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Large molasses-like cooling forces for molecules using polychromatic optical fields:
A theoretical description
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Recent theoretical investigations have indicated that rapid optical cycling should be feasible in complex
polyatomic molecules with diverse constituents, geometries, and symmetries. However, as a composite molecular
mass grows, so does the required number of photon scattering events necessary to decelerate and confine
molecular beams using laser light. Utilizing coherent momentum exchange between light fields and molecules
can suppress spontaneous emission and significantly reduce experimental complexity for slowing and trapping.
Working with BaH as a test species, we have identified a robust, experimentally viable configuration to achieve
large molasses-like cooling forces for molecules using polychromatic optical fields addressing both X -A and X -B
electronic transitions, simultaneously. Using numerical solutions of the time-dependent density matrix as well as
Monte Carlo simulations, we demonstrate that creation of suppressed emission rate (SupER) molasses with large
capture velocities (∼40 m/s) is generically feasible for polyatomic molecules of increasing complexity that have
an optical cycling center. Proposed SupER molasses are anticipated to not only extend quantum control to novel
molecular species with abundant vibrational decay channels, but also significantly increase trapped densities for
previously laser-cooled diatomic and triatomic species.
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I. INTRODUCTION

A. Direct molecular laser cooling

Optical control over atomic spatial degrees of freedom is
one of the cornerstones of modern atomic physics [1,2] and
quantum technologies [3,4]. In recent years, laser cooling
and trapping methods have been successfully extended to a
handful of molecular species [5,6]. Yet despite more than a
decade of active research efforts, only three diatomic species
(SrF [7], CaF [8,9], and YO [10]) have been trapped in three
dimensions (3D) at microkelvin temperatures. While one-
dimensional (1D) laser cooling of cryogenic molecular beams
of diatomic BaH [11] and YbF [12], triatomic SrOH [13],
YbOH [14], and CaOH [15], and even hexatomic CaOCH3

[16] molecules has been achieved, the number of scattered
photons demonstrated (∼100–1000) is still at least an or-
der of magnitude below what is needed to achieve radiative
slowing and 3D trapping. Therefore, the question of general
prospects of utilizing laser slowing, 3D cooling and trapping
for molecular species with new internal structures (e.g., BaH)
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or increased vibrational complexity (e.g., triatomics) remains
largely unanswered.1

Traditional Doppler slowing and cooling relies on a re-
peated process of directional photon absorption (resulting in
h̄k momentum transfer) followed by spontaneous emission
to the initial set of states for the cycle to repeat [24]. While
in many atoms, the use of specific angular momentum con-
figurations for the ground and excited states together with
the appropriate laser polarization can lead to an effective
“two-level” system, the absence of strict vibrational selection
rules for molecular electronic decays necessitates novel ap-
proaches to molecular laser cooling [5]. The probability of
decay into a given vibrational level is described by the square
of the overlap integral between the excited (double prime)
and ground (single prime) vibrational wave functions Fv′′v′ ,
also known as a Frank-Condon factor (FCF) for that transition
[6]. For certain diatomic species with small off-diagonal FCFs
(i.e., v′′ �= v′), one or two additional lasers can be used to
repump molecules from excited vibrational levels v′′ > 0 back
to the ground vibrational state v′′ = 0, enabling scattering of
�104 photons [25–27] needed to slow molecular beams to
below the capture velocity of a 3D molecular magneto-optical
trap with vcap ≈ 5–10 m/s [28,29]. However, even for light
triatomic species with relatively diagonal FCFs like CaOH

1Alternative methods for molecular cooling and trapping that do
not rely on repeated photon scattering have also been demonstrated
[17–20]. We refer interested readers to review articles that compare
and contrast different methods and how they can address various
fields of scientific research [5,6,21–23].
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(F00 = 0.954), eight additional repumping lasers are needed
to scatter ∼104 photons [15,30,31], thus, presenting a signif-
icant technical challenge for extending Doppler slowing and
trapping methods to heavier (e.g., YbOH) or more complex
(e.g., CaOCH3) molecules. Toward this end, various alterna-
tive techniques have been developed for efficient momentum
transfer from the laser light to atoms or molecules, while mini-
mizing spontaneous emissions [32]. To date, the emphasis has
been on developing novel experimental methods to achieve
molecular slowing to vcap with a small number of sponta-
neously emitted photons [33–35], thus reducing the number of
required repumping lasers. Here we present a cooling scheme
that uses multifrequency light to rapidly dampen molecular
motion in a wide range of velocity classes veff � vcap, while
minimizing the number of spontaneous decay cycles. The
proposed suppressed emission rate (SupER) molasses could
be either combined with coherent slowing techniques or used
with previously magneto-optically trapped species to capture
and cool molecules with v > vcap,MOT.

B. Coherent optical forces

Widely utilized optical slowing and cooling methods for
atomic gases usually use a single optical frequency to address
a specific “two-level” transition. Such radiative methods are
characterized by the maximum force Frad = h̄k�sp/2 affecting
velocity classes within �vrad ≈ �sp/k, with the intrinsic spon-
taneous decay rate �sp limiting the maximum force as well
as the capture range [24]. While a conservative dipole force
arising from the gradient of the light shift can lead to strong
confining forces, its utility in cooling atomic or molecular
motion is severely limited since it averages out to zero over
a spatial scale larger than light wavelength λ [32]. However,
already more than thirty years ago it has been theorized that
the dipole force can be “rectified” to maintain a constant
sign over position scales much larger than λ by adding a
second light field to spatially modulate the atomic energy
levels and, therefore, the sign of the detuning for the initial
dipole force laser field [36,37]. Shortly afterwards, Grimm
and coworkers have conclusively demonstrated the effect of
the rectified dipole force (RDF) on a sodium atomic beam
achieving FRDF ≈ 4Frad [38], a factor of 2.5 lower than the
initial prediction due to the presence of transverse atomic
velocities larger than v⊥ ∼ �sp/k [39]. To remedy the issue
of a small velocity capture range of the RDF, other methods
for generating large coherent optical forces have been pro-
posed that realize coherent control of light-atom momentum
exchange by tailoring the inversion of the atomic populations
[40]. Only recently, however, have the effects of such coherent
optical methods been conclusively demonstrated in molecules
using triatomic SrOH [41] and diatomic CaF [42].

The use of counterpropagating amplitude-modulated light
waves, leading to a stimulated light pressure on atoms, has
been proposed as a viable method to achieve large force
magnitudes F � Frad over a wide velocity range v⊥ � �sp/k
[43,44]. While the magnitude of the stimulated bichromatic
force (BCF) can be explained using an intuitive resonant
optical π -pulse interpretation [44,45], an understanding of
the large velocity capture range requires a doubly dressed
atom picture [46]. In the simplest case, a two-level system

FIG. 1. Interaction of a moving two-level system with a bichro-
matic light field. Pulse trains are created by a pair of counterpropa-
gating two-color (±δ) beams offset from each other by a phase χ . To
center the force profile around a nonzero velocity, pulses on one side
have to be red-detuned, while pulses approaching from the other side
have to be blue-detuned.

interacts with collinearly superimposed bichromatic standing
waves with equal intensities IBCF and symmetrically detuned
by ±|δ � �sp| from atomic resonance. By imposing a relative
phase offset χ between the counterpropagating laser fields,
the directionality of the force can be controlled by fixing the
relative timing between the resulting beat pulse trains (Fig. 1)
[45]. Choosing IBCF and δ such that the Rabi frequency
integrated over a single beat pulse area satisfies �tπ ≈ π ,
efficient transfer of atomic population between the ground and
excited states can be achieved at a rate of δ/π � �sp [24].
Since each directional π pulse transfers h̄k momentum to the
atom, the order of magnitude for the bichromatic force2 is
FBCF ∼ h̄kδ/π � Frad. Even though a spontaneous emission
rate can be significantly suppressed by reducing the excited
state fraction with a properly designed pulse sequence [33,47],
any spontaneously emitted photons will lead to quantum state
decoherence and potential reversal of the momentum transfer
direction. For an asymmetric χ phase choice required for a
directional momentum transfer this leads to only order of
unity reduction in the net magnitude of photon transfers av-
eraged over a time greater than 1/�sp [45]. However, such
processes can have important consequences for the limiting
temperature of the ensemble when coherent optical forces are
employed for cooling of laboratory-frame velocity. Careful
understanding of limiting temperatures in stimulated transfer
cooling methods has proven challenging [48,49], and here we
develop a method of doing so using a continuous-time Markov
Chain model detailed in Appendices A and B.

When considering BCF and other stimulated light forces
like RDF, it is important to properly account for the atom’s
or molecule’s finite velocity that could significantly affect
the magnitude of the experimentally achievable decelerations
(seen in the initial RDF experiments, for example [39]). To
create force profiles accurately depicting velocity dependence
necessitates solving Liouville-von Neumann equations for
density matrix evolution in the rotating wave, fixed-velocity
approximations, followed by obtaining the force averaged

2As shown in App. A, the expression presented here is in fact exact
for a two-level system: FBCF,2−level = h̄kδ/π .
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over the ensemble 〈F 〉 = −tr (ρ∇H ), where ρ is the den-
sity matrix [32,46]. However, intuitively, the velocity capture
range for the bichromatic force can be interpreted as arising
from the relative dephasing between consecutive beat notes.
Once the Doppler shift kv becomes comparable to the Rabi
frequency � ∼ δ, the π pulses no longer lead to efficient
population transfer, thus limiting the affected velocity range
to 
v ∼ δ/k � �sp/k [50] under conditions of large BCF
detuning δ � �sp.

C. Cooling properties of the bichromatic force

Since the bichromatic force does not vanish for atoms
at rest and involves mostly coherent state transfers, it may
seem surprising that rapid cooling of atomic beams has
been achieved using BCF configurations.3 However, the sharp
edges of the BCF profiles can be used for compressing veloc-
ity distribution and achieving cooling of atomic motion. The
frequencies of counterpropagating dual-frequency beams can
be offset by opposite amounts, creating a situation where the
atom or molecule undergoes efficient π -pulse transfers from
ω0 ± δ beat notes only at nonzero velocities (Fig. 1). The
Doppler shift experienced by an atom or molecule is ±kv,
so by letting � = kv0 we can center the force profile around
a chosen nonzero velocity v0. By shifting the bichromatic
force profile to be centered around a nonzero velocity, efficient
longitudinal cooling of atomic beams has been demonstrated
[45,50]. In Fig. 2, we show an example of such a shifted force
profile centered at v0 = −40 �/k obtained for a relative shift
of � = −40 �. Our parameters were chosen by optimizing
the peak force at the profile’s center.

The use of large stimulated optical forces for achieving
3D cooling and kelvin-deep trapping of atoms and molecules
was one of the primary motivations for the initial exten-
sive development of such methods [36,43]. However, despite
thirty years of research, the application of coherent stimulated
forces to zero-velocity cooling (i.e., compression of velocity
distribution toward zero laboratory-frame velocity) and con-
finement of atomic and molecular samples has been limited
[34,53,54]. Partlow and coworkers have performed a land-
mark experiment on a helium beam to use spatially separated,
shifted bichromatic force profiles with opposite phase χ and
frequency shift � [48]. Such a 1D collimation scheme re-
quired two sequential interaction regions acting on atoms with
positive and negative initial velocities, respectively, and thus
leading to experimental results emulating the effects of optical
molasses. However, as pointed out by Partlow and coworkers
[48], the underlying physical process was not resulting in
a true damping force for velocities of interest and led to a
different physical behavior than optical molasses cooling.

