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Magnetization plateaux cascade in the frustrated quantum antiferromagnet Cs2CoBr4
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We have found an unusual competition of two frustration mechanisms in the 2D quantum antiferromagnet
Cs2CoBr4. The key actors are the alternation of single-ion planar anisotropy direction of the individual magnetic
Co2+ ions, and their arrangement in a distorted triangular lattice structure. In particular, the uniquely oriented
Ising-type anisotropy emerges from the competition of easy-plane ones, and for a magnetic field applied
along this axis one finds a cascade of five ordered phases at low temperatures. Two of these phases feature
magnetization plateaux. The low-field one is supposed to be a consequence of a collinear ground state stabilized
by the anisotropy, while the other plateau bears characteristics of an “up-up-down” state exclusive for lattices
with triangular exchange patterns. Such coexistence of the magnetization plateaux is a fingerprint of competition
between the anisotropy and the geometric frustration in Cs2CoBr4.
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I. INTRODUCTION

A conventional picture of a frustrated quantum magnet
implies a competition between the Heisenberg terms in a
S = 1/2 Hamiltonian. A Heisenberg magnet on a generic
triangular lattice is an archetype example [1]. Anisotropy, if
present, is usually just a weak perturbation stemming from
the spin-orbit interactions. Alternatively, like in a triangular
lattice XXZ model, it acts in the same way on every bond
and this situation is not drastically different from the Heisen-
berg case [2]. However, recently emerging topics of quantum
spin ice [3,4] or Kitaev magnets [5,6] teach us a very differ-
ent approach. In those, anisotropy is the key player and the
main ingredient creating frustration. Interestingly, this physics
stemming from strong spin-orbit coupling is not endemic of
the 4d and 4 f magnets, but is also possible in 3d magnets,
for instance cobalt-based ones [7]. In fact, in low-symmetry
Co2+ magnets (S = 3/2 and quenched orbital momentum) the
single-ion anisotropy that splits the | ± 1/2〉 and | ± 3/2〉 spin
states may not be uniform between the sites. If no unique
anisotropy axis is present, the interactions between the spins
become frustrated automatically. If the spins are at the same
time residing on a non-bipartite lattice such as a triangular
one, geometrical frustration is also there. Two frustration
mechanisms are present simultaneously and this results in a
complicated interplay. This possibility is relatively well ex-
plored for a perfect triangular lattice [8], but much less so for
less symmetric cases.
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The subject material of the present article, Cs2CoBr4, pos-
sesses an interesting combination of geometric frustration and
anisotropy very much in line with the above discussion. It
is the last unexplored member of the otherwise well known
family of quantum magnets with the distorted triangular lat-
tice Cs2MX4, where M is copper or cobalt and X is chlorine
or bromine. The other three materials, essentially chainlike
magnets Cs2CuCl4 [9,10], Cs2CoCl4 [11–14], and more two-
dimensional Cs2CuBr4 [15,16], demonstrate very rich phase
diagrams in applied magnetic fields. Although the existence of
the last material in this quartet, Cs2CoBr4, was documented a
long time ago [17], it was never investigated in the context
of quantum magnetism. In this paper we report the highly
unusual magnetic phase diagram of Cs2CoBr4, that is very
anisotropic and features a cascade of magnetization plateaux
for one particular direction of the magnetic field. One of
these plateaux is found at zero magnetization, while the other
corresponds to a field-induced “up-up-down” phase that is
characteristic for the triangular lattice systems. The plateaux
are very compatible with the effective Hamiltonian, which at
the same time creates a lot of uncertainty for the nature of
the remaining phases due to the unusual interplay of different
frustration mechanisms.

II. MAGNETIC SUSCEPTIBILITY AND THE EFFECTIVE
SPIN HAMILTONIAN

A. Structural considerations

Transparent, cerulean-colored single crystals of Cs2CoBr4

were grown using the Bridgman method [17]. Its structure
is isomorphic to that of the other Cs2MX4 materials, or-
thorhombic Pnma (space group 62) with a = 10.193(2), b =
7.725(3), c = 13.510(4) Å. The details of the sample growth
and structure refinement are summarized in Appendix A. The
unit cell shown in Fig. 1(a) contains four Co2+ S = 3/2 ions
within four CoBr4 distorted tetrahedra, related to each other
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FIG. 1. (a) Crystal structure of Cs2CoBr4. Four types of CoBr4

tetrahedra are labeled as I–IV. (b) Magnetic susceptibility along three
main crystallographic directions and the corresponding mean-field
fit (solid lines; see text). Insets show the relative orientation of the
anisotropy direction in different tetrahedra. (c) Distorted triangular
lattice bond pattern in the bc plane. (d) Effective anisotropies in the
pseudospin-1/2 Hamiltonian. The abc and xyz coordinate systems
are rotated by π/4 with respect to each other.

by the mirror reflections in ab and bc planes. The mirror ac
plane is the only symmetry of an individual distorted tetra-
hedron. As the local symmetry at the Co2+ site is lower than
cubic, the single-ion anisotropy D(n · Ŝ)2 should be present.
The anisotropy axis is n = (± cos β, 0, sin β ) on the different
tetrahedra, as the symmetry dictates. The angle β and the
sign of anisotropy constant D are not known a priori (in
a sister material Cs2CoCl4 they are estimated as β � 51◦
and D � 7 K [12]). Further ideas about the interactions be-
tween the cobalt spins can be derived from comparison with
Cs2CoCl4, Cs2CuCl4, and Cs2CuBr4. All of them have the
dominant interaction J within the chains running along the
b direction, while the weaker zigzag exchange J ′ connects
the chains into the distorted triangular lattice in the bc plane
as shown in Fig. 1(c). The exchange along the a direction is
negligibly small. The value of J ′/J may vary from almost zero
(Cs2CoCl4 case) to 0.3–0.5 in the copper-based members of
the family.

