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Interplay of disorder and interactions in a flat-band supporting diamond chain
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We systematically study the effect of disorder and interactions on a quasi-one-dimensional diamond chain
possessing flat bands. Disorder localizes all the single-particle eigenstates, while at low disorder strengths,
we obtain weak flat-band based localization (FBL), at high disorder strengths, we see conventional Anderson
localization (AL). The compactly localized (CL) eigenstates of flat bands show a persisting oscillatory recurrence
in the study of single-particle wave-packet dynamics. For low disorder, a damped oscillatory recurrence behavior
is observed which is absent for high disorder. Noninteracting many-particle fermion states also follow the same
trend except showing a delocalizing tendency at intermediate disorder due to the fermionic statistics in the
system. As interactions are switched on, for the finite sizes that we are able to study, a nonergodic “mixed phase”
is observed at low disorder which is separated from the MBL phase at high disorder by a thermal phase at
intermediate disorder. A study of many-body nonequilibrium dynamics reinforces these findings.
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I. INTRODUCTION

Translationally invariant Hermitian systems possessing
flat bands (FBs) [1–3] exhibit remarkable properties, which
emanate from the compactly localized eigenstates (CLS) as-
sociated with them. These states are called compact because
they reside on a finite volume of the lattice and strictly vanish
elsewhere [4–8]. The appearance of flat bands has been the-
oretically established for lattice models in one [9], two [10],
and even three [11] dimensions and realized experimentally
with ultracold atoms [12,13], in photonic crystal waveguides
[14–16], and exciton-polariton condensates [17]. The physics
of such flat-band systems thus hinges on the twin properties
of large-scale degeneracy in the dispersion, coupled with ex-
treme localization of associated eigenstates.

Only a very delicate tuning allows for a system to admit
exactly flat bands, and the question of how the properties
of such systems are modified under different kinds of per-
turbations is of great interest [18,19]. The effect of disorder
and interactions is of particular importance because of the
pervasive appearance of each of these factors in real systems.
A set of studies has been conducted on the effect of disorder
in FB systems and the localization-delocalization transitions
therein have been understood to some extent [11,20–25]. In
particular, Ref. [20] points towards the possibility of a dif-
ferent origin for the different phases that emerge as disorder
strength is changed. The fate of the FB disordered system
when interactions are turned on is of interest too [26–31]. A
complexity parametric formulation which could be applicable
to a wide range of many-particle interacting flat-band systems
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has been considered in Ref. [20]. It is also worth mentioning
that localization properties in many-body flat band systems
have been recently explored in the context of disorder-free
systems [31–34]. In the present paper, we carry out a system-
atic study of the effect of disorder and interactions on the FB
states in a particular system, namely the diamond chain. The
investigation of highly degenerate systems under disorder and
interactions is challenging, because oftentimes, the degener-
acy is only partially lifted, and the study of a single observable
is inadequate to explore the impact. Disorder and interactions
detune the energy levels as well as modify the characteristics
of eigenstates. We therefore conduct a thorough investigation
of both the energy spectrum and eigenstates.

We consider a quasi-one-dimensional disordered interact-
ing diamond chain [Fig. 1(a)]. The band structure of the clean,
noninteracting diamond chain admits only three flat bands
and the system remains essentially in the insulating phase.
All the eigenstates in the system are compactly localized on
two unit cells and any perturbation is expected to couple
these states and increase the volume spanned. We observe
three distinct phases of localization in the system: com-
pact localization (CL) at zero disorder, weak flat-band-based
localization (FBL) at low disorder, and strong Anderson lo-
calization (AL) at high disorder with the localization strength
CL > AL > FBL. The noninteracting many-fermion system
also possesses the FBL and AL phases at low and high dis-
order strengths, respectively. In the simultaneous presence of
disorder and interactions, we find evidence for three distinct
phases: a many body localized (MBL) phase at high disorder,
a thermal phase at intermediate disorder, and a nonergodic
“mixed phase” at low disorder.

To explore the effect of disorder on single-particle states,
we consider the level-spacing statistics which is obtained
from the inspection of eigenvalues and a variety of quantities:
IPR, fidelity, von Neumann entropy, and Shannon entropy,
which are obtained from eigenstates. We also explore the
dynamics of the system in terms of revival probability and
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FIG. 1. (a) Schematic of the diamond chain: unit cell contains
three sites: up (u), down (d), and central (c) as shown in a box.
Nearest neighbor interaction V is represented by red wiggly lines
and on-site disorder by the variation in the shades of the color
of the dots. [(b)–(d)] The CLS in the noninteracting, disorder-free
limit corresponding to E = 0, −2J , and 2J , respectively, where the
numbers assigned to different sites are the probability amplitudes for
a single particle.

the imbalance parameter. In the context of noninteracting
many fermion states, we study entanglement entropy in the
static case and growth dynamics of the entanglement entropy
and imbalance parameter. Finally, we study level statistics,
many-body IPR and nonequilibrium dynamics of the revival
probability, entanglement entropy and imbalance parameter
to obtain insights into the properties of many-particle states
in the interacting system.

The paper is arranged as follows. Section II describes the
details of the model. Section III is devoted to the study of
disorder in flat-band systems, which predicts various phases
with different localization properties. We then discuss many-
particle states with interactions switched off and explore the
phases in the presence of disorder in Sec. IV. In Sec. V, the
effect of disorder on the interacting many body system is
discussed. The results are summarized in Sec. VI.

II. THE MODEL

The Hamiltonian of the quasi-one-dimensional diamond
chain can be written as

Ĥ = Ĥhop + Ĥos + Ĥint, (1)

where

Ĥhop = −J
N/3∑

i=1

(û†
i ĉi − ĉ†

i d̂i + ĉ†
i ûi+1 + ĉ†

i d̂i+1) + H.c.,

Ĥos =
N/3∑

i=1

(ζ u
i û†

i ûi + ζ c
i ĉ†

i ĉi + ζ d
i d̂†

i d̂i ),

Ĥint = V
N/3∑

i=1

(û†
i ûiĉ

†
i ĉi + ĉ†

i ĉid̂
†
i d̂i + ĉ†

i ĉiû
†
i+1ûi+1

+̂c†
i ĉid̂

†
i+1d̂i+1) + H.c. (2)

Here, û†
i , ĉ†

i , and d̂†
i are the fermionic creation operators acting

at the u (up), c (center), and d (down) sites respectively in the

ith unit cell, as schematically shown in Fig. 1(a). The total
number of sites is denoted by N and is taken as a multiple
of 3, because of the unit cell structure. The hopping ampli-
tude J and interaction V are nonzero for nearest neighbors
[represented as sites connected by lines in Fig. 1(a)] and zero
otherwise. ζ α

i (α = u, c, d ) denotes the strength of the on-site
disorder chosen from a uniform random distribution [−�,�].

A. Compact localization

In the absence of disorder and interaction (ζ α
i = 0,V = 0),

the band structure of the diamond chain contains three flat
bands at E = 0,±2J . Lattices with all bands flat are rare and
the diamond chain is carefully tuned to admit this intriguing
feature [27]. Conventional wisdom implies that the eigenstates
of a translationally invariant system are Bloch states which
span the entire lattice and which carry the delocalization char-
acteristics associated with the dispersion of the energy bands.
The dispersionless property of the flat bands on the one hand
implies zero group velocity for the states and on the other hand
provides a convenient representation where the eigenstates are
compactly localized. Due to the large scale degeneracy, the
basis can be chosen in multiple ways, however one can always
look for a basis such that the eigenstates occupy the smallest
volume in the lattice. Once one such state has been identified,
the translational invariance of the Hamiltonian can be utilized
to obtain others states belonging to the flat bands. Although
suitable linear combinations of the compact localized eigen-
states can of course recover the Bloch state representation, it
is the properties of the CLS that make these systems most
interesting.