Here, we use the inherent multilevel structure of molecular
radicals that limits cooling efficiency of traditional Doppler
molasses to propose a 1D laser cooling scheme with sig-
nificantly higher velocity range and damping coefficient. By
addressing two separate, yet radiatively coupled, two-level

3In fact, transverse cooling of the metastable helium beam using
the bichromatic force has been demonstrated in the regime of �1.5
emitted photons [51,52].

FIG. 2. A shifted bichromatic force profile for δ = 100 �, � =√
3/2δ, χ = 45◦ with opposing beams detuned by � = −40 �. The

profile is centered at v = �/k = −40 �/k and was obtained by
numerically solving Liouville-von Neumann equations for density
matrix evolution in the rotating wave, fixed-velocity approxima-
tions. The maximum force is equal to h̄kδ/π ≈ 63 h̄k�/2 and the
width of the profile can be estimated to be equal to δ/2k = 50 �/k.
Sharp vertical spikes are Doppleron resonances arising when integer
numbers of red-detuned absorptions and blue-detuned emissions of
photons (or vice versa) are resonant with the transition [55]. This
will occur when (δ + kv)/(δ − kv) is rational. However, in previous
measurements of the bichromatic force profiles [56,57], these narrow
Doppleron resonances were not observed and are not expected to
have any significant effect on real physical systems.

systems with polychromatic optical fields, we discover that
it is possible to achieve a large velocity damping force with
suppressed emission rate (SupER). Furthermore, in the ex-
perimentally accessible regime, we demonstrate the feasibility
of damping molecular motion to millikelvin temperatures on
microsecond timescales. We show how SupER molasses force
profiles can be created in a simple four-level system, develop
a mathematical model for estimating the final temperature,
and perform Monte Carlo simulations of the cooling dynamics
to confirm the analytical estimates. Throughout the paper we
use the barium monohydride (BaH) molecule as a test species
for our time-dependent density matrix calculations, but also
suggest a more general level scheme common to many di-
atomic and polyatomic radicals that could be utilized to create
large 1D molasses-like forces. Therefore, we identify a way
to use the internal complexity of molecular systems to enable
their efficient quantum control for a wide variety of proposed
applications [21]. Our work makes an important step toward
experimental realization of kelvin-deep macroscopic (r � λ)
optical traps for molecules proposed more than 30 years ago
[36,43].

II. SUPPRESSED EMISSION RATE MOLASSES

To realize cooling force profiles arising from a rapid coher-
ent momentum exchange between light fields and molecules,
we identify an appropriate multilevel system that would
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FIG. 3. Diagram of BCF in two coupled two-level systems that
represent the structures necessary for realizing large molasses-like
force profiles described in the text.

allow us to combine two asymmetric (shifted) force-velocity
profiles (e.g., shown in Fig. 2) without significant reduction
in force versus velocity characteristics. For ease of theoret-
ical tractability and computational simplicity, our analysis
if performed in one dimension (1D). While 1D/2D cooling
methods are already of significant interest for molecular cool-
ing experiment, we believe that extension of our observations
to the full 3D case should be also possible, yet beyond the
scope of the present work.

As initially pointed out by Partlow and coworkers [48],
it is impossible to simultaneously apply both force profiles
on one single two-level system without drastically perturbing
individual force profiles. To circumvent this limitation, instead
we consider two almost independent two-level systems that
are coupled only by spontaneous decay as shown in Fig. 3.
As described in Sec. V such a system can be generically
realized in diatomic and polyatomic radicals with optical
cycling properties. For initial studies we consider an ideal-
ized four-level system with �11 + �12 = �22 + �21 ≡ �, with
�11 = �22 and �12 = �21, as well as λ1 = λ2 ≡ 2π/k. While
this assumption facilitates some initial theoretical calculations
and demonstrates general aspects of coherent momentum ex-
change leading to suppressed emission rate molasses force
profiles, we relax the simplifying assumptions in the next step
when working with realistic systems.

The simplest realization of SupER molasses in the toy
model would have Rabi rate and phase difference set to the op-
timum conditions identified for stimulated bichromatic force
configuration: �1 = �2 = √

3/2 δ and |χ | = 45◦ [32], where
Rabi rates are those of every component shown in Fig. 1. To
obtain two asymmetric profiles those two-level systems have
to have opposite signs of the detunings and phase differences:
�1 = −�2 and χ1 = −χ2. For simplicity, we assume for now
that δ1 = δ2 ≡ δ, with δ = 100 � used in calculations. While
in the toy model δ has to only be much larger than �, in real
systems we need it to be larger than naturally occurring energy
splittings, such as hyperfine splitting, which quite often are on
the order of couple �. Our specific choice, while arbitrary,
should be applicable in many situations and be realizable
using off-the-shelf acousto-optic modulators (AOMs).

We found the most optimal profile for �1 = −15 � and
depict it in Fig. 4. We should note that in such symmetrized
system given no additional selection rules the light from both
two-level subsystems would couple to the other subsystem. In

FIG. 4. BCF molasses force profile in a symmetrized BaH toy
model. Profile was obtained for �± = ∓15 �, δ = 100 �, �0 =√

3/2δ and χ± = ±45◦.

a real system, like that in BaH, light frequencies are vastly
different and do not couple to both transitions simultaneously,
yet still enable realization of SupER molasses as discussed
below.

As shown in Fig. 4, the resulting force profile shows re-
markably strong forces and high capture velocities—the force
peaks at around 35 h̄k�/2 at velocity of about ±20 �/k, while
at the same time the slope around zero velocity, representing
velocity damping coefficient, is quite linear and steep. We can
benchmark this force versus velocity curve against normal
optical molasses realized with radiative forces. The compar-
ison is shown in Fig. 5 after smoothing the BCF-induced
force profile with a moving average filter to smooth out sharp
spikes arising from multiphoton reasonances. Qualitatively,
the obtained force profile perfectly resembles the radiative
Doppler molasses, but on a much bigger scale: the slope near
zero velocity is 16 times higher compared to radiative force in
Fig. 5, peak forces are substantially bigger, and so are capture
velocities.

Rapid adjustment of the shape and magnitude of the
cooling profile is easily achievable experimentally. Capture
velocity and the damping force are modified when changing
profile-shifting detuning � (see Fig. 1), which can be con-
trolled by an AOM, by changing its RF drive frequency. The
magnitude of the force depends on the choice of BCF detuning
δ and the Rabi rate � for each two-level system shown in
Fig. 3. In Fig. 6 we present comparison of smoothed force
profiles for � ranging from 10 � to 30 �. These resulting
force-velocity profiles are effectively created by a sum of
two opposing, shifted and rescaled two-level BCF profiles, as
shown in Fig. 7. The scaling effect appears there, because in
our four-level model the atom or molecule spends on aver-
age less time in either of the two-level subsystem interacting
with their own respective bichromatic fields than in a simple
situation of a BCF-driven two-level system. In fact, using the
π -pulse approach (described in detail in Appendix B), we can
predict that for our toy model such factor will be exactly equal
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FIG. 5. Comparison of BCF molasses force profile (blue graph
and axes) in a symmetrized four-level toy model and a regular optical
molasses force profile (red graph and axes). BCF profile was ob-
tained for �± = ∓15 �, δ = 100 �, �0 = √

3/2δ, and χ± = ±45◦

and was smoothed using moving average filter, while the radiative
force profile was drawn for I = Isat and detunings δ± = ±1 �. Both
scales differ by a factor of 20. While in the case of radiative forces,
the slope is about 0.44 h̄k2/2 for given parameters, in the BCF force
profile it is close to 7 h̄k2/2, a factor of 16 higher.

to 4/7, and so the peak forces expected for any detuning δ are
FBCF,mol = 4/7 h̄kδ/π . However, this scaling factor has some
limitations. In case of fields with more than two colors, the di-
rect solution of four-level system yields forces higher than one
would obtain by rescaling a two-level system solution, thus
reaffirming the necessity to perform a full calculation with
all levels and laser frequencies as done here rather than using
scaled analytical results from isolated two-level systems.

FIG. 6. BCF molasses force profiles in a symmetrized BaH toy
model after applying moving average filter. Profiles were obtained
for δ = 100 �, �0 = √

3/2δ, and χ± = ±45◦.

The force profile can also be obtained for any 2n-color
forces, though it is not immediately obvious what the benefits
of adding additional frequencies are. If we assume that we
always operate with a certain power per frequency compo-
nent, then in a simple two-level system moving from two- to
four-color laser fields increases the force and velocity range
quite substantially while decreasing the time spent in the
excited state [47]. Indeed, as shown in Fig. 8, the four-color
profile does not look that much different from the BCF profile.
However, the peak force is much larger and remains such for
higher velocities, which could result in higher capture veloc-
ity. In Fig. 9 we compare four-color force profiles for various
shifts �. We found the highest peak forces for |χ | = 25◦ and
� = 1.16 δ, where � is rate of every component.

The four-color force profiles can be quite strongly adjusted
by appropriately changing the phase χ , which experimentally
is controlled by a relative length of the optical delay line
between the counterpropagating multifrequency laser beams
of the same color (see Fig. 1), and Rabi rate �. In Fig. 10 we
show a much wider profile with capture velocities as high as
60 �/k (which for molecule like BaH is equivalent to ≈ 72
m/s) and forces of the order of 50 h̄k�/2 that was obtained
for |χ | = 30◦ and � = δ. Finally, we present comparison of
two-color molasses profile, narrow four-color force profile
and wide four-color force profile in Fig. 11. All these SupER
molasses have high capture velocities, high peak forces and
steep slopes ranging from 7 h̄k2/2 for the BCF to 9.5 h̄k2/2
for the narrow four-color profile, enabling rapid damping of
molecular motion.

III. TEMPERATURE IN SUPER MOLASSES

Having developed a mathematical approach to the π -pulse
model of the polychromatic force dynamics using continuous-
time Markov chains (CTMC) (Appendix A), we are now
able to estimate the final temperature of atoms or molecules
under the influence of SupER molasses. The diffusion co-
efficient, which determines the limiting temperature, should
not only include terms related to spontaneous emission from
the excited states, but also the term specific to this model,
which is related to the uncertainty in “position” in the
excitation-stimulated emission cycle. This term is effectively
the variance in momentum transfer from the optical field to the
atom or molecule. In our model, the system quickly relaxes to
a steady state that is achieved at long times t � 1

�12+�21
and

the variance term can be written as (Appendix B)

Var pPCF = h̄2k2 δ2

π2�
σ 2(ε) t,

where σ 2(ε) is dependent on fraction of time ε spent in the
excited state per cycle (it is not the ensemble average excited
state population ρee appearing in the density matrix and it is
discussed in Appendix A as well as in Ref. [58]). Apart from
the contribution from PCF, total variance of the momentum
transfer will have a contribution arising from the spontaneous
decay as well:

Var p = h̄2k2 δ2

π2�
σ 2(ε)t + 1

3
h̄2k2ρee� t,
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FIG. 7. Two opposite BCF profiles (left panels) compared with force profiles obtained from a full calculation performed for the four-level
system (right panels). Results are smoothed with a moving average filter to highlight the overall features. Profiles were obtained for δ = 100 �,
�0 = √

3/2δ, χ± = ±45◦ and: (a) � = ±15 � (b) � = ±20 � (c) � = ±30 �.

with ρee being the time-averaged excited state population (in
case of the four-level system we have shown, ρee = ρE1 +
ρE2). We should also note that the variance shown here is
variance of momentum transfer in one dimension and is the
reason behind the 1/3 factor in the second term on the right
hand side in the equation above.