B. Magnetic susceptibility

The key parameters of the Hamiltonian, such as D, β,
and the mean-field exchange coupling J0 = 2J + 4J ′, can be
straightforwardly extracted from the magnetic susceptibility
data for fields, applied along the three principal direc-
tions of the crystal. Magnetic susceptibility χ = M/H of an
m = 8.9 mg Cs2CoBr4 single crystal was measured with a
MPMS SQUID magnetometer in a field of 0.1 T. These

data are shown in Fig. 1(b). The H ‖ b (perpendicular to
n) susceptibility is quite different from the susceptibilities
for H ‖ a, c directions that look rather similar (angles β and
π/2 − β between the field and n). All of them show the typ-
ical “Curie tail” behavior at high temperatures, that becomes
suppressed at low temperatures as the antiferromagnetic cor-
relations take over. Susceptibility along the b direction shows
a rounded maximum close to 4 K—a picture typical for the
low-dimensional magnets with suppressed magnetic order. No
signs of ordering are found down to 1.8 K. The simultaneous
fitting of the data for all three directions, based on a single-
ion model with the mean-field interactions (the details of the
fit are given in the Appendix B), yields D = 14(1) K, β =
44(1)◦, and J0 = 5.5(2) K, with the g factors being 2.42(1),
2.47(2), and 2.37(1) along the a, b, and c directions. This
means that (i) the single-ion anisotropy is of an easy-plane
type, so at the low temperature only the pseudospin-1/2 de-
grees of freedom are active, and (ii) the easy planes, while
being uniform within the chains, have alternating orientation
between the chains and the neighboring ones are nearly or-
thogonal to each other. We can consider β = π/4 for practical
purposes. Then, utilizing the “rotated” xyz coordinate system
[Fig. 1(d)], the approximate Hamiltonian for the S = 3/2
cobalt spins can be written as

Ĥ3/2 =
∑
i, j

D
[(

Ŝz
2i, j

)2 + (
Ŝx

2i+1, j

)2] + J (Ŝi, j · Ŝi, j+1)

+ J ′(Ŝi, j · Ŝi+1, j ) + J ′(Ŝi, j · Ŝi+1, j+1). (1)

C. Effective Hamiltonian

To construct the effective low-energy Hamiltonian, one
needs to project out the high-spin states that are inaccessible
at low temperatures due to large D. This is achieved by the
Schrieffer-Wolff transformation [13,18], where to the zeroth
order we can simply replace the spin-3/2 operators with the
spin-1/2 ones as Ŝx,y → 2Ŝx,y and Ŝz → Ŝz in the even chains,
and Ŝz,y → 2Ŝz,y and Ŝx → Ŝx in the odd chains. The resulting
Hamiltonian is

Ĥ1/2 =
∑
i, j

4J (Ŝi, j · Ŝi, j+1)

− 3J
[
Ŝz

2i, j Ŝ
z
2i, j+1 + Ŝx

2i+1, j Ŝ
x
2i+1, j+1

]
+ 2J ′(Ŝi, j · Ŝi+1, j ) + 2J ′(Ŝi, j · Ŝi+1, j+1)

+ 2J ′Ŝy
i, j Ŝ

y
i+1, j + 2J ′Ŝy

i, j Ŝ
y
i+1, j+1. (2)

A graphical representation of this Hamiltonian is also given
in Fig. 1(d). Here the intrachain exchange is of a strongly
XY nature, with the easy-plane direction alternating between
the chains. In contrast, the frustrated interchain interaction is
now Ising-like, with the easy axis given by the only common
direction of two adjacent easy planes. This special direction
coincides with the structural b axis.

III. SPECIFIC HEAT AND THE PHASE DIAGRAMS

A. Transverse direction

The difference between the emergent Ising axis b and the
other directions is clearly manifest in the specific heat data.
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FIG. 2. (a), (b) Specific heat for transverse H ‖ a and longitu-
dinal H ‖ b applied magnetic fields. Circles identify the lambda
anomalies in the Cp(T ) scans with fixed H , and squares—in the
Cp(H ) scans with fixed T . Crosses identify anomalies in the low-
temperature magnetometric measurements. (c), (d) Example Cp(H )
scans. (e), (f) Magnetic torque signal derivatives; geometry and ap-
proximate sample mass (resulting in a quite different sensitivity) are
indicated on the plot. The original curves are displayed in Fig. 4.

Measurements on an m = 0.81(6) mg Cs2CoBr4 sample were
carried out on a 9 T PPMS system with a 3He - 4He dilution
refrigerator insert. A standard relaxation calorimetry method
was used, also in combination with the so-called “long-pulse”
technique [19]. The resulting cumulative specific heat data set
for H ‖ a, b directions is shown in Figs. 2(a) and 2(b). For
the transverse field direction a the phase diagram essentially
contains a single ordered “A” phase and a small “F” satellite.

An almost identical picture is observed for the other H ⊥ b
directions as summarized in Fig. 3. Like with the magnetic
susceptibility, the a and c directions look very similar. An
additional phase diagram is measured in a field orientation
H ‖ x, with the x direction being crudely at 45◦ between a
and c. The F phase is almost suppressed here and the phase
boundary becomes nearly linear. The possible misalignment
from the intended direction in this measurement can be esti-
mated as 10◦–15◦. Thus, it may be possible that the F phase
completely disappears at some close field orientation.

B. Longitudinal direction

In contrast, the magnetic field along the emergent Ising axis
b results in a sequence of five different phases, from A to E.
In either case the phase diagram is terminated around 5.5–6 T
and above this field the system is simply a semipolarized
anisotropic paramagnet. This is in line with the effective ex-

FIG. 3. Phase diagrams for the H ⊥ b field directions. Color
shows Cp/T data; points (circles and squares) are the lambda peak
positions identified in the temperature or field scans correspondingly.

change coupling J0 � 5.5 K determined from the mean-field
analysis. The anomalies corresponding to the phase transitions
are quite visible in the Cp(H ) scans, with the examples given
in Figs. 2(c) and 2(d). Additional insight is brought by the
capacitive torque magnetometry. Similarly to [20], the sample
is placed on a flexible cantilever and the force that it experi-
ences is measured by the cantilever deflection that translates
into the setup’s capacity change. More details on the technique
are given in Appendix C. The torque data in Figs. 2(e), 2(f),
and 4 ensure that all the observed transitions are of magnetic
origin: each transition results in a strong anomaly in the total
force that acts on the sample in the magnetic field.

