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Analytical and cellular automaton approach to a generalized SEIR model for infection
spread in an open crowded space
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We formulate a generalized susceptible exposed infectious recovered (SEIR) model on a graph, describing
the population dynamics of an open crowded place with an arbitrary topology. As a sample calculation, we
discuss three simple cases, both analytically and numerically, by means of a cellular automata simulation of the
individual dynamics in the system. As a result, we provide the infection ratio in the system as a function of
controllable parameters, which allows for quantifying how acting on the human behavior may effectively lower
the disease spread throughout the system.
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I. INTRODUCTION

Compartmental models provide a conceptually simple and
widely used mean to mathematically modeling the dynamics
of infection transmission in isolated populations [1–4]. In
such models, the population is divided into compartments,
each one corresponding to a specific health status of the in-
dividuals that belong to it. For instance, the basic SIR model
consists of three compartments, the Susceptible compartment
(S), to which not infected, healthy individuals belong, the In-
fectious compartment (I), that contains infectious individuals,
and the Recovered compartment (R), that contains individuals
who either recovered from the infection or died. In the SIR
model, the spread of the infection is described in terms of a set
of differential equations that describe the population transfer
from one compartment to another one. The key parameters of
the model are the rates of transfer between the compartments
which, in general, are quantities to be experimentally fitted.

In fact, while the SIR model is a good tool for long
time simulations, it does not take into account the latent
phase, in which people are infected but not yet infectious.
The simplest way to fix this flaw of the model is by adding
the Exposed compartment (E ). The E compartment contains
individuals who have been infected but are not yet infectious.
This improvement eventually leads to the SEIR model, more
appropriate for short-time simulations. For instance, the SEIR
model has recently been widely employed to describe the
Covid-19 infection, though with some limitations [5–8].

Despite their effectiveness in describing a number of
real-life infection dynamics, the SIR and the SEIR models,
together with their generalization to a higher number of differ-
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ent compartments [9], are in general affected by a limitation.
Indeed, they describe, in general, the average global behavior
of the population, with no attention to local dynamics that can
make the level of infection strongly depend on the region in
real space that one is considering. Instead, this last aspect has
become of fundamental importance in, e.g., countries recently
affected by Covid-19 pandemic, such as Italy, which show
a strongly uneven spread of the infection across the country
territory [10]. In addition, the SIR- and the SEIR-type models
basically describe closed systems, without the possibility for
people to enter or exit from the system. So, they are also
expected not to be reliable when describing relatively small
populations that can exchange individuals with the surround-
ing environment, such as shopping centers or closed commer-
cial areas. In systems as such, the infection dynamics is again
expected to be strongly space dependent, due to, e.g., the pres-
ence of very popular shops in a shopping mall, where people
spend on the average much more time than in different areas.

In general, it is well known that the spread of a disease
has a strong dependence upon the topology of the system
and on how individuals and/or subgroups are connected to
each other. Specifically, the topology strongly affects the
rates that eventually enter the differential equations describ-
ing the population dynamics and therefore it determines the
specific stationary solution, describing the system over long
timescales [11]. For this reason, in recent years, a remarkable
amount of work has been devoted to discussing the dynamics
of epidemic processes in metapopulation models [12–17] on
graphs and hypergraphs [18–21]. However, previous metapop-
ulation movement-contagion descriptions focus on large-scale
models, rather than on local traffic flows, that are fundamental
for the description of the infection spread in small areas. In
these systems, time and space inhomogeneity leads to nontriv-
ial consequences on the population dynamics [22–27]. These
are of the utmost importance over short-time, small-space
scales, as in the case of the disease dynamics on a sidewalk,
in a shopping center or running tracks, where the topology of
the system strongly affects the effective contact rate, that is,
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the number of contacts, per unit of time, between individuals
[28].

Based on the above observations, in this paper we describe
the population dynamics of an open crowded place in terms
of a “local” SEIR model on a graph, with position-dependent
parameters. In particular, after writing the set of differential
equations describing our system, we first provide an approx-
imate analytical solution within a mean field approach to
the full mathematical problem and, therefore, we resort to
a cellular automata (CA) simulation of the people traffic in
the system [29–31]. In general, an analytical treatment of
the problem in terms of a collection of local compartmental
models in a nonuniform nonequilibrium configuration is quite
difficult to deal with, as the number of differential equations
scales quickly with the size of the system. At variance, the CA
is able to describe the pretty complicated behavior in terms
of simple rules that apply simultaneous to all the nodes of
the graph. Eventually, we employ the CA numerical results
to pertinently complement and check the reliability of the
(approximate) analytical ones.

To quantitatively describe the infection spread over the
graph, in all the cases we compute the (average) infection ratio
in the steady state of the system, Cr , that is, the ratio between
the variation in the average population in the compartment E
over a time T long enough for the system to reach the steady
state and the initial average population in the compartment S.
Cr measures the hazard for a healthy individual to get infected
when going across the system in the presence of infected
individuals. Therefore, to quantify the level of infection risk
for an individual in the system, we compute Cr as a function
of various system parameters, some of which are particularly
important, as they can be readily acted on by, for instance,
controlling the entrance rate of people in a shopping center,
letting people move in one direction only at each side of the
aisles in the center, increasing or decreasing the number of
points at which it is possible for individuals to change their
direction of motion, and so on.

The key feature of our work is that here we focus onto open
graphs. Unlike, e.g., the models studied in Refs. [12,14–17]
and Refs. [18–21], in our system, open boundary conditions
introduce a characteristic timescale, corresponding to the av-
erage time that people spend inside the system. As we show
throughout our derivation, this time has nontrivial effects on
the diffusion of the infection. When possible, we analytically
compute it; otherwise, we resort to a numerical calculation
so to show how to act on it to reduce the infection spread.
Eventually, we suggest how to apply metapopulation models
to simulate a small open crowded space, proposing how to
relate transition probability to experimentally measurable and
adjustable quantities. Doing so, we provide the possibility to
experimentally verify our claims in real life situations and act
according to reduce infection spreads.

Considering all together in our model the effects of both
effective parameters that depend on the (“intrinsic”) disease
dynamics and of parameters that can be tuned by acting on
the social behavior of individuals, we are able to quantify how
accurate control of human-dependent effects, such as social
distancing, use of personal protective equipment, and so on
can be effective in mitigating the effects of high contagion
rates of diseases, such as the one due to Covid-19 [32–35].

