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Continuous quantum measurement for general Gaussian unravelings can exist
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Quantum measurements and the associated state changes are properly described in the language of instru-
ments. We investigate the properties of a time continuous family of instruments associated with the recently
introduced class of general Gaussian non-Markovian stochastic Schrödinger equations. In this article we find that
when the covariance matrix for the Gaussian noise satisfies a particular δ-function constraint, the measurement
interpretation is possible for a class of models with self-adjoint coupling operator. This class contains, for exam-
ple the spin-boson and quantum Brownian motion models with colored bath correlation functions. Remarkably,
due to quantum memory effects the reduced state, in general, does not obey a closed form master equation while
the unraveling has a time continuous measurement interpretation.
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I. INTRODUCTION

Open quantum system dynamics and quantum measure-
ment have a lot in common: both are described in terms
of completely positive maps when the system and the en-
vironment or the system and measurement apparatus are
initially prepared into a product state [1]. Since practically
any quantum system is coupled to an environment [2], de-
tailed understanding of the intricate connections between the
two physical processes is necessary for both fundamental and
applied research. For example, proper understanding of relax-
ation of a driven atom inside a leaky cavity is provided by the
theory of open quantum systems [3], whereas the homodyning
of the emitted light can be understood on the level of mi-
croscopical physical processes in terms of a time continuous
measurement [4]. Averaging over all possible measurement
records in the latter case provides the correct relaxation dy-
namics of the driven open system, thus reconciling the two
approaches.

More recently, the role of quantum measurements on
the thermodynamical properties of open quantum systems
have been theoretically investigated [5–7]. In current exper-
iments, the individual conditional trajectories of continuously
measured weakly coupled open quantum systems can be
tracked [8,9]. With the eye on possible future experiments and
quantum technologies, it is important to understand whether a
time continuous measurement interpretation is possible and
how relevant conditional trajectories should be constructed
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when the open system is strongly coupled to its environment
and possible memory effects are at play [10,11].

An open quantum system can be studied in many differ-
ent ways. One of the most widespread is the usage of two
types of master equations for the reduced state [2,12,13]:
of the time local form [2] and time nonlocal form con-
taining memory integrals [14,15]. In this article we focus
on a different description, namely on unravelings of the re-
duced state evolution in terms of time continuous stochastic
Schrödinger equations (SSEs). Applicability of such de-
scriptions range from Markov evolutions [16], i.e., fulfilling
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) mas-
ter equation [17,18], to highly non-Markovian dynamics in
terms of non-Markovian quantum state diffusion [19,20].
The SSE formalism is well developed in the Markov case,
where a complete parametrization of diffusive SSEs has been
known already for some years [21,22]. Similar progress in
the non-Markovian regime has been made only recently by
the introduction of the general Gaussian non-Markovian SSEs
as well as the microscopically derived generalized Gaussian
non-Markovian SSEs [10,11,23–25].

One advantage of stochastic descriptions of the dynamics
in the Markov regime lies in their physical interpretation. A
single trajectory corresponds to an evolution that is condi-
tioned on time continuous monitoring of the environment of
the open system [26]. For non-Markovian diffusive trajec-
tories driven by complex-valued colored Gaussian noise, so
far only a single-shot measurement interpretation has been
established [27–32]. Interesting proposals for time continuous
quantum measurements in the presence of memory effects
were given in [28,30], where initially entangled observables
were measured. However, it was pointed out subsequently
in [29] that such an approach cannot lead to pure state tra-
jectories, thus strengthening the commonly held viewpoint
that in the presence of memory effects such a continuous
measurement interpretation is not possible.
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Remarkably, in [33], using an approach complementary
to ours, the authors show that linear diffusive SSE driven
by a real-valued, nonwhite Ornstein-Uhlenbeck process leads
to a random unitary type dynamics which does have a time
continuous measurement interpretation. On the other hand,
our approach, which will be elaborated on later, has a clear
microscopic origin, and the noise driving the process must
only satisfy a δ-function constraint which we will give later
in this article.

The general Gaussian SSEs contain two types of correla-
tion functions. Only the Hermitian (bath) correlation function
α(t, s), occurring also in the standard SSEs, affects the
reduced density operator evolution. The non-Hermitian corre-
lation function η(t, s) influences solely the properties of the
stochastic trajectories. The new freedom in the description
of the open quantum system dynamics introduced by the
correlation η(t, s) has already turned out to be beneficial for
tasks where optimization over different pure state decomposi-
tions is needed, such as entanglement detection, entanglement
bounds, and entanglement protection [11,34,35]. Conse-
quently, it is a natural idea to examine whether the stochastic
trajectories in this general description have a time continuous
measurement interpretation beyond the white noise limit.

