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Generalized description of the nonlinear optical force in laser trapping of dielectric nanoparticles
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A general description to estimate optical trapping efficiencies for dielectric nanoparticles using dipole ap-
proximation is presented including the effect of optical nonlinearity. We show how optical nonlinearity can be
harnessed to trap particles having a refractive index less than that of the surrounding medium. We also discuss
optical trapping efficiencies of particles made of metamaterials of negative refractive indices. These results are
promising in having wide-ranging applications in photonics science and technology.

DOI: 10.1103/PhysRevResearch.2.043378

I. INTRODUCTION

A laser tweezer is a tool used to both exert and measure
miniscule force acting on small objects with sizes ranging
from a micron down to a nanometer. After Ashkin and co-
workers invented this technique in 1986 [1], which led to
the Nobel Prize in Physics in 2018, it has been extensively
used in several fields of natural science and technology [2–5].
For stable optical trapping of dielectric nanoparticles [5], a
long-standing challenge is posed by the low polarizability
volume as well as the erratic Brownian motion associated
with these particles. To circumvent this, the common rule of
thumb is to use very high laser power. However, such a high
power may result in laser-induced heating effects, which is
detrimental to the viability of live specimens and may even-
tually lead to irreversible specimen damage (laser-induced
ablation). Therefore, it is essential to use an optimal laser
power before experimentation. Fortunately, recent theoretical
[6,7] as well as experimental [8] results on optical trapping
of dielectric nanoparticles revealed that indeed there exists an
optimal laser power corresponding to the most stable optical
trap (refuting the widely accepted rule of thumb mentioned
earlier) which results from a delicate balance between gradi-
ent and scattering forces and further fine-tuned by third-order
optical nonlinearity, i.e., the optical Kerr effect (OKE). Al-
though a noticeable effect of optical nonlinearity is expected
to be observed at elevated laser power under conventional
continuous-wave (CW) excitation, the same can be achieved
at low average power under ultrashort pulsed excitation owing
to its gigantic peak power. Note that a pulsed excitation leads
to repetitive instantaneous momentum transfer [9], which also
allows the system to thermally relax during the period be-
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tween consecutive pulses (dead time) so that laser-induced
heating effects are minimized. Extending our recent work
[10], we focus on the origin of this optimal power; we theoret-
ically show how OKE modulates the relative refractive index
(of the particle to that of the surrounding medium) leading
to controlled optical manipulation of dielectric nanoparticles.
This work also provides a way to understand the need of an-
tireflection coating for trapping of nanoparticles made of high
refractive index materials [11,12] and trapping efficiencies of
metamaterials with negative refractive indices [13].

II. GENERAL METHODOLOGY

In the dipole limit, the force expressions along axial direc-
tions can be written as [14]
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where ω0 = 0.82 × λ/NA is the spot size for the Gaussian
beam profile and λ is the wavelength of the trapping beam
and NA is the numerical aperture of the objective. P =
Pavg/peak is the average/peak power for the CW/pulsed exci-
tation, a is the radius of the particle, M = ( m2−1

m2+2 ), m = np

nw

is the relative refractive index (RI) of the particle (np) to the
medium, water (nw), and z̃ = z

πω2
0

and r̃ = r
ω0

are reduced
axial and radial coordinates, respectively. In the above equa-
tion, the polarizability (α) is highlighted in cyan, and the
spatial coordinate-dependent part in gray. A detailed step-
by-step description of the theoretical formulation of the final
expression for force and potential is given in Sec. S1 in the
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FIG. 1. Plots of trapping (a) radial force (z = 0), (b) axial force (r = 0), (c) surface force, (d) contour force, (e) radial potential
(z = 0), (f) axial potential (r = 0), (g) surface potential, and (h) contour potential for 40 nm particle size under CW excitation. Color:
green/blue curve corresponds to gradient/scattering force/potential along the axial direction, and red curve corresponds to total force/
potential along both the axial and radial directions.