To present the main features of our model and to discuss
its implementation, both analytical and numerical, in the pa-
per we focus on three simple, prototypical models of open
systems. Yet, as we eventually discuss in the paper, within the
CA approach, generalizations of our models to more realistic
situations are straightforward, and we plan to pursue them in
forthcoming publications. In this paper, we use the expression
“cellular automata” in the same sense it is typically used in
traffic flow models [36]: All pedestrians are indistinguishable
and the evolution rules do not depend on the history of each
individual but only on the cell they occupy and and on the
state of the neighboring ones. However, in each cell, we
have not a Boolean variable ni (occupied or unoccupied cell)
but a (discrete) multivalue density distribution function that
corresponds to a coarse-graining description of the pedestrian
crowd. In this sense, our approach is more similar to a lattice
Boltzmann model that, historically, was developed as an ex-
tension of the CA model and, at the same time, represents a
discretization of the classical continuous Boltzmann equation
[37,38].

The paper is organized as follows:
(1) In Sec. II, we define our generalized SEIR model on

graphs. In particular, we present the (local) set of differential
equations describing the (local) population dynamics on the
graph and provide an explicit analytical mean field solution of
the equations. Eventually, after presenting the corresponding
results, we highlight the main limitations of the analytical
approach, which motivate our switch to the numerical CA
approach.

(2) In Sec. III, we present and discuss the CA rules de-
scribing the spread of an infection within an open, finite
connected graph. Therefore, we implement them to obtain
numerical results in the same systems analytically studied in
Sec. II. Eventually, we employ the numerical results to check
the reliability of the analytical approach we use in Sec. II.

(3) In Sec. IV, we provide our main conclusions and dis-
cuss about possible further perspectives of our work.

(4) In the Appendix, we review the basic formulations of
the compartmental SEIR model.

II. THE LATTICE LOCAL SEIR MODEL

In this section, we define and analytically study our lattice
model generalization of the SEIR model, suitable to describe
the spread of an infection throughout a number of open,
finite connected graphs. Within our model, we describe the
dynamics of small populations, each one residing at the sites
of a pertinently designed (quasi-)one-dimensional lattice, and
connected to each other by means of a finite rate for individ-
uals to “hop” from one site to the others. As we discuss in
the following, our model is able to encompass several typical
features of infection spread in real world, particularly evidenc-
ing, on quantitative grounds, how the spreading depends on in
principle tunable parameters of the system.

Throughout this paper, we focus onto linear graphs, that is,
finite one-dimensional lattices (chains), with open boundary
conditions. Each chain corresponds to a simplified model
of a straight way for pedestrians. More complex (and, in
many cases, more realistic) models can be readily constructed
by, e.g., putting together finite, one-dimensional lattices to
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be used (with the appropriate boundary conditions) as “ele-
mentary building blocks.” Each lattice site j hosts a “local”
population of individuals that is characterized by the density
of healthy people nS,λ; j , that is, the number of healthy people
per plaquette, by the density of exposed (infected, not conta-
gious) people nE ,λ; j , that is, the number of exposed individuals
per plaquette, and by the density of infectious people nI,λ; j ,
that is, the number of infectious individuals per plaquette. In
this respect, each cell realizes a population whose dynamics
is described by the SEIR model reviewed in the Appendix,
though with a major simplification which we discuss next.
In fact, the basic assumption of the SEIR model that only
an infectious individual can turn into a recovered one (either
healed or deceased), and the observation that the duration of
the time that each individual spends within the graph is of a
few hours, which is pretty short compared with the timescales
for having a nonzero density of recovered people, enable us
to set to zero the density of recovered people throughout the
whole system. Furthermore, as the median incubation period
of a virus such as 2019-nCoV ARD has been estimated to be
about 3.0 days [39], we set to zero the probability for exposed
people to become infectious. Accordingly, we assume that the
total number of infectious individuals in the system can only
change by exchanges with the outside (infectious individuals
either entering or exiting the system).

Compared to the “standard” SEIR model, our framework
allows for the net number of individuals in the population at
each lattice site to change, as a consequence of individuals
hopping between neighboring sites on the chain. To formalize
this aspect of our system, when defining the various local
densities, we add a label λ, encoding various possible ways
for individuals to move between different sites. In general, in
our sample models, at any time t , each individual at site j
of a chain can either move toward the right (corresponding
to λ > 0) or left (corresponding to λ < 0) on one of the
possible parallel lanes labeled by |λ| = 1, . . . , �, with rules
and constraints that depend on the specific lattice topology.

Regardless of the specific lattice topology, the mathemat-
ical description of the population dynamics on the lattice
can be formalized by a set of differential equations, whose
parameters are determined as follows. First of all, to ease the
mathematical formulation, it is useful to label each cell by
both the lattice site index, j, as well as with an additional
index λ encoding the information about the direction of mo-
tion. So, each “physically distinct” lattice site j corresponds
to several cells, which we label with the pair of indices j, λ.
Within each cell, nS,λ; j , nE ,λ; j , and nI,λ; j can either be zero or
different from zero.

At any cell j, λ not residing at the endpoints of the chain
(that is, with j �= 1, L), on top of the “standard” SEIR dynam-
ics for an isolated population, the number of individuals in
each compartment can either change because individuals hop
from and into neighboring cells moving in the direction defined
by λ, or by changing the sign of λ (that is, the direction of
motion) at a given j. To formally describe individual motion
between different cells, we set ωh;λ to be the rate (probability
per unit time) of an individual to hop from cell j, λ to cell
j ± 1, λ (where the plus sign is for λ > 0 and minus for
λ < 0) and ω�;(λ,λ̄) to be the rate for an individual to hop from
cell j, λ to cell j, λ̄, with λ̄ �= λ. If λλ̄ > 0, the individual is

changing its walking lane but not its direction of motion, while
if λλ̄ < 0, the individual is changing both lane and direction
of motion. To simplify our further derivation, we assume that
the system is homogeneous in real space, which implies that
the rates are all independent of the index j. Moreover, as there
is apparently no reason for different types of individuals to
move at different rates, we assume that ωh;λ and ω�;(λ,λ̄) are
independent of whether the moving individual is S, E , or I .

As we aim at eventually describing steady states of the
system, without big local fluctuations in the various densities,
consistently with the detailed balance principle, we assume
ω�;(λ,λ̄) = ω�;(λ̄,λ). Finally, to account for the “local” SEIR
dynamics, we introduce the parameter ωc, which corresponds
to the infection rate that determines the change in time of
nS,λ; j , nE ,λ; j , and nI,λ; j at given j, λ. At the endpoints of the
chains, that is, for j = 1, or j = L, the rate for individuals
(of any type) to enter the cell at fixed λ > 0 (λ < 0) is sim-
ply the entrance rate into the system, ωin (which is one of
the tunable parameters of our system). Similarly, for j = L
( j = 1), the rate for individuals (of any type) to exit the cell at
fixed λ > 0 (λ < 0) is given by the exit rate from the system,
ωout. The rules listed above allow us to fully determine the
set of equations describing our model. In addition, they also
completely define the CA rules, once the rates are traded for
the corresponding probabilities at each elementary time step,
by multiplying all of them by the elementary time step of the
CA, �t (see Sec. III for an extensive discussion of this point).
Therefore, for the sake of our presentation, we pictorially
present all the above rules in Fig. 1 which, as stated above,
applies to both the mathematical model and the CA.