II. GENERAL GAUSSIAN NON-MARKOVIAN SSES

The general Gaussian non-Markovian SSEs investigated
in [10,11,23] reads

d

dt
|ψt (z

∗)〉
= −iHS|ψt (z

∗)〉 + Lz∗
t |ψt (z

∗)〉

−
∫ t

0
ds[α(t, s)L† + η(t, s)L]O(t, s, z∗)|ψt (z

∗)〉, (1)

where the stochastic states |ψt (z∗)〉 are not normalized and the
initial state is the same for all trajectories: |ψ0(z∗)〉 = |ψ0〉.
HS is a Hamiltonian of the open system, and L is an operator
describing the coupling of the open quantum system to its
environment. We have already assumed that the assignment
δ

δz∗
s
|ψt (z∗)〉 = O(t, s, z∗)|ψt (z∗)〉 is possible. O(t, s, z∗) can be

calculated exactly for many relevant systems, otherwise one
has to turn to some approximation scheme [36].

The functions α(t, s) and η(t, s) are, respectively, the
Hermitian and non-Hermitian correlation functions of the
Gaussian complex noise z∗

t completely specified by its mean
M[z∗

t ] = 0 and correlations

M[zt z
∗
s ] = α(t, s), M[z∗

t z∗
s ] = η(t, s), (2)

where the averages are taken with respect to the corresponding
Gaussian probability density.

By construction, the reduced density operator ρt evolves
according to a completely positive and trace preserving map
�t obtained by averaging over the trajectories obeying (1):
ρt = M[|ψt (z∗)〉〈ψt (z∗)|] = �t (|ψ0〉〈ψ0|). Indeed, the fam-
ily of stochastic pure states {|ψt (z∗)〉}z∗ unravel the reduced
evolution. Rather surprisingly, the averaged reduced dynamics
depends only on the Hermitian correlation α(t, s), whereas the
dependency on the non-Hermitian correlation η(t, s) occurs
only in the trajectories |ψt (z∗)〉.

The most general form for the Gaussian non-Markovian
SSE is obtained when the functions α(t, s) and η(t, s) are only
constrained by a general positivity condition, which guar-
antees that they are correlation functions for some complex
Gaussian noise z∗

t [10,23].

III. MEASUREMENT INTERPRETATION

To investigate if the measurement interpretation of some
stochastic process is possible, one introduces a notion of
instrument and the measurement record [37,38]; see also Ap-
pendix A.

Let (�u,Fu) be a family of measurable spaces
parametrized by time u � 0. Here �u is the set of all possible
measurement records and Fu is a family of increasing
σ -algebras (Fu′ ⊂ Fu, when u′ < u) containing all possible
events verifiable by a time continuous measurements up
to time u. Any measurement scheme is then described by
a family of instruments Y = {Yu(·)[·] : Fu × T (HS ) →
T (HS ); u � 0}, where each Yu(Fu) is an instrument, that is,
a linear, trace nonincreasing, normalized, and completely
positive map from trace class operators to trace class
operators. Furthermore, the normalization is given by
tr{Yu(�u)X } = tr{X }, where X is an arbitrary trace class
operator. Causality sets an additional constraint on Y: The
probability of verifying an event Fs has to be invariant with
respect to measuring up to some later time t > s (Fs ⊂ Ft )
and discarding the gained information. Consequently, the
following “compatibility demand” has to be satisfied for all s,
0 < s < t :

∀Fs ∈ Fs : (Ys)†(Fs)[1] = (Yt )
†
(
Fs × �t

s

)
[1], (3)

where (Ys)†(Fs)[·] refers to the dual map of Ys(Fs)[·] and
Fs × �t

s denotes all elements of �t which coincide with Fs.
As discussed in [31] such an instrument Yu(·)[·] can be seen
as a sequence of arbitrary many instruments, consequently
justifying the name continuous measurement interpretation.