The states belonging to all three flat bands in the diamond
chain can be represented as different compact localized states.
Figures 1(b)–1(d) shows one CLS belonging to each band
where ±1 corresponds to the amplitudes (not normalized) of
the states on the sites. The origin of compactness of these
states is the destructive interference at the neighboring sites
which effectively confines the states within a finite volume.
For the diamond chain Hamiltonian in Eq. (1) with no disorder
and interaction, the smallest possible volume for a CLS is
two unit cells as shown in Figs. 1(b)–1(d). The other states
corresponding to each flat band can be obtained by shifting
these states along the lattice utilizing the translational in-
variance of the Hamiltonian. It can be shown that the states
identified in this particular case lack orthogonality although
they form a complete set. The localization properties of the
CLS are special as they are observed in a translationally
invariant system and span very small volume of the lattice
with an abrupt boundary without any tail in spread. This is
to be contrasted with Anderson localization (AL) observed
in disordered systems where the states exhibit an exponential
tail. Hence the CLS possess stronger localization compared to
that seen in AL.

III. EFFECT OF DISORDER
ON SINGLE-PARTICLE PROPERTIES

In this section, we analyze the eigenvalues and single-
particle eigenfunctions to study the effect of disorder. The
level-spacing ratio and level-spacing distribution are obtained
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FIG. 2. (a) Level-spacing ratio r vs disorder strength � (in units
of J) for increasing values of system size N . (b) Level-spacing
distribution for increasing disorder strength for N = 300. The di-
mensionless level-spacings s are obtained by dividing the original
level-spacings by the mean level-spacing of the spectrum. The num-
ber of disorder realizations varies for different system sizes, but all
of them have at least 100 samples of disorder.

from the single-particle eigenvalues, while the inverse par-
ticipation ratio (IPR), fidelity, von Neumann entropy, and
Shannon entropy are calculated from the eigenfunctions.
Nonequilibrium dynamics throws further light on some of
these single-particle properties.

A. Level-spacing statistics

The level-spacing ratio r is calculated from the eigenvalues
of the disordered Hamiltonian and is defined as

r = 1

N − 1

N−1∑

k=1

min[sk, sk+1]

max[sk, sk+1]
, (3)

where energy level spacing sk = Ek+1 − Ek with single-
particle energies Ek’s organized in the ascending order for a
system size of N sites and with an implicit average over real-
izations of random disorder assumed. In the delocalized and
localized phases r is expected to be approximately 0.528 and
0.386, respectively. Figure 2(a) shows the dependence of r on
the strength of disorder, for various system sizes. For a small
system size N = 24, r is close to 0.386 at very small disorders
� (� � J) and seems to show a tendency to deviate from
0.386 for disorder strength comparable to hopping strength J .
However, this is seen to be a finite-size effect and for larger
system sizes, the level-spacing ratio r remains at 0.386 in the
full range of the disorder strength �. This indicates that the
system is localized in the presence of disorder. In the absence
of disorder, the level-spacing ratio becomes unintelligible due
to the massive degeneracy.

We also study the energy level-spacing distribution func-
tion P(s), where si’s are made dimensionless by dividing
the original level spacings by the mean level-spacing of the
spectrum such that

∫
P(s)ds = 1. For a real Hamiltonian,

in the delocalized phase, the spectral statistics is GOE , i.e.,
P(s) = π

2 se− π
4 s2

, which yields r ≈ 0.528. In the localized
phase, the spectral statistics is Poissonian P(s) = e−s yielding
r ≈ 0.386. In Fig. 2(b), we observe that the energy level-
spacing distribution follows Poissonian spectral statistics for
all disorder strengths confirming that the system is localized
irrespective of the strength of disorder. The introduction of
disorder into the insulating all-band flat diamond chain keeps
the system in the insulating phase itself. We further explore
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FIG. 3. The average IPR of all the single-particle eigenstates
vs disorder for increasing values of system size N . The number of
disorder realizations varies for different system sizes, but all of them
have at least 100 samples of disorder.

the localization properties of the system at different disorder
strengths in detail through a study of the eigenstates.

B. Inverse participation ratio

The inverse participation ratio (IPR) is defined as

Ik =
N
3∑

i=1

∑

α=u,c,d

|ψk (i, α)|4, (4)

where the kth normalized single-particle eigenstate |ψk〉 =∑
i,α ψk (i, α) |i, α〉 is written in terms of the Wannier basis

|i, α〉, representing the state of a single particle localized at
the site α (α = u, c, d ) in the ith unit cell of the lattice. For
a perfectly delocalized eigenstate, Ik scales as 1/N , while for
a single-site localized eigenstate, Ik = 1 and at criticality Ik

shows intermediate behavior.
The IPR averaged over all the eigenstates plotted in Fig. 3

reveals two distinct localization phases: a weak flat-band
based localization (FBL) at low disorder with low IPR and
a strong Anderson localization (AL) at high disorder with an
IPR close to one. We observe a cross-over from the FBL to AL
at � = 2J . In the low-disorder region, the states within one
band hybridize leading to the FBL and as disorder strength
increases states from all bands hybridize leading to the con-
ventional AL. Thus, even though the system is localized, there
could be substantial difference in the localization properties at
different disorder strengths. How different are the states at low
and high disorder regions is an interesting question and we
explore this through the study of fidelity in the next section.

C. Fidelity

To understand the nature of the single-particle eigenstates
in the presence of disorder, the average fidelity or overlap be-
tween the eigenstates corresponding to � = 0.001J and those
corresponding to higher values of � > 0.001J is calculated.
Fidelity between the kth eigenstates corresponding to two
values of � is defined as

F k
12 = | 〈ψk (�1)| ψk (�2)〉|2. (5)
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FIG. 4. Spectrum averaged fidelity F as a function of the dis-
order strength � (in units of J) for increasing system sizes N . The
number of disorder realizations varies for different system sizes, but
all of them have at least 100 samples of disorder.

The two different phases of localization FBL and AL are ev-
ident from the spectrum averaged fidelity F = 〈F k〉 shown in
Fig. 4. The characteristics of eigenstates in the FBL phase and
the AL phase are different from one another. Fidelity provides
a comparison between each eigenstate at different disorder
strengths. One main observation we make through this study is
that, even though the IPR in the weak FBL states are obtained
to be independent of disorder [Fig. 3(a)], a closer examination
of fidelity (Fig. 4) reveals that the nature of eigenstates in
fact changes substantially with disorder strength. This is in
contrast to conventional AL where the eigenstates are frozen
such that the variation of F with respect to disorder strength
is minimal. Moreover, in the FBL phase, the fidelity seems to
have a strong dependence on system size N , in sharp contrast
to the AL phase.

D. Von Neumann entropy and Shannon entropy

The von Neumann entropy is a good measure to explore lo-
calization phenomena in quantum systems [35]. In this work,
we aim to calculate von Neumann entropy connected to a
single site. A single particle has two local states |0〉i,α and
|1〉i,α at the site α of the ith unit cell and hence the local
density matrix ρ iα

k for the kth eigenstate can be written as [36]

ρ iα
k = |ψk (i, α)|2 |1〉iα 〈1|iα + (1 − |ψk (i, α)|2) |0〉iα 〈0|iα .