Obtained result shows a quadratic dependence on h̄kδ

which is consistent with results experimentally shown in
Ref. [48] and first estimated in Ref. [59] for dipole forces.

FIG. 8. Four-color molasses force profile in a symmetrized BaH
toy model. Profile was obtained for �± = ∓15 �, δ = 100 �, �0 =
1.16 δ, and χ± = ±25◦.

In case of the bichromatic force used in the helium colli-
mation experiment, authors obtained diffusion coefficient of
≈ (h̄kδ)2/2� [48], while the value we obtain from our model
is ≈0.6(h̄kδ)2/�.

From the calculated variance we can obtain the diffusion
coefficient D:

D ≡ 1

2

d

dt
p2(t ) = 1

2

(
h̄2k2 δ2

π2�
σ 2(ε) + 1

3
h̄2k2ρee�

)
, (1)

FIG. 9. Four-color molasses force profiles in a symmetrized BaH
toy model after applying moving average filter. Profiles were ob-
tained for δ = 100 �, �0 = 1.16 δ, and χ± = ±25◦.
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FIG. 10. Wide four-color molasses force profile in a sym-
metrized BaH toy model. Profile was obtained for �± = ∓35 �,
δ = 100 �, �0 = δ, and χ± = ±30◦.

which is then related to the limiting temperature TL. The
PCF molasses force around v = 0 is linear and can simply
be written as F = −βv, where −β is the slope. Using the
definition of the diffusion coefficient and by assuming mass
of the atom or molecule is M, at equilibrium one can write

Mv2 = D

β
.

By associating the limiting temperature TL with kinetic
energy, i.e., Mv2 = kBTL and using the definition of Doppler
temperature TD = h̄�/2kB, we get

TL = 2TD
h̄k2

2β

[
1

3
ρee + δ2

π2�2
σ 2(ε)

]
. (2)

FIG. 11. Comparison of molasses force profiles in a symmetrized
four-level system. By adding colors and appropriately changing the
parameters, profiles with different characteristics can be created.

In the equation above, the parameter β is measured in
natural units for this problem—(h̄k�/2)/(�/k) = h̄k2/2. Be-
cause σ 2(ε) is on the order of 10, in Eq. (2) the spontaneous
emission term is negligible given detuning δ typical for this
problem. Slope β that appears in this equation can be es-
timated (following Ref. [48]) to be β ∼ δ/4π� h̄k2/2 for
presented profile, which leads to TL ∼ 8 σ 2(ε) δ/π TD. For
example, for BCF molasses presented here σ 2(εBCF) ≈ 20
and δ = 100 �, so TL ≈ 5.09 × 103 TD, which for BaH is
about 137 mK. For a more realistic and asymmetric system
σ 2(εBCF) ≈ 21 and so, given the slope of similar magnitude,
the final temperature would be almost exactly the same. The
linear dependence of TL on the detuning shows that it might
be beneficial to keep δ as small as possible, while still keeping
δ � � condition fulfilled.

While the estimated limiting temperature appears high
compared to the Doppler limit, it can actually be made lower.
The temperature at equilibrium in such system is not only de-
termined by the slope of the profile, but also by how strongly
the polychromatic forces act on the atom or molecule around
zero velocity. In the derivation of the formula for variance of
momentum transfer (Appendix B) we assumed that in every
state considered the force acting on an atom or molecule is
2h̄kδ/π . However, around zero velocity that does not need to
be the case. Assuming that the force around v = 0 is equal to
F0, we can simply substitute h̄kδ/π ∼ F0. If we removed all
the constants appearing naturally in both β and F0, then we
would simply obtain

TL ∼ TD
F 2

0

β
σ 2(ε), (3)

clearly showing that the final temperature mainly depends on
the ratio F 2

0 /β. This shows us that effectively, depending on
how the basic two-level system profiles (Fig. 7) are aligned to
create a full molasses-like forces, we obtain different values of
β and F0. For small shifts � both force and slope are high as
shown in Fig. 7(a). If we make our detuning too high, like in
Fig. 7(c), then the force around zero velocity becomes small,
but because the profiles are far from the center, the slope of
the effective profile is very small as well.

In between there should exist an optimal configuration,
where slopes of single PCF profiles are each other’s contin-
uation. There, the slope should remain high, while the force
F0 should be relatively small and Fig. 7(b) depicts such a
situation. In this configuration the smallest temperature ought
to be achieved. Given that width of BCF profiles is approxi-
mately δ/2k, we should expect that the most optimal cooling
forces will appear around �± = ∓δ/4k. To confirm these es-
timates, We analyze the effective forces, damping coefficients
and limiting temperature TL using Monte Carlo simulations
of an exact realization of the four-state model described in
Appendix B.

IV. MONTE CARLO SIMULATIONS

To prove that the estimated temperature follows the model
we have created we present results of a Monte Carlo simu-
lation of an ideal four-level toy model for a two-color light
field. In it we assumed that the system consists of four states
(described in Appendix B). While in the π -pulse model we
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assumed that the force in every state is 2h̄kδ/π , here we as-
sume it is velocity-dependent and follows a typical BCF force
profile, rescaled in such a way that at maximum it is equal
to the mentioned 2h̄kδ/π value. Using such values results in
effective force profiles seen in figures provided before. It is
important to note that the temperature model and obtained
formulas presented in Appendices A and B work in the regime
where the interaction can actually be described in the frame-
work of a π -pulse model. This occurs for specific parameters
(such as χ = 45◦ for two-color fields) and for velocities, for
which the force is at its maximum. The model might not
hold at the edges of force-velocity profiles (|v − v0| > δ/2k),
which is the regime we expect to be in in the cooling process
(v ∼ 0). Therefore, the proportionality constant in Eq. (3)
could be difficult to predict, given that σ 2(ε) stems from the
near-perfect π -pulse behavior. Additionally, the slope β that
appears in the formula might not be the effective slope that
can be read directly from provided effective force-velocity
profiles.

Occurrence of transitions between different states in the
simulations was assumed to follow Poissonian statistic with
rates given in Appendix A. We have also included recoils from
spontaneous emission events even though they play a very
limited role. The force profiles used were rescaled versions of
those seen in Figs. 7(a) and 7(b), which should show a typical
(the former) and a perfect (the latter) configuration for the
molasses. In the simulation these profiles were separate and,
like in mentioned figures, already smoothed with a moving
average filter. We have also assumed that the molecule under-
going the cooling process is BaH with � = 2π × 1.15 MHz,
M = 139 u and k = 2π/1060.7867 nm. Experimentally, to
obtain these profiles for our test species the lasers would
have to be detuned from the resonance by δ ≈ 115 MHz, and,
assuming beams with uniform power density and diameter of
5 mm, have a total power of ∼4.4 W.

The effective damping coefficients (slope) that we expect
for � = ±15 � are β ≈ 4.9 h̄k2/2 and β ≈ 3.1 h̄k2/2 for
� = ±20 �, while the force around v = 0 is expected to be
F0 ≈ 103.4 h̄k�/2 and F0 ≈ 42.4 h̄k�/2, respectively. If the
developed model holds in both described regimes, then we
expect that the limiting temperature will be (in the natural
units)

TL = TD
F 2

0

β

σ 2(ε)

8
, (4)

which should lead to TL ≈ 147 mK for � = ±15 � and TL ≈
39 mK for � = ±20 �. Equation (4) can also be written using
the notation used in the Appendix as

TL = TD
F 2

IV

β

σ 2
IV(ε)

2μ2
IV(ε)

, (5)

where FIV is already the effective and rescaled force around
v = 0 that is obtained in a four-state model (Appendix B) and
that can be read directly from the presented force profiles,
σ 2

IV(ε) = σ 2(ε)/2 and is equal to 10.06 for BCF in a sym-
metric system, and μIV(ε) is the rescaling factor equal to 4/7
for BCF in such system.

In the simulation we started with molecules distributed
with σv = 5 m/s, which for BaH corresponds to temperature

FIG. 12. Temperature decay for � = ±15 � molasses reaching
TL = 125.9 mK (top) and for � = ±20 � molasses reaching TL =
37.9 mK (bottom).

of approximately 0.4 K. The simulation was run in steps of
5 ns for a total time of 200 μs, which was more than enough
to reach the final limiting temperature for both considered
SupER molasses configurations. Figure 12 shows molecular
temperature at different times averaged over multiple sim-
ulations for � = ±15 � molasses (top frame) and for � =
±20 � molasses (bottom frame). The limiting temperatures
obtained were 125.84 mK and 37.91 mK, respectively, rela-
tively close to the CTMC model estimates. The model was
also proven to be correct by the steady state populations which
quickly relaxed to predicted levels of ηC1 = ηC2 = 11/28 and
ηW1 = ηW2 = 3/28 (Appendix B). Assuming that the temper-
ature follows an exponential decay curve, i.e., T (t ) = TL +
(T0 − TL ) exp(−t/τβ ), where τβ = M/2β is the characteris-
tic decay time, we can find the actual effective damping
rates. For � = ±15 � we obtained τβ ≈ 13.38 μs giving β ≈
4.66 h̄k2/2, and τβ ≈ 16.27 μs leading to β ≈ 3.83 h̄k2/2 for
� = ±20 �. Both results are close to provided estimates.
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FIG. 13. Velocity profiles after 10, 20, 40, and 60 μs showing
changes experienced in � = ±20 � BCF molasses. Dotted lines
mark approximate capture velocity of 40 �/k.

To investigate the capture velocity we have also performed
simulations for � = ±20 � molasses with molecules starting
with σv = 30 m/s corresponding to T0 ≈ 14.7 K for BaH.
Simulation was performed to reach final time of 200 μs,
which was enough to show the approximate capture velocity.
Figure 13 shows comparison between velocity distributions
at t = 0 and at times of t = 10, 20, 40, 60 μs. We can see
that the molecules with |v| � 40 �/k (∼47 m/s for BaH)
accumulate around v = 0 showing that we can consider this
to be the effective capture velocity of the SupER molasses
for our parameters. In general, we could expect the capture
velocity to be equal to the typical width of the force versus
velocity profile of ∼δ/2k. Note that the simulated cooling
time of SupER molasses for BaH agrees with the character-
istic BCF timescale of τBCF = π/(4ωr ) ≈ 100 μs [32] where
ωr ≡ h̄k2/(2M ) ≈ 2π × 1.3 × 103 s−1 is the recoil frequency
for BaH. The value of τBCF represents the timescale over
which a molecules is accelerated across the full velocity range
∼δ/k and gives an approximate upper bound on the cooling
time in the molasses configuration.

V. APPLICATION TO REAL MOLECULES

With the theoretical results established for an ideal four-
level system (the minimum number of states required for
the proposed scheme), we relax the simplifying assumptions
to apply our cooling method to real molecular systems. We

develop a general scheme to obtain rotational closure (while
satisfying the requirements dictated by the four-level toy
model presented above), at the same time accounting for spin-
rotation, fine and nuclear hyperfine structure for molecules
with an unpaired electron spin. As we show below, additional
internal substructure present in molecular radicals enables
generic experimental realization of the SupER molasses cool-
ing scheme.