Putting the various ingredients listed above all together,
we obtain the following set of differential equations for the
local densities on the lattice, for individuals moving in both
directions and for 1 < j < L:

dnS,λ; j

dt
= ωh;λnS,λ;[ j−sgn(λ)] − ωh;λnS,λ; j

+
∑
λ̄ �=λ

ω�;(λ,λ̄)(nS,λ̄; j − nS,λ; j ) − ωc fλ; j ({nν,λ; j}),

(1)

dnI,λ; j

dt
= ωh;λnI,λ;[ j−sgn(λ)] − ωh;λnI,λ; j

+
∑
λ̄�=λ

ω�;(λ,λ̄)(nI,λ̄; j − nI,λ; j ), (2)

dnE ,λ; j

dt
= ωh;λnE ,λ;[ j−sgn(λ)] − ωh;λnE ,λ; j

+
∑
λ̄ �=λ

ω�;(λ,λ̄)(nE ,λ̄; j − nE ,λ; j ) + ωc fλ; j ({nν,λ; j}).

(3)

Consistent with the rules we discuss above, for j = 1
( j = L) and λ > 0 (λ < 0), the terms ωh;λn{S,I,E},λ;[ j−sgn(λ)]

at the right-hand side of Eqs. (1)–(3) must be replaced with
ωin;{S,I,E},λ. Similarly, for j = L ( j = 1) and λ > 0 (λ < 0),
the terms −ωh;λn{S,I,E},λ; j at the right-hand side of Eqs. (1)–(3)
must be replaced with −ωout;λn{S,I,E},λ;L(1).
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scenario A

scenario B

scenario C

FIG. 1. Scenario A: People moving over a narrow street or a
sidewalk; they can walk in both directions and are close together
at a distance less than the safety distance d . The arrows pictorially
encode the cellular automata rules of Sec. III that act every time step
�t . In particular, the top row corresponds to people moving to the
left, the bottom row to people moving to the right. In the bulk of the
system, individuals can make a step to the next cell with probability
ph (red arrow) or change their direction with probability p� (green
arrow). At the boundaries, an individual can enter into the system
with a probability pin (blue arrow). During the contagion phase, a
healthy individual can be infected by infectious individuals moving
in either direction (here, as well as in scenario B and scenario C, the
yellow background represents the range of the infection). Scenario
B is like scenario A, but with people moving in both directions
distributed along the two sides of the street (the “sublattices”). People
can change their direction of motion or change street side or both (the
probabilities, p�, associated to the three processes are, in principle,
different) but, if they lie on different sublattices, they cannot infect
each other. Scenario C is like scenario B, but each sublattice hosts
individuals moving in one direction only. The cellular automata
probabilities are related to the rates of the theoretical model of Sec. II
by pA = ωA�t .

A general comment about the set of Eqs. (1)–(3) is that,
while they certainly apply for low values of the individual den-
sities at each cell, it is reasonable to assume that the maximum
total density of individual at each cell does not go beyond a
maximum value nmax (which, by symmetry, we assume to be
cell independent), that is, nS,λ; j + nE ,λ; j + nI,λ; j � nmax. For-
mally, such a constraint can be easily implemented in the set
of differential equations above by, e.g., substituting n{S,I,E},λ; j

at the right-hand side of the equations with n{S,I,E},λ; j (nmax −∑
B nB,λ; j±1)/nmax. In fact, while we definitely take into ac-

count the constraint when solving the equations, as well as
when defining the cellular automata rules below, to ease the
notation we prefer not to explicitly write it down in Eqs. (1)–
(3), by limiting that set of equations to the low-density regime.
It is worth stressing that, with nmax equal to 15, saturation

effects hardly emerge in the low-density high-mobility regime
(ωh > 0.05), in any cell of the system. On the other side, at
small values of ωh (ωh < 0.05) the system easily saturates
in the entrance cell, for any value of ωin. In this case, if an
infectious individual is present, the contagion can spread to
all the other people. Clearly, the low-density regime is more
realistic and accurate. To avoid unrealistic saturation effects at
small ωh it is possible to effectively correct ωh as a function of
the cell occupation level. Indeed, it is more realistic to assume
that, if a cell is crowded, real people prefer in general to move
forward rather than creating a traffic jam. This can be easily
implemented by replacing the fixed value of ωh with a higher
effective value when ni � nmax, together with a change in the
direction of motion, so that people prefer to move toward the
nearest exit rather than venturing into the crowd. Yet, this
does not affect the final result, when the saturation is not
reached, and has accordingly a negligible effect in the high-
density regime. The function fλ; j in Eqs. (1) and (3) is the
joint probability to truly have infectious and healthy people
at the same time in the same cell. In general, this function
is not simple to derive, especially because it changes from
scenario to scenario, that is, since it is strongly affected by the
specific details of the lattice. However, at least in the sample
cases we discuss below, we show that fλ; j can be effectively
estimated by means of a simple, mean field approximation.
To be specific, we now present and discuss the form of the
above rate equations in the sample cases we deal with in
our work. In particular, in the following we consider three
different scenarios:

(1) Scenario A: This describes a small sidewalk with indi-
viduals that can move both ways within one chain only.

(2) Scenario B: This describes, for instance, a wide shop-
ping mall, or an aisle in a shopping center. In this case,
individuals are more or less evenly distributed between the
two sides of the street, in front of the shop windows, so that
people on different sides cannot infect each other.

(3) Scenario C: This describes a couple of reverse one-
way streets. Basically, in this case people with different
walking directions are forced to stay on different sides of the
street at a distance greater than the safety distance, so that
people moving in opposite directions cannot infect each other.

Depending on the specific scenario we are focusing on, we
resort to different mean field decouplings for fλ; j ({nν,λ; j}). In
general, the mean field approximation for the joint probability
function is grounded on the ansatz

fλ; j ({nν,λ; j}) ≈ nS,λ; j

⎛
⎝nI,λ; j +

∑
λ̄�=λ

μ(λ,λ̄)nI,λ̄; j

⎞
⎠, (4)

with the μ(λ,λ̄)’s that are either equal to zero or to one encoding
all the specificities of each case. In particular, case by case we
choose the μ(λ,λ̄)’s as follows:

(1) In scenario A, we have just one chain on which individ-
uals can move in two opposite directions. Only one pathway
is available in either direction, so λ can only take the values
±1 and μ(λ,λ̄) = 1.