(6)
The von Neumann entropy associated with site i is given by

Siα
k = −|ψk (i, α)|2 log2(|ψk (i, α)|2)

−(1 − |ψk (i, α)|2) log2(1 − |ψk (i, α)|2). (7)

In a delocalized eigenstate |ψk (i, α)|2 = 1/N and hence
Siα

k ≈ 1
N log2 N + 1

N for large values of N whereas for a
single-site localization Siα

k = 0. The contributions from all
sites for a particular eigenstate are given by Sk = ∑

i,α Siα
k .

Thus the average von Neumann entropy over all the eigen-
states is defined as

Ssp =
∑N

k=1 Sk

N
. (8)

For large values of N , Ssp ≈ (log2 N + 1) in the delocalized
phase whereas Ssp ≈ 0 in an extremely (single-site) localized
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FIG. 5. (a) The von Neumann entropy averaged over all the
eigenstates vs disorder for increasing system sizes N . (b) Shannon
entropy Ssh, averaged over all the eigenstates as a function of disorder
strength � (in units of J) for increasing N . The number of disorder
realizations varies for different system sizes, but all of them have at
least 100 samples of disorder.

phase. For the critical phases, Ssp can take any intermediate
values. From Fig. 5, which shows the von Neumann entropy
Ssp as a function of disorder �, it can be seen that Ssp is less
than (log2 N + 1) for all disorder strengths and system sizes,
pointing towards localization. However, the higher values of
von Neumann entropy at low disorder strengths compared to
those at high disorder strengths indicate the weakly localized
FBL phase for small � as compared to the strong AL phase
for large �. Also we note that similar to IPR, the value of
spectrum averaged Ssp remains disorder strength independent
in the FBL phase.

For the kth eigenstate, the Shannon entropy is given by

Ssh
k = −

∑

i,α

|ψk (i, α)|2 ln |ψk (i, α)|2. (9)

The Shannon entropy averaged over all the eigenstates Ssh =
〈Ssh

k 〉 is shown in Fig. 5(b). For a perfectly delocalized state,
Ssh = ln N , whereas for a perfectly localized state, Ssh is 0,
where the system size independence implies localization. The
figure shows the presence of two localized phases: FBL phase
with higher Ssh and AL phase with lower Ssh, consistent with
the observation from IPR.

E. Nonequilibrium dynamics of a single particle

Next we study nonequilibrium properties of the system by
keeping a single particle initially at some lattice site m0, i.e.,
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FIG. 6. (a) The entanglement entropy SA as a function of time
(in units of J−1) for a single particle for system size N = 600 and
different disorder strengths. (b) The saturation value S∞

A as a function
of � (in units of J) for increasing values of N . The number of
disorder realizations varies for different plots, but all of them have
at least 100 samples of disorder.
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FIG. 7. (a) The revival probability R as a function of time (in
units of J−1) for a single particle for system size N = 600 and
increasing disorder strength �. (b) The saturation value R∞ as a
function of � (in units of J) for increasing values of N . The number
of disorder realizations varies for different plots, but all of them have
at least 100 samples of disorder.

|ψin〉 = |m0〉. Here we arbitrarily choose m0 to be a d site,
although the other choices should yield similar results. We cal-
culate various dynamical quantities such as the entanglement
entropy, revival probability and width of the single-particle
wave packet in the following.

The entanglement entropy of a single particle is given by
[36,37] SA(t ) = −pA(t ) ln pA(t ) + (1 − pA(t )) ln(1 − pA(t )),
where pA(t ) = ∑

i,α∈A |ψ(i, α)|2, is the instantaneous proba-
bility of finding the particle inside subsystem A which is taken
to be half of the full system. The dynamics of entanglement
entropy is shown in Fig. 6(a) for different disorder strengths
�. For very low disorder (� = 0.01J ), after a superballistic
transient, a damped oscillatory behavior is observed for the
entanglement entropy (see Appendix A for the zero-disorder
case) followed by saturation. This oscillatory behavior van-
ishes at high disorder strength (e.g., � � 10J). The saturation
value S∞

A is plotted as a function of � for increasing system
sizes in Fig. 6(b), which clearly reflects the presence of two lo-
calized regimes; weak flat-band based localization and strong
Anderson localization.

We also study revival probability R(t ) = | 〈ψin|ψt 〉 |2 of
finding the particle at the initial site. The dynamics of the
revival probability R shown in Fig. 7(a) indicates damped
oscillatory behavior in the tiny disorder regime � = 0.01J
whereas this characteristic vanishes in the high disorder
regime � > 5.0J . The saturation value R∞ of revival proba-
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FIG. 8. (a) The dynamics of width of the wave packet w as a
function of time (in units of J−1) for a single particle for system size
N = 600 and different disorder strengths. (b) The saturation value
w∞ as a function of � (in units of J) for increasing values of N . The
number of disorder realizations varies for different plots, but all of
them have at least 100 samples of disorder.
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FIG. 9. The on-site occupation probability of a single particle in
the long-time limit, denoted as p∞

m (in a logarithmic scale) at site m
for N = 600 and disorder strength � = 0, 0.001J, 5.0J , and 50.0J,

respectively. In this plot, number of disorder realizations is 200.

bility [Fig. 7(b)] turns out to be independent of system size N
for all disorder strengths, which is characteristic of a localized
phase. The figure clearly shows the presence of two localized
phases thereby supporting the results obtained in the static
calculations.

The width of the wave packet is defined as w =√
〈x̂2〉 − 〈x̂〉2, where x̂ is the position operator. The dynamics

of w is shown in Fig. 8(a). After a ballistic transient, there is a
damped oscillation due to recurrence for � = 0.01J , followed
by an extended sub-diffusive regime before it reaches satura-
tion. For large values of disorder � > 5.0J , after the ballistic
transient there is a short sub-diffusive regime followed by
saturation. The oscillatory recurrence regime is absent in this
case. The saturation value w∞ as a function of � shown in
Fig. 8(b) clearly indicates weak flat-band based localization
for small disorder and strong Anderson localization for large
disorder respectively. We note that w∞ becomes independent
of N for large values of N , for all values of �, which is a
signature of localization.

In Fig. 9, we show the on-site occupancy of a single par-
ticle in the long-time limit. For � = 0, the wave function
is extremely localized within very few sites reflecting the
localization properties of CLS. Turning on a tiny disorder
� = 0.001J makes the occupation probability function p∞

m
extended in space with exponential tails. Increasing the dis-
order further to � > 5.0J shrinks the function with sharper
exponential tails. This establishes the hierarchy for localized
phases: CL > AL > FBL in terms of the strength of localiza-
tion.

IV. NONINTERACTING SPINLESS FERMIONS

In this section, we report the effect of disorder on noninter-
acting spinless fermions in the diamond chain. This should be
viewed as a bridge between the single-particle physics of the
previous section, and interacting many-particle physics of the
following section. In this entire section, we set the interaction
strength to zero (V = 0), and the filling fraction to 1

6 . Using
correlation matrix techniques, we compute entanglement en-
tropy and imbalance parameter, which help in revealing the
characteristics of the system under disorder.
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FIG. 10. (a) The subsystem size L dependence of the entangle-
ment entropy SA of the fermionic ground state for increasing values
of disorder strength � for system size N = 300. (b) The SA as a
function of � (in units of J) for increasing values of N with L = N/2.
For all the plots, the number of disorder realizations is 100 and filling
fraction of the noninteracting fermions is 1/6.