A. Rotational level schemes

As detailed above, to realize large cooling forces primarily
due to coherent momentum exchange between multifrequency
laser beams and molecules we must work with two separate
excited states that each decay into both ground states. One
way this can be accomplished for molecular radicals is when
the |G1〉 and |G2〉 states in Fig. 3 are the rotational ground
(N ′′ = 0) and second (N ′′ = 2) excited levels in the ground
vibrational manifold, while the excited states consist of the
ground vibrational, first rotational (N ′ = 1) level of an ex-
cited state manifold with two different sufficiently separated
submanifolds (e.g., spin-rotation components). Angular mo-
mentum selection rules dictate that these excited states will
decay to both ground states we have selected. This scheme is
shown, using as general of notation as possible, in Fig. 15.
This scheme provides for the general requirements outlined
by the toy four-level model, but there are additional nuances
introduced by potential hyperfine and spin-rotation splittings
in various states.

Figure 14 demonstrates energy correlation diagrams for
molecular radicals of different structural symmetries. In the
presented scheme, the B 2�+ electronic state (second ex-
cited electronic state arising from the mixing between the
(n − 1)dσ and npσ orbitals), which exists in all diatomic
and polyatomic molecules that have been considered for op-
tical cycling applications thus far [14,62–66], is chosen as
the excited state. Angular momentum selection rules dictate
that only the included hyperfine and rotational states take
part in the cycle, although there are some basic criteria for
this scheme to work. First, because we would like to use
different J ′ manifolds as |E1〉 and |E2〉 levels in Fig. 3 of our
two-level subsystems, the spin-rotation splitting in the excited
electronic state �B�

J has to be much larger than either of the
PCF detunings δB�1/2 or δB�3/2 . Otherwise, the N ′′ = 0 state
might couple to J ′ = 3/2 or N ′′ = 2 to J ′ = 1/2, reducing the
velocity damping coefficients. Similarly, �N , and so the rota-
tional constant Brot as well, must be much larger than either
of mentioned detunings - for typically investigated detunings
of ∼102 �, a rotational constant order of magnitude bigger
(Brot � 103 �) should be sufficient. Second, for the same rea-
son we have to make sure that both transitions are separated in
frequency by more than the PCF detunings, which means that
rotational splitting �N and spin-rotation splitting �B�

J have to
be quite different.

While the branching ratios in this scheme are not balanced,
polychromatic forces acting on both subsystems can be bal-
anced by an appropriate choice of PCF detunings and Rabi
rates (Appendix B). However, the FCF for the X 2�+(ν ′′ =
0) ↔ B 2�+(ν ′ = 0) transition have to be high enough to
allow multiple scattering events to occur. Albeit, they do
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FIG. 14. Energy correlation diagram for alkaline earth metal (M) atoms bonded to ionic ligands (L). As can be seen from the diagram,
multiple closely lying electronic states generically arise for ML molecules with diverse constituents and symmetries. Using the lowest two
nondegenerate excited electronic states (e.g., 2� and 2�) for molecules of C∞v or 2A′ and 2A′′ for CS molecules will allow application of the
molasses methods described here. While we indicated selective ligands in the diagram, other possible constituents include M = Ca, Sr, Ba and
L = F, OH, CCH, OCH3, CH3, SH. For a comprehensive list of ML monovalent derivativies of the alkaline earth metals that have an electronic
structure of the type presented here refer to Refs. [60,61].

not have to be perfect—one of the reasons polychromatic
fields are extremely promising in the context of molecules is
that they generate high forces while suppressing spontaneous
emission [35]. FCFs of FB�

00 � 0.95 should be sufficiently
high to allow the forces to create observable effects. Addition-
ally, a repump laser might be added and population recycled,
as was shown in multiple diatomic and polyatomic systems
[5].

Finally, hyperfine splittings and potential creation of dark
states in the N ′′ = 2 manifold have to be discussed. Ideally, we
would like the hyperfine splittings in a sublevel to be smaller
than the PCF detunings, e.g., �X�

F1/2
≈ �B�

F1/2
� δB�1/2 in the

N ′′ = 0 ↔ J ′ = 1/2 coupling. In the case of N ′′ = 2 ↔ J ′ =
3/2 transitions we also have the ground state spin-rotation
splitting �X�

J to take into account. If it is smaller than the PCF
detunings, then all hyperfine states will be coupled resulting
in creation of 12 dark states. If the splitting is larger than the
detunings, then we can couple only the J = 3/2 manifold in
the ground state without creating any dark states, but with
population accumulating in the J = 5/2 manifold. In both
cases we could use an auxiliary transition, driven by �aux,
to a different excited state, like A 2�1/2, which would bring
the population back into the cycle. Alternatively, dark state
remixing method could be used such as adding a magnetic
field, polarization switching or microwave-induced AC Stark
shift.

If the spin-rotation splitting in the B 2�+ state is not suf-
ficiently large, then a different scheme can be utilized, shown
in Fig. 16. Here, excited states |E1〉 and |E2〉 are two A 2��

states with a different total angular momentum projection of
� = 1/2 and � = 3/2. In fact, in some molecules (like BaH)
such scheme might work better, due to more beneficial FCF’s
compared to the B 2�+ state [67]. In this configuration, we

exploit the fact that the excited states are parity doublets and
given positive parity of the ground states, we can choose
excited states of negative parity to create our light-coupled
two-level systems. In all other aspects this scheme is analog-
ical to the one described before, and so the same constraints
and criteria apply, with the spin-rotation splitting in the ex-
cited state being replaced by �-splitting ��.

B. Analysis of bichromatic forces in barium monohydride

Motivated by the prospects of ultracold hydrogen pro-
duction via molecular laser cooling followed by photo-
dissociation [68], recently there has been an increased
experimental [11,69] and theoretical [67,70,71] interest in
direct laser cooling and trapping of alkaline-earth-metal
monohydrides. High mass imbalance, low Doppler cooling
limit, and small photon recoil velocity make BaH an ex-
tremely attractive candidate for producing ultracold atomic
hydrogen via zero-energy photofragmentation [68]. Unfortu-
nately, the very same inherent molecular characteristics make
laser cooing of BaH experimentally challenging [11]. How-
ever, fine and hyperfine structure of BaH in the rotational
states involved in the optical cycling process [72] together
with technically accessible transition wavelengths make it
an ideal candidate for stimulated slowing and cooling using
polychromatic optical forces.

In the electronic ground state X 2�+, the ν ′′ = 0 N ′′ =
1 rovibrational state has an exceptionally large spin-orbit
splitting of 8.6 GHz, while the hyperfine splitting is unre-
solvable in the J ′ = 1/2 state [72]. This allows the transition
from X 2�+ J ′′ = 1/2 to A 2�1/2 J ′ = 1/2, where the hy-
perfine splitting is similarly unresolvable, to be addressed
simultaneously on all transitions with equal detuning between
transition and carrier frequency, while leaving the J ′′ = 3/2
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FIG. 15. Possible realization of polychromatic molasses-like forces in a real molecular level structure using one electronic state with a
large spin-rotation splitting �B�

J .

states unperturbed even when the bichromatic detuning is
significantly larger than the decay lifetime (�J/�A� = 1180,
leaving plenty of range over which �A� � δ � �J holds),
and thus enabling realization of the stimulated force signifi-
cantly larger than any possible radiative force.

When this transition is driven with π -polarized light, a
set of four separate, radiatively cross-coupled two-level tran-
sitions are all driven at equal strength and equal transition
frequency. As a result, applying a set of BCF optical fields to
this transition results in a force which (when neglecting any
off-transition decays from the A state) is nearly identical to
that achieved in simple two-level BCF. This includes that there

is no formation of dark states, avoiding the requirement of
dark-state destabilization as has been needed in prior applica-
tion of BCF to molecules [73]. This was verified by numerical
simulation of the BCF force on the four ground state, four
excited state system. Our numerical simulations solved the
Liouville-von Neumann equations for density matrix evolu-
tion in the rotating wave, fixed-velocity approximations, as in
previous simulations of the BCF on molecules [74].

An obvious weakness of this model is that, with the J ′′ =
3/2 states unaddressed, the off-diagonal decays from the A
state are far from negligible. Even considering only decays to
X 2�+ v′′ = 0 N ′′ = 1, one third of spontaneous decays of

FIG. 16. Alternative realization of polychromatic molasses-like forces in a real molecular level structure using two parity-doublet A 2�

electronic states with different total angular momentum projections �.
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the excited states should end in J ′′ = 3/2. If this is allowed
to continue undisturbed, then the system will quickly go dark
and stop feeling force after all population is pumped out of
J ′′ = 1/2 into J ′′ = 3/2 and a small fraction into other rovi-
brational states.

In the context of creating a sustained force, this can be
remedied by using additional optical fields to drive transitions
from J ′′ = 3/2 in such a way that population eventually re-
turns to the BCF-driven transition. In a simple BCF scheme,
this can be done by addition of a CW optical field which
drives J ′′ = 3/2 to B 2�+ N ′ = 0 J ′ = 1/2. This state also
decays primarily to X 2�+ v′′ = 0 N ′′ = 1, with one third
of these decays ending in J ′′ = 1/2, back in the BCF cy-
cle. This comprises an indirect repumping scheme for BCF
as discussed in [74] and previously implemented for SrOH
BCF deflection [41]. This scheme is illustrated in Fig. 18
but with weak repumping beams to address the J ′′ = 3/2 to
B 2�+ N ′ = 0 J ′ = 1/2 transition. Notably there are four
sets of states, ground and excited states in both the BCF and
repump transitions as depicted in Fig. 3. These sets of states
will be referred to as |G1〉, |E1〉, |G2〉, |E2〉 and the labels g, e,
gR and eR will refer to the time-averaged ensemble population
in each set, correspondingly.

With sufficiently strong optical fields, so that � � � in
each case, population returning to the BCF or repump cycle
from the opposite cycle can be taken as a small perturbation
to the population dynamics, and overall population can be
estimated accurately by assuming the relative populations in
each cycle will be identical to that which they would have
absent the other cycle and that relative population between
cycles is determined by equilibrium rate equations. In partic-
ular, e�12 = eR�21, where �12 is the decay rate from |E1〉 to
|G2〉 and �21 is the decay rate from |E2〉 to |G1〉 as shown in
Fig. 3.

Optical dark states will exist in the J ′′ = 3/2 to B 2�+
transition, for any fixed choice of repump polarization. As-
suming a remixing magnetic field and a saturated CW repump,
the populations in the repump transition will equilibrate to
have a proportionality equal to that of the number of states:
eR/gR = N|E2〉/N|G2〉. In this case, with four excited states and
eight ground states, 1/3 of the population in the repump cycle
will be in the excited B 2�+ state at any given time.

On the BCF transition manifold |G1〉 → |E1〉, the propor-
tion of population between ground and excited states depends
on the BCF (or polychromatic force) driving. This will pro-
duce a characteristic time-average excited state population
Pe = e/(e + g). The J ′′ = 1/2 to A 2�1/2 transition in BaH
behaves nearly identically to a two-level system in response
to BCF, as discussed above. The optimal BCF or four-color
PCF optical fields in a two-level system are known from
previous works, along with the time-average excited state
populations that results [47]. After the decay of any transient
behavior, the equilibrium populations between the two cycles
will be reached when cross-decay occurs at equal rates. Taken
together, these considerations are sufficient to determine the
“participating fraction,” i.e., the fraction of molecular popula-
tion which is in the BCF cycle at any given time:

e + g =
(

1 + Pe
�12

�21

NgR

NeR

)−1

.

FIG. 17. Numerically simulated effective force profiles for δ =
189 MHz bichromatic force driving of BaH on the X 2�+ J ′′ =
1/2 to A 2�1/2 J ′ = 1/2 transition with indirect repumping of
X 2�+ J ′′ = 3/2 through B 2�+ N ′ = 0, J ′ = 1/2. The black curve
is from a simulation of all hyperfine projection states in the BCF
cycle, and the grey curve is from a simulation of a single two-
level transition in the BCF cycle. The two are indistinguishable
as expected at sufficiently small molecular speeds but show some
deviation as speed increases.

