netic power [6,22,23]. Through this link, we have also shown
that T operator bounds can be succinctly interpreted as mean-
field approximations, complete with an associated ordering,
and that from this perspective the calculation of performance
limits is an optimization theoretic dual to structural inverse
design (Fig. 1).

As an instructive proof-of-concept example, with direct
implications to a range of quantum information and sensing
technologies, we then provided a simplified study of the pos-
sible radiative Purcell enhancements that may be achieved
when placing a dipolar current source (subwavelength emit-
ter) in the near field of a structured metallic or dielectric
medium of finite extent. Although only spherically symmetric
mean-field clusters were utilized in this initial investigation,
in order to simplify calculations and expedite communica-
tion of our findings, the distinct trends observed, compared
with those obtained by enforcing only the global conserva-
tion of real and reactive power, were seen to be in much
better agreement with the performance of geometries dis-
covered by density optimization. The range of parameter
combinations leading to the highly implausible prediction of
radiative enhancement scaling inversely proportional to ma-
terial loss (Im [x]) was substantially reduced [22], as were
the enhancement values achievable with strong metals and
dielectrics. Moreover, strong duality between the dual and
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primal optimization was observed in all results, suggest-
ing that remaining performance gaps may be substantially
mitigated by generalizing accessible constraint clusters to
include smaller and/or symmetry-breaking regions. Finally,
along with the development and dissemination of open-source
software [50] aimed at facilitating future extensions and ap-
plications of this work, a number of technical points related to
the computational implementation were presented.

Within the field of optimization, dual formulations have
long played a central role in advancing algorithms and un-
derstanding [51-53]. We believe that the findings presented
in this paper have conclusively established that these same
notions are both fully applicable and profoundly mean-
ingful to the design of devices exploiting wave physics.
We anticipate that the proposed construction will lead to
greater knowledge of the underlying principles guiding in-
verse design, the kinds of applications that can be effectively
implemented in optical systems, and the development of more
efficient optimization algorithms [21].

Note added. Recently, an independent preprint was posted
by Kuang and Miller [54] making the same realization that
the necessity of imposing local field constraints to properly

describe general scattering phenomena is connected with the
present shortcomings of recently developed programs for cal-
culating fundamental performance limits on photonic devices
via Lagrange duality.

The code associated with this article has been made pub-
licly available as free software [50].
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