In Fig. 5 one can see a comparative plot of Cp(T ) depen-
dencies for H ‖ b in the A, B, C, and D/E phases. Panel (a)
shows the logarithmic plot of the data, assuming its interpre-
tation as a power law:

Cp(T ) = AT α. (3)

FIG. 4. Magnetic torque data for H ‖ a and H ‖ b direction at
0.15 K. A cantilever-to-base electric capacitance change is shown as
the function of field, that is increasing at 10−3 T/s. The correspond-
ing derivatives are displayed in Fig. 2.
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FIG. 5. Specific heat at several H ‖ b magnetic fields. Panel (a) is
the logarithmic, and panel (b) is the Arrhenius plot of the same data.
The approximate key parameters describing the linearized regime
(dashed lines) according to Eq. (3) in (a) or to Eq. (4) in (b) are
indicated in the plots. The low-temperature upturns are probably the
nuclear specific heat coming into play.

Panel (b) demonstrates the same data, but in a logCp vs
T −1 representation (Arrhenius plot). This assumes a thermally
activated dependence:

Cp(T ) = Ãe−�/T . (4)

In Fig. 5 one can compare how the two possible descrip-
tions fit to the data. According to Eq. (3) one finds T 6 and T 4

in the A and C phases correspondingly (0 and 3.5 T data sets).
Such strong power laws cast some doubt on Eq. (3) correctly
reflecting the physics of the problem. In contrast, thermally
activated description (4) allows us to estimate the correspond-
ing gaps as 5 and 2.5 K, which is in principle consistent with
the Hamiltonian parameters. On the other hand, for the B
phase (2 T data set) the power law T 2.5 seems to provide a rea-
sonable description of the data. It is also in line with the simple
T d/z expectation for a gapless material with a linear z = 1
dispersion and an effective dimensionality being in between
d = 2 and d = 3. The suppressed magnetic susceptibility in
the A and C phases and the substantial susceptibility in the
B phase are also consistent with the understanding of these
phases as the gapped and gapless ones.

The last scan at 4.5 T traverses both the D and E phases.
While the critical behavior obscures the “true” temperature
dependence of the magnetic specific heat, it is interesting to
note that above the transition Cp is almost temperature in-
dependent. Together with the reduced ordering temperatures,
this marks the E and D phases as some “satellite” states
emerging in the vicinity of the quantum critical point due
to the competition between the small parameters. The same
statement is equally applicable to the F phases in the trans-
verse field orientation. The principal phases A, B, and C seem
to be much more robust and of a different nature.

IV. MAGNETIZATION PLATEAUX

While for small magnetic fields the gap seems a natural
consequence of the Ising-like anisotropy, its presence in the

FIG. 6. (a), (b) Magnetization of Cs2CoBr4 at T = 0.1 K mea-
sured with the Faraday balance technique. Thick dashed line is the
reference SQUID data at 1.8 K [same experiment as in Fig. 1(b)].
Horizontal dashed line shows the expected saturation moment gμBS.
Inset in (b) shows the relative magnetization of the pseudospin-1/2
degrees of freedom derived from the magnetization curve. Three
plateaux are identified as corresponding to the collinear antiferro-
magnetic, collinear up-up-down, and fully polarized arrangements
of the pseudospins.

magnetized C state is not so trivial. A candidate gapped state
in a system featuring a triangular bond pattern is the famous
“up-up-down” (abbreviated as uud) collinear spin arrange-
ment. This is further confirmed by a direct measurement of the
Cs2CoBr4 magnetization curve at 100 mK. This measurement
is performed on the same sample as the specific heat with the
help of a miniature home-built Faraday balance magnetometer
with a twist-resistant cantilever [21]. The resulting curves are
demonstrated in Fig. 6 together with the reference data from a
SQUID magnetometer at 1.8 K that was also used for the cali-
bration. While for the transverse H ‖ a direction the measured
magnetization curve is relatively smooth and shows only the
weak kinks at the two phase transitions, the situation is very
different for the longitudinal H ‖ b magnetization. Most of
the transitions are marked with discontinuities. Moreover, the
slope of the magnetization curve is clearly reduced in the A
and C phases. But are these the real magnetization plateaux?
We argue that they are. The extra slope dM/dH is originating
from admixing of the single-ion high-energy | ± 3/2〉 states
to the ground state by a noncommuting magnetic field, and it
is also pronounced at high fields when the pseudospin degrees
of freedom are fully polarized. The slope of the magnetiza-
tion curve slightly above 6 T should provide a reasonable
estimate of the effect (at high magnetic field this effect is
reduced, as the magnetization curve flattens in general). The
corrected data representing the relative magnetization of the
pure pseudospin-1/2 are shown in the inset of Fig. 6(b). The
plateau character of the A and C phases is well pronounced in
this representation.

V. DISCUSSION

A. Possible collinear structures

For the low-field A phase a suitable candidate struc-
ture might be a collinear antiferromagnetic “stripe” state (as
in a sister material Cs2CoCl4 [12]; see Fig. 7). This state
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FIG. 7. Sketches of the plausible collinear magnetic phases
(stripe, uud, and saturated) in Cs2CoBr4 for the H ‖ b field direction.
The intervening phases B, D, and E remain to be clarified.

automatically satisfies the anisotropic exchange interactions
within both even and odd chains. On the mean-field level the
chains remain decoupled for any strength of J ′, and the overall
collinear structure must be fixed by some kind of “order from
disorder” mechanism [22]. This state is significantly more
robust in Cs2CoBr4 than in Cs2CoCl4: it is destabilized by
a field strength that is nearly 0.3 of the saturation field for the
1/2-pseudospins, while in the latter material the correspond-
ing number is only 0.1. This may reflect the increased J ′/J
ratio in Cs2CoBr4. To summarize, the A plateau is naturally
explained as the nonmagnetized state of a collinear magnet in
a small field applied along the effective easy axis.

The magnetization C plateau is close to 1/3 of the full
saturated value for the pseudospin, validating it as a collinear
uud structure. This is again pointing to the importance of J ′
bonds. The uud collinear structures are specific to the sys-
tems with triangular exchange patterns. Being stabilized by
the quantum fluctuations at low temperatures, they represent
another example of “order from disorder” [1,23]. Again, the
effectively easy-axis character of the system will be in fa-
vor of such structure too. The anisotropy and the quantum
fluctuations are acting together, and the resulting 1/3 magne-
tization plateau is enormously wide: it occupies almost 0.25
of the full phase diagram width in the magnetic field. For
comparison, in Cs2CuBr4 the relative width of the uud phase
is just 0.05 [15,16], and in the ideal triangular Heisenberg
case the expected number is 0.2 [23]. Remarkably, a group of
recently reported delafossite-like anisotropic triangular lattice
antiferromagnets, such as NaYbO2 [24], NaYbSe2 [25], and
NaYbS2 [26], were found to exhibit an unusually wide uud
phase as well. A property they share with Cs2CoBr4 is the
significant anisotropy that varies between the bonds. However,
the simultaneous presence of another wide plateau at M = 0
is a special feature of Cs2CoBr4.