In this article, we choose that the complex noise z∗
t up to

time t is itself a measurement signal. In general, this is the
case when the operator O(t, s, z∗) occurring in the general
Gaussian SSE (1) has at most linear dependence on z∗

t [31].
However, we will see later that this choice can always be made
under exactly the same conditions when a time continuous
measurement interpretation exists. We denote by Gt (z∗

t ) the
solution to Eq. (1) with initial condition G0(z∗

0 ) = 1. We can
construct an instrument Yt (Ft ) corresponding to general Gaus-
sian SSE (1) by setting

Yt (Ft )(|ψ0〉〈ψ0|) =
∫

Ft

Gt (z
∗
t )|ψ0〉〈ψ0|G†

t (z∗
t )μ(dz∗

t ), (4)

which describes how the initial state |ψ0〉 is mapped when
measurement outcomes z∗

t ∈ Ft are obtained. Here, μ(dz∗
t ) is

the Gaussian probability measure for the stochastic process z∗
t .

Compatibility demand can be written in terms of the following
two-times propagator

At
s(z

∗
t ) = Gt (z

∗
t )G−1

s (z∗
t ), (5)
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and with the help of Radon-Nikodym theorem [31,39] as
follows:

1 =
∫

�t
s

At†
s (z∗

t )At
s(z

∗
t )ν(dz∗

τ |z∗
σ = ζ ∗

σ )

≡ M
[
At†

s (z∗
t )At

s(z
∗
t )

∣∣ζ ∗
σ

]
, νs

0 − a.s., (6)

where a.s. denotes almost surely and the M[·|ζ ∗
σ ] :=

M[·|{z∗
σ |z∗

σ = ζσ , σ ∈ (0, s]}] is a shorthand notation for an
expectation value conditioned on the history of a single noise
realization z∗

σ taking values ζσ from time 0 till time s. Clearly,
the condition (6) which guarantees that the probability of mea-
suring a stochastic state is invariant with respect to measuring
up to some later time t > s, and discarding the gained infor-
mation (causality) is equivalent to the martingale condition

M[||ψt (z
∗
t )||2|ζσ ] = ||ψs(ζ

∗
s )||2. (7)

Accordingly, if the martingale condition (7) is satisfied, the
measurement interpretation is in principle possible.

With the preliminaries elaborated earlier, we can now state
the main result of this article in the form of the following
theorem.

Theorem 1. If the correlations satisfy the following δ-
function constraint

α(t, s) + η(t, s) = κδ(t − s), (8)

and if the coupling operator L is self-adjoint, a time continu-
ous measurement interpretation is possible.

If condition (8) holds and L = L†, the SSE takes the sim-
pler time-convolutionless form

∂t |ψt (z
∗)〉 = −iHS|ψt (z

∗)〉 + z∗
t L − κ

2
L2|ψt (z

∗)〉, (9)

since O(t, t, z∗) = L [36]. Clearly, z∗
t can be taken as the

measurement signal since how the operator O(t, s, z∗) would
in general depend on z∗

t has no influence on the stochastic
dynamics when the δ-function constraint (8) holds true. Re-
markably, under that constraint (8) the corresponding master
equation for the reduced state is in general not closed:

∂tρt = −i[HS, ρt ] + (M[O(t, z∗)|ψt (z
∗)〉〈ψt (z

∗)|]L
− LM[O(t, z∗)|ψt (z

∗)〉〈ψt (z
∗)|] + H.c.), (10)

with O(t, z∗) = ∫ t
0 ds α(t, s)O(t, s, z∗); it can be seen as a

signature of correlations between the open system and its en-
vironment which have a non-negligible effect on the timescale
of the open system evolution. Significantly, the operator
O(t, s, z∗) occurs in the master equation (10), as opposed to
the case of SSE (9).

The master equation retains the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) form when the bath correlation
function is singular α(t, s) ∝ δ(t − s) [17,18]. In this case,
the future of the stochastic process is independent of the past
and conditional mean values can be replaced by unconditional
mean values; see Appendix C 2. Accordingly, in the white
noise limit the martingale condition (7) and the δ-function
constraint (8) are always satisfied.1 Our δ-function constraint

1Here by white noise we mean that both η(t, s) and α(t, s) are
proportional to δ(t − s).

given by Eq. (8) allows, however, also for other forms of
Hermitian correlation α(t, s), which, most notably, can also
have finite correlation time.