A. Fermionic entanglement entropy of the ground state

Entanglement entropy is a useful quantity to distinguish
between different many-body quantum phases in the context
of localization [38,39]. The entanglement entropy between
two subsystems is given by SA = −Tr(ρA ln ρA), where the
reduced density matrix ρA = TrB(ρ) is obtained from the
many body ground state |�0〉 through the density matrix
ρ = |�0〉〈�0|. The computation of entanglement entropy for
many-body ground states of noninteracting spinless fermions
is greatly simplified with the help of free fermionic correlation
matrix techniques [40,41]. For a single Slater determinant
ground state, using Wick’s theorem, the reduced density
matrix can be represented as ρA = e−HA

Z , where HA is the entan-
glement Hamiltonian (that is guaranteed to have a quadratic
form), and Z is obtained from the condition Tr(ρA) = 1. The
information contained in the reduced density matrix of size
2L × 2L can be captured in terms of the correlation matrix C of
size L × L [40] within the subsystem A, where Cαβ

i j = 〈α†
i β j〉

with α, β ∈ {u, c, d}, and i, j denoting the unit cell index.
The correlation matrix and the entanglement Hamiltonian are
related by [40–42] C = 1

eHA +1 . Using this relation, the entan-
glement entropy for free fermions is given by [41,42]

SA = −
L∑

m=1

[ζm ln ζm + (1 − ζm) ln(1 − ζm)], (10)

where ζm’s are the eigenvalues of the correlation matrix C.
Subsystem scaling of entanglement entropy has been

used to distinguish quantum phases [38,39,43,44]. For free
fermions in d dimensions, typically SA ∝ Ld−1 ln L [45] in
metallic phases whereas SA ∝ Ld−1 (also known as area-law)
in localized phases in the presence of disorder. Since localized
systems do not care about the boundary of two subsystems,
generally the “area law” can be used as the defining signature
to detect such phases. For the present system, we show the
subsystem size dependence of SA of noninteracting fermions
at 1/6 filling in Fig. 10(a). Here subsystem size L is the
number of sites belonging to subsystem A. All the plots
abide by the area-law for all values of �, indicating local-
ization. As � is increased SA shows [Fig. 10(b)], a crossover
from a high value to a low value independent of system size
pointing towards the presence of two localized phases in the
many-particle ground state. We observe that the low-� region
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FIG. 11. (a) The growth of the entanglement entropy SA with
time (in units of J−1) for system size N = 600 and disorder strength
� = 0.01J, 3.0J , and 50.0J, respectively. (b) The saturation value
S∞

A as a function of � (in units of J) for increasing values of N . The
number of realizations of disorder is 200.

corresponding to FBL has a small (compared to thermal value)
finite value of entanglement, which is independent of system
size, and hence characteristic of a localized phase. However at
large �, the entanglement entropy is almost zero, indicating
the AL phase.

B. Nonequilibrium dynamics of noninteracting fermions

Next, we study the nonequilibrium transport properties of
noninteracting fermions in the system. We consider an initial
many-body state of the following form: |�in〉 = ∏N/3

i=1 ĉ†
2i |0〉,

which is a product state of fermions in which c site of alter-
nating unit cells is occupied by a single particle leading to a
filling fraction of 1/6. For this type of a choice of the initial
state, Wick’s theorem works and hence the free fermionic
techniques [40–42] can be applied to study the growth dy-
namics of the entanglement entropy. After a superballistic
transient [Fig. 11(a)] an oscillatory regime (see Appendix
A) is observed for � = 0.01J, which is absent in case of
� = 3.0J and 50.0J . It is notable that the long-time saturation
value of SA is higher for � ≈ 3.0J as compared to those for
� = 0.01J and 50.0J . The hump in the saturation value S∞

A
[Fig. 11(b)] in the intermediate range of values of � is due to
fermionic statistics, and is absent in the single-particle case.

We have also studied the imbalance parameter, a more
experimentally relevant quantity, which is given by

Ib(t ) =
∑N/3

i=1 (−1)inc
i − nu

i − nd
i∑N/3

i=1 nc
i + nu

i + nd
i

, (11)

where nα
i is the occupancy of fermions at the site α of the ith

unit cell where α ∈ u, c, d . Essentially the numerator is the
difference in occupancies between the initially occupied sites
and the initially unoccupied sites whereas the denominator
simply sums up to the total number of particles Np. For a
perfectly delocalized many-body state Ib = −2/3, whereas for
a perfectly localized many-body state Ib = 1.

The dynamics of the imbalance parameter Ib(t ) [Fig. 12(a)]
shows a damped oscillatory regime for � = 0.01J and this
behavior is absent for � = 3.0J and 50.0J pointing out the
characteristic difference between the small and large �

regimes. The saturation value of Ib for � = 3.0J is low
compared to those for � = 0.01J and 50.0J indicating the
possibility of an intermediate phase. To explore this further,
the saturation value I∞

b as a function of disorder strength �
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FIG. 12. (a) The imbalance parameter Ib as a funtion of time (in
units of J−1) for system size N = 600 and disorder strength � =
0.01J, 3.0J, and 50.0J respectively. (b) The saturation value I∞

b as a
function of � (in units of J) for increasing values of N . The number
of realizations of disorder is 200.

for different system sizes N is shown in Fig. 12(b). A dip
is observed in the intermediate range of disorder strength
�, where a hump is observed for the entanglement entropy.
Such dips may be signatures of delocalization but on the other
hand, system size N independence of I∞

b at dips is a signature
of localization. In order to make a conclusive comment on
delocalization/localization one needs to look at the energy
level-statistics, which is rather difficult to perform for large
system sizes N using the exact diagonalization method. Such
dips are absent in single-particle properties, but seem to show
up in the noninteracting many-particle properties, and will
also be encountered in the interacting many-particle properties
in the next section. Therefore, as we might expect, the nonin-
teracting many-particle properties show features in between
those of single-particle and interacting many-particle states.

V. INTERACTING SPINLESS FERMIONS

In this section, we develop an understanding of the
transport properties of interacting spinless fermions in the dis-
ordered diamond chain. We employ the level-spacing ratio and
spectrum averaged many-particle inverse participation ratio
to capture the interaction induced (V 	= 0) crossovers in this
disordered model.

A. Level-spacing statistics

Level-spacing ratio defined in Eq. (3) is studied using
the energy spectra (E1, E2, E3, . . . , ED) of the interacting

Hamiltonian via exact diagonalization, where D = (N
Np

)
is the

dimension of the particle-number constrained Hilbert space
and ν = Np/N with Np and N being the number of fermions
and the system size, respectively. The level-spacing ratio r as
a function of disorder strength � for different V is shown in
Figs. 13(a), 13(b) and 13(c) for N = 18 and filling fraction
of fermions ν = 1/9, 1/6, and 2/9, respectively. We observe
that the three phases become most distinct for the highest
filling as shown in Fig. 13(c): an MBL phase at high disor-
der strengths � > 10.0J with r = 0.386, a thermal phase for
intermediate disorder strengths � = O(J ) and for V = O(J )
with r approaching 0.528, and a “mixed phase” at low disorder
strengths � � J with r neither 0.528 nor 0.386. In the low
disorder region, when the interaction V ≈ �, the amount of
delocalization increases in the system in the mixed phase, as
r shows a peak (see Sec. V C). For the intermediate disor-
der strengths, the system delocalizes with increasing filling
fraction and the peak of r [Figs. 13(b) and 13(c)] almost
approaches 0.528 at V ≈ � as the number of fermions is
increased. We also observe that the peak corresponding to de-
localization moves towards a lower value of disorder strength
� as the number of fermions increases. Thus, the filling frac-
tion appears to aid the repulsive effects of Pauli exclusion.
What happens in the low � regime as a function of filling
fraction will be addressed in detail later.