B. Cs2CoBr4 and the close materials

The nature of the remaining phases, B, D, E, and F, is
unknown at the moment. While in the XXZ-type models or in
the presence of weak spin-orbit interactions various (nearly)
coplanar phases are known to occur in a magnetized trian-
gular lattice [2,23,27,28], heavy frustration created by the
competing single-ion anisotropy directions would probably
be prohibitive for their formation in Cs2CoBr4. Spins in the
neighboring chains strongly prefer to be confined in two or-
thogonal planes, and, while allowing the collinear states (as
shown in Fig. 7), this circumstance impedes the coplanar
ones. The behavior of Cs2CoBr4 is clearly different from

a more conventional XXZ triangular-lattice magnets such as
Ba3CoSb2O9 [29,30].

The phase diagram of the sister material Cs2CoCl4, demon-
strating some incommensurate and multi-Q states [12,31], is
of limited guidance too. It misses the aspect of significant
frustration by J ′ interactions, as it can be concluded from
the absence of the uud state. Thus, neither the conventional
triangular lattice nor the chain-based approach seem to be
fully appropriate for the discussion of the Cs2CoBr4 phase
diagram. The situation that we encounter here according to
Eq. (2) is more akin, although not fully identical, to a triangu-
lar Kitaev-Heisenberg model that can host multiple exotic spin
states [32]. Although the proposal for the extremely exotic
physics is too preliminary at the moment, Hamiltonian (2)
taken together with the phase diagram in Fig. 2(b) is sug-
gestive of some nontrivial spin textures that may be present
among the many magnetic phases. We would also like to stress
that the proposed Hamiltonian (2) is the most basic one, and
does not include the further symmetry-allowed terms such as
the second single-ion anisotropy constant E and the multiple
Dzyaloshinskii-Moriya interactions (that are very important in
Cs2CuCl4, for instance [10,33]). From the experimental point
of view, the “frustration ratio” of J0/TN � 6 in Cs2CoBr4 is
quite the same as in the strongly anisotropic and frustrated
magnet α-RuCl3 [6,34].

The plateaux coexistence is the direct evidence of an in-
terplay between the frustrated exchange and the anisotropies.
There exists another material that shows the M = 0 and
M = 1/3 plateaux simultaneously—an Ising chain α-CoV2O6

[35]. In this compound the Co2+ ions display a strong Ising
anisotropy with a uniquely oriented axis. These ions form the
ferromagnetic chains acting as the Ising “superspins,” trans-
versely coupled in an antiferromagnetic triangular lattice way.
Thus, the basic physics of α-CoV2O6 can be described by the
classical triangular lattice Ising model, featuring only M =
0, 1/3, and 1 magnetization states. This is what is observed
in this material indeed [36,37] (although a closer investigation
also reveals some extra metastable states at the abrupt mag-
netization steps [38]). In contrast, the Ising-like character of
Cs2CoBr4 is not inherited from the uniaxial ionic anisotropy,
but emerges from the competition between the ionic planar
anisotropies on different sites. This circumstance, together
with the triangular-like geometry, leads to a much richer phase
diagram. Nonetheless, the Ising toy model illustrating the case
of α-CoV2O6 and discussed in more details in Appendix D
provides a way for estimating the exchange ratio J ′/J . From
comparing the energies of stripe, uud, and polarized states as
a function of this ratio and the magnetic field, we can crudely
estimate J ′/J ∼ 0.3 in Cs2CoBr4.

VI. CONCLUSION

To summarize, the S = 3/2 quantum antiferromagnet
Cs2CoBr4 is found to feature an unusual type of frustra-
tion that stems from both the geometry of the exchange
bonds and the geometry of the strong single-ion anisotropies.
The “spin space” component of the frustration creates an
effective S = 1/2 Hamiltonian with the bond-dependent ex-
changes. Coexistence of M � 0 and M � 1/3 magnetization
plateaux is the exceptional feature of Cs2CoBr4 and it is the
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TABLE I. Chemical structure of Cs2CoBr4. The resulting relative atomic positions are rather close to ones in Cs2CoCl4 [11] (the coordinate
system differs by a [ 1

2 , 1
2 , 1

2 ] offset in this reference).

Lattice parameters a b c

10.1931(19) 7.725(3) 13.510(4)

Symmetry transformations Pnma

x y z
1
2 − x −y 1

2 + z
−x 1

2 + y −z
1
2 + x 1

2 − y 1
2 − z

−x −y −z
− 1

2 + x y − 1
2 − z

x − 1
2 − y z

− 1
2 − x − 1

2 + y − 1
2 + z

Atom x y z Equiv. Uiso

Cs 1 0.52242(6) 0.7500 0.32846(4) 0.0378(2)
Cs 2 0.86229(7) 0.7500 0.60296(7) 0.0577(3)
Co 1 0.26443(10) 0.7500 0.57771(8) 0.0284(3)
Br 1 0.49803(9) 0.7500 0.59887(8) 0.0498(3)
Br 2 0.18717(10) 0.7500 0.41040(7) 0.0495(3)
Br 3 0.17424(7) 0.49823(9) 0.65413(7) 0.0564(3)

direct consequence of interplay between the anisotropy and
exchange geometries. While the plateau states can be prelim-
inarily identified as the collinear antiferromagnetic and uud
structures naturally compatible with the effective Hamilto-
nian, the situation is much less certain for the magnetizable
phases. Scenarios derived from the known cases of the
XXZ-like triangular lattice or XY-like chains are equally prob-
lematic here. To the best of our knowledge, the frustrated
Hamiltonians of this type were not considered in the literature
before. At the same time, the prototype material is already
there and the corresponding parameters can easily be tuned
by the chemical composition or the pressure. We believe that
further experiments (neutron spectroscopy in particular) and
theoretical effort aimed at exploring this specific frustration
mechanism may yield some novel exotic magnetic states.
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APPENDIX A: CRYSTAL GROWTH AND CRYSTAL
STRUCTURE

The crystal of Cs2CoBr4 used in the present refinement
procedure was grown from a stoichiometric 2 : 1 mixture of
CsBr (Sigma Aldrich, 99.9%) and CoBr2 (Sigma Aldrich,
99.99%, anhydrous). The powders were mixed together and
finely ground in an argon-filled glove box, then loaded
in a glassy carbon crucible. The crucible was kept under
high vacuum at � 200 ◦C for three days, then sealed. The
Bridgman furnace growth protocol consisted of slow trans-
lation (1.5 cm/day, 10 cm total) of the crucible through the
point with a temperature of 570 ◦C and a gradient of about
10 ◦C/cm, followed by a slow cool-down.