With this, we can prove Theorem 1 as follows.
Proof. When the δ-function constraint (8) holds, the con-

ditional mean value μ̂c(τ ) and the conditional covariance
�c(τ, τ ′) of (zτ , z∗

τ )T with τ, τ ′ ∈ (s, t] satisfy

r̂†μ̂c(τ ) = 0, r̂†�c(τ, τ ′) = r†(κ, κ∗)δ(τ − τ ′),

where r̂† = (r†, r†) and r is an arbitrary operator acting on
the Hilbert space of the system. If we additionally assume that
L = L†, the conditional norm fulfills

∂τM[||ψτ (z∗)||2|ζσ ] = 0,

with initial condition M[||ψs(z∗)||2|ζσ ] = ||ψs(ζ ∗
s )||2. Thus

the norm squared is a martingale. �
We have presented the details of the proof in the Ap-

pendix D.
We want once again stress that the only conditions for

the existence of a time continuous measurement interpreta-
tion of solutions of SSE (1) are the self-adjointness of the
coupling operator L = L† and fulfillment of the δ-function
constraint (8). Consequently, the measurement interpretation
is possible for important paradigms such as, among others,
the spin-boson model, where HS = ω

2 σz and L = gσx, and

quantum Brownian motion, where HS = p2

2 + 1
2ω2q2 and L =

q even when the system-environment correlation function
α(t, s) has a finite correlation time.

An important issue remains. Namely, the explicit construc-
tion of a nontrivial realization of condition (8).

IV. EXAMPLE: ORNSTEIN-UHLENBECK PROCESS

A noise process satisfying condition (8) and having a finite
correlation time can be constructed using Ornstein-Uhlenbeck
(O-U) processes. Suppose that the noise z∗

t = xt − iyt driving
the dynamics is decomposed into two independent real-valued
O-U processes xt , yt . The noises nt satisfy ṅt = −annt +√

Dnξ
n
t , where an > 0 are the drift coefficients and Dn > 0 the

diffusion coefficients for n∈{x, y}. ξ x
t and ξ

y
t are uncorrelated

standard real-valued Gaussian white noises.2

Both real processes are of zero mean, and the covariances
are

〈xt xs〉 = Dx

2ax
e−ax |t−s|, 〈yt ys〉 = Dy

2ay
e−ay|t−s|.

One can easily show that the Hermitian and non-Hermitian
correlation functions read

α(t, s) = 〈xt xs〉 + 〈yt ys〉, η(t, s) = 〈xt xs〉 − 〈yt ys〉.
When we take the limit ax → ∞ while Dx/a2

x = κ
2 , the

complex process zt satisfies the δ-function constraint (8).
However, the Hermitian correlation function α(t, s) has a
finite correlation time since it takes the form

α(τ ) = κ

2
δ(τ ) + Dy

2ay
e−ay|τ |, (11)

2M[ξν
t ξσ

s ] = δνσ δ(t − s).
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which describes exponentially damped environment correla-
tions.

V. DISCUSSION

The question of the existence of a measurement interpre-
tation for non-Markovian quantum trajectories has a long and
vivid history. After the introduction of the general Gaussian
non-Markovian stochastic Schrödinger equations, new poten-
tial to explore this question has opened up. In this paper we
have investigated the possibility to have a time continuous
measurement interpretation for the non-Markovian trajecto-
ries satisfying the relevant martingale condition (7).

We have shown that the stochastic trajectories of the gen-
eral Gaussian non-Markovian SSE can have a time continuous
measurement interpretation beyond the usual white noise
limit. In fact, the stochastic trajectories of the general Gaus-
sian SSE for models with self-adjoint coupling operator and
correlations satisfying the δ-function constraint (8) possess
a time continuous measurement interpretation. Moreover, we
also showed that the set of processes satisfying that constraint
is not empty.

Note that when rigorously derived from a microscopic
open quantum system model, the imaginary part of α is
nonzero. Then the δ-function constraint can only be met in
an approximate sense (for instance, in the usual Born-Markov
derivation of the GKSL master equation). Nevertheless, a real-
valued α may appear in connection with quantum-classical
hybrids [40–46], which have been actively studied in recent
decades. A prominent example of a such system would be a
quantum system which is coupled to a classical measurement
apparatus. A well known exception to the typical case where
the bath correlation function is complex valued would be a
resonant coupling of a two-level atom to a zero temperature
quantum environment with Lorentzian spectral density within
the rotating wave approximation [4]. In this case, the bath
correlation function is purely exponential.