We also show the system size dependence of level-spacing
ratio r versus � for V = 1.0J and ν = 1/6 in Fig. 14. Here,
as the system size N increases, the particle number Np also
increases to maintain ν = 1/6. As N increases, we observe
that the phase at high disorder strengths gets more sharply
defined. A substantial delocalization is observed in the in-
termediate disorder region and r seems to approach 0.528
with increase in system size. In the low � regime, values
of r are much lower than 0.386 for N = 12. This happens
typically due to restoration of the crystal momentum conser-
vation [46], which has been recently addressed in the literature
for two interacting particles [47]. As system size increases
(Np increases accordingly to fix ν), r increases and becomes
0.386 for N = 24, although it is not very clear whether r will
increase even further with N . We infer that it is a mixed phase
with the localized eigenstates being dominant (see Fig. 18
and the discussion in the Sec. V C). The three phases become
more well established with increasing ν as can be seen from
Fig. 13.
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FIG. 13. [(a)–(c)] The level-spacing ratio r as a function of disorder strength � (in units of J) for increasing interaction strength V for
fermionic filling fraction (a) 1/9, (b) 1/6, and (c) 2/9, respectively. For all the plots system size N = 18. Number of disorder realizations are
500, 200, and 100 for 1/9, 1/6, and 2/9 fillings, respectively.
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FIG. 14. The level-spacing ratio r as a function of disorder
strength � (in units of J) for fixed V = 1.0J and system sizes
N = 12, 18, and 24 for filling fraction of fermions ν = 1/6. The
quantities are averaged over 500, 200, and 30 disorder realizations
for N = 12, 18, and 24, respectively for fermion filling ν = 1/6.

B. Many-particle inverse participation ratio

Expanding the normalized eigenstate |�〉 in the particle-
number constrained space as |�〉 = ∑D

n=1 Cn |n〉, the many-
particle inverse participation ratio (MIPR) is defined as

MIPR =
D∑

n=1

|Cn|4. (12)

For an extremely localized eigenstate MIPR = 1 whereas for
a perfect delocalized eigenstate MIPR = 1/D. The spectrum-
averaged MIPR as a function of � for different interaction
strengths V is shown in Figs. 15(a), 15(b) and 15(c) for
system size N = 18 and filling ν = 1/9, 1/6, and 2/9, respec-
tively. The plots also confirm the three distinct phases: MBL,
thermal, and mixed observed during the examination of level-
spacing ratio r. The MBL phase possesses high MIPR ≈ 1,

while the thermal phase has a low MIPR representing a dip
at � ≈ 2J . The mixed phase is observed at the low disorder
strengths � � J . In the mixed phase, another small dip is ob-
served at V ≈ � corresponding to an increment in the amount
of delocalization.

Apparently the dips of MIPR at the intermediate disorder
strength become deeper with increasing filling fraction indi-
cating more delocalization. To confirm this we carry out a
careful scaling analysis with D.

FIG. 16. The log-log plot of the spectrum-averaged MIPR with
1/D [where D = ( N

Np

)
], keeping the system size N = 18 and increas-

ing the number of fermions from Np = 2, 3, 4, and 5 for (a) fixed
interaction strength V = 1.0J and different disorder strength � and
(b) for fixed � = 0.01J and different interaction strength V . The
dashed line shows a linear relationship between MIPR and 1/D.

Effect of filling fraction. First we explore the effect of filling
fraction ν by looking at the scaling relation MIPR ∝ 1

Dγ .
For a perfectly delocalized many-body phase γ = 1 whereas
for a nonergodic many-body phase 0 < γ < 1. Deep in the
nonergodic MBL phase γ can be as small as close to 0
[48]. Fixing V = 1.0J , we show the MIPR as a function of
1/D for different disorder strengths in Fig. 16(a). The scaling
analysis shown in the figure indicates that, as filling fraction
increases, the many-body system is in the MBL phase for
large � and is delocalized in the intermediate range of �. In
the low � regime, the system is a mixed one with γ = 0.5. To
explore the behavior of the mixed phase, in Fig. 16(b), we plot
MIPR versus 1/D for different V by fixing � = 0.01J . The
increasing values of γ with respect to interaction indicates
that, in a finite system, this phase is a mixed one and the
amount of delocalization is high (red curve) when V ≈ �. For
V = 10.0J in Fig. 16(b), the value of γ is much smaller due
to the strong repulsive interaction aiding localization.

Effect of system size. In Fig. 17, we show the spectrum av-
eraged MIPR as a function of disorder strength � for system
sizes N = 12, 18, and 24 and for filling fraction ν = 1/6,
and interaction strength V = 1.0J . MIPR decreases rapidly
with N for the intermediate values of � indicating a delo-
calization in the many-body system. The trend of the plots
suggests that the many-body system may thermalize for in-
termediate values of � as N increases. However, for large
�, MIPR barely changes implying a possible many-body

10
-3

10
-2

10
-1

10
0

10
1

10
2

Δ 

0.05

0.1

0.5

1.0

M
IP

R

V = 0.01 J
V = 0.1 J
V = 1.0 J
V = 3.0 J

(a)

10
-3

10
-2

10
-1

10
0

10
1

10
2

Δ
0.01

0.05

0.1

0.5

1.0

M
IP

R

(b)

10
-3

10
-2

10
-1

10
0

10
1

10
2

Δ 

0.01

0.05
0.1

0.5
1.0

M
IP

R

(c)

FIG. 15. The log-log plots of the spectrum-averaged MIPR as a function of � (in units of J) for different interaction strengths V for
fermionic filling fraction (a) 1/9, (b) 1/6, and (c) 2/9, respectively. For all the plots system size, N = 18. Number of disorder realizations are
500, 200 and 100 for 1/9, 1/6, and 2/9 fillings, respectively.

043395-8



INTERPLAY OF DISORDER AND INTERACTIONS IN A … PHYSICAL REVIEW RESEARCH 2, 043395 (2020)

10
-3

10
-2

10
-1

10
0

10
1

10
2

Δ 
10

-3

10
-2

10
-1

10
0

M
IP

R
N = 12
N = 18
N = 24

FIG. 17. The spectrum averaged MIPR as a function of disorder
strength � (in units of J) for fixed V = 1.0J and system sizes
N = 12, 18, and 24 for filling fraction of fermions ν = 1/6. The
quantities are averaged over 500, 200, and 30 disorder realizations
for N = 12, 18, and 24, respectively, for fermion filling ν = 1/6.

localization in the system. In the small � regime, MIPR
decreases with increase in system size, but not as fast as
compared to the intermediate � regime. This implies that
for the small disorder strengths �, the system does not at-
tain thermalizaion and appears to be in a distinct nonergodic
phase as the system size increases. Next we analyze the effect
of system size N in the low-disorder phase. To explore the
characteristics of the phase at low disorder strengths, we fix
� = 0.01J , and plot MIPR vs 1/D for different V in Fig. 18.
The plots affirm the conclusions made from Fig. 16(b); the
values of γ indicate that the phase is neither thermal nor MBL
and hence it is dubbed as the mixed phase. The amount of
delocalization in the mixed phase increases when V = �. For
V = 1.0J , γ = 0.38 implying localization-dominated mixed
phase. What happens to the fate of the mixed phase in the
thermodynamic limit may need a further study which goes
beyond exact diagonalization.