The x-ray refinement of the Cs2CoBr4 single crystal was
performed with a Bruker APEX-II diffractometer at room
temperature using 69 072 reflections of which 1428 were
unique, with the final R factors R = 0.033 and wR = 0.1264.
The results are given in Table I.

APPENDIX B: SUSCEPTIBILITY FITTING PROCEDURE

We start from a single S = 3/2 ion model with uniaxial
anisotropy:

ĤSI = D(Ŝ · n)2. (B1)

The anisotropy axis n is perpendicular to the b direction.
Thus, for all the ions H ‖ b is a purely transverse orientation.
Susceptibility per ion is described by the formula

χSI
b (T ) = (gbμB)2

T

[
1

1 − exp (−2D/T )
+ 3T

4D
tanh

D

T

]
.

(B2)

The situation is more complicated for the remaining two
main crystal axes. Thanks to the mirror symmetries relating
the four CoBr4 tetrahedra of a single unit cell, the field along
a or c will be equivalent for all of them. If the anisotropy axis
lies at angle β with respect to the a direction for a given Co2+

ion, the resulting single-ion susceptibility would be χSI
a =

χSI(β ) and χSI
c = χSI(π/2 − β ). Susceptibility for a field,

oriented at any angle, can easily be calculated numerically
and the angle β itself can be used as a fit parameter. Thus, the
complete three-directional susceptibility data set is described
by five parameters: anisotropy constant D, angle β defining
the orientation of the corresponding axis, and g factors gα with
α = a, b, c. We can improve it further by taking into account
the interactions between the ions on the mean-field level.
This would require adding one extra mean-field parameter
J0 = ∑

±r Jr, simply the sum of the relevant exchanges. The
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TABLE II. The results of the susceptibility fitting according to
Eqs. (B3) and (B4).

D 14 ± 1 K
β 44◦ ± 1◦

J0 5.5 ± 0.2 K
ga 2.42 ± 0.01
gb 2.47 ± 0.02
gc 2.37 ± 0.01

χ 0
a 5.8 ± 1.7 × 10−4 emu/mol

χ 0
b 9.9 ± 2.2 × 10−4 emu/mol

χ 0
c 4.2 ± 1.7 × 10−4 emu/mol

resulting mean-field susceptibility per ion for a given field
direction would be

χMF
α (T ) = χSI

α (T )

1 + J0
(gαμB )2 χSI

α (T )
. (B3)

And now, also taking care of the temperature-independent sus-
ceptibility contribution χ0, the final expression for the molar
susceptibility reads

χα (T ) = NAχMF
α (T ) + χ0

α . (B4)

Simultaneously fitting the data for all three field directions
down to 20 K (the mean-field approximation starts to break
down below) we obtain the parameter estimates summarized
in Table II.

APPENDIX C: TORQUE DATA

The two torque experiments reported in the present work
are rather different in their sensitivity. This is mostly due to
the fact that there is a dramatic difference in the sample mass,
but also the details of the geometry might play a role. In the
general scenario the torque experienced by the cantilever is
given by the formula

T = [M × H] + [L × (M · ∇)H]. (C1)

Here L is the distance from the fixed point of the cantilever to
the sample position on it. Thus, both longitudinal and trans-
verse (with respect to the field) components of magnetization
may be contributing to the total cantilever deflection. The
deflection is in turn measured as the change in capacitance
of the device with the help of an Andeen-Hagerling 2550A
bridge. However, depending on the shape the cantilever may
be strongly resistant to bending or twisting in some ways,
thus effectively excluding certain terms of Eq. (C1) from the
game: the corresponding torque projection would not result in
a measurable displacement.

In the H ‖ b field experiment the large 15 mg sample
was used with the same setup as in Ref. [20]. The b axis of
the sample was co-aligned with the simple one-leg cantilever
direction. Taking into account the inevitable geometry imper-
fections, the resulting setup is effectively sensitive to all the
magnetization components.

In contrast, the H ‖ a measurement was performed in a
Faraday balance setup [21]. This setup aims at optimizing

FIG. 8. A “phase diagram” of the Eq. (D1) Ising toy model,
consisting of three possible states: stripe, uud, and polarized. The
widths of M = 0 and M = 1/3 plateaux would be roughly equal to
each other around J ′/J ∼ 0.3.

the sensitivity to the longitudinal magnetization component,
possibly eliminating contributions from the other ones. In
addition, the geometry of the device urges one to use very
small samples (0.8 mg in our case).

APPENDIX D: PLATEAUX WIDTH TOY MODEL
ANALYSIS

In order to crudely estimate the possible J ′/J ratio, we
would like to compare the width of the M = 0 and M = 1/3
plateaux. We do that by dealing with a toy Ising model that
supports only the collinear states:

ĤIsing =
∑
i, j

J Ŝy
i, j Ŝ

y
i, j+1 + J ′Ŝy

i, j Ŝ
y
i+1, j + J ′Ŝy

i, j Ŝ
y
i+1, j+1.

(D1)

The above Hamiltonian is the descendant of Ĥ1/2 [Eq. (2)]
from the main text with 4J → J , 4J ′ → J ′, and x, z spin
components truncated. It can be seen as somewhat relevant
to the material α-CoV2O6 [35] discussed in the main text.

We fix the sum J + 2J ′ such that it would give the con-
stant saturation field Hsat, and then we investigate which of the
two possible structures provides the minimal energy in a given
magnetic field. The resulting “phase diagram” as a function of
the magnetic field and the exchange ratio is given in Fig. 8.
One can see that the uud phase is absent for vanishing J ′/J ,
and it extends down to zero field in the nondistorted triangular
lattice limit, in agreement with the well-known results [2,27].