The framework we use is abstract and therefore it has
the advantage of describing the measurement process without
making any reference to a particular physical measurement
setting. However, an interesting question, which still has to be
answered, is how such a time continuous measurement can be
implemented experimentally. Accordingly, we hope that our
work inspires further investigations on suitable physical inter-
pretations of the stochastic trajectories described by (1) and
the associated explicit experimental setup for time continuous
measurement.
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APPENDIX A: MEASUREMENT INTERPRETATION

We introduce the quantum stochastic formalism of time
continuous measurement and apply it to the stochastic open
system states |ψt (z∗)〉 [31,47,48]. To be self-contained, we
briefly sketch the method (essentially reproducing the results
of [31]), leading to a compatibility demand given in Eq. (6)

for the family of instruments describing the time continuous
measurement.

We begin by recalling the notion of an instrument [37,38].
Let (�,F ) be a measurable space, where � is a set and F
is a σ -algebra on �. An instrument Y (·)[·] : F × T (HS ) →
T (HS ) is a linear, normalized (Tr(Y (�)[A]) = Tr(A)), trace
nonincreasing and completely positive map. T (HS ) denotes
all trace class operators on the system Hilbert space HS . With
a given instrument Y (·)[·] and a normalized pre-measurement
state ρ, the probability of verifying an event F ∈ F is

P(F |ρ) = Tr(Y (F )[ρ]), (A1)

and the corresponding post-measurement state reads

ρF ≡ Y (F )[ρ]

Tr(Y (F )[ρ])
. (A2)

As shown by Ozawa in [49], the related indirect single-shot
measurement interpretation exists.

By transition to time continuous measurement, one intro-
duces a family of measurable spaces (�t ,Ft ), parametrized
by the time t � 0. Here, �t is a set of all possible mea-
surement records, which in our case is an appropriate space
of functions. The measurement scheme is then described
by the corresponding family of instruments Y = {Yt (·)[·] :
Ft × T (HS ) → T (HS ); t � 0}. Causality sets an additional
constraint on Y: Probability of verifying an event Fs has
to be invariant with respect to measuring up to some later
time t > s (Fs ⊂ Ft ) and discarding the gained information.
Consequently, the following “compatibility demand” has to be
satisfied for all s, 0 < s < t :

∀Fs ∈ Fs : (Ys)†(Fs)[1] = (Yt )
†
(
Fs × �t

s

)
[1], (A3)

where (Ys)†(Fs)[·] refers to the dual map of Ys(Fs)[·] and
Fs × �t

s denotes all elements of �t which coincide with Fs

if confined to (0, s].
It was shown in [47] that a general continuous quantum

measurement can be described in an integral form containing
stochastic evolution operators {V i

t }i, satisfying the orthonor-
mality relation. As both the initial and the final states of our
stochastic trajectories are rank 1, the continuous measurement
is described by a single stochastic operator Vt for a fixed
time t (an efficient measurement [50]). More than that, any
instrument corresponding to an efficient measurement can
be decomposed in terms of a positive scalar measure μt :
Ft → I ∈ [0,∞) and stochastic evolution in the following
form [47,48]:

Yt (Ft )[ρ] =
∫

Ft

Vt (xt )ρ(Vt (xt ))†μt (dxt ), (A4)

where xt is a measurement record till time t . The associated
probability for measuring a record in the vicinity of xt and the
post-measurement state read, respectively,

Pt (dxt |ψ0) = ||Vt (xt )ψ0||2μt (dxt ), (A5)

|ψ (xt )〉 = Vt (xt )|ψ0〉
||Vt (xt )ψ0|| , (A6)

where |ψ0〉 is the initial state. In [48], additional conditions on
stochastic evolution operators were set, which are, however,
equivalent to the compatibility demand (A3).
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APPENDIX B: MEASUREMENT INTERPRETATION OF
THE GENERAL STOCHASTIC SCHRÖDINGER

EQUATIONS

By investigating the general SSEs in terms of existence of
a time continuous measurement interpretation, the following
three demands on our construction are plausible [31]:

1. The compatibility demand (A3) should be fulfilled,
2. the obtained set of the pure post-measurement states

should equal the set of all normalized solutions of the general
Gaussian non-Markovian SSE (1) in the main text, and

3. the unconditional post-measurement state should be
equal to the reduced density operator.

Note, that 3 does not follow from 2, as 2 contains no
statement about the measurement probabilities.

As elaborated in [31], the stochastic evolution operator
V t

s (z∗
t ) can be set to be equal to a two-time propagator At

s(z
∗
t ),

fulfilling

At
s(z

∗
t ) = Gt (z

∗
t )[Gs(z

∗
s )]−1, (B1)

where Gt (z∗
t ) is the stochastic propagator corresponding to

Eq. (1) in the main text: |ψt (z∗)〉 = Gt (z∗
t )|ψ (0)〉. Further,

the stochastic propagator Gt (z∗
t ) is a functional of the noise

process z∗
t ′ , where t ′ ∈ (0, t]. Here, the complex noise z∗

t up
to time t is itself a measurement signal, an assignment which
can be done without loss of generality when L = L† and δ-
constraint (8) is satisfied. The condition 3 is then satisfied only
when the scalar measure μt (dz∗

t ) from Eq. (A4) is the Gaus-
sian probability measure νt (dz∗

t ) of the complex noise z∗
t in

Eq. (1). Consequently, by applying the Radon-Nikodym theo-
rem [39], the compatibility demand (A3) takes the form [31]

1 =
∫

�t
s

At†
s (z∗

t )At
s(z

∗
t )ν(dz∗

τ |z∗
σ = ζ ∗

σ )

≡ M[At†
s (z∗

t )At
s(z

∗
t )|ζ ∗

σ ], νs
0 − a.s., (B2)

where the M[·|ζ ∗
σ ] := M[·|{z∗

σ |z∗
σ = ζσ , σ ∈ (0, s]}] is a

shorthand notation for an expectation value conditioned on
the history of a single noise realization z∗

σ taking values ζσ

from time 0 till time s. From now on, we denote the “past”
with σ ∈ IP(s) = (0, s] and “future” with τ ∈ IF (t ) = (s, t].

The compatibility demand, Eq. (B2), is equivalent to

M[||ψt (z
∗
t )||2|ζσ ] = M[〈ψs(z

∗
s )|At†

s (z∗
t )At

s(z
∗
t )|ψs(z

∗
s )〉|ζσ ]

= ||ψs(ζ
∗
s )||2, (B3)

which states that the norm of the stochastic trajectories is a
martingale. Equivalence is obtained by simply by sandwich-
ing Eq. (B2) with |ψs(ζ ∗

s )〉 and using the properties of the
two-times propagator.

APPENDIX C: CONDITIONAL CUMULANTS OF
GENERAL COMPLEX GAUSSIAN NOISE

From the definition of the conditional average, we imme-
diately note that [51]

M[M[z∗
τ |ζ ∗

σ ]zσ ] = M[z∗
τ zσ ] = α∗(τ, σ ), (C1)

M[M[z∗
τ |ζ ∗

σ ]z∗
σ ] = M[z∗

τ z∗
σ ] = η(τ, σ ), (C2)

where the external average is taken with respect to both the
past and the future. Equations (C1) and (C2) imply that z̃∗

τ =

z∗
τ − M[z∗

τ |ζ ∗
σ ] is orthogonal to zσ and z∗

σ with respect to the
inner product M[z̃∗

τ zσ ] = M[z̃∗
τ z∗

σ ] = 0. A Gaussian process
conditioned on its past is again a Gaussian process [52,53].
Conditional mean value M[z∗

τ |ζ ∗
σ ] for a Gaussian process is

linear in both ζσ and ζ ∗
σ [53], which leads to

μ̂c(τ ) = M[ẑτ |ζ̂σ ]

≡ M
[(

zτ

z∗
τ

)∣∣∣∣∣
(

ζσ

ζ ∗
σ

)]

=
∫

IP (s)
dσ V (τ, σ )ζ̂σ . (C3)

V (τ, σ ) is a linear operator with support on IF (t ) × IP(s).
From the orthogonality conditions M[z̃∗

τ zσ ] = 0 =
M[z̃∗

τ z∗
σ ] follows a connection between V (τ, σ ) and the

covariance matrix �(τ, σ ) = M[ẑτ ẑ†
σ ]:

�(τ, σ ) =
∫

IP (s)
dσ ′ V (τ, σ ′)�(σ ′, σ ). (C4)

From the above equation, we can solve V (τ, σ ) by multiplying
from the right with �−1(σ, σ ′′) which is a linear operator with
support on IP(s) × IP(s) satisfying∫

IP (s)
dσ ′

∫
IP (s)

dσ �(σ ′, σ )�−1(σ, σ ′′) f (σ ′) = f (σ ′′) (C5)

for an arbitrary vector-valued function f . We thus find, for all
τ ∈ IF (t ), σ ∈ IP(s),

V (τ, σ ) =
∫

IP (s)
dσ ′ �(τ, σ ′)�−1(σ ′, σ ). (C6)

If η(τ, σ ) = 0 then M[z̃∗
τ zσ ] = M[z̃∗

τ z∗
σ ] = 0 implies sta-

tistical independence [54]. Next, we show that with the
conditional mean (C3), orthogonality of z̃∗

τ with zσ and z∗
σ also

implies statistical independence.
Let

ẑν =
(

xν + iyν

xν − iyν

)
=

(
1 i
1 −i

)(
xν

yν

)
= T

(
xν

yν

)
= T ûν,

where xν and yν are zero mean real-valued Gaussian processes
such that the covariance matrix �′(ν, μ) = M[ûν ûT

μ] satisfies

�(ν, μ) = M
[(

zν

z∗
ν

)(
z∗
μ, zμ

)]

= M[(T ûν )(T ûμ)†]

= T �′(ν, μ)T †. (C7)

For a real-valued Gaussian process, the conditional mean is
given by

M[ûτ |m̂σ ] ≡ M[ûτ |ûσ = m̂σ ] =
∫

IP (s)
dσA(τ, σ )m̂σ , (C8)

where the matrix A(τ, σ ) satisfies �′(τ, σ ) =∫
IP (s) dσ ′ A(τ, σ ′)�′(σ ′, σ ). We define ˜̂uτ = ûτ − M[ûτ |ûσ ]

and clearly ˜̂uτ and ûσ are orthogonal. Since ûτ is a real-valued
and Gaussian process, it implies that ˜̂uτ and ûσ are statistically
independent. As the statistical independence is invariant under
T , it follows that ˜̂zτ = T ˜̂uτ (and thus z̃τ ) and ẑτ are statistically
independent.
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The conditional Hermitian covariance is

αc(τ, τ ′) = M[(zτ − M[zτ |ζσ ])(z∗
τ ′ − M[z∗

τ ′ |ζ ∗
σ ])|ζ ∗

σ ],

τ ′ ∈ IF (t ), and analogously for non-Hermitian covariance
ηc(τ, τ ′). Statistical independence implies that we can replace
the conditional mean by unconditional mean [52,53]. With the

help of Eq. (C3) and using α(ν, μ) = α∗(μ, ν) and η(ν, μ) =
η(μ, ν), we can then write

�c(τ, τ ′) = M[˜̂zτ
˜̂z†
τ ′] = �(τ, τ ′)−

∫
IP (s)

dσV (τ, σ )�(σ, τ ′).

(C9)

1. Case when the δ-function constraint is satisfied [α(t, s) + η(t, s) = κδ(t − s)]

In this case we have the following conditional statistics. Let r̂ = (r
r) be a column vector, where r is an operator acting on the

Hilbert of the system. The conditional mean value with respect to a particular history ζ ∗
σ is

r̂†μ̂c(τ ) =
∫

IP (s)
dσ r̂†V (τ, σ )ζ̂σ =

∫
IP (s)

dσ

∫
IP (s)

dσ ′ r̂†�(τ, σ ′)�−1(σ ′, σ )ζ̂σ . (C10)

Now, we see that

r̂†�(τ, σ ′) = r†(α(τ, σ ′) + η(τ, σ ′), α∗(τ, σ ′) + η∗(τ, σ ′) ) = r†(κ, κ∗)δ(τ − σ ′). (C11)

Since τ ∈ IF (t ) and IF (t ) ∩ IP(s) = ∅, we find

r̂†μ̂c(τ ) = 0. (C12)

Similarly, for the conditional covariance we can obtain

r̂†�c(τ, τ ′) = r̂†�(τ, τ ′) −
∫

IP (s)
dσ

∫
IP (s)

dσ ′ r̂†�(τ, σ ′)�−1(σ ′, σ )�(σ, τ ′)

= r†(κ, κ∗)δ(τ − σ ′) +
∫

IP (s)
dσ

∫
IP (s)

dσ ′ r̂†κδ(τ − σ ′)�−1(σ ′, σ )�(σ, τ ′) = r†(κ, κ∗)δ(τ − σ ′), (C13)

since τ /∈ IP(s).