(2) In scenario B, in its simplest version, we consider
two pathways per each direction of motion of individuals.
Therefore, λ = ±1,±2 and μ(λ,λ̄) = δλ,−λ̄.
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(3) In scenario C, again we have just one chain on which
individuals can move in two opposite directions, such as in
scenario A, but now spatial separation makes it impossible for
individuals moving toward opposite directions to infect each
other. Accordingly, here again λ = ±1, but now μ(λ,λ̄) = 0.

In principle, given the appropriate initial conditions and
once the various rates have been pertinently estimated, the
system of differential equations reported above is enough
to discuss in detail the evolution in time of the individual
flows across the system. In practice, knowing, for instance,
the response in time to a sudden change in the system pa-
rameters (the rates) can help to predict the increase and/or
reduction in the infection diffusion once local boundaries
between regions in the same country, or between different
countries, are relaxed or enforced (that has recently become
an ubiquitous procedure to keep this infection under control
all around the world). While we plan to discuss these features
in a forthcoming publication, here we are mostly focused onto
infection propagation in an environment where people flow is
expected to shortly become stationary in time. For this reason,
here we just focus onto stationary solutions of Eqs. (1)–(3). In
fact, while possible nonuniformities in the stationary density
distribution due to boundary effects (which are in any case
negligible in the large system limit) can arise, we numerically
checked that at the system boundaries, j = 1, L, the asymp-
totic values of the population densities are the same as in
the bulk of the system, that is, for 1 < j < L. Such behavior
is well known in both classical and quantum nonequilibrium
open quantum systems [40].

The main parameter characterizing a stationary solution
(after a relatively short-time transient) is the average time T
that people spend from when they enter the system until they
exit. To evaluate T , we make a number of simplifying assump-
tions. Specifically, we assume that the (stationary) flow in
either direction does not depend on the direction itself and that
the densities at any cell are independent of time and uniform,
that is, that n{S,I,E},λ; j is independent of both λ and j. As a
result, dropping the indices j and λ and making the other
simplifying assumptions listed above, we see that Eqs. (1)–(3)
reduce to

dnS

dt
≈ −ωcnSnI (1 + μ),

dnI

dt
≈ 0, (5)

dnE

dt
≈ ωcnSnI (1 + μ),

with μ = 1 for scenarios A and B and μ = 0 for scenario C.
In solving Eqs. (5), we assume nλ; j = nS,λ; j + nI,λ; j +

nE ,λ; j = n̄ to be constant and independent of both j and λ.
Accordingly, n̄ only depends on the rate of people entering
the system. The total number N of individuals in the system at
time t is proportional to the number of entering points, that is,
to the number of different values of λ, times the rate at which
people enter the system, ωin = ωin;S,λ + ωin;I,λ + ωin;E ,λ, mi-
nus the exit rate, ωout (which we assume to be equal to ωh,
times the total number of people in the last cells that, in the
uniform, stationary regime, is just equal to N/L). Therefore,

one obtains

dN

dt
= ωin� − ωh

N

L
, (6)

with � being the number of different values of λ. Equation (6)
is solved by setting

N (t ) = ωin�L

ωh

(
1 − e− ωh

L t
)
. (7)

Extrapolating from Eq. (7) the asymptotic value of N (t )
for t → ∞, we can readily get the average density of people
in each cell for each value of λ, n̄, which is given by

n̄ = N

�L
= ωin

ωh
. (8)

Once n̄ is fixed by the (asymptotic) system dynamics, it
is still possible for individuals in the “local” population to
switch among compartments. This is, in fact, encoded in
the “local” SEIR-like Eqs. (5). To discuss the SEIR dynam-
ics, we therefore solve Eqs. (5) by setting nS (t = 0) = n0,S ,
nI (t = 0) = n0,I , and nE (t = 0) = n0,E , with

n0,S = δSn̄,

n0,I = δI n̄, (9)

n0,E = (1 − δS − δI )n̄,

and 0 � δI , δS � 1, δI + δS � 1. Solving Eqs. (9), one even-
tually obtains

nS (t ) = n0,Se−ωcn0,I (1+μ)t ,

nI (t ) = n0,I , (10)

nE (t ) = n0,E + n0,S (1 − e−ωcn0,I (1+μ)t ).

In our approach, the key observable to quantify the level
of infection due to individual motion through our system
is the infection ratio Cr,λ: j (t ), that is, the number of people
that in cell j, λ get infected in a time t normalized to the
number of healthy people that entered the system at t = 0.
Clearly, within our stationary solution we expect Cr,λ: j (t ) to
be independent of both λ and j. Accordingly, for the sake
of simplicity we henceforth denote it simply as Cr (t ). From
Eqs. (10), we obtain that the infection ratio at time T , Cr , is
given by

Cr = nE (T ) − n0,E

n0,S
= (1 − e−ωcn0,I (1+μ)T ). (11)

Apparently, Cr measures the hazard for a healthy indi-
vidual to go across the system in the possible presence of
infected people. Among the parameters at the right-hand side
of Eq. (11), n0,I depends on the environmental conditions
about the infection spillover, μ depends in a known way on the
system topology (see the previous discussion) and, therefore,
T is the only parameter that has to be estimated. While, in
general, T can be extracted from the results of the numerical
simulation, for ω� = 0 it be analytically computed through a
weighted average, as we discuss next.

Mimicking, in a sense, the cellular automata approach, to
compute T , we assume that the evolution in time of the system
takes place via a discrete sequence of elementary time steps,
each one of duration �t . Accordingly, the fastest path taking
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FIG. 2. Cr as a function of ωh (expressed in s−1) for ω� = 0 and,
respectively, ωin = 0.1 s−1 (red curve), ωin = 0.25 s−1 (green curve),
ωin = 0.4 s−1 (blue curve). The other parameters are L = 50, δE = 0,
δI = 0.05, ωc = 0.025 s−1, μ = 0.

an individual from the entrance to the exit of the system has
duration Tmin = L�t . In general, however, the topology of the
system allows for backward turns, which make the actual time
spent in the system larger than Tmin. As a result, one obtains

T = �t
∞∑

M=0

(L + M )pL
h (1 − ph)M

(
L − 1 + M

M

)
, (12)

with the probability ph = ωh�t . The right-hand side of
Eq. (12) corresponds to a weighted average, with the weight
given by the product of the probability to exit from the system
in (L + M ) steps, that is, pL

h (1 − ph)M , times the number of

permutation of such probability, that is, (L − 1 + M
M ), where the

term −1 takes into account that the probability string must
finish with an hopping. From Eq. (12), one eventually finds