Supplemental Material (SM) [15]. The two equivalent meth-
ods to incorporate optical nonlinearity are rigorously derived
in Secs. S1.1 and S1.2 in the SM [15]. In a numerical simu-
lation, we have used the second method in which nonlinearity
is incorporated in a phenomenological way:

nw = nw
0 and np = np

0 ( CW excitation), (3a)

nw ≈ nw
0 and np = np

0 + np
2×Ipeak(r, z) (pulsed excitation),

(3b)

where, nw/p
0 is the linear refractive of the medium/particle, np

2
is the second-order nonlinear RI of the particle, and Ipeak(r, z)
is the peak intensity of a focused Gaussian beam under pulsed
excitation. All parameters used in the simulation are listed in
Table S1 in the SM [15]. Unless explicitly mentioned, we have
chosen 100 mW average power and NA = 1.4 under both
CW and pulsed excitation; the particle size corresponds to the
radius of the particle.

III. RESULTS AND DISCUSSION

Figure 1 shows trapping force/potential curves for 40
nm polystyrene nanoparticles under CW excitation, where
Fmax, axial and Fmin, axial represent the maximum and minimum
of trapping force (marked by arrows), Uabs represents the
absolute depth of the potential well, and Uesc, called the escape
potential [6], is the potential barrier along the direction of light
propagation.

From Eqs. (1) and (2), it can be seen that M = ( m2−1
m2+2 ) is the

crucial quantity to determine the nature of force; for example,
m < 1 ⇔ M < 1 results in reversing the nature of gradient
force from attractive to repulsive. However, irrespective of
the m value, the nature of the scattering force remains the
same because the scattering force varies as M2. At m = ±1,
both scattering and gradient forces vanish [as marked by the

vertical green line in Fig. 2(a)] exerting no net force acting
on the particle. Along the radial direction, only the gradi-
ent force acts; therefore, the value of m solely controls the
nature of the force (attractive or repulsive). However, along
the axial direction, the nature of the total force cannot be
judged from the value of m alone because it is contributed
by both gradient and scattering forces, which vary differently
with m, as shown in Fig. 2(a). Beyond a certain threshold,
M approaches a limiting value of 1 (because m2 − 1 ≈ m2

and m2 + 2 ≈ m2 when m � 1) irrespective of particle sizes,
as shown in Fig. 2(b); the value of α = 4πa3M also reaches
a limiting value (that depends on particle size). Under CW
excitation, m is a constant quantity and independent of Pavg,
ω0, r̃, and z̃; therefore, change in any of these parameters
does not change the nature of the force. Figures 2(c) and
2(d) show the trapping force along both the axial and radial
directions for the different relative RI. For m < 1, m = 1, and
m > 1, the particle experiences a repulsive force, zero force,
and an attractive force, respectively. In the repulsive regime,
the particle experiences an outward force that pushes it away
from the trap. In the attractive regime, the particle experi-
ences an inward force which pulls it towards the trap. This
is also reflected in the potential curves [Figs. 2(e) and 2(f)].
Quite interestingly, a sudden change in the force/potential is
observed from repulsive to attractive with a slight change in
the relative RI. In order to trap the particle, the force must
be attractive, and Fmax,axial > 0 and Fmin,axial < 0 are the re-
quired conditions. For a high relative RI, Fmax,axial > 0 and
Fmin,axial > 0, and in this case, the force/potential becomes un-
bound, as shown in Figs. 2(g) and 2(h). In this regime, the trap
is destabilized due to the dominance of scattering forces, so
particles cannot be trapped. Similar behavior is observed for
metamaterials (of negative m [13]) as well. Thus, depending
on the value of the relative RI, the nature of forces/potentials
is broadly categorized into three regimes: repulsive, attractive,
and unbound. A detailed discussion of Fmax,axial and Fmin,axial
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FIG. 2. Plots of (a) variation of M (gradient component) and M2

(scattering component) against m and (b) polarizability against m.
Plots of trapping force along the (c) radial and (d) axial directions and
corresponding potential along the (e) radial and (f) axial directions.
The plot of trapping force (g) maxima and (h) minima (shown in
Fig. 1) against the relative RI for different particle sizes under CW
excitation.

for different values of a, NA, and Pavg is given in Sec. S2.1 of
the SM [15].

Under pulsed excitation, the relative RI is np
0+np

2×Ipeak (r,z)
nw

0
=

m + 4.44 × 10−17 × Ipeak(r, z); here nonlinear RI of the
medium can be ignored since it does not contribute
significantly [6].