The effective time-averaged force at a given velocity can
then be taken to be equal to the time-averaged force that would
be achieved if the BCF cycle were closed, multiplied by this
participating fraction which is a function of the time-averaged
excited state fraction in the closed cycle at that velocity.
This can be compared to the maximum radiative force that
would result were both the X 2�+ J ′′ = 1/2 ↔ A 2�1/2 and
X 2�+ J ′′ = 3/2 ↔ B 2�+ transition manifolds driven with
resonant, saturated CW optical fields. In that case, Pe would
equal one half, and the expected radiative force due to both
transitions would be, where k and � are the wave number of
and decay rate along the transition in question,

Frad = h̄(kA��A� e + kB��B� eR) ≈ 1.98 zN.

This force can significantly exceeded the optimal radia-
tive force with experimentally achievable BCF irradiances.
Figure 17 shows simulated effective force profiles for a
bichromatic detuning of 189 MHz, which would require a
per-beam irradiance of 22.5 W/cm2, or in other words a total
summed irradiance of 90 W/cm2 across all four BCF beams,
to have the optimal BCF Rabi frequency at this detuning.
Given the experimentally realized laser power at 1060 nm
[75], which is the wavelength for the X -A optical cycling
transition in BaH, our calculations indicate strong feasibility
of using the described BCF-driving scheme to achieve rapid
slowing of cryogenic BaH molecular beam in a short (∼few
cm) distance. Using realistic experimental parameters (5 W
and 1 mm radius beam), we anticipate that achieving a total
summed irradiance of 500 W/cm2 is feasible, leading to po-
tential for even larger force enhancements.

043377-12



LARGE MOLASSES-LIKE COOLING FORCES FOR … PHYSICAL REVIEW RESEARCH 2, 043377 (2020)

FIG. 18. Specific realization of the four-level toy model in barium monohydride possible due to its abnormally large spin-rotation splitting
�J in the N = 1 rotational state of the X 2�+ ground electronic state.

C. SupER molasses in BaH

Given a high potential for an effective realization of BCF
in BaH on the X 2�+ ↔ A 2�1/2 transition as described in
Sec.V B, a different optical scheme can be used to realize
the SupER molasses cooling configuration. As presented in
Fig. 18, instead of using two states with different rotational
quantum numbers N , we choose to use two J states in N ′′ = 1
rotational state, which are separated by about 8.6 GHz [72].
As the excited states we use two different electronic states:
A 2�1/2 with positive parity and B 2�+ in its ground rotational
level N ′ = 0.

In this system, many of the criteria listed before are
fulfilled—both FCFs are greater than 0.95 [67] and both
transitions are far apart in the frequency space (λA� ≈
1060.7868 nm and λB� ≈ 905.3197 nm). As was detailed in
Sec. V B, polychromatic forces can be created using the ex-
citation to the A 2�1/2 state. The hyperfine splitting �A�

F in
the A 2�1/2 electronic state and �X�

F1/2
in J ′′ = 1/2 manifold

of the X 2�+ state are both very small (less than 4 �A� ∼
2π × 4 MHz [72]), and so by using a π -polarized light fields
with δA� detuning having any reasonable value much larger
than �A� these forces will be created.

Transition to the B 2�+ excited state is trickier to ad-
dress. Hyperfine splitting in the J ′′ = 3/2 level of the X 2�+
state is larger – �X�

F3/2
≈ 32 �B� ≈ 2π × 39 MHz. So is the

splitting in the B 2�+ state – �B�
F1/2

≈ −43 �B� ≈ −2π ×
52 MHz [72]. Together, they lead to a ∼75 �B� frequency
difference between F ′′ = 2 ↔ F ′ = 1 and F ′′ = 1 ↔ F ′ = 0
transitions. To observe polychromatic forces through this elec-
tronic transition, larger values of δB� detuning will be needed.

The X 2�+ ↔ B 2�+ transition considered will also cre-
ate dark states in the J ′′ = 3/2 manifold. Fortunately, the
g-factors are large enough [72] to provide efficient remix-
ing with the help of a magnetic field of modest strength.
Given that we already need high detunings δB� , the Zeeman

splittings should not cause any additional problems. Finally,
while the branching ratios in this case are symmetric, the
decay rates are different for both electronic states (�A� ≈
2π × 1.15 MHz and �B� ≈ 2π × 1.21 MHz); although, as
was mentioned before, this asymmetry can be easily adjusted
for by an appropriate choice of detunings and Rabi rates.

To obtain force profile in a realistic BaH level system, we
have again solved the Liouville-von Neumann equations for
density matrix evolution for a system that included Zeeman
sublevels in states depicted in Fig. 18. For simplicity, we have
solved it by assuming that FA�

00 = FB�
00 = 1. We have chosen

to center the X 2�+ ↔ A 2�1/2 transition on the F ′′ = 1 ↔
F ′ = 0 frequency, while also assuming that �A�

F = 2π ×
2 MHz and �X�

F1/2
= −2π × 2 MHz. The X 2�+ ↔ B 2�+

transition was centered at frequency placed symmetrically
between F ′′ = 2 ↔ F ′ = 1 and F ′′ = 1 ↔ F ′ = 1 transition
frequencies.

For the detunings we have first chosen δB� = 200 �B� and
from there we obtained δA� using Eq. (B1), which resulted in
δA� ≈ 234.35 �A� ≈ 2π × 270 MHz. Due to imperfect dark
state remixing, we have then slightly increased value of the
δB� to properly balance forces at v = 0. In the end we have
used δB� = 208 �B� ≈ 2π × 252 MHz.

The Rabi rates were those of optimal bichromatic fields,
i.e., �A� = √

3/2 δA� and �B� = √
3/2 δB� . Assuming 3-

mm-diameter uniform beams, such Rabi rates would require
about 2.2 W power per frequency component in the case of
�A�, and 1.9 W for �B� . We have assumed a presence of
12 G ambient magnetic field that defined the quantization
axis. Zeeman splitting was obtained using experimentally ob-
tained effective linear g-factors [72]. The X 2�+ ↔ A 2�1/2

transition light field was polarized along the quantization
axis, while the other light field was perpendicular to it.
Finally, we have Doppler-shifted the frequencies by appro-
priate amounts, that is �1 = −δA�/4 ≈ −2π × 67.5 MHz
and �2 = δB�/4 ≈ 2π × 63.1 MHz, and chose χ1 = −χ2 =
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FIG. 19. Smoothed force profile of bichromatic SupER molasses
in a real BaH level system obtained for δA� ≈ 234.35 �A� ≈ 2π ×
270 MHz and δB� = 208 �B� ≈ 2π × 252 MHz in presence of 12 G
ambient magnetic field, where the rest of the parameters were chosen
according to principles discussed in previous sections. Large detun-
ings are necessary due to large (∼40–50 MHz) hyperfine splittings in
J ′′ = 3/2 rotational state in the ground X 2�+ state and in the excited
B 2�+ state. The force profile is quite symmetric around v = 0 and
shows gigantic capture velocities consistent with δ/2k predictions.
The force is provided in units of Frad = 1.98 zN and the damping
coefficient can be estimated to be β ≈ 3.24 Frads/m ≈ 3.47 h̄k2

A�/2.

45◦. The SupER molasses force profile obtained is shown in
Fig. 19.

The obtained force profile is quite symmetric, despite the
fact that both bichromatic fields act on quite different level
structures. It is also linear around zero velocity. We can es-
timate the slope to be β ≈ 3.24 Frad/(m/s) ≈ 3.47 h̄k2

A�/2,
and while we do not know the exact value of F0, we can
place an upper bound equal to the maximum force seen in the
profile, i.e., F0 � 45 Frad = 39.45 h̄kA��A�/2. Using Eq. (5)
with σ 2(ε) ≈ 21 (asymmetric four-level system) we can place
an upper bound on the temperature to be TL � 193.8 mK. We
also see that the capture velocity gets as high as 120 m/s,
which is consistent with the δ/2k estimate provided earlier.
The temperature equivalent to capture velocity in these mo-
lasses is Tcap = Mδ2/4kBk2, and for vcap = 120 m/s in BaH
is equal to Tcap ≈ 60 K, providing further evidence that the
SupER molasses method does indeed realize a way to cool and
confine molecules in kelvin-deep optical potentials as thought
after for more than thirty years following initial speculations
by Kazantzev [36] and Voitsekhovich [43].

The unusual structure at small negative velocities is due to
summation of a close-to-regular bichromatic force profile ob-
tained via the X 2�+ ↔ A 2�1/2 transition, and the off-center
resonant (Doppleron) peak always appearing at k(v − v0) =
±δ/3 in all bichromatic force profiles, and here created via
the X 2�+ ↔ B 2�+ transition. The latter transition’s profile
is centered around v0 = δB�/4kB� ≈ 57.1 m/s, so we would
expect its off-center peak to appear at v = v0 − δB�/3kB� ≈
−12.5 m/s, which is where we observe the dip.

VI. CONCLUSIONS AND FUTURE PROSPECTS

We have presented an experimentally viable method for
achieving large optical molasses-like cooling forces for
molecules using polychromatic optical fields driving coher-
ent dynamics in a four-level system. Using direct numerical
solutions of the time-dependent density matrix as well as
Monte Carlo simulations of the cooling dynamics, we provide
evidence that achieving rapid damping of a wide velocity
capture range toward zero velocity should be possible for
diatomic and polyatomic molecules with various constituents
and geometries. proposed suppressed emission rate (SupER)
molasses method relies on spontaneous emission coupling be-
tween two coherently driven two-level systems and should be
realizable with many complex nonlinear molecules for which
scattering ∼100–1, 000 photons has been previously proposed
[14,64] or already experimentally demonstrated [16,31]. We
anticipate that large velocity damping coefficients together
with a broad velocity capture range will enable extension of
laser-based cooling and coherent quantum control to novel
molecular species with complex internal structures, weak op-
tical transitions, and abundant vibrational decay channels,
providing a fruitful experimental platform for realizing many
exciting applications in fundamental physics and applied
quantum technologies.

Specifically, strontium methyl (SrCH3) has a number of
advantageous characteristics not only for achieving ultracold
temperatures via SupER molasses cooling but also for real-
izing diverse applications with such samples. An unpaired
valence electron residing on the strontium atom allows for
strong visible electronic transitions that can be used for laser
manipulation of the internal molecular states. The spectrum
of SrCH3 has been extensively studied in the past [76], and
previously Kozyryev and coworkers have outlined details of
achieving multiple-photon cycling using either X̃ -Ã (732 nm)
or X̃ -B̃ transition (676 nm) in symmetric-top molecules [63].
Because of the high degree of overlap for the vibrational
wavefunctions in different electronic states, scattering of >20
photons per molecules can be achieved with only a single-
color laser. With an addition of one repumping laser for the
Sr-C stretching vibrational mode, scattering of >100 pho-
tons per molecule is possible. Realization of large SupER
molasses cooling profiles should be possible since intensities
of over 600 W/cm2 can be achieved using commercial cw
Ti:Sapphire lasers, which is a factor of ∼104 above the sat-
uration intensity of the X̃ -Ã transition. Rich internal structure
of SrCH3 symmetric-top molecules pinned in optical lattices
or tweezers will allow realization of nonconventional quantum
magnetism models (including Heisenberg XYZ [77]) without
the need for quantum degeneracy, creating a unique quantum
simulation platform to probe strongly correlated many-body
systems inaccessible to ultracold atom and diatomic molecule
experiments.
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APPENDIX A: MOMENTUM VARIANCE AND FORCE
ESTIMATION FOR PCF IN A π-PULSE MODEL

In this Appendix we provide a conceptual framework
employing a continuous-time Markov chain (CTMC) proba-
bilistic model for estimating the magnitude of the BCF force
and momentum transfer variance in a π -pulse model. Nor-
mally, in the π -pulse model the force estimation is done
by assuming that some atoms or molecules can be in either
correct (i.e., experiencing force in the desired direction) or
wrong (i.e., experiencing force in the opposite direction) cy-
cle, and that they might switch the cycle, if a spontaneous
decay event occurs. If we just look at one atom that starts
in a correct cycle (though, as we will later see, the initial
condition does not influence the final result), then it will be
deterministically pushed in one direction by a process of ex-
citation and stimulated emission. However, because it spends
a nonzero amount of time in the excited state, it has a finite
probability of decaying back to the ground state before the
stimulated emission occurs. Because in such a situation the
pulse that was supposed to stimulate the emission will cause
excitation instead, the atom is effectively in the wrong cycle.
The average force is nonzero if average times spent in the
excited and ground states are not equal.