T = �t
L

ph
= L

ωh
, (13)

that is independent of �t , as expected.
As long as ω� = 0, inserting Eq. (13) into Eq. (11) for Cr ,

one gets

Cr = 1 − exp

[
−δI

ωcωin

ω2
h

(1 + μ)L

]
, (14)

and then one can draw plots of the infection ratio as a function
of either ωh, at a given ωin, or of ωin, at a given ωh. In Fig. 2,
we draw Cr as a function of ωh for three sample values of
ωin. Remarkably, we see that, at large enough hopping rate
between neighboring lattice cells, Cr barely depends on ωin

and keeps as low as 1–10%. At variance, in Fig. 3 we draw Cr

Cr

0
0

1 ω =0.1h
ω =0.25h
ω =0.4h

ω in
0.5

FIG. 3. Cr as a function of ωin (expressed in s−1) for ω� = 0 and,
respectively, ωh = 0.4 s−1 (red curve), ωh = 0.25 s−1 (green curve),
and ωin = 0.1 s−1 (blue curve). The other parameters are L = 50,
δE = 0, δI = 0.05, ωc = 0.025 s−1, and μ = 0.

ω
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=0.25ωh
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FIG. 4. Cr as a function of ω� (expressed in s−1) and, re-
spectively, ωin = 0.1 s−1, ωh = 0.4 s−1 (red curve), ωin = 0.25 s−1,

ωh = 0.25 s−1 (green curve), and ωin = 0.4 s−1, ωh = 0.1 s−1 (blue
curve). The other parameters are L = 50, δE = 0, δI = 0.05,
ωc = 0.025 s−1, and μ = 0.

as a function of ωin for three sample values of ωh. Here, we
see that the dependence of Cr on ωin is strongly affected by the
value of ωh. In particular, while keeping ωh as large as 0.4 s−1

allows for maintaining Cr of the order of 10%, even at pretty
large values of ωin, at variance, as soon as ωh becomes of the
order of 0.25 s−1, Cr rises up to 40% when ωin ≈ 0.5 s−1.
Finally, for ωh = 0.1 s−1, we see that Cr is ≈ 50% already
for ωin ≈ 0.15 s−1. Thus, from the synoptic comparison of
the plots in Figs. 2 and 3, one may on one hand infer how
Cr is poorly sensitive to the value of ωin, provided ωh is large
enough, which basically implies that, if the individual flow
through the aisles is made fast enough, the entry rate of people
into the system from the outside is not a crucial parameter to
keep Cr low. On the other hand, one finds that, as a function
of ωin, Cr is strongly sensitive to the value of ωh. Indeed,
Fig. 3 basically shows how easy is for Cr to become already as
large as 50%, if ωh is not kept large enough to avoid crowding
within the system.

We discuss now the effects on Cr of allowing individuals
to change their direction of motion once in the system. On
intuitive grounds, one expects that letting ω� �= 0 should lower
Cr , at fixed values of the other system parameters. This is
reasonable because now individuals are allowed to exit the
system from the same side they entered. This means that an
individual who enters the system from say cell (1,1) and who
wants to reach, for example, cell (1,2) (on the other side of
the street), does not need to run across all the street until
the cell with j = L and back, thus consistently lowering the
risk of infecting other people, or of being infected by other
people meanwhile. In fact, allowing people to change their
walking direction allows them to reach more quickly the shop
they are interested in by lowering the path accordingly. On
the mathematical side, having ω� �= 0 does no more allow
for exactly computing T by means of a procedure similar to
the one leading to Eq. (12). Therefore, to plot Cr as a func-
tion of ω� with the other system parameters being fixed, we
numerically derived T at given ω� and therefore substituted
the corresponding value in Eq. (11) for Cr . In Fig. 4, we
report the corresponding curves for Cr as functions of ω�, with
the other system parameters set as discussed in the caption.
Apparently, we see that increasing ω� always acts to lower
Cr . Also, as we already inferred from the plots in Figs. 2
and 3, we see that Cr is further lowered by simultaneously
increasing ωh and lowering ωin, as we extensively discussed
above.

043379-6



ANALYTICAL AND CELLULAR AUTOMATON APPROACH … PHYSICAL REVIEW RESEARCH 2, 043379 (2020)

Cr

ω h

ω =0.025c
ω =0.015c
ω =0.005c

0
0

1

0.5

FIG. 5. Cr as a function of ωh (expressed in s−1) and, re-
spectively, ωin = 0.1 s−1, ω� = 0, ωc = 0.005 s−1 (red curve), ωc =
0.015 s−1 (green curve), and ωc = 0.025 s−1 (blue curve). The other
parameters are L = 50, δE = 0, δI = 0.05, and μ = 0.

Finally, to investigate how, and to what extent, Cr depends
on a tunable parameter, in Fig. 5 we plot Cr as a function of
ωh for different values of the infection rate ωc. Indeed, ωc

is a parameter one can effectively act on from the outside
by, for instance, letting people entering the system to wear
a mask and/or to keep social distancing, etc. From the plots
of Fig. 5, as expected, we see that while at a given ωh, lower
ωc and lower Cr correspond, at the lowest value of ωc, one
sees that Cr stays lower than 10% as soon as ωh � 0.1 s−1.
Apparently, this is quantitative evidence of the effectiveness
of using as many measures to prevent infection as possible,
such as masks and social distancing. A good combination
of prevention measures with a pertinent engineering of the
individual pathways inside a given system, as well as with
an appropriate regulation of the entrance rate in the system,
can apparently work as an effective mean to keep the level of
infection pretty low.

To comment about our result, we note that our theoretical
model is definitely able to catch some interesting qualitative
behaviors. However, it overestimates the infection ratio, due
the mean field approximation we employ to provide an ex-
plicit form for the joint probability function, fλ; j . Indeed, for
example, if we consider scenario C with a hopping probability
equal to one, the contagion should be exactly zero if less than
an individual enters the system at each turn. However, the
theoretical model is not able to reproduce this result because
it totally neglects the actual people distribution in real space
within the system. Furthermore, the mean field approximation
is not able to properly distinguish between scenarios B and
C. Indeed, as stated above, implementing the mean field ap-
proximation fixes the parameter μ at μ = 1 in scenario B and
at μ = 0 in scenario C. Yet, from the formula for Cr within
mean field approximation, Eq. (11), we see that the plots in
the two cases just collapse onto each other, provided one sets
ωin in scenario C to be twice as large as ωin in scenario B.
This is a consequence of the fact that, in both cases, people
are divided into two separate groups: in scenario B they are
divided into two lanes; in scenario C they are divided accord-
ing to their direction of motion. In both cases, they interact
with half of the people they would interact with in scenario
A. However, in scenario C, we have to consider the relative
speed between people that in the mean field approximation
is simply thrown away (two people with opposite velocity
definitely meet, while people moving in the same direction
do not). For this reason, as well as defining a playground to

extend our approach to a systematic analysis of the transient
regimes and of a generic case of time-space dependent rates,
in the following we resort to the cellular automata approach,
by means of which we will be able to implement the joint
probability function in terms of simple rules. It is worth noting
that, in general, the CA rules can be traded for an effective
set of Fokker-Planck equations to directly model the time
evolution of the on-site probability density [41]. However, the
resulting model can hardly be solved by analytical method and
is more computational demanding than the CA approach.