FIG. 18. The log-log plot of the spectrum-averaged MIPR with
1/D [where D = ( N

Np

)
], keeping the system filling fraction ν = 1/6

and increasing the system size from N = 12, 18, and 24 for fixed
� = 0.01J and increasing interaction strength V . The dashed line
shows a linear relationship between MIPR and 1/D.
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FIG. 19. (a) The energy resolved r(ε) for increasing values of
filling fraction ν = 1/6, 2/9, and 5/18 for N = 18 and V = � =
0.01J . (b) Similar plots but for V = 1.0J and � = 0.01J . For all the
plots, number of disorder realizations is 200.

C. Energy-resolved level statistics, inverse participation ratio
and entanglement entropy

Here we carry out an energy-resolved study of the level-
spacing ratio, many-body inverse participation ratio and
entanglement entropy to get some further insights into the
system, especially when it is in the mixed phase. We divide
the many-body energy spectrum into a number of equal seg-
ments and calculate the local average of the quantities for
each segment of the spectrum. We denote the energy resolved
quantities as r(ε), MIPR(ε), and SA(ε) respectively, where
ε’s are the fractional eigenstate index at the middle of each
segment.

We first discuss the energy resolved level-spacing ratio
r(ε) in the small disorder � � J regime. In Fig. 19(a), we
show r(ε) for increasing filling fraction ν for V = � = 0.01J .
With increasing ν, r(ε) increases and shifts away from 0.386
implying more delocalization for V = � as predicted by other
analysis done in the paper. In Fig. 19(b), r(ε) for increasing
filling fraction ν is shown for V = 1.0J and � = 0.01J . Here,
with increasing ν, r(ε) approaches 0.386 except at the edges
of the spectrum. This is a signature of localization in the
system. However from the MIPR ∝ 1/Dγ scaling one con-
cludes that it is a mixed phase as γ = 0.5. We also show
r(ε) with increasing system size N for fixed � = 0.01J and
V = 0.01J and 1.0J in Figs. 20(a) and 20(b), respectively.
When V = � = 0.01J , r(ε) increases from 0.386 indicating
a delocalizing effect in the system. When V = 1.0J and � =
0.01J , r(ε) is consistently spread around 0.386 for N = 24,
indicating an effective localization in the system. Also from
MIPR scaling we find γ = 0.38 implying the dominance of
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FIG. 20. (a) The energy resolved r(ε) for increasing values
of system size N = 18 and 24 for ν = 1/6 and V = � = 0.01J .
(b) Similar plots but for V = 1.0J and � = 0.01J . For all the plots,
number of disorder realizations is 200.
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FIG. 21. The MIPR(ε) of all the eigenstates as a function of the
fractional eigenstate index ε for � = 0.01J and different interaction
strengths V . For all the plots, N = 18, ν = 1/6, and the number of
disorder realizations is 200.

the localized eigenstates. Finite-size effects are rather severe
here and make it difficult to make a conclusive statement on
whether the system will actually become many-body localized
in the thermodynamic limit.

The MIPR of all the many-body eigenstates is shown in
Fig. 21 for � = 0.01J and different interaction strengths V ,
while keeping N = 18 and ν = 1/6. The figure captures the
localization properties of all the eigenstates in the small �

regime. We can see that for all values of V , the MIPR of all the
eigenstates are significantly higher than 1/D but not close to 1
implying that the system is in a mixed phase. Although when
V = �, the majority of the eigenstates show delocalization
tendency that amounts to an overall delocalizing effect in
the system. As V > � many of the eigenstates show high
values of MIPR with occasional presence of the low-MIPR
eigenstates. This keeps the system still in a mixed phase with
a greater proportion of localization.

As an accompanying quantity the half-chain entanglement
entropy SA of all the many-body eigenstates is shown in
Fig. 22(a) for � = 0.01J and different interaction strengths
V , while once again keeping N = 18 and ν = 1/6 fixed. It
is noticeable that when V � � there are eigenstates with
high and occasional low entanglement entropies. Although
when V = �, the majority of the eigenstates has signifi-
cantly high entanglement entropy whereas the few occasional
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FIG. 22. The half-chain entanglement entropy SA(ε) of all the
eigenstates as a function of the fractional eigenstate index ε (a) for
increasing values of V and fixed � = 0.01J and (b) for increasing
values of � and fixed V = 1.0J . For all the plots, N = 18, ν = 1/6,
and number of disorder realizations is 200.

10
-2

10
0

10
2

10
4

10
6

10
8

t
10

-3

10
-2

10
-1

10
0

S
A

Δ = 0.01 J
Δ = 3.0 J
Δ = 50.0 J

(a)

10
-3

10
-2

10
-1

10
0

10
1

10
2

Δ 

0.0

0.5

1.0

1.5

2.0

2.5

S
A

∞

V = 0.01 J
V = 0.1 J
V = 1.0 J
V = 3.0 J

(b)

FIG. 23. (a) The half-chain entanglement entropy SA as a func-
tion of time t (in units of J−1) for N = 18, V = 1.0J, and � =
0.01J, 3.0J, and 50.0J . (b) The saturation value S∞

A as a function
of � (in units of J) for increasing values of V and N = 18. For all
the plots, number of disorder realizations is 200.

eigenstates have significantly low entanglement entropies, in-
dicating dominance of delocalization in the mixed phase. As
V > � majority of the eigenstates shows low entanglement
entropy implying a dominance of localization. In Fig. 22(b),
half-chain SA of all the eigenstates are shown for interaction
V = 1.0J and � = 0.01J, 2.0J, 50.0J such that the system
is in the mixed, thermal and MBL phases respectively. As
can be seen from the figure, the thermal and MBL phases
give rise to a smooth dependence of SA on eigenstates with
very high and very low SA, respectively. In the mixed phase,
eigenstate entanglement entropies have many humps and dips
of intermediate strength.