The average fraction of time an atom4 spends in the excited
state on the correct cycle can be associated with an average
fraction of particles in the wrong cycle. In the π -pulse model,
this fraction can be obtained from the optical pulse shape and
interval between consecutive beatnote pulses, and it is also
what determines the average excited state population in an
ensemble, as well as the photon scattering rate. Assuming that
the fraction of time the atom spends in the excited state in the
correct cycle is ε and the natural decay rate of the excited state
is �, the scattering rate for these atoms is simply ε�, which is
to say that on average ε fraction of them undergoes a decay.
On the opposite cycle, the atom spends 1 − ε fraction of time
in the excited state, so then the scattering rate is (1 − ε)�.

The photon scattering process is a random process de-
scribed by a Poisson distribution. Therefore, the process of
changing cycles is a random process as well, and the wait-
ing time between events can be modelled as an exponential
distribution with rate λ1 = ε� on the correct cycle, and λ2 =
(1 − ε)� on the opposite one. Hence, we consider a CTMC
with two different transition rates—the correct-cycle state C
transitions to the wrong-cycle state W with rate λ1, while the
wrong-cycle state W transitions to state C with rate λ2. Graph
shown in Fig. 20 depicts this configuration:

In this picture, to obtain both mean force and variance of
momentum transfer we need to know probability P(t ) of occu-
pying one of the two states as a function of time. We can find
it by using the Kolmogorov forward equation P′(t ) = P(t )Q,
where Q is the generator matrix. In such CTMC the generator
matrix is simply [78]:

Q =
[−λ1 λ1

λ2 −λ2

]
.

4Throughout the Appendix we use the term “atom” to refer to
either atoms or molecules as same conceptual arguments will apply
to either system.

FIG. 20. Simple schematic of BCF π -pulse model. The atom
moves from state C to W with rate λ1 and from W to C with
rate λ2.

Solution to this equation is

P(t ) = P(0) exp(Qt ).

By finding eigenvalues and eigenvectors of the generator
matrix, one can calculate the exponent of the Qt matrix. In
the end, by using P(0) = I we obtain

P(t ) =
[

λ2
λ1+λ2

+ λ1
λ1+λ2

e−(λ1+λ2 )t λ1
λ1+λ2

− λ1
λ1+λ2

e−(λ1+λ2 )t

λ2
λ1+λ2

− λ2
λ1+λ2

e−(λ1+λ2 )t λ1
λ1+λ2

+ λ2
λ1+λ2

e−(λ1+λ2 )t

]
.

(A1)

Having a certain initial state α = [α1, α2] with α1 + α2 =
1, the probability of occupying state C or W is simply αP(t ).
However, the steady-state probabilities at t � 1

λ1+λ2
are inde-

pendent of the initial state:

P(t → ∞) =
[

λ2
λ1+λ2

λ1
λ1+λ2

λ2
λ1+λ2

λ1
λ1+λ2

]
.

We can now evaluate the expected momentum transfer in
time T . Before a spontaneous emission occurs, momentum
of 2h̄k is exchanged between the light field and the atom
with approximate constant frequency of δ/π , where δ is the
detuning of one of the laser components of the two-color
force. Therefore, if we define random variables as

�C (t ) =
∫ t

0
1Cdt ′,

�W (t ) =
∫ t

0
1W dt ′, (A2)

where 1C/W is an indicator variable for atom’s state5 X being
C/W at time t ′, and random variable �(t ) is state’s so-called
occupancy time, then we can find the expected value of mo-
mentum exchange in a given state given the initial condition
α:

Eα pX = 2h̄k
δ

π
Eα�X (t ) = 2h̄k

δ

π

∫ t

0
Eα1X dt ′

= 2h̄k
δ

π

∫ t

0
(αP)X (t ′)dt ′.

5The generic label X to indicate the cycle in which atom resides
during the dynamics under the influence of the coherent stimulated
forces should not be confused with the ground electronic state for
molecules, which is also customarily denoted as X .
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The last part of that formula is the probability of occupying
state X at time t ′ given initial state α. For example, for α =
[1, 0] and X = C:

(αP)C (t ) = P11(t ) = λ2

λ1 + λ2
+ λ1

λ1 + λ2
e−(λ1+λ2 )t .

In our model, the atom moves in one direction in state
C and in the opposite direction in state W . Therefore, the
expected total momentum transfer at time T is

Eα p = 2h̄k
δ

π
Eα[�C (T ) − �W (T )]

= 2h̄k
δ

π

∫ T

0
[(αP)X=C (t ) − (αP)X=W (t )]dt . (A3)

The above equation can also be thought of as part of time-
averaged expected value of the force:

〈F 〉 = 1

T

∫ T

0
f (t )dt = 1

T

∫ T

0

d p

dt
dt,

with instantaneous force given by the integrand in Eq. (A3).
For previously chosen initial condition of α = [1, 0], Eq. (A3)
becomes

Eα p = 2h̄k
δ

π

∫ T

0

[
λ2 − λ1

λ1 + λ2
+ 2λ1

λ1 + λ2
e−(λ1+λ2 )t

]
dt .

Integration leads to

Eα p = 2h̄k
δ

π

{
λ2 − λ1

λ1 + λ2
T + 2λ1

(λ1 + λ2)2
[1 − e−(λ1+λ2 )T ]

}
,

which for T � (λ1 + λ2)−1 simplifies to

Eα p = 2h̄k
δ

π

λ2 − λ1

λ1 + λ2
T .

Average force is then

〈F 〉 = 2h̄k
δ

π

[
λ2 − λ1

λ1 + λ2
+ 2λ1

(λ1 + λ2)2

1 − e−(λ1+λ2 )T

T

]
,

and it also simplifies to

〈F 〉 = 2h̄k
δ

π

λ2 − λ1

λ1 + λ2
,

where the last term can be thought of as proportion of time the
atom or molecules spends in state C minus proportion of time
it spends in state W .

Notice that the result above is independent of the initial
condition we have chosen, validating our initial assumption.
That independence, of course, is related to the independence
of the stationary state of CTMC on the initial conditions. The
result for large times T can be also obtained simply from
P(t → ∞)—one can show that a time-averaged function of
the states (here, state occupancy) is simply the expected value
of the function with respect to the stationary distribution.
Other way of deriving the average force in this model, would
be to calculate average reward (force) per cycle.

If we plug in values for rates λ1 and λ2, then we obtain

〈F 〉 = 2h̄k
δ

π
(1 − 2ε), (A4)

which for ε = 1/4 is simply

〈F 〉 = h̄kδ

π
,

agreeing with values estimated using other methods [45,46].
We can also rewrite Eq. (A4):

FII ≡ 〈F 〉 = h̄kδ

π
μII(ε), (A5)

where μII(ε) = 2(1 − 2ε), and the Roman numeral II asso-
ciates the quantity with a two-state system.

To estimate variance of the momentum transfer we first
note a few general things about the occupancy time random
variables. First, it should be obvious that �C (T ) + �W (T ) =
T , and thus,

Var �C (T ) = Var [T − �W (T )] = Var �W (T ).

We also see that

0 = Var T = Var [�C (T ) + �W (T )]

= Var �C (T ) + Var[�W (T )] + 2Cov [�C (T ),�W (T )]

= 2Var �C (T ) + 2Cov [�C (T ),�W (T )],

which shows us that Cov [�C (T ),�W (T )] = −Var �C (T ).
Because the momentum transfer depends on the difference
between occupancy times, we need to find

Var [�C (T ) − �W (T )] = 4 Var �C (T ).

We therefore need to only find the variance in occupancy time
of one of the CTMC states.

To calculate variance in momentum transfer for a state up
to time T we start with writing the definition of variance:

Var p = (Eα p2) − (Eα p)2,

where the last term was part of the previous calculation. We
concentrate on the first term:

Eα p2 = 4h̄2k2 δ2

π2
Eα[�C (T )�C (T )]

= 4h̄2k2 δ2

π2

∫ T

0
Eα[1C (s)1C (t )]dsdt .

The expectation value of indicator random variables has to
be calculated with care. We can write it in the following way
assuming s < t :

Eα (1C (s)1C (t )) = Pα[X (s) = C, X (t ) = C]

= P[X (t ) = C|X (s) = C]Pα[X (s) = C].

Given previously chosen initial conditions and remembering
that Markovian process is memoryless:

Pα[X (s) = C] = P11(s)

= λ2

λ1 + λ2
+ λ1

λ1 + λ2
e−(λ1+λ2 )s

P[X (t ) = C|X (s) = C] = [1, 0] PX=C (t − s) = P11(t − s)

= λ2

λ1 + λ2
+ λ1

λ1 + λ2
e−(λ1+λ2 )(t−s).
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After multiplication of above terms and redefining s ≡
min (s, t ) and t ≡ max (s, t ), we obtain (for α = [1, 0])

Pα[X (s) = C, X (t ) = C]

= 1

(λ1 + λ2)2

[
λ2

2 + λ2
1e−(λ1+λ2 ) max (s,t )

+ λ1λ2e−(λ1+λ2 ) min (s,t ) + λ1λ2e−(λ1+λ2 )|s−t |]. (A6)

Integrating Eq. (A6) and using previously found expecta-
tion value of momentum transfer, one finds variance of the
occupancy time:

Var �C (T ) = λ1(λ1 − 4λ2)

(λ1 + λ2)4
+ 2λ1λ2

(λ1 + λ2)3
T

+ 4λ1λ2

(λ1 + λ2)4
e−(λ1+λ2 )T

+ 2λ1(λ2 − λ1)

(λ1 + λ2)3
Te−(λ1+λ2 )T

− λ2
1

(λ1 + λ2)4
e−2(λ1+λ2 )T . (A7)

The above result has a constant term, term linear in time,
exponentially decaying terms and a mixed term. In general,
it can be found that variance of a reward in CTMC can only
have specific terms6 [79], and terms in Eq. (A7) fall into that
category. For large times T → ∞ only one term survives, and
so the overall variance in momentum transfer can be found to
be

Var p = 4h̄2k2 δ2

π2
× 4

2λ1λ2

(λ1 + λ2)3
T = 32h̄2k2 δ2

π2�
ε(1 − ε)T .