In the case of Cs2CoBr4 the widths of the stripe and uud
phases are roughly equal to each other. Thus, from this very
naive toy model we can make a “zeroth-order” estimate for
the frustration ratio J ′/J ∼ 0.3. This renders Cs2CoBr4 as a
quasi-2D rather than quasi-1D dimensional material from the
coupling strength point of view. In the notations of the original
Ĥ3/2 Hamiltonian those couplings are J ∼ 1.5 and J ′ ∼ 0.5 K.

043384-7



K. YU. POVAROV et al. PHYSICAL REVIEW RESEARCH 2, 043384 (2020)

[1] O. A. Starykh, Unusual ordered phases of highly frustrated
magnets: A review, Rep. Prog. Phys. 78, 052502 (2015).

[2] D. Yamamoto, G. Marmorini, and I. Danshita, Quantum Phase
Diagram of the Triangular-Lattice XXZ Model in a Magnetic
Field, Phys. Rev. Lett. 112, 127203 (2014); D. Sellmann, X.-F.
Zhang, and S. Eggert, Phase diagram of the antiferromagnetic
XXZ model on the triangular lattice, Phys. Rev. B 91, 081104(R)
(2015).

[3] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Quan-
tum Excitations in Quantum Spin Ice, Phys. Rev. X 1,
021002 (2011); M. Taillefumier, O. Benton, H. Yan, L. D. C.
Jaubert, and N. Shannon, Competing Spin Liquids and Hidden
Spin-Nematic Order in Spin Ice with Frustrated Transverse
Exchange, ibid. 7, 041057 (2017).

[4] M. J. P. Gingras and P. A. McClarty, Quantum spin ice: A search
for gapless quantum spin liquids in pyrochlore magnets, Rep.
Prog. Phys. 77, 056501 (2014).

[5] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[6] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink,
Y. Singh, P. Gegenwart, and R. Valentí, Models and materials
for generalized Kitaev magnetism, J. Phys.: Condens. Matter
29, 493002 (2017); H. Takagi, T. Takayama, G. Jackeli, G.
Khaliullin, and S. E. Nagler, Concept and realization of Kitaev
quantum spin liquids, Nat. Rev. Phys. 1, 264 (2019).

[7] H. Liu, J. Chaloupka, and G. Khaliullin, Kitaev Spin Liquid in
3d Transition Metal Compounds, Phys. Rev. Lett. 125, 047201
(2020).

[8] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev,
Topography of Spin Liquids on a Triangular Lattice, Phys. Rev.
Lett. 120, 207203 (2018); P. A. Maksimov, Z. Zhu, S. R. White,
and A. L. Chernyshev, Anisotropic-Exchange Magnets on a
Triangular Lattice: Spin Waves, Accidental Degeneracies, and
Dual Spin Liquids, Phys. Rev. X 9, 021017 (2019).

[9] R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski,
Experimental Realization of a 2D Fractional Quantum Spin
Liquid, Phys. Rev. Lett. 86, 1335 (2001); Y. Tokiwa, T. Radu, R.
Coldea, H. Wilhelm, Z. Tylczynski, and F. Steglich, Magnetic
phase transitions in the two-dimensional frustrated quantum
antiferromagnet Cs2CuCl4, Phys. Rev. B 73, 134414 (2006);
A. I. Smirnov, K. Yu. Povarov, S. V. Petrov, and A. Ya.
Shapiro, Magnetic resonance in the ordered phases of the
two-dimensional frustrated quantum magnet Cs2CuCl4, ibid.
85, 184423 (2012); E. Schulze, S. Arsenijevic, L. Opherden,
A. N. Ponomaryov, J. Wosnitza, T. Ono, H. Tanaka, and S. A.
Zvyagin, Evidence of one-dimensional magnetic heat transport
in the triangular-lattice antiferromagnet Cs2CuCl4, Phys. Rev.
Research 1, 032022 (2019).

[10] O. A. Starykh, H. Katsura, and L. Balents, Extreme sensitivity
of a frustrated quantum magnet: Cs2CuCl4, Phys. Rev. B 82,
014421 (2010).

[11] B. N. Figgis, P. A. Reynolds, and A. H. White, Charge density in
the CoCl2−

4 ion: A comparison with spin density and theoretical
calculations, J. Chem. Soc., Dalton Trans. 1737 (1987).

[12] M. Kenzelmann, R. Coldea, D. A. Tennant, D. Visser, M.
Hofmann, P. Smeibidl, and Z. Tylczynski, Order-to-disorder
transition in the XY-like quantum magnet Cs2CoCl4 induced
by noncommuting applied fields, Phys. Rev. B 65, 144432
(2002).

[13] O. Breunig, M. Garst, E. Sela, B. Buldmann, P. Becker, L.
Bohatý, R. Müller, and T. Lorenz, Spin- 1

2 XXZ Chain System
Cs2CoCl4 in a Transverse Magnetic Field, Phys. Rev. Lett. 111,
187202 (2013).

[14] O. Breunig, M. Garst, A. Rosch, E. Sela, B. Buldmann, P.
Becker, L. Bohatý, R. Müller, and T. Lorenz, Low-temperature
ordered phases of the spin- 1

2 XXZ chain system Cs2CoCl4, Phys.
Rev. B 91, 024423 (2015).

[15] T. Ono, H. Tanaka, H. Aruga Katori, F. Ishikawa, H. Mitamura,
and T. Goto, Magnetization plateau in the frustrated quantum
spin system Cs2CuBr4, Phys. Rev. B 67, 104431 (2003); H.
Tsujii, C. R. Rotundu, T. Ono, H. Tanaka, B. Andraka, K.
Ingersent, and Y. Takano, Thermodynamics of the up-up-down
phase of the S = 1

2 triangular-lattice antiferromagnet Cs2CuBr4,
ibid. 76, 060406(R) (2007).