D. Nonequilibrium dynamics of interacting spinless fermions

In this section, we discuss many-body nonequilibrium dy-
namics, keeping track of the entanglement entropy, the return
probability and imbalance parameter. We choose the initial
state as an experimentally relevant, density-wave type of
state as mentioned previously |�in〉 = ∏N/3

i=1 ĉ†
2i |0〉, which is

a product state with the filling fraction of fermions ν = 1/6
with N = 18. The dynamics of the entanglement entropy SA

(the subsystem A is the first half of the full system) is calcu-
lated via exact diagonalization for V = 1.0 and is shown in
Fig. 23(a) for different disorder strengths. For low � = 0.01J
after a super-ballistic transient, there is a damped oscillatory
behavior (see Appendix A for zero-disorder case) followed
by a substantially sub-diffusive (t0.05) regime till SA reaches
saturation. The little post-oscillatory increment in SA is the
effect of nonzero interaction V leading to a mixed phase with a
small amount of delocalization in the system. For intermediate
disorder � = 3.0J , after the transient, there is a sub-diffusive
(t0.3) increment in SA before it quickly saturates to a large
value reflecting delocalization in the many-body system. The
oscillatory part is absent in this case. For large � = 50.0J ,
after the transient, SA saturates to a lower value indicating
many-body localization. A finer analysis of the dynamical
behavior of the MBL system is given in Appendix C. The
dependence of the saturation value of the entanglement en-
tropy S∞

A on disorder strength � for N = 18, ν = 1/6, and
different V is shown in Fig. 23(b). Typically the entanglement
entropy in the many-body delocalized phase is substantially
higher as compared to the same in the MBL phase. For V ≈ J ,
we observe the presence of three phases: MBL for large �,
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FIG. 24. (a) The return probability R as a function of
time t (in units of J−1) for N = 18, V = 1.0J, and � =
0.01J, 3.0J, and 50.0J . (b) The saturation value of the return prob-
ability R∞ as a function of � (in units of J) for different values of V
and N = 18. The number of disorder realizations is 200 for both the
plots.

delocalization for intermediate � and the mixed phase for
small �. For V < J another signature of delocalization is
noted when V ≈ �. All these results are consistent with the
results of MIPR and r as discussed in the previous subsection.
Plots similar to Fig. 23(b) are also obtained for the spectrum
averaged entanglement entropy (Fig. 27 in Appendix B).

Although entanglement entropy offers useful insights, it is
not easily measurable in ongoing experiments. In this context,
return probability and imbalance parameter, being experi-
mentally accessible, are interesting and we study them next.
The return probability is defined as R(t ) = |〈�in|�t 〉|2. In the
perfectly delocalized phase R = 1/D whereas in the perfectly
localized phase R is unity. In Fig. 24(a), the dynamics of R is
shown for V = 1.0J for different �. For � = 0.01J , just like
SA, R also shows oscillatory behavior indicating recurrence
before it saturates to a finite value. For � = 3.0J , the oscilla-
tory behavior is absent and the saturation value is sufficiently
low indicating delocalization. For � = 50.0J , R saturates to a
significantly higher value indicating strong localization. The
saturation value R∞ versus � plots for increasing values of
V are shown in Fig. 24(b). From this figure one can infer the
presence of three phases: MBL for large �, delocalization for
intermediate � and the mixed phase for small �. For V � J ,
another signature of delocalization is noted when V ≈ �: R∞
shows dips at those points, but these dips are not as deep as
those corresponding to V ≈ J .

The imbalance parameter Ib is already defined in Eq. (11)
in the previous section. In the thermalized and MBL phases
respectively, we expect the saturation values to be Ib = −2/3
and Ib = 1 respectively. In Fig. 25(a), the dynamics of Ib is
shown for V = 1.0 and different �. For � = 0.01J , Ib satu-
rates to −0.19, which is higher than −2/3, after an oscillatory
behavior due to recurrence. For � = 3.0J , the recurrence is
absent and the saturation value is low indicating delocalization
whereas for � = 50.0J , Ib saturates to a much higher value
implying localization in the many-body system. The satura-
tion value I∞

b versus � plots for different V are shown in
Fig. 25(b). Similar to S∞

A and R∞, I∞
b confirms the presence

of three phases when V = O(J ): MBL for � 
 J , delocaliza-
tion for � ≈ J and the mixed phase for � � J . For V � J ,
an increment in the amount of delocalization is notable in
the mixed phase when V ≈ � as small dips are visible at
those points. To reaffirm our findings, we have studied the
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FIG. 25. (a) The imbalance parameter Ib as a function of time t
(in units of J−1) for N = 18, V = 1.0J and � = 0.01J, 3.0J, 50.0J .
(b) The saturation value I∞

b as a function of � (in units of J) for
different values of V and N = 18. For all the plots, number of
disorder realizations is 200.

system size dependence of the time-evolved many body state
in the long-time limit (Appendix D), which also indicates the
presence of three distinct phases as observed in the study of
imbalance parameter.

VI. CONCLUSIONS

We report a systematic investigation of the effect of disor-
der and interactions on a flat-band supporting diamond chain.
Disorder detunes and hybridizes the compact localized states
associated with flat bands and as the strength of disorder is
increased, flat-band based localization and conventional An-
derson localization are observed. Observables obtained from
both eigenvalues and eigenfunctions shine light into the dis-
tinct features of the different phases. We observe a hierarchy
of localization: compact localization > Anderson localiza-
tion > flat-band based localization.

Single-particle wave-packet dynamics complements the
results obtained via statics. In the disorder-free limit, a persist-
ing oscillatory recurrence which is attributed to the compact
localized states is observed. A damped oscillatory recurrence
is observed in the flat-band based localization phase and no
oscillatory recurrence is observed in the Anderson localization
phase. The on-site occupation probability of the single particle
in the long-time limit confirms that the localization strength
can be classified as compact localization > Anderson local-
ization > flat-band based localization. We note that in other
all band flat lattices like one-dimensional cross-stitch lattice
[49] and two-dimensional dice lattice [28] the same hierarchy
is maintained.

Noninteracting many-particle fermion states also show
characteristics of flat-band based localization and Anderson
localization in the presence of low and high disorder strengths.
A study of entanglement entropy and imbalance reveals a
delocalizing tendency for intermediate disorder strengths, re-
flecting the effect of fermionic statistics in the system. The
low-disorder and high-disorder phases are distinguished by
the presence and absence of the characteristic damped os-
cillatory recurrence in the nonequilibrium dynamics of the
entanglement entropy and imbalance.

The interplay of disorder and interaction in a finite sys-
tem can lead to three distinct phases: MBL for high disorder
strength, thermal phase for intermediate disorder strength
and nonergodic mixed phase for low disorder strengths. We
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observe that, in the mixed phase, the eigenstates tend to
get delocalized when interaction strength is of the order of
disorder-strength. A detailed analysis of the scaling of the
spectrum-averaged many-body inverse participation ratio with
the dimension of the Hilbert space is carried out by varying
the filling fraction and system size. We observe that at higher
filling fractions, the mixed phase in the finite system tends to
have more dominance of delocalization as long as interaction
strength is less than the hopping strength. However, an incre-
ment of localization in the mixed phase is observed for high
enough interaction-strength. When the interaction strength is
comparable to the hopping strength, for the intermediate and
higher ranges of disorder-strength, one obtains the crossovers
from the nonergodic mixed-to thermal and thermal-to-MBL
phases respectively, which become more distinct as the filling
fraction and system size increase. Nonequilibrium dynamics
supports the main findings from the above study involving
statics. A characteristic damped oscillatory behavior is found
in the mixed phase whereas no such oscillations are found in
the thermalized and MBL phases. In order to comment on the
thermodynamic existence of the three phases, especially on
the fate of the mixed phase, one needs a further study which is
not limited by the Hilbert-space constraint of numerical exact
diagonalization. We think that our work will help motivate
such studies on the diamond chain in the future.