(A8)
This also allows us to find the diffusion coefficient D:

D ≡ 1

2

∂

∂t
Var p = 16 h̄2k2 δ2

π2�
ε(1 − ε). (A9)

Like before, we can define a new variable, σ 2
II (ε) =

16 ε(1 − ε) and use the average force we found previously in
Eq. (A5) to obtain

D = F 2
II

σ 2
II (ε)

μ2
II(ε)

1

�
. (A10)

There are several interesting aspects we can notice about
the expression for calculated variance in momentum transfer
presented in Eq. (A8). First, it grows linearly with time, which
is the same as for the radiative force. Second, it follows
∝ δ2 proportionality, which for polychromatic forces having
detunings of the order of 100 � means that the variance will be
quite substantial. However, if we consider ratio of the standard
deviation to the mean,√

〈p2〉 − 〈p〉2

〈p〉 = 2
√

2

√
ε(1 − ε)

1 − 2ε

1√
� T

,

6The variance V(t ) = γt + h + c(t ) + ε(t ), where γ is a constant
“growth rate” vector, h is a constant vector, vector ||c(t )|| � C is
bounded for all t , and ε(t ) is a vector function exponentially con-
verging to 0.

then we realize that the distribution becomes narrower the
longer the process. In Fig. 21 we show histograms of sim-
ulated polychromatic forces obtained from our model. The
distribution of the force follows the distribution of the oc-
cupancy times. Occupancy time in single state in our model
is a sum of independent exponential random variables and is
therefore distributed with an Erlang distribution (special case
of Gamma distribution), with mean and variance determined
by the CTMC. Force, being proportional to difference in
occupancy times, is distributed as difference of two Gamma
distributions and closed form of its moment-generating func-
tion can be found [80]. Fortunately, for longer interaction
times, due to the Central Limit Theorem, the distributions
approach a Gaussian distribution, which we included in our
figure. Its mean is given by Eq. (A4), while its variance is re-
lated to Eq. (A8)—if σ 2

p is variance in the momentum transfer
distribution, then σ 2

f = σ 2
p /T 2 will be the variance in the force

distribution.
The value of the aforementioned ratio grows for ε ap-

proaching 1/2, but it, as well as the variance itself, can be
brought arbitrarily close to zero by making ε small. For
instance, adding additional colors reduces value of this pa-
rameter. At optimum force, ε ≈ χ/π , where χ is phase
difference between counterpropagating beams in the poly-
chromatic force (refer to Fig. 1). For example, while for a
two-color force χ = π/4, for a four-color force χ ≈ π/6, and
so ε ≈ 0.167. Effects of decreasing ε can be seen in Fig. 21.

It is also worth noting that the velocity diffusion (known
as beam “pluming”) that could be observed when perform-
ing slowing or deflection using bichromatic forces should be
pretty small comparing to the overall effect observed due to
what was just mentioned.

Finally, for all polychromatic forces, the Rabi rate � is
of the order of the detuning δ, so the variance Var p ∝ �2.
Already Cohen-Tannoudji divided optical forces into two cat-
egories depending on their origin: dissipative and reactive
[81]. Polychromatic forces are reactive according to that defi-
nition, just like dipole forces. He showed that for such forces
the momentum dissipation tensor D, which is associated with
variance in momentum transfer and was shown in Eq. (A10),
should scale as square of the Rabi rate, which is consistent
with our result. It is also consistent with value obtained in
Refs. [48,59].

Additionally, we can connect the average excited state pop-
ulation in an ensemble ρee with the average time ε a single
atom spends in the excited state, which simultaneously is the
fraction of atoms currently in the wrong cycle. These can be
tied together in a very simple way: ε fraction of atoms spends
1 − ε time on average in the excited state, while 1 − ε of them
spends ε fraction of time in the excited state. We can then
write

ρee = 2 ε(1 − ε).

Because 0 � ε � 0.5 we obtain

ε = 1 − √
1 − 2ρee

2
.
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FIG. 21. Histograms showing simulated force profiles for two- and four-color forces for (a) T = 500 �−1 and (b) T = 5 × 104 �−1

interaction time. Black lines represent Gaussian distributions with mean and variance estimated using Eqs. (A4) and (A8), not the fitted
distribution to the histograms. The distribution is narrower for four-color force (smaller ε) and for longer interaction times. Note that for
shorter interaction times, while the distributions are already close to being Gaussian, the estimated mean and variance did not yet converge to
predicted values.

Finally, we can rewrite the expected value of force and
time-averaged variance of momentum transfer in terms of ρee

〈F 〉 = 2
√

1 − 2ρee
h̄kδ

π
, (A11)

1

T
Var p = 16ρee

(
h̄kδ

π

)2 1

�
. (A12)

APPENDIX B: VARIANCE ESTIMATION
IN PCF MOLASSES

To estimate variance in momentum transfer and, from
there, the limiting temperature in SupER molasses, we will
use the CTMC model introduced in Appendix A. In all gen-
erality, the diagram of our system is depicted in Fig. 22.
We consider four states: C1, W1, C2, and W2. The first two
correspond to states an atom can be in when it is feeling PCF
acting on one of two two-level systems (Fig. 3). Accordingly,
states C2 and W2 correspond to the other two-level system.
States marked with letter C are states, where, like in the simple
PCF model in the previous section, the atom spends most of
its time (“correct” cycle). These states in PCF molasses will
create force in opposing directions. Similarly, cycles marked
with letter W are the ones, where an atom spends less time
(“wrong” cycles). In those cycles the momentum is transferred
in direction opposite to the direction in their respective C
states.

We assign the average time spent by atoms in states C in
the excited states |E1〉 and |E2〉 (Fig. 3) with respect to the
total time spent in one two-level system as ε1, ε2 and 1 − ε1,
1 − ε2 for average proportion of time spent in states |G1〉 and
|G2〉 , respectively. Having defined these variables we can find
rates for all of our states:

λC1 = ε1�1, λC2 = ε2�2,

λW1 = (1 − ε1)�1, λW2 = (1 − ε2)�2.

These rates are set up in a similar fashion as in the simple
PCF model—we assume that when an atom is in one of the
two-level systems the situation is just like the model analyzed
in Appendix A. Then, the rate at which the atom leaves the
state due to spontaneous emission is just the natural decay
rate � times the proportion of time it spends in that excited
state considering only the two-level system in which the cycle
of excitation and stimulated emission occurs for this atom or
molecule, which is simply ε or 1 − ε.

In our four-state model the decay can always go to all three
other states. A spontaneous decay that does not cause an atom
or molecule to change a two-level system (so when it switches
between states C1 and W1 or C2 and W2) is assumed to have a

FIG. 22. Schematic for a π -pulse model PCF molasses.
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branching ratio r1 and r2 for the first and second two level
system, respectively. Switching two-level system occurs with
branching ratios of 1 − r1 and 1 − r2. Comparing that to Fig. 3
gives

�11 = r1�1, �21 = (1 − r2)�2,

�12 = (1 − r1)�1, �22 = r2�2.

When such a switch of a two-level system happens, the decay
can lead to either cycle C or W , but the probabilities are not
equal. In Fig. 22 probability of entering state Ci is labeled
qi. However, in our situation they are simply the proportions
of time an atom spends in respective states within each two-
level system, so qi = 1 − εi.7 We now can write the generator
matrix for this CTMC:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

C1 W1 C2 W2

C1 −ε1�1 r1ε1�1 (1 − ε2)(1 − r1)ε1�1 ε2(1 − r1)ε1�1

W1 r1(1 − ε1)�1 −(1 − ε1)�1 (1 − ε2)(1 − r1)(1 − ε1)�1 ε2(1 − r1)(1 − ε1)�1

C2 (1 − ε1)(1 − r2)ε2�2 ε1(1 − r2)ε2�2 −ε2�2 r2ε2�2

W2 (1 − ε1)(1 − r2)(1 − ε2)�2 ε1(1 − r2)(1 − ε2)�2 r2(1 − ε2)�2 −(1 − ε2)�2.

⎞
⎟⎟⎟⎟⎟⎟⎠

Such a system is, however, difficult to solve analytically. Even
finding the expected occupancy time or the stationary state η

of this CTMC, which corresponds to a left eigenvector associ-
ated with the zero eigenvalue, is very challenging. Fortunately,
the symmetrized version of the system simplifies the situation.
Before we move forward, we note a few characteristics of the
expected value of the force in this more general system that
emulates the population dynamics during the SupER molasses
cooling process.

If both two-level systems are kept at optimum, for example,
with optimal parameters of �1,2 = √

3/2 δ1,2 and |χ | = 45◦
for BCF, then in the stationary state the proportion of time
spent in state C1 or W1 with respect to total time spent in the
first two-level system (i.e., in either of those states) is the same
as corresponding proportions in the second two-level system:

ηC1

ηC1 + ηW1

= ηC2

ηC2 + ηW2

ηW1

ηC1 + ηW1

= ηW2

ηC2 + ηW2

,

where we assume that stationary state ratios are not necessar-
ily the average times spent in energy levels of the system (εi

and 1 − εi). In the end, the expected time-averaged value of
the force for both two-level systems should be

F1 = 2h̄k1
δ1

π

(
ηC1 − ηW1

)
,

F2 = −2h̄k2
δ2

π

(
ηC2 − ηW2

)
.

In the formulas above we already assumed that both two-
level systems would generate opposing forces (due to χ1 =
−χ2). In molasses we would like F1 = F2, so that there is
no net force at zero velocity. Taking that condition and by
multiplying both sides by 1 we obtain

k1δ1
ηC1 − ηW1

ηC1 + ηW1

(
ηC1 + ηW1

) = k2δ2
ηC2 − ηW2

ηC2 + ηW2

(
ηC2 + ηW2

)
.

7Exact probability should depend on phase difference between
both 2-level subsystems’ pulse trains. Here, we assume no phase
coherence and, therefore, nonzero probability of ending in either of
the 4 states.

Because the ratios are the same for both two-level systems,
these terms will drop out:

k1δ1
(
ηC1 + ηW1

) = k2δ2
(
ηC2 + ηW2

)
.

We are now left with total proportions of time spent in the
first and second two-level systems. Atom decays from the first
two-level system to the second with a total rate (1 − r1)�1

and from the second back to the first with a rate (1 − r2)�2.
This creates its own two-state CTMC, which we have already
solved, so

ηC1 + ηW1 = (1 − r2)�2

(1 − r1)�1 + (1 − r2)�2
,

ηC2 + ηW2 = (1 − r1)�1

(1 − r1)�1 + (1 − r2)�2
.

Using the above, we finally arrive at a criterion for detun-
ings δi that has to be met to properly balance power in an
asymmetric system (like in the BaH molecule considered in
Secs. V B and V C):

δ1

δ2
= h̄ω2

h̄ω1

�1

�2

1 − r1

1 − r2
. (B1)

Criterion shown in Eq. (B1) can be understood intuitively:
detuning, which determines rate of the cycle of spontaneous
and stimulated emission, has to be higher, if energy of the
scattered photon is smaller or if spontaneous emission causing
switching of the two-level system occurs more often, which is
determined be either the decay rate or the branching ratio.

Now, we can move forward with simplification of the
model to obtain analytical estimates. As in the main section,
we symmetrize the CTMC and assume that all relevant param-
eters are identical in both two-level systems: �1 = �2 ≡ �,
ε1 = ε2 ≡ ε, δ1 = δ2 ≡ δ, k1 = k2 ≡ k. The simplified state
graph for the CTMC is shown in Fig. 23. We also used values
for branching ratios in BaH: r1 = r2 = 2/3. This model was
used in Monte Carlo simulations, results for which are shown
in Sec. IV.
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This system has a generator matrix:

Q =

⎛
⎜⎜⎜⎜⎝

−ε� 2
3ε� 1

3 (1 − ε)ε� 1
3ε2�

2
3 (1 − ε)� −(1 − ε)� 1

3 (1 − ε)2� 1
3ε(1 − ε)�

1
3 (1 − ε)ε� 1

3ε2� −ε� 2
3ε�

1
3 (1 − ε)2� 1

3ε(1 − ε)� 2
3 (1 − ε)� −(1 − ε)�

⎞
⎟⎟⎟⎟⎠.