[16] N. A. Fortune, S. T. Hannahs, Y. Yoshida, T. E. Sherline, T. Ono,
H. Tanaka, and Y. Takano, Cascade of Magnetic-Field-Induced
Quantum Phase Transitions in a Spin- 1

2 Triangular-Lattice An-
tiferromagnet, Phys. Rev. Lett. 102, 257201 (2009).

[17] H. J. Seifert and I. Al-Khudair, Über die systeme
alkalimetallbromid/kobalt(II)-bromid, J. Inorg. Nucl. Chem.
37, 1625 (1975); H.-J. Seifert, Investigation of phase diagrams
by DTA and X-ray methods: The systems AX/CoX2 (A =
Na-Cs, TI;X = Cl, Br, I), Thermochim. Acta 20, 31 (1977).

[18] J. R. Schrieffer and P. A. Wolff, Relation between the Ander-
son and Kondo Hamiltonians, Phys. Rev. 149, 491 (1966); S.
Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer-Wolff trans-
formation for quantum many-body systems, Ann. Phys. 326,
2793 (2011).

[19] A. Scheie, LongHCPulse: Long-pulse heat capacity on a
quantum design PPMS, J. Low Temp. Phys. 193, 60
(2018).

[20] Y. Feng, K. Yu. Povarov, and A. Zheludev, Magnetic phase
diagram of the strongly frustrated quantum spin chain system
PbCuSO4(OH)2 in tilted magnetic fields, Phys. Rev. B 98,
054419 (2018).

[21] D. Blosser, L. Facheris, and A. Zheludev, Miniature capacitive
Faraday force magnetometer for magnetization measurements
at low temperatures and high magnetic fields, Rev. Sci. Instr.
91, 073905 (2020).

[22] C. L. Henley, Ordering due to Disorder in a Frustrated Vector
Antiferromagnet, Phys. Rev. Lett. 62, 2056 (1989).

[23] A. V. Chubukov and D. I. Golosov, Quantum theory of an
antiferromagnet on a triangular lattice in a magnetic field, J.
Phys.: Condens. Matter 3, 69 (1991).

[24] K. M. Ranjith, D. Dmytriieva, S. Khim, J. Sichelschmidt, S.
Luther, D. Ehlers, H. Yasuoka, J. Wosnitza, A. A. Tsirlin,
H. Kühne, and M. Baenitz, Field-induced instability of the
quantum spin liquid ground state in the Jeff = 1

2 triangular-
lattice compound NaYbO2, Phys. Rev. B 99, 180401(R) (2019);
L. Ding, P. Manuel, S. Bachus, F. Grußler, P. Gegenwart, J.
Singleton, R. D. Johnson, H. C. Walker, D. T. Adroja, A. D.
Hillier, and A. A. Tsirlin, Gapless spin-liquid state in the struc-
turally disorder-free triangular antiferromagnet NaYbO2, ibid.
100, 144432 (2019); M. M. Bordelon, E. Kenney, C. Liu, T.
Hogan, L. Posthuma, M. Kavand, Y. Lyu, M. Sherwin, N. P.
Butch, C. Brown, M. J. Graf, L. Balents, and S. D. Wilson,
Field-tunable quantum disordered ground state in the triangular-
lattice antiferromagnet NaYbO2, Nat. Phys. 15, 1058 (2019).

043384-8

https://doi.org/10.1088/0034-4885/78/5/052502
https://doi.org/10.1103/PhysRevLett.112.127203
https://doi.org/10.1103/PhysRevB.91.081104
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.7.041057
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1088/1361-648X/aa8cf5
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1103/PhysRevLett.125.047201
https://doi.org/10.1103/PhysRevLett.120.207203
https://doi.org/10.1103/PhysRevX.9.021017
https://doi.org/10.1103/PhysRevLett.86.1335
https://doi.org/10.1103/PhysRevB.73.134414
https://doi.org/10.1103/PhysRevB.85.184423
https://doi.org/10.1103/PhysRevResearch.1.032022
https://doi.org/10.1103/PhysRevB.82.014421
https://doi.org/10.1039/DT9870001737
https://doi.org/10.1103/PhysRevB.65.144432
https://doi.org/10.1103/PhysRevLett.111.187202
https://doi.org/10.1103/PhysRevB.91.024423
https://doi.org/10.1103/PhysRevB.67.104431
https://doi.org/10.1103/PhysRevB.76.060406
https://doi.org/10.1103/PhysRevLett.102.257201
https://doi.org/10.1016/0022-1902(75)80287-9
https://doi.org/10.1016/0040-6031(77)85037-5
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1007/s10909-018-2042-9
https://doi.org/10.1103/PhysRevB.98.054419
https://doi.org/10.1063/5.0005850
https://doi.org/10.1103/PhysRevLett.62.2056
https://doi.org/10.1088/0953-8984/3/1/005
https://doi.org/10.1103/PhysRevB.99.180401
https://doi.org/10.1103/PhysRevB.100.144432
https://doi.org/10.1038/s41567-019-0594-5


MAGNETIZATION PLATEAUX CASCADE IN THE … PHYSICAL REVIEW RESEARCH 2, 043384 (2020)

[25] K. M. Ranjith, S. Luther, T. Reimann, B. Schmidt, Ph.
Schlender, J. Sichelschmidt, H. Yasuoka, A. M. Strydom,
Y. Skourski, J. Wosnitza, H. Kühne, Th. Doert, and M.
Baenitz, Anisotropic field-induced ordering in the triangular-
lattice quantum spin liquid NaYbSe2, Phys. Rev. B 100, 224417
(2019).

[26] M. Baenitz, Ph. Schlender, J. Sichelschmidt, Y. A. Onykiienko,
Z. Zangeneh, K. M. Ranjith, R. Sarkar, L. Hozoi, H. C.
Walker, J.-C. Orain, H. Yasuoka, J. van den Brink, H. H.
Klauss, D. S. Inosov, and Th. Doert, NaYbS2: A planar spin- 1

2
triangular-lattice magnet and putative spin liquid, Phys. Rev.
B 98, 220409(R) (2018); J. Ma, J. Li, Y. H. Gao, C. Liu, Q.
Ren, Z. Zhang, Z. Wang, R. Chen, J. Embs, E. Feng, F. Zhu,
Q. Huang, Z. Xiang, L. Chen, E. S. Choi, Z. Qu, L. Li, J.
Wang, H. Zhou, Y. Su, X. Wang, Q. Zhang, and G. Chen,
Spin-orbit-coupled triangular-lattice spin liquid in rare-earth
chalcogenides, arXiv:2002.09224.