2. White noise

Let us assume that the Gaussian complex noise is white, which means that

�W(t, s) =
(

γ η∗
η γ ∗

)
δ(t − s), (C14)

such that �W(t, s) is not negative. From Eq. (C4) it follows that V W(τ, σ ) = 1δ(τ − σ ). This, as it turns out, implies that the
conditional mean value and covariance satisfy

μW
c (τ ) = 0, �W

c (τ, τ ′) = �W(τ, τ ′), (C15)

when τ, τ ′ ∈ (s, t] and σ ∈ (0, s]. The implication is that in the white noise limit the conditional mean can be replaced with the
unconditional mean.

APPENDIX D: MARTINGALE PROPERTY FOR L = L† AND δ-FUNCTION CONSTRAINT

When the noise process satisfies the δ-function constraint α(t, s) + η(t, s) = κδ(t − s), we can compute the equation of
motions for average norm |ψτ (z∗)〉 conditioned on some history zσ = ζσ , where σ ∈ IP(s). Evolution of the square of the
conditional norm from τ ∈ IF (t ) to τ + ε, with ε � 0, is

M[||ψτ+ε (z∗)||2|ζσ ] = M[〈ψτ (z∗)|G†
τ+ε,τ (z∗)Gτ+ε,τ (z∗)|ψτ (z∗)〉|ζσ ]

= M
[
〈ψτ (z∗)|

{
1 + ε

(
iHS + zτ L − κ∗

2
L2

)
+ O(ε2)

}

×
{
1 + ε

(
−iHS + z∗

τ L − κ

2
L2

)
+ O(ε2)

}
|ψτ (z∗)〉

∣∣∣∣ζσ

]

= M[||ψτ (z∗)||2|ζσ ]+ εM[〈ψτ (z∗)|(zτ + z∗
τ )L|ψτ (z∗)〉|ζσ ]− εRe(κ )M[〈ψτ (z∗)|L2|ψτ (z∗)〉|ζσ ]+ O(ε2),

where Re(κ ) is the real part of κ .
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We get thus

∂τM[||ψτ (z∗)||2|ζσ ] = lim
ε→0

M[||ψτ+ε (z∗)||2|ζσ ] − M[||ψτ (z∗)||2|ζσ ]

ε

= M[〈ψτ (z∗)|(zτ + z∗
τ )L|ψτ (z∗)〉|ζσ ] − Re(κ )M[〈ψτ (z∗)|L2|ψτ (z∗)〉|ζσ ],

with initial condition M[||ψτ (z∗)||2|ζσ ]|τ=s = ||ψs(ζ ∗)||2. We set (L, L) = L̂T , where L is the self-adjoint coupling operator.
With the Novikov theorem [55] one obtains

M[tr{ẑ†
τ L̂|ψτ (z∗)〉〈ψτ (z∗)|}|ζσ ] = tr{μ̂†

c (τ )L̂M[|ψτ (z∗)〉〈ψτ (z∗)||ζσ ]}

+ tr

{
M

[∫ τ

s
dτ ′ L̂T �c(τ, τ ′)

(
δ

δzτ ′
δ

δz∗
τ ′

)
|ψτ (z∗)〉〈ψτ (z∗)|

∣∣∣∣ζσ

]}
.

Using the results of the Appendix C 1, we have μ†
c (τ )L̂ = 0 and L̂T �c(τ, τ ′) = L(κ, κ∗)δ(τ − τ ′). Since δ

δzτ
|ψτ (z∗)〉〈ψτ (z∗)| =

|ψτ (z∗)〉〈ψτ (z∗)|L and δ
δz∗

τ
|ψτ (z∗)〉〈ψτ (z∗)| = L|ψτ (z∗)〉〈ψτ (z∗)|, we finally have

M[tr{ẑ†
τ L̂|ψτ (z∗)〉〈ψτ (z∗)|}|ζσ ] = Re(κ )M[〈ψτ (z∗)|L2|ψτ (z∗)〉|ζσ ],

which gives

∂τM[||ψτ (z∗)||2|ζσ ] = 0, M[||ψs(z
∗)||2|ζσ ] = ||ψs(ζ

∗)||2. (D1)

We have thus shown that the conditional mean value of the norm is a martingale. Therefore a measurement interpretation exists.
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