For such a simplified system we can identify the stationary
distribution:

ηC1 = ηC2 = ε2 − 4ε + 3

4ε2 − 4ε + 6
,

ηW1 = ηW2 = ε(ε + 2)

4ε2 − 4ε + 6
.

As expected, in symmetrized system proportion of time spent
in both two-level systems is the same, that is ηC1 + ηW1 =
ηC2 + ηW2 = 1/2. And so the time-averaged expected value of
the force created by both two-level systems is

〈F1〉 = −〈F2〉 = 2h̄k
δ

π

(
ηC1 − ηW1

)
= 2h̄k

δ

π

3 − 6ε

4ε2 − 4ε + 6

= 3h̄k
δ

π

1 − 2ε

2ε2 − 2ε + 3
.

Just like in the case of a two-level system [see Eq. (A5)], we
can write the force exerted through one of the subsystems as

FIV = h̄kδ

π
μIV(ε), (B2)

with

μIV(ε) = 1 − 2ε
2
3ε2 − 2

3ε + 1
.

FIG. 23. Schematic for a symmetrized and simplified π -pulse
model PCF molasses.

Calculating variance of the occupancy time, and therefore
the momentum transfer, is more challenging. We first note that
by using similar tricks as in the previous section, we can show
that variance of the momentum transfer, which is proportional
to �C1 (T ) − �W1 (T ) − �C2 (T ) + �W2 (T ), is

Var p = 4h̄2k2 δ2

π2
Var

[
�C1 (T )−�W1 (T )−�C2 (T )+�W2 (T )

]
= 4h̄2k2 δ2

π2
× 4Var

[
�C1 (T ) + �W2 (T )

]
= 16h̄2k2 δ2

π2
Var

[
�C1 (T ) + �W2 (T )

]
,

where Var �(T ) is variance of any of the occupancy times.
To calculate it, we first take a step back and look at gen-
eral solutions of the Kolmogorov forward equation. Because
the generator matrix of CTMC is negative semidefinite, its
eigenvalues are nonpositive. The zero eigenvalue is related
to the stationary distribution, while others add exponentially
decaying parts to the matrix P. In all generality, we can
write

Pi j (t ) = η j +
n−1∑
k=1

uk
i je

νkt , (B3)

where Pi j (t ) describes probability of being in state j at
time t given the system in state i at time 0. Therefore,
η j , the component of the stationary distribution for state j,
is the same for any initial state i. Here, νk is the kth eigenvalue
(ν0 = 0) and uk

i j is a function of eigenvectors multiplying the
exponential part. For an initial state α and an n-state system
we have

Eα� j (T ) =
∫ T

0
αP(t )dt =

∫ T

0

n∑
i=1

αiPi jdt

=
∫ T

0

[
n∑

i=1

αi

(
η j +

n−1∑
k=1

uk
i je

νkt

)]
dt

= η jT
n∑

i=1

αi +
n∑

i=1

αi

n−1∑
k=1

uk
i j

νk
eνkT −

n∑
i=0

αi

n−1∑
k=1

uk
i j

νk

= η jT +
n∑

i=1

n−1∑
k=1

αiuk
i j

νk
eνkT −

n∑
i=1

n−1∑
k=1

αiuk
i j

νk
,

where at the end we used the fact that
∑

i αi = 1. From the
above and the fact for all k > 0 eigenvalues νk < 0, we easily
see that at T → ∞ only the η j term survives. In variance
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calculations we need the square of the expectation value:

[Eα� j (T )]2 = η2
j T

2 − 2η j

n∑
i=1

n−1∑
k=1

αiuk
i j

νk
T +

(
n∑

i=1

n−1∑
k=1

αiuk
i j

νk

)2

+ (exponentially decaying terms)

T →∞= η2
j T

2 − 2η j

n∑
i=1

n−1∑
k=1

αiuk
i j

νk
T .

To obtain variance, we also require the expectation value of the square of the occupancy time. We first find that (for t > s)

Eα�2
j (T ) =

∫ T

0

∫ T

0
αP(X (t ) = j, X (s) = j)dtds =

∫ T

0

∫ T

0
αP(X (s) = j)P(X (t ) = j|X (s) = j)dtds

=
∫ T

0

∫ T

0

n∑
i=1

αiPi j (s)Pj j (t − s)dtds.

Plugging in appropriate values for the probabilities and, as before, by redefining s ≡ min (s, t ) and t ≡ max (s, t ), we get

Eα�2
j (T ) =

∫ T

0

∫ T

0

[
η2

j + η j

n−1∑
k=1

uk
j je

νk |t−s| + η j

n∑
i=1

n−1∑
k=1

αiu
k
i je

νk min (s,t ) +
n∑

i=1

n−1∑
k=1

n−1∑
l=1

αiu
l
i ju

k
j je

νk max (s,t )e(νk−νl ) min (s,t )

]
dtds

= η2
j T

2 − 2η jT
n−1∑
k=1

uk
j j

νk
− 2η jT

n∑
i=1

n−1∑
k=1

αiuk
i j

νk
+ (constant and exponentially decaying terms)

T →∞= η2
j T

2 − 2η jT
n−1∑
k=1

uk
j j

νk
− 2η jT

n∑
i=1

n−1∑
k=1

αiuk
i j

νk
.

When calculating the variance for large T , both the
quadratic term as well as the term that depends on the initial
conditions will cancel out, leading to

Var � j (T ) = −2η j

n−1∑
k=1

uk
j j

νk
T, (B4)

which is a result that is, as expected, linear in time and inde-
pendent of the initial conditions. Analogically, one can show
that for large T ,

Cov [�i(T ),� j (T )] = −
(

ηi

n−1∑
k=1

uk
i j

νk
+ η j

n−1∑
k=1

uk
ji

νk

)
T .

(B5)
In our simplified system we can find the eigenvalues:

ν0 = 0, ν2 = −2 + ν1 + r

2
,

ν1 = −2

3
ε2 + 2

3
ε − 1, ν3 = −2 + ν1 − r

2
,

where

r = 1
3

√
4ε4 − 8ε3 + 32ε2 − 28ε + 9.

First, we should note that ν3 eigenvalue becomes 0 at
ε = 0. In fact, at ε = 0 the CTMC stops being recurrent and
so there is no well-defined stationary distribution. Physically,
an atom will be trapped in one of the C states, thus moving
continuously in one direction. In such a situation we simply
obtain a deterministic continuous momentum transfer with
zero variance.

In case of nonzero ε we should expect that variance will
not behave as for BCF in two-level system. For small ε atom
or molecule will spend a lot of time in one two-level system,
before jumping to the other one, so the variance will be high.
Indeed, using Eqs. (B4) and (B5) for our generator matrix Q,
we obtain the variance, which can be written as

1

T
Var p = 16 h̄2k2 δ2

π2�

26 ε(1 − ε) − 9

20 ε(1 − ε)ν1
,

where the numerator is nonzero at ε = 0. Therefore, as ex-
pected, the variance diverges, when ε becomes small, and is
smallest at ε = 0.5 reaching value of

1

T
Var p = 48

5
h̄2k2 δ2

π2�
.

For experimentally achievable ε (that is ε � 0.1), variance
stays very close to the given limiting value (changes by at
most a factor of 2). At ε = 0.5, we would not generate any
force at either of two-level systems. For BCF ε = 0.25 and
the variance is approximately

1

T
Var pBCF ≈ 20.11 h̄2k2 δ2

π2�
.

Using the found eigenvalues, we can rewrite the function
μIV found in Eq. (B2) as

μIV = 1 − 2ε

−ν1
,
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and similarly, like in Eq. (A10), we can write the diffusion
coefficient as

D = F 2
IV

σ 2
IV(ε)

μ2
IV(ε)

1

�
,

with

σ 2
IV = 2

5

26 ε(1 − ε) − 9

ε(1 − ε)ν1
.

We can also notice a relationship between forces FII in the
two-level system and FIV in this model. Namely,

FIV = FII

−2ν1
.

This shows that we should expect forces acting on the two-
level subsystem discussed here to be just rescaled versions
of the normal two-level polychormatic forces with rescaling
factor of −1/2ν1, which is equal to exactly 4/7 for the bichro-
matic fields.

In a more general case we can simply use Eqs. (B4) and
(B5) directly on whatever combination of occupancy times is
appropriate in the system. In general, we can write

1

T
Var p = Var

(∑
i

ai�i

)

=
∑

i

a2
i Var �i + 2

∑
i< j

aia jCov (�i,� j ),

where sum is over all the states in the model. For example, in
a more realistic BCF molasses model in BaH described at the
beginning of this section with �1 �= �2, k1 �= k2 and δ1 �= δ2,
but with ε ≡ ε1 = ε2, we would obtain

1

T
Var p = 4

h̄2

π2
Var[k1δ1(�1 − �2) − k2δ2(�3 − �4)]

= 4
h̄2k2

1δ
2
1

π2
Var[�1 − �2 − γ (�3 − �4)],

with γ ≡ k2δ2/k1δ1. Omitting the term preceding the variance
of occupancy times, we have a1 = 1, a2 = −1, a3 = −γ and
a4 = γ . Because the forces in asymmetric systems have to be
balanced according to Eq. (B1) to create molasses centered at
zero velocity, we know that γ = �2(1 − r2)/�1(1 − r1).

Evaluating Eqs. (B4) and (B5) algorithmically can be done
with ease as long as we are able to find eigenvectors and
diagonalize generator matrix Q. In general, assuming the
eigenvectors of Q are columns in a matrix V and eigenvalues
are diagonal elements of D, we have Q = V DV −1, and so

P = eQt = VeDtV −1,

where exponential of eigenvalue matrix simply has exponents
of eigenvalues on its diagonal. After matrix multiplication one
obtains values in cells of P as given in Eq. (B3). To easily get
values for η j and uk

i j we can instead create a matrix U k =
V DkV −1, where Dk is defined as

Dk
i j =

{
1 if k = i = j

0 otherwise
.

Then, we simply obtain uk
i j that we need in Eq. (B4) and

Eq. (B5) as the i jth cell of matrix U k , i.e., U k
i j = uk

i j . The same
matrix gives us η j = U 0

i j , where the equality holds for any
index 0 � i � n − 1 in a system with n states. In summary,
evaluating variance and covariance of occupancy times, and
therefore variance of momentum transfer in π -pulse models
for PCF, boils down to finding eigenvalues and eigenvectors
of the generator matrix of the appropriate CTMC. Using this
method we can numerically find that in a more realistic, asym-
metric, and balanced BaH system:

1

T
Var pBCF ≈ 20.79 h̄2k2

1
δ2

1

π2�1
.

Finally, we should note that applicability of this model and
all the formulas to the actual polychromatic forces is limited
to situations when the interaction can be actually approxi-
mated by π -pulses. This, for example, occurs at χ = π/4 for
bichromatic fields and χ = π/6 for four-color fields. These
parameters, however, do not need to yield maximum attain-
able force. While they do in the case of two-color forces,
already in the case of four-color fields such choice of χ

provides strong force over a very wide range of velocities, but
not the maximum at small velocities, which appears at lower
values of χ .
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