III. THE CELLULAR AUTOMATA RULES
AND THEIR IMPLEMENTATION

In this section, we discuss in detail the rules of the cellu-
lar automata describing the spread of an infection within an
open, finite connected graph and how we implement them.
In particular, to keep consistent with the analytical derivation
of Sec. II, in the following we focus on the three different
scenarios we proposed there.

Let us begin our discussion with scenario A. Referring
to Fig. 1, we model this system as a 2×L square grid with
von Neumann neighborhood. On indexing each plaquette of
the lattice with “row” and “column” indexes, we use the row
index to store the information on the direction of the motion
of each individual, while the column index keeps track of
the spatial position. Accordingly, we regard each cell as a
portion of a “road” of physical length L. The first row of the
matrix represents people moving to the left (that corresponds
to having λ = −1 in the notation of Sec. II), from cell (1, L)
to cell (1,1). At variance, the second row represents people
moving to the right (corresponding to λ = +1 in the notation
of Sec. II), from cell (2,1) to cell (2, L) [note that, in scenario
A, cells (1, j) and (2, j) overlap each other in real space].
To each cell (λ, j), we associate three positive integers, nS,λ; j ,
nE ,λ; j , and nI,λ; j , respectively corresponding to the number
of healthy, exposed, and infectious individuals moving in the
direction λ, as defined in Sec. II. While we allow more than a
single individual to occupy the same cell, to take into account
that each cell corresponds to a finite region in space, we
put a constraint on maximum limit of individuals in each
cell. Letting d to be the side of each (square) cell, we are
therefore limiting the maximum number of people that can
physically enter a d×d square region of space. Accordingly,
we require that ∀ j = 1, . . . , L and we obtain

∑
λ=±1(nS,λ; j +

nE ,λ; j + nI,λ; j ) � nmax,j, with nmax,j = nmax = 15 for all cells,
as it appears to be reasonable for the cell size we consider
(see below for the detailed discussion about our choice of the
system parameters).

The populations inside each cell are updated every time
step �t . Each time step is composed of two phases: the move-
ment turn and the contagion turn. At variance with respect
to our theoretical framework in Sec. II, in this case we are
considering integrated rates at each single turn, that is, prob-
abilities. Therefore, referring to the definition of the various
rates in Sec. II, we denote with ph = ωh�t the probability
that, in a single turn, an individual either moves backward
from cell (1, j) to cell (1, j − 1), or it moves forward from
cell (2, i) to cell (2, j + 1) (focusing on the “inner” cells, that
is, 1 < j < L). Going along the rate formalism of Sec. II, we
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define p� = ω��t to be the probability for an individual to
change in a turn its direction of motion, that is, to move from
cell (1, j) to cell (2, j), or vice versa. Individuals, whether
healthy, exposed, or contagious, enter the system at each
turn from the boundary cells (1, L) and (2,1). In particular,
letting pin = ωin�t the probability that one individual en-
ters the system in a time step �t and also letting δS , δE , δI

the average fraction of the total population corresponding to
healthy, exposed, and infectious individuals respectively, we
have that the probability for a healthy, exposed, or infectious
individual to enter the system in a single time step is respec-
tively given by pin,S = δS pin, pin,I = δI pin, and pin,E = δE pin,
respectively, with δS + δE + δI = 1 (note that while pin is
the entrance probability for a single pedestrian, in general,
more than a pedestrian can enter the system at each turn).
Finally, individuals can exit the system from the cells (1,1)
or (2, L). When a pedestrian exits the system, it is removed
from the total count of people within the lattice and, at the
same time, it triggers a counter that keeps trace of its health
status. Likewise, another counter keeps trace of the people
that effectively entered the system. Each hopping, entering,
or changing of direction is allowed only if the total population
inside the target cell has not saturated to the allowed value
nmax.

The infection turn takes place right after the movement
turn. In each cell (λ, j), the health status of each pedestrian
has a probability pc = ωc�t to switch from S to E for each
contagious individual that is present in cells (1, j) and (2, j).
Consistently with the assumptions discussed in Sec. II and in
Appendix, we do not allow the status of E and I individuals
to change.

Switching to scenario B, one readily sees that it is a simple
“double copy” of scenario A. In this case, the matrix has four
rows, rather than two, with two rows per each “side of the
street.” Therefore, one has two different directions of motion
per each side of the street, with the possibility, for a single
individual, to switch, at the same time walking side and/or
direction. In order to compare the results between scenarios A
and B, we keep fixed the incoming individual flow halving the
incoming probability pin.

Scenario C is the same as scenario A, except for the fact
that people moving in opposite directions are physically sep-
arated in real space. Therefore, during the contagion turn, an
S individual can only be infected by an E individual mov-
ing in the same direction. Furthermore, the constraint on the
maximum allowed number of individual in each cell must be
satisfied separately for each value of λ; that is, the constraint
takes the form (nS,λ; j + nE ,λ; j + nI,λ; j ) � nmax,λ.

At the end of the simulation, we compute the infectious
ratio Cr as the number of E individuals leaving the system, mi-
nus the number of individuals already exposed before entering
into the system, over the number of healthy individuals en-
tered into the system. In particular, to compute Cr we stop the
simulation at a time t = 7 h that corresponds approximately to
a shop working day. As long as the simulation time is greater
than the average time that people spend from when they enter
the system until they exit, the system has already reached a
nonequilibrium stationary state and the effects associated to
the stochastic nature of the system are mediated to zero, as a
consequence of the ergodic hypothesis.

The cellular automata parameters depend on the model and
on the physical system we are interested in describing. In our
simulation, we employ the following parameters:

(1) The cell dimension d: This should be pertinently
chosen to be of the order of the safety distance between
individuals, to be consistent with our assumption that infec-
tion spread only happens inside a cell. Accordingly, we set
d = 2 m.

(2) The number of cells L: This is not a crucial parameter.
It measures the length of the pathway we are considering in
units of d . Throughout all out calculations, we set L = 50 but,
as stated above, it can be readily changed to simulate longer
or shorter paths.