Figure 3 shows the trapping force/potential curves for
40 nm polystyrene nanoparticles under pulsed excitation,
and a significant change in magnitude and nature of the
force/potential curve is observed under similar conditions as
compared to CW excitation (Fig. 1). Quite interestingly, under
pulsed excitation, the nature of the force/potential is attractive
for the m value 0.992, 1.000, and 1.007 [Figs. 4(a)–4(d)],
whereas, under CW excitation, it shows the repulsive to at-
tractive nature of the force/potential under similar conditions
[Figs. 2(c)–2(f)]. A small change in the m (near m = 1) value
does not significantly change the stability of the trap under
pulsed excitation. This is because at 100 mW the average
power nonlinearity contributes significantly, which results in
a positive value of m. However, at very low average power
(1 mW), where the contribution of nonlinearity is not sig-
nificant, this transition behavior (repulsive to attractive) is
present. Under pulsed excitation, the transition happens
smoothly with relative RI because of nonlinearity, which we
term the intermediate regime, whereas under CW excitation,
this transition is abrupt. In this intermediate regime, the par-
ticle experiences both attractive and repulsive forces, and
the stability of the trap depends upon their relative magni-
tudes. The regime of the relative RI changes with power,
as shown in Fig. 4(e). The minima of M2 shifts towards
lower values of m with increasing average power. How-
ever, the range of the relative RI for which the force is
repulsive or intermediate or attractive does not change with
changing particle size, as shown in Fig. 4(f). An interesting
feature is that for m > 0.564, the force/potential is always at-
tractive, for −0.301 < m < 0.564, the force/potential shows
an intermediate regime, and for −1.353 < m < −0.301,

the force/potential is repulsive. This range changes with
changing average power and NA, as shown in Figs. 4(g)

FIG. 3. Plots of trapping (a) radial force (z = 0), (b) axial force (r = 0), (c) surface force, (d) contour force, (e) radial potential (z = 0),
(f) axial potential (r = 0), (g) surface potential, and (h) contour potential for 40 nm particle size under pulsed excitation. Color: green/blue
curve corresponds to gradient/scattering force/potential along the axial direction, and red curve corresponds to total force /potential along both
the axial and radial directions.
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FIG. 4. Plots of trapping force along the (a) radial and (b) axial
directions and the corresponding potential along the (c) radial and (d)
axial directions. Plots of (e) variation of M (gradient component) and
M2 (scattering component) against relative RI, polarizability against
relative RI for (f) different particle size, (g) different power, and (h)
different NA under pulsed excitation.

and 4(h). With increasing power and NA, the minima of
the polarizability shift toward a lower relative RI for fixed
particle size. This implies that at high average power (or

NA), we can trap those particles which have a significantly
less RI than that of the surrounding medium, i.e., particles
which cannot be trapped under CW excitation. This is one
instance where one can clearly see the advantage of fem-
tosecond pulsed excitation over CW excitation. At 100 mW
average power, if the relative RI lies between −2.331 and
−1.33, the particle cannot be trapped under pulsed excitation,
whereas it can be trapped under CW excitation. Therefore,
whether CW or pulsed excitation is more or less advantageous
ultimately depends on how the relative RI is fine-tuned by
optical nonlinearity. A detailed discussion of the range of
relative RI, whether the particle can be trapped or not, and
how it varies with power, NA, λ, and particle size is given in
Secs. S2.2.1 and S2.2.2 in the SM [15].

It is interesting to note here that particles having a sig-
nificantly higher RI than the surrounding medium cannot be
trapped under either CW or pulsed excitations because they
scatter more. In order to trap such particles, an antireflection
coating on surface is required so that scattering force can
be minimized [11,12]. As discussed earlier [6], that relevant
quantity to determine the trapping efficiency is Uesc which can
help in determining the optimal power for fixed a and NA.
Although higher average power is required to trap smaller
nanoparticles (Table S4 in the SM [15]) finding an optimal
power for particle size <23 nm is very difficult because
the polarizability approaches an asymptotic value at higher
average power. Therefore, it is more practical to estimate
an optimal particle size for a fixed laser power and NA. A
detailed discussion is given in Sec. S2.2.3 in the SM [15].

IV. CONCLUSION

To summarize, using dipole approximation, we have pro-
vided a general discussion to include optical nonlinearity in
laser trapping of dielectric nanoparticles. We showed how
the nature of the trapping force/potential can be modulated
(repulsive, intermediate, attractive, and unbound) and how
particles made of low refractive index materials can be trapped
by harnessing optical nonlinearity. Through this work, we
envisage far-reaching applications of facile and controlled
optical manipulation by tuning the nonlinear optical force.
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