[27] R. Chen, H. Ju, H.-C. Jiang, O. A. Starykh, and L. Balents,
Ground states of spin- 1

2 triangular antiferromagnets in a mag-
netic field, Phys. Rev. B 87, 165123 (2013).

[28] C. Griset, S. Head, J. Alicea, and O. A. Starykh, Deformed
triangular lattice antiferromagnets in a magnetic field: Role
of spatial anisotropy and Dzyaloshinskii-Moriya interactions,
Phys. Rev. B 84, 245108 (2011).

[29] G. Quirion, M. Lapointe-Major, M. Poirier, J. A. Quilliam, Z. L.
Dun, and H. D. Zhou, Magnetic phase diagram of Ba3CoSb2O9

as determined by ultrasound velocity measurements, Phys. Rev.
B 92, 014414 (2015); G. Koutroulakis, T. Zhou, Y. Kamiya,
J. D. Thompson, H. D. Zhou, C. D. Batista, and S. E. Brown,
Quantum phase diagram of the S = 1

2 triangular-lattice antifer-
romagnet Ba3CoSb2O9, ibid. 91, 024410 (2015).

[30] Y. Kamiya, L. Ge, T. Hong, Y. Qiu, D. L. Quintero-Castro,
Z. Lu, H. B. Cao, M. Matsuda, E. S. Choi, C. D. Batista, M.
Mourigal, H. D. Zhou, and J. Ma, The nature of spin excitations
in the one-third magnetization plateau phase of Ba3CoSb2O9,
Nat. Commun. 9, 2666 (2018).

[31] S. P. Gosuly, Neutron scattering studies of low-dimensional
quantum spin systems, Ph.D. thesis, University College Lon-
don, 2017, https://discovery.ucl.ac.uk/id/eprint/1553138/.

[32] M. Becker, M. Hermanns, B. Bauer, M. Garst, and S. Trebst,
Spin-orbit physics of j = 1

2 Mott insulators on the triangular

lattice, Phys. Rev. B 91, 155135 (2015); I. Rousochatzakis,
U. K. Rössler, J. van den Brink, and M. Daghofer, Kitaev
anisotropy induces mesoscopic Z2 vortex crystals in frus-
trated hexagonal antiferromagnets, ibid. 93, 104417 (2016); M.
Kishimoto, K. Morita, Y. Matsubayashi, S. Sota, S. Yunoki,
and T. Tohyama, Ground state phase diagram of the Kitaev-
Heisenberg model on a honeycomb-triangular lattice, ibid. 98,
054411 (2018).

[33] R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C. Wolters,
and Z. Tylczynski, Direct Measurement of the Spin Hamiltonian
and Observation of Condensation of Magnons in the 2D Frus-
trated Quantum Magnet Cs2CuCl4, Phys. Rev. Lett. 88, 137203
(2002); K. Yu. Povarov, A. I. Smirnov, O. A. Starykh, S. V.
Petrov, and A. Ya. Shapiro, Modes of Magnetic Resonance in
the Spin-Liquid Phase of Cs2CuCl4, ibid. 107, 037204 (2011).

[34] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y.
Zhao, D. Parshall, and Y.-J. Kim, Magnetic order in α-RuCl3:
A honeycomb-lattice quantum magnet with strong spin-orbit
coupling, Phys. Rev. B 91, 144420 (2015).

[35] Z. He, Y. Yamaura, J.-I. Ueda, and W. Cheng, CoV2O6 single
crystals grown in a closed crucible: Unusual magnetic behaviors
with large anisotropy and 1/3 magnetization plateau, J. Am.
Chem. Soc. 131, 7554 (2009).

[36] M. Lenertz, J. Alaria, D. Stoeffler, S. Colis, A. Dinia, O.
Mentré, G. André, F. Porcher, and E. Suard, Magnetic structure
of ground and field-induced ordered states of low-dimensional
α-CoV2O6: Experiment and theory, Phys. Rev. B 86, 214428
(2012); M. Markkula, A. M. Arévalo-López, and J. P. Attfield,
Field-induced spin orders in monoclinic CoV2O6, ibid. 86,
134401 (2012); B. Kim, B. H. Kim, K. Kim, H. C. Choi, S.-Y.
Park, Y. H. Jeong, and B. I. Min, Unusual magnetic properties
induced by local structure in a quasi-one-dimensional Ising
chain system: α-CoV2O6, ibid. 85, 220407(R) (2012).

[37] A. Saúl, D. Vodenicarevic, and G. Radtke, Theoretical study
of the magnetic order in α-CoV2O6, Phys. Rev. B 87, 024403
(2013).

[38] L. Edwards, H. Lane, A. M. Arevalo-Lopez, M. Songvilay, E.
Pachoud, Ch. Niedermayer, G. Tucker, P. Manuel, C. Paulsen,
E. Lhotel, J. P. Attfield, S. R. Giblin, and C. Stock, Metastable
and localized Ising magnetism in α-CoV2O6 magnetization
plateaus, Phys. Rev. B 102, 195136 (2020).

043384-9

https://doi.org/10.1103/PhysRevB.100.224417
https://doi.org/10.1103/PhysRevB.98.220409
http://arxiv.org/abs/arXiv:2002.09224
https://doi.org/10.1103/PhysRevB.87.165123
https://doi.org/10.1103/PhysRevB.84.245108
https://doi.org/10.1103/PhysRevB.92.014414
https://doi.org/10.1103/PhysRevB.91.024410
https://doi.org/10.1038/s41467-018-04914-1
https://discovery.ucl.ac.uk/id/eprint/1553138/
https://doi.org/10.1103/PhysRevB.91.155135
https://doi.org/10.1103/PhysRevB.93.104417
https://doi.org/10.1103/PhysRevB.98.054411
https://doi.org/10.1103/PhysRevLett.88.137203
https://doi.org/10.1103/PhysRevLett.107.037204
https://doi.org/10.1103/PhysRevB.91.144420
https://doi.org/10.1021/ja902623b
https://doi.org/10.1103/PhysRevB.86.214428
https://doi.org/10.1103/PhysRevB.86.134401
https://doi.org/10.1103/PhysRevB.85.220407
https://doi.org/10.1103/PhysRevB.87.024403
https://doi.org/10.1103/PhysRevB.102.195136