(3) The time step �t : This measures the time required by a
pedestrian to walk for d meters without slowing down. In the
following, we set �t = 2 s.

(4) The infection probability pc: In general, this depends
on the effective virus transmission probability, on the pedes-
trian health status (which, in turns, depends on age, gender,
etc.), and on the protective equipment wore by individuals,
such as masks and gloves.

(5) Percentage of infectious individuals effectively entering
the system, δI : While, in principle, δI is determined by the
average percentage of infectious people to the main popula-
tion, at the entrance to the system it can be strongly reduced
(compared to the outside) by, e.g., checking the body temper-
ature at the entrance and forbidding people with symptoms
like fever or cough to enter the system. Indeed, in the case
of infection by Covid-19, it has been estimated that about
43.8% of infectious people have fever before hospitalization.
Other discriminants, for checks at the entrance, can be age and
gender; indeed, the median age was computed as 47 years,
58.1% were males, and only 0.9% of patients were younger
than 15 years old [39].

(6) Entrance probability pin, “hopping” probability without
changing direction, ph, and probability of changing direction,
p�: These depend on the number of individuals in the system
and on the time spent by them in units of �t . Realistic esti-
mates for those probabilities (or for the corresponding rates)
can be extracted from the crowd fluxes measured, for instance,
by the transit crowdedness function of Google Maps, in pre-
vious years. In addition, one should also take into account the
possibility of artificially modifying these probabilities by, e.g.,
influencing people with disclaimers, turnstiles, watchmen, or
“nudges” [42].

As a main sample of CA results, in Fig. 6 we plot Cr as a
function of ph for all the three scenarios described in Sec. II.
To make the windows of values of the independent variable
consistent with the one we use to draw Figs. 2 and 5, we let
0 � ph � 1 which, given the relation ph = ωh�t and since
�t = 2 s, corresponds to 0 � ωh � 0.5 s−1 of Figs. 2 and 5.
As expected from the main features of the three scenarios,
with values of all the system parameters equal in the three dif-
ferent cases, for what concerns the infection rate, scenario A is
the worst since individuals moving in opposite directions are
not spatially separated from each other, scenario C is the best
due to the condition μλ,λ̄ = 0 (see the discussion in Sec. II
for details), and scenario B is halfway between the two of
them. Remarkably, while we recover an acceptable qualitative
agreement with the results discussed in Sec. II, we observe
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FIG. 6. Cr as a function of ph with, respectively, pin = 0.5,
p� = 0, pc = 0.05, δE = 0, and δI = 0.05 computed within CA ap-
proach for scenario A (red point plot), scenario B (green point plot),
and scenario C (blue point plot). As expected, scenario A is the worst
since individuals moving in opposite directions are not spatially
separated from each other, scenario C is the best, and scenario B
is halfway between the two of them [43].

how, unlike the mean field approximation, the CA approach is
able to correctly discriminate between scenarios B and C and
to reproduce the right limit Cr → 0 limit for ph → 1.

To ease the comparison between the CA results and the
(approximate) analytical one, amd to check the reliability
of the approximations we employed along the derivation of
Sec. II, in drawing the plots in Fig. 6 we chose the parameters
so that, once all the probabilities are converted into rates by
dividing all of them by �t , they exactly correspond to the
ones we used to draw Fig. 2. In particular, Fig. 2 was drawn
for μ = 0, which correctly describes scenario C only. For this
reason, in Fig. 7 we draw a synoptic plot of the curve of Fig. 2
corresponding to the parameters chosen to draw Fig. 6 and of
the points of Fig. 6 corresponding to scenario C (note that
we use pin as the sole independent variable for both plots,
after converting ωin into pin using pin = ωin�t). Importantly
enough, the synoptic comparison shows that, at given sys-
tem parameters, the mean field approximation systematically
overestimates Cr at a given ph, which shows that the simple
analytical approach, in a sense, provides in a simple way a
“safe” upper bound on the infection risk.

To further compare the CA approach to the analytical mean
field approximation, in Fig. 8 we plot the numerical data from
the CA for Cr as a function of pin at p� = 0 for various values
of ph and with all the other parameters chosen as in the deriva-
tion of Sec. II (see the figure caption for details). Qualitatively
speaking, we see that the trend of the data in Fig. 8 is the

h
p

Cr
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1

FIG. 7. Cr as a function of ph computed in scenario C (green
point plot) and within mean field approximation with μ = 0 (full
red line) with pin = 0.5, p� = 0, pc = 0.05, δE = 0, and δI = 0.05.
Apparently, the mean field calculation always overestimates Cr , com-
pared to the “exact” CA result.
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FIG. 8. Cr as a function of pin and, respectively, p� = 0, pc =
0.05, δE = 0, δI = 0.05, and ph = 0.8 (red point plot), ph = 0.5
(green point plot), and ph = 0.1 (blue point plot), for scenario C.

same as we display in Fig. 3, which was derived by applying
the mean field approximation to the generalized SEIR model.
Specifically, at a given value of pin, increasing the probability
for individuals to move from one cell to the neighboring one
(that is, increasing the average speed of the pedestrian motion
in the pathway) determines a remarkable lowering of Cr , as
expected in view of the fact that, as discussed in the previous
section, due the possibility for individuals to exit from the
same side of the street, the mean time spend by each of them
inside the system is reduced, as well as the probability of
infecting, or of being infected.

Finally, to complement the results reported in Fig. 5 with
the corresponding analogs derived within CA framework, in
Fig. 9 we plot Cr as a function of ph for scenario C, for various
values of p�, and all the other parameters set to quantitatively
ground the comparison with Fig. 5 (see the figure caption for
details). As expected, the CA results confirm that increasing
p� by keeping all the other parameters fixed acts to lower Cr ,
as it basically lowers the average time spent by individuals
in the system (see Sec. II for a detailed discussion about this
point).

Eventually, we recover an excellent consistency between
the (approximate) analytical results and the (basically exact)
numerical ones obtained within the CA framework. This evi-
dences that, on one hand, the mean field approach we employ
to solve the generalized SEIR equation provides an acceptable
level of qualitative description of the system behavior, on the
other hand, that the CA approach can be effectively imple-
mented to improve the quantitative reliability of the results,
when necessary. It is worth stressing that, in addition to the
mean field effect, another cause of discrepancy between the
deterministic SEIR model and the stochastic CA simulation
can emerge due the fact that, while in the numerical simulation

Cr
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p
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FIG. 9. Cr as a function of ph and, respectively, pin = 0.5, pc =
0.05, δE = 0, δI = 0.05, and p� = 0 (red point plot), p� = 0.1 (green
point plot), and p� = 0.3 (blue point plot), for scenario C.
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pedestrians are subject to both mobility and contagion at each
turn, in the differential equations there is no term that simul-
taneously involves mobility and contagion. Eventually, for a
better comparison between analytical and numerical results,
an adapted version for time-varying networks of the Gillespie
algorithm for stochastic methods can be implemented [44,45].

IV. CONCLUSIONS

In this paper, we have formulated a generalized SEIR
model on a graph that allowed us to describe the population
dynamics of an open crowded place with an in principle
arbitrary topology. To illustrate the effectiveness of our model,
we have discussed a few simple paradigmatic cases, which we
have treated both analytically, within a mean field approach
to the full set of SEIR model differential equations, and nu-
merically, by means of a cellular automata simulation of the
individual dynamics in the system. As a main result of our
derivation, we were able to provide the infection ratio Cr as a
function of “tunable” system parameters, which eventually en-
ables us to show to what extent controlling human-dependent
effects may act to lower the disease spread in the system.

As an immediate further development of our work, we
note that, within our approach, one may readily extrapolate
the ratio between individuals that become exposed inside the
system and infectious individual coming from outside as

R = δS

δI
Cr . (15)

Dividing R, obtained within CA simulation, by the time by
which we run the simulation and then multiplying the result
by the overall fraction of time usually spent by an individual
into the system under analysis, in a period as long as the in-
cubation time, one may obtain the number of people infected
by each infectious individual, that is, the basic reproduction
number R0 [46], related to a specific environment. As a next
development of our work, we plan to estimate this quantity,
that is only a fraction of the cumulative R0 (that is the sum
of the R0 of all the places the individual spent time in), for
different scenarios, e.g., a shopping center, a pedestrian track,
a gym, a school, and so on. Eventually, we plan to use it our
results as a tool to evaluate the infection hazard of a given
place compared to others and to, e.g., suggest which place
would be safer to open first after a global lockdown. Finally,
it is worth stressing that, as R0 is an effective parameter that
depends on the virus and on the social behavior, our approach
allows for discriminating the contribution due the virus intrin-
sic properties [32–35] from the human-dependent effects like
social distancing, personal protective equipment, and so on,
and to provide a quantitative information about how to act to
reduce the latter contribution.

Finally, we remark that while, in order to make the presen-
tation of our approach the straightest possible, we confined
ourselves to three simple sample scenarios, our approach can
be easily generalized to more realistic and unavoidably more
complex graphs by means of a proper implementation of
the neighborhood between cells within CA simulation. The
rules that describe the human mobility, and in general hu-
man behavior, are strongly scenario dependent. In our model,
we did not consider a direct interaction between pedestrians,

with individuals walking independently. In the high-density
regime, it would be interesting to introduce, for example, a
more realistic description between pedestrian flows in differ-
ent direction, as depicted in Ref. [47]. Indeed, as a further
development of our work, we are planning to apply our ap-
proach to some specific and realistic cases for which there
would be available experimental data (entering/exit rate, mean
time spent within the system, etc.), so to eventually be able
to perform a comparison between real results and estimates
of our model. A particularly interesting aspect is to consider
the addition of attractive or trap sites (popular shops, cafés,
escalators), corresponding to local decreases of the hopping
rate, that could represent high-risk transmission sites in order
to estimate how much they affect R0.
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APPENDIX: REVIEW OF THE COMPARTMENTAL
SEIR MODEL

The compartmental SEIR model is a generalization of the
widely used SIR model in epidemiology [48,49]. Specifically,
the SEIR model is based on dividing a population of N indi-
viduals (populating an isolated area, so that N is assumed to
be constant) into four compartments:

(1) the Susceptible compartment (S) made of healthy indi-
viduals who can be affected by the contagion;

(2) the Exposed compartment (E ) made of individuals
who have been infected but are not yet infectious;

(3) the Infectious compartment (I) made of infectious
individuals (the ones that can infect individuals in the S com-
partment); and

(4) the Recovered compartment (R) made of individuals
who either recovered from the infection or died.

In its standard and simplest formulation, the SEIR model
describes the evolution in time of the number of individuals
in each sector by means of a set of differential rate equations,
given by

dS

dt
= −ω

N
SI,

dE

dt
= ω

N
SI − αE ,

dI

dt
= αE − γ I,

dR

dt
= γ I. (A1)

As discussed in the main text, we describe each lattice cell
as a single SEIR model in which, however, the total number of
individuals can change in time, due to the nonzero probability
of hopping between a cell and the nearest neighboring ones. In
particular, this implies that even when considering stationary
solutions to the dynamical evolution equations for the local
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population, they are only on the average (in time) consistent
with the conservation of the total number of individuals per
each cell. The various rates in Eqs. (A1) are clearly identified
as follows:

(1) ω is the specific infection rate, that is, the probability
per unit time that an individual belonging to S is infected by
getting close to another individual belonging to I .

(2) α is the probability per unit time that an individual
switches from E to I , that is, the rate that the virus incubation
ends and the individual becomes infectious.

(3) γ is the rate for an individual from I to switch to R.
According to the specificities of the model, γ is identified with
the healing-plus-death rate for an individual from E .

Even a rather simplified set of equations such as the ones
in Eqs. (A1) can be able to provide reliable information on the
infection spillover, provided the various rates at the right-hand
side of Eqs. (A1) (the “parameters”) are pertinently estimated.
For instance, in the case of Covid-19 infection spread in Italy,
we employ the numerical values for the parameters rigorously
estimated in Ref. [50], that is, ω = 2.25 [day]−1, α = 0.33
[day]−1, and γ = 0.50 [day]−1, values that appear to fit well
the infection dynamics in two of the mostly populated regions

in Italy: Lombardy (northern Italy) and Campania (southern
Italy).

While over a long enough time the system of Eqs. (A1)
always implies, given the parameters listed above, a maximum
in the contagion spreading curve and an asymptotic saturation
of R(t ) to R∞ = R(t → ∞) = N , throughout our work we set
α = γ = 0 and accordingly we neglect the equation for R(t ).
Indeed, in the specific system we describe, we assume that
the time spent by each individual inside the system is pretty
short compared to the virus incubation and healing-plus-death
rate. Accordingly, I (t ) can become different from zero only
because of people that come from outside, with a negligible
change due to the switch in time from E (t ) to I (t ). Given the
estimate of the parameter α we provide above, the variation
in I (t ) over time intervals as long as a few hours is typically
negligible and we accordingly neglect it by setting α to zero
from the very beginning and approximating I (t ) ≈ I (0). This
eventually motivates assuming R(t ) = 0 as well, as we do
throughout our derivation. Apparently, the above assumptions
eventually lead to Eqs. (5), in the specific case corresponding
to taking μ = 0 in Eq. (4), as we discuss in detail in the main
text of the paper.
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