The joint presence of disorder and interactions in flat-band
based systems give rise to rich and unconventional phases ob-
tained both from single-particle and many-particle properties
of the system. These phases could potentially be realized in
cold-atom based experiments. This kind of a systematic study
of flat-band supporting systems is lacking in the literature.
We believe that our work will trigger more work on flat-band
based systems.
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APPENDIX A: OSCILLATORY DYNAMICS OF THE
REVIVAL PROBABILITY: SINGLE PARTICLE,

NONINTERACTING, AND INTERACTING FERMIONS

Here we show the results for the dynamics of the revival
probability of a single particle, for noninteracting fermions,
and for interacting fermions in the clean system. We also com-
pare results for the clean system with those for the system in
the low-disorder regime. The zero-disorder (� = 0.0) dynam-
ics of the revival probability R is shown in Figs. 26(a), 26(b)
and 26(c) for a single particle, noninteracting fermions, and
interacting fermions, respectively. It is interesting to see that
R is oscillatory both in real space and in the particle-number
constrained Hilbert space. This oscillation never stops and
can be observed in the other dynamical quantities (such as
calculated in the main text) as well. Similar recurring be-
havior has been reported in a study of interacting bosons in
the clean diamond chain [50]. The full dynamics of R for
� = 0 is compared with that for small � = 0.01J for a single
particle, noninteracting fermions, and interacting fermions in
Fig. 26(d), 26(e), and 26(f), respectively. However the oscilla-
tory behavior is not visible in these figures due to the variable
step size in time and hence lack of data points. For � = 0.01J ,
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FIG. 26. [(a)–(c)] The oscillatory behavior of the revival probability R as a function of time (in units of J−1) for a single particle,
noninteracting fermions, and interacting fermions respectively for � = 0.0. [(d)–(f)] The full dynamics of R for � = 0.0 is compared to
the that for small � = 0.01J for a single particle, noninteracting fermions and interacting fermions respectively. Here, the time axis is in a
logarithmic scale. For a single particle, N = 600, whereas for both noninteracting and interacting fermions, N = 18 with filling of fermions
ν = 1/6. Interaction strength V = 1.0J for interacting fermions.
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of V for N = 18 and ν = 1/6. For all the plots, number of disorder
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the amplitude of the oscillation keeps decreasing and vanishes
at some point as R saturates to a finite value for all three cases.

APPENDIX B: SPECTRUM-AVERAGED ENTANGLEMENT
ENTROPY FOR THE INTERACTING SYSTEM

Here, we discuss the half-chain entanglement entropy Sav
A ,

averaged over all the eigenstates. It is a useful quantity to
help characterize different many-body phases in the presence
of disorder � and interaction strength V . In Fig. 27, the
Sav

A versus � plots are shown for increasing values of V for
N = 18 and ν = 1/6. In the delocalized phase, Sav

A should
attain a higher value as compared to that for the localized
phase. From the figure, we see the presence of three phases:
MBL phase for � 
 J , mixed phase for � � J and delocal-
ized phase for intermediate � = O(J ) when V = O(J ). For
� � J , a delocalizing effect is found when V ≈ �. All these
results complement the results obtained from MIPR and r as
discussed in the main text. Also the plots of Sav

A resemble the
plots in Fig. 23(b).

APPENDIX C: FURTHER INSIGHTS INTO THE
ENTANGLEMENT GROWTH IN THE MBL PHASE

We fit the curve representing the growth of entanglement
entropy SA from an initial product state of the system in the
MBL phase. The parameters � = 50.0J , V = 1.0J , N = 18,
and ν = 1/6 are chosen in the regime where the level-spacing
ratio r ≈ 0.386 establishing the MBL phase. For a system
of the spinless fermions with nearest-neighbor interactions
in a one-dimensional linear chain, SA grows logarithmically
with time in the MBL phase [51,52]. Here we have obtained
the time dependence of SA for the system in the quasi one-
dimensional diamond chain. From Fig. 28(a), the growth of
SA is fitted with a logarithmic function y = a ln(x) + b with
a = 0.00447; b = 0.12569. One cannot rule out the possi-
bility of obtaining a more-than-logarithmic dependence for
systems having higher dimensions. We also attempted a
power-law fit for the same data [Fig. 28(b)]: y = axb with
a = 0.13022 and b = 0.02650 with the power-law exponent
being tiny. Recently in Refs. [53,54] the possibility of MBL in
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FIG. 28. Plots of entanglement entropy (SA) growth with time (in
units of J−1) in the MBL phase, fitted with (a) y = a ln(x) + b with
a = 0.00447; b = 0.12569 and (b) y = axb with a = 0.13022; , b =
0.02650. Fitted curves are shown in solid red lines whereas the
original data-points are shown in blue color. (a) is a semilogarithmic
plot whereas figure (b) is a log-log plot. For all the plots, the disorder
strength � = 50.0J , interaction strength V = 1.0J for N = 18 and
ν = 1/6 with number of disorder realizations used being 1000.

quasi-1D has been indicated. This Appendix is an attempt to-
wards investigating the dynamical signatures of the quasi-1D
MBL. While our results are certainly consistent with MBL,
much larger system sizes would be required to conclusively
address the question of whether logarithmic or power-law
behavior holds. The consequences of the simultaneous pres-
ence of interaction and higher-dimensionality effects deserve
a thorough separate investigation.

APPENDIX D: NORMALIZED PARTICIPATION RATIO

The dependence of time evolved quantum many-body state
on system size in the long-time limit has turned out to be
handy to decipher many-body phases [55]. In this section, we
stick to the filling fraction ν = 1/3 and consider the initial
state |�in〉 = ∏N/3

i=1 ĉ†
i |0〉. Any time evolved state can then

be generically written as |�(t )〉 = ∑D
n=1 Cn(t ) |n〉, where |n〉

stands for the nth configuration and D is the size of the Hilbert
space. The normalized participation ratio (NPR) of the many-
body state in the long-time limit (t → ∞) is defined as [55]

η = 1

D
∑

n |Cn(t → ∞)|4 . (D1)
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FIG. 29. The scaling analysis of satuaration of NPR. (a) A log-
log plot showing the values of η as a function of disorder strength �

(in units of J) for increasing system size N . (b) A semi-log plot of
the scaling exponent κ as a function of � (in units of J). For all the
plots the interaction strength V = 1.0J and filling fraction ν = 1/3.
The number of disorder realizations varies for different system sizes,
but all of them have at least 100 samples of disorder.
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In the ergodic phase phase, η must be independent of sys-
tem size N whereas in the nonergodic phase, η must depend
on N . It has been shown that η ∝ e−κN with κ ≈ 0.5 for
the many-body localized phase in a quasiperiodic chain
[55].

In Fig. 29(a), we show the dependence of κ on disor-
der strength � for fixed interaction strength V = 1.0J and
increasing system size N . In the large and small disorder
regimes, η changes with system size, while for the interme-
diate range of �, η seems to be system size independent. For
each value of �, the exponent κ can be extracted using the
relation η ∝ e−κN . The exponent κ as a function of � is shown

in Fig. 29(b). In the large � regime, κ ≈ 0.5 implying the non-
ergodic many-body localized phase whereas for intermediate
values of �, κ ≈ 0 implying the ergodic phase. In the small �

regime κ ≈ 0.25, which definitely is a sign of nonergodicity.
However, since κ is not as high as 0.5 this mixed phase may
not be as nonergodic as the MBL. In addition, we have verified
that the scaling analysis of the spectrum averaged NPR in the
static case leads to similar results as shown in Fig. 29. Also,
the analyses reported in the main text point towards a similar
conclusion. The low-disordered nonergodic phase could be a
remnant of a new kind of MBL phase recently found in the
clean limit of such systems [34].
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