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In isolated quantum systems that have conserved quantities, such as energy and total magnetization, the
conserved quantities cannot vary their values with their own dynamics. To violate conservation laws of
the system keeping the unitary nature in the system’s dynamics, quantum coherence must be supplied from the
outer environment. This provides a general and abstract interpretation of the underlying mechanism of unitary
operations on systems of interest. In this paper, we consider the amount of quantum coherence cost to realize
the desired unitary operation. We derive upper and lower bounds for the coherence cost to implement arbitrary
unitary operation within the desired error. These two bounds asymptotically match each other in a small error
regime, and give an asymptotic equality. We present applications of our theories to several physical situations
such as quantum heat engines and entanglement erasure.
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I. INTRODUCTION

Conservation laws indicate that conserved quantities do
not change their values with the unitary dynamics of isolated
quantum systems. To violate the conservation law without
breaking the unitary nature in dynamics, some aid from the
outer environments is necessary. Time-dependent parameter
control to the system is regarded as a physical phenomenon
where the experimental apparatus acts as outer environment.
Conceptually, one can interpret this phenomenon as the viola-
tion of conservation law by supplying the quantum coherence
from the outer environment. A tractable example that has
been studied in this context is the realization of the bit flip
unitary under the energy conservation law. To realize a bit flip
unitary between the ground and excited states on a qubit, an
ancillary quantum system which works as an “energy reser-
voir” is required. Åberg showed that if the ancillary has no
quantum coherence, it is impossible to implement the bit flip
with high accuracy [1]. The conservation laws restricts the
implementation whereas quantum coherence supplied from
the outer environment alleviates the restriction.

There have been two main streams of studies regarding
this topic. The first type is categorized into studies focusing
on sufficient conditions for ancillary coherence to overcome
conservation laws and to achieve desired and specific unitary
dynamics. These studies mainly aim to coherently control
atoms via coherent light [2–9]. These results were further gen-
eralized by Åberg in a general framework [1]. This framework
clarified what type of quantum superposition is sufficient to
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achieve arbitrary unitary operation with arbitrary precision
under the conservation law. This idea is applied to several
fields such as clocks [10] and heat engines [11]. The second
type of research is categorized into studies to clarify necessary
conditions for ancillary coherence to overcome the restrictions
of the conservation laws [12–16]. This direction of study was
initiated by Ozawa who studied the implementation of the
controlled-NOT (CNOT) gate [12]. Subsequently, after several
researches [13–15], a general lower bound of the required
coherence for implementing an arbitrary unitary gate has been
obtained [16].

In this paper, we unify these independent studies by
providing necessary and sufficient amount of coherence to
realize an arbitrary unitary operation. Following previous re-
searches [1,10–16], we regard the unitary operation in the
target system as partial dynamics in the composite system.
Here, the composite system consists of a target system and
an external system (external apparatus) that operates as a
“coherence battery.” We assume that total dynamics satis-
fies the conservation law of some physical quantity which
is denoted by A. (See the schematic in Fig. 1.) We derive
upper and lower bounds for the coherence cost, the necessary
and sufficient amount of quantum coherence in the battery to
achieve unitary time evolution in the target system within the
desired error. The upper and lower bounds always converge
in the small error limit, and reach an asymptotic equality on
the coherence cost. The precise cost can be expressed by only
two quantities: implementation error and degree of violation
of the conservation law of the desired unitary operation. Fur-
thermore, we derive lower and upper bounds for the coherence
cost of nonunitary gates. These bounds show that the tradeoff
relations between the coherence cost and the accuracy of
operations under conservation laws exist for a broader class
of quantum operations than unitary dynamics.

Our result is also significantly related to “channel im-
plementation cost,” that is essential in resource theories. In
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FIG. 1. Schematic of implementation of the unitary operation
under the conservation law of physical quantity A (e.g., energy). We
aim to implement a unitary operation in the system S that does not
conserve the quantity AS . Therefore, we attach an external system E
that operates as a coherence battery to the system. Although we do
not assume that the composite system SE is isolated, we assume that
the dynamics of the total system including the environment satisfies
the conservation law of A, and the environment does not have quan-
tum fluctuation of A, i.e., the environment is classical with respect to
A. In experimental situations, an experimental apparatus that induces
the time-dependent Hamiltonian of the system is expected to serve as
E . We aim to estimate the amount of quantum coherence (measured
by the quantum Fisher information) in E required to implement
the desired unitary operation on S. We present a resource theoretic
formulation that expresses this situation (see Fig. 2).

resource theories, we classify some operations and states that
can be easily performed and prepared as free, and some states
that cannot be created from free states by free operations as
resource. Then, operations that are not realizable with only
free operations and free states are often possible by using
resource states. One of the main subjects in resource theories
is to estimate the implementation cost, i.e., the amount of
resource required to implement the desired operation by free
operations [17]. This problem has been extensively studied
for various operations [18–23], such as quantum thermody-
namics [18,19], resource erasure [20], and resource theory
of coherence [21]. However, the implementation cost in the
resource theory of asymmetry [24–35], which considers oper-
ations under conservation laws, is not fully understood. Our
result fits this category when the implemented channel is
unitary and the symmetry is U(1). In our framework, unitary
operation is implemented by combining resource states and
covariant operations, which are free operations in the resource
theory of asymmetry. We use the quantum Fisher informa-
tion [36] as a measure of coherence that also serves as a
resource measure of the resource theory of asymmetry. There-
fore, our results can be interpreted in terms of resource cost for
implementing nonfree unitary operations by free operations.

This paper is organized as follows. In Sec. II, we explain
the setup and define the quantity of coherence, error of the de-
sired operation on the system, and asymmetry which measures
the degree of conservation law violations. In Sec. III, we show

the main results of the relations between several quantities
defined in Sec. II. In Sec. IV, we discuss the underlying
physics of several quantum manipulations. In Secs. V and VI,
we briefly present the proof of the main results in Sec. II.
Finally, conclusions are presented in Sec. VII.

II. MOTIVATION AND FORMULATION

We consider a quantum system S. We assume that the sys-
tem contains a finite-dimensional Hilbert space HS . Suppose
that the system comprises a conserved quantity that commutes
with the system Hamiltonian. We consider a conserved quan-
tity A and denote its operator by AS . Here, A is used as a
symbol to denote the conserved quantity, such as energy and
total magnetization.

We consider the mechanism to implement the desired uni-
tary operation on the target system S which does not commute
with the conserved quantity AS . Since time evolution of an
isolated system driven by a static system Hamiltonian can-
not be such a noncommutative unitary operation, an external
resource is necessary. Thus, we attach an external system
E that operates as a coherence battery for the system. See
the schematic in Fig. 1. As shown later, our theory does not
require that the total composite system is completely isolated.
We show our results in the most general setup where the com-
posite system is dissipative, being attached to an additional
environment. The assumptions that we make are that dynam-
ics of the total system including the additional environment
satisfies the conservation law of A, and the environment does
not have quantum fluctuation on A. In experimental situations,
an experimental apparatus that induces the time-dependent
Hamiltonian of the system is expected to serve as the external
system E .

The above general setting is expressed in a concise
manner using the language of the resource theory of asym-
metry [24–35], which is a branch of resource theory that
considers operations under conservation laws. In the subse-
quent subsection, we briefly explain the framework of the
resource theory of asymmetry, and, thereafter, more concrete
formulation of the above physical situation will be presented.
We address the following problem: What is the fundamen-
tal limitation to implement unitary dynamics violating the
conservation law using the resource stored in the external
system? In our formulation, the required resource is measured
by the quantum Fisher information, which is a well-known
resource measure in the resource theory of asymmetry. Using
the measure, we clarify the necessary and sufficient amount of
the required resource to implement a given unitary operation.
Because the quantum Fisher information is well known as a
measure of the quantum fluctuation (i.e., quantum coherence),
our result will also clarify the relation between the amount of
coherence in the external system and implementation error of
the unitary operation.

A. Preliminary: Symmetric state, covariant operation,
and quantum Fisher information

In this subsection, we introduce the basic notions of the
resource theory of asymmetry. We introduce symmetric states,
covariant operations, and the quantum Fisher information,
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which are, respectively, free states, free operations, and one of
the resource measures in the framework of the resource theory
of asymmetry. We here explain these using a general quantum
system Q. In the subsequent sections, the formulation made
for the general system Q here is applied to the specific systems
S, E , or SE . We consider a Hermitian operator AQ on the
system Q as a conserved quantity in Q. A quantum state ρQ

of Q is symmetric with respect to AQ when ρQ satisfies the
following condition:

UQ(t )[ρQ] = ρQ, ∀t ∈ R, (1)

where UQ(t )[ρ] := e−iAQtρeiAQt and R is the total set of real
numbers. Note that Eq. (1) holds if and only if the state ρQ

is block-diagonal, or incoherent relative to the eigenspaces
of AQ, i.e., [AQ, ρQ] = 0. That is, symmetric states are states
without quantum fluctuation of AQ because it does not
have superposition between the eigenvectors with different
eigenvalues.

We next explain the covariant operations. To this end, we
introduce invariant unitary operations that are in a special
class of the covariant operations. Unitary dynamics VQ[ρ] :=
VQρV †

Q is invariant with respect to AQ if and only if the unitary
operator conserves AQ:

[VQ, AQ] = 0. (2)

The name invariance is given because the invariant unitary is
invariant with respect to the unitary time evolution generated
by AQ:

VQ ◦ UQ(t )[...] = UQ(t ) ◦ VQ[...], ∀t ∈ R. (3)

By generalizing this framework to the completely positive
and trace-preserving (CPTP) map, we define the covariant
operation. We say that a CPTP map �Q is covariant with
respect to AQ if and only if the map satisfies the covariance
condition

�Q ◦ UQ(t )[...] = UQ(t ) ◦ �Q[...], ∀t ∈ R. (4)

It is known that a CPTP map is covariant if and only if the
map can be realized by combining invariant unitary operation
and symmetric state [28,37]. In other words, the covariance
condition (4) is equivalent to the existence of an additional
quantum system Q′, a Hermitian operator AQ′ on Q′, a sym-
metric state ρQ′ with respect to AQ′ , and an invariant unitary
VQQ′ with respect to AQ + AQ′ on the composite system QQ′
satisfying the following relation:

�Q[...] = TrQ′ [VQQ′ (... ⊗ ρQ′ )V †
QQ′ ]. (5)

Note that ρQ′ are the incoherent (i.e., classical) state with
respect to AQ′ and VQQ′ is the interaction between Q and
the additional system Q′ satisfying the conservation law of
AQ + AQ′ . Therefore, we interpret any covariant operation as
an open dynamics under the conservation law the environment
of which is classical in view of the conserved quantity. In
Sec. V (the proof section), the above equivalence between
covariant condition (4) and existence of Q′, AQ′ , and VQQ′

satisfying (5) is used to show that the coherence cost of unitary
implementation for the case where SE is isolated is the same
as that of the case where SE is not isolated simultaneously.
(For details, see the beginning of Sec. V.)

Symmetric states and covariant operations are free states
and free operations in the resource theory of asymmetry. Par-
ticularly, from (1) and (4), we note that a symmetric state
cannot be transformed into a nonsymmetric state by covariant
operations. In resource theories, we refer to such nonfree
states that we cannot create from free states and free opera-
tions as resource states, and evaluate the amount of resource in
the resource states by using resource measures. In the resource
theory of asymmetry, the quantum Fisher information [36]
with respect to AQ is a well-known resource measure [32–35]
defined as

Fρ (AQ) = 2
∑
a,b

(pa − pb)2

pa + pb
|Aab|2 (6)

for a given state ρ. Herein, pa is the ath eigenvalue of the den-
sity matrix ρ with the eigenvector ψa, and Aab := 〈ψa|AQ|ψb〉.
The quantum Fisher information satisfies several desirable
features as a resource measure in the resource theory of asym-
metry. For example, it does not increase through the covariant
operation, and it is zero if and only if ρ is symmetric with
respect to AQ [32]. Roughly speaking, the quantum Fisher
information Fρ (AQ) represents the asymptotic conversion rate
from e-bit state |ψ〉 = (|0〉 + |1〉)/

√
2 to the state ρ by the

covariant operation with respect to AQ [35]. Namely, the quan-
tum Fisher information plays a significantly similar role as
the entanglement cost [38] in the entanglement theory. Hence,
it can be used to evaluate the cost of the state formation via
covariant operations.

The quantum Fisher information is also known as a mea-
sure of quantum coherence [35,36,39–41], which satisfies the
following relation [39,40]:

Fρ (AQ) := min
{q j ,φ j }:ρ=∑ j q jφ j

4
∑

j

q jV
2
φ j

(AQ). (7)

Here the minimization is taken over all possible decomposi-
tions {q j, |φ j〉} of the given density matrix ρ, and Vρ (AQ) is
the standard deviation of the quantity AQ for the pure state
|φ j〉, i.e.,

Vφ j (AQ) :=
√

〈φ j |A2
Q|φ j〉 − 〈φ j |AQ|φ j〉2. (8)

If the decomposition φ j for the density matrix is identical
to the eigenstates of AQ (i.e., ρ is symmetric), the Fisher
information F is exactly zero. Note that in this case, the
origin of the fluctuation of AQ in the state ρ is the classical
probability {qj}. The Fisher information F takes a nonzero
value if |φ j〉 is a superposition of eigenstates with different
eigenvalues of AQ. In particular, if ρ is a pure state given by
|φ〉〈φ|, the quantum Fisher information is equal to 4V 2

φ (AQ).

B. Implementation of unitary operations under
conservation law

Now, we formulate the implementation of unitary opera-
tions on the target system S using the resource in the external
system E under the conservation law of the physical quantity
A. In resource theory of asymmetry, this situation corresponds
to the implementation of a nonfree unitary operation on S by
combining a free operation on SE and a resource state on E
(see Fig. 2).
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FIG. 2. Schematic of the resource theoretic formulation for im-
plementing the unitary operation under the conservation law of A.
This formulation precisely corresponds to the situation explained in
Fig. 1. We consider the target system S and the external coherence
battery E , and denote the Hermitian operator of A on S and E by
AS and AE , respectively. We aim to implement the desired unitary
operation US on S by combining the covariant operation on SE and
the initial nonsymmetric state ρE on E . Our purpose is to evaluate the
necessary and sufficient amount of the quantum Fisher information
(QFI) FρE (AE ) to implement US within error δ. Because covariant
operations and the quantum Fisher information are free operations
and a resource measure in the resource theory of asymmetry, we aim
to clarify the necessary and sufficient amount of resource to imple-
ment the desired unitary operation in resource theory of asymmetry.

We denote the Hilbert space of E by HE . We assume
that there also exists a Hermitian operator of the conserved
quantity A on E denoted by AE . We do not assume that the
composite system SE is isolated, and use the CPTP map
satisfying the conservation law for the composite system.
Dynamics of the composite system SE becomes a covariant
operation with respect to the conserved quantity AS + AE . We
refer to this dynamics as �SE [42]. We also define the CPTP
map of the target system �S as follows:

�S (ρS ) := TrE [�SE (ρS ⊗ ρE )], (9)

where ρS and ρE are initial states of the target system and the
external system, respectively.

We implement a unitary operation US that violates the
conservation law in the target system. The implementation of
US is fully determined by the set

I := (HE , AE , ρE ,�SE ) , (10)

called the implementation set for the unitary operation. If
�S (ρS ) approximates USρSU †

S accurately for any initial den-
sity matrix ρS , we say that the set I is a good implementation
set.

We need to quantify the accuracy of the implementation.
To this end, we first introduce a measure of the error in the
implementation of the desired unitary dynamics by using the
entanglement Bures distance [43]:

Le(ρS,�) :=
√

2[1 − Fe(ρS,�)], (11)

Fe(ρS,�) := √〈ψ |SR[1R ⊗ �](ψSR)|ψ〉SR, (12)

where |ψ〉SR is a purification of ρS . The symbol R denotes
the reference system. The symbol ψSR is an abbreviation
of |ψSR〉〈ψSR| that will be frequently used in this paper.
The operator � is an arbitrary time-evolution operator that
acts only on the Hilbert space of the target system. The

entanglement fidelity Fe(ρS,�) provides an amplitude of the
overlap between the initial state and the final state driven
by the time-evolution operator �. The entanglement Bures
distance Le(ρS,�) quantifies the distance between these two
states. For this general setup of the Bures distance, we next set
the time evolution as � = �U †

S
◦ �S , where �S is the CPTP

map defined in Eq. (9) and �U †
S

is an inverse time evolution of
the desired unitary dynamics, i.e.,

�U †
S
(ρS ) := U †

S ρSUS. (13)

The operator � is a successive application of these two maps.
With this setup, we can quantify the error by the Bures dis-
tance between the final state driven by the desired unitary time
evolution and the actual final state. We write this error as a
function of the initial state ρS as

δ(ρS ) := Le
(
ρS,�U †

S
◦ �S

)
. (14)

In addition, we define the error of implementation as the worst
case over all initial states:

δI := max
ρS

δ(ρS ). (15)

If the error δI of an implementation set I is less than a value
δ, we say that the implementation set I realizes US within
error δ.

As already discussed, we can regard the quantum Fisher
information as an amount of coherence (or resource). We
here define the amount of coherence cost that the external
system must bear to achieve the desired unitary operation
in the system. We consider the situation wherein the desired
unitary operation is achieved within the error δ. We define
the coherence cost F cost

δ [US] as the minimal value of the
quantum coherence over all possible implementation sets that
implements the desired unitary operation within error δ:

F cost
δ [US] := min

I:δI�δ
FρE (AE ). (16)

We finally define the degree of asymmetry of the desired
unitary US . The asymmetry in the present context implies
a degree of violating the conservation law inside the target
system by the unitary operation US . We quantify this through
the amount of noncommutativity between US and AS:

AUS := �A′
S−AS

2
, (17)

where A′
S := U †

S ASUS , and �X is the absolute value of the
difference between maximum and minimum eigenvalues of
the operator X , respectively. Note that the maximum (min-
imum) eigenvalue of A′

S − AS is the maximum (minimum)
value of the difference between expectation values of AS for
ρS and USρSU †

S . Therefore, the quantity AUS shows the ability
of the desired unitary US to change the expectation value of
the conserved quantity AS . This quantity is non-negative, and
becomes zero if and only if US and AS commute with each
other [44]. Hence we can interpret that a finite AUS reflects
the violation of the conservation law by unitary operation.

In the next section, we derive an asymptotic equality
among F cost

δ [US], δ, and AUS . It clarifies the necessary
and sufficient amount of resource to implement a desired
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nonfree unitary by free operations in the resource theory of
asymmetry.

III. MAIN RESULTS

A. Coherence cost for unitary operations

We present the main results of this paper and discuss their
physical consequences. The proof of the results will be pro-
vided later.

Theorem 1. Let (F , δ) be a tuple of positive real numbers
satisfying 0 � δ �

√
2. If the tuple of positive numbers (F , δ)

satisfies the following inequality, then there is no implemen-
tation set I satisfying δI � δ and FρE (AE ) = F :

√
F <

AUS

δ
− 6�AS . (18)

Theorem 2. Let (F , δ) be a tuple of positive real numbers
satisfying 0 � δ � 4

√
2AUS /(9�AS ). If the tuple satisfies the

following inequality, then there exists an implementation set
I such that �SE is an invariant unitary operation, δI � δ and
FρE (AE ) = F :

√
F � AUS

δ
+

√
2�AS . (19)

Theorem 1 presents a necessary condition for the existence
of the implementation set. It indicates that to realize US within
error δ, the quantum Fisher information of the implementation
device FρE (AE ) should be larger than or equal to

AUS
δ

− 6�AS .
Theorem 2 shows a sufficient condition for the existence of
the implementation set. It guarantees that there exists an im-
plementation device that achieves US within error δ and the
quantum Fisher information of which is less than or equal to
AUS

δ
+ √

2�AS . From Theorems 1 and 2, we can derive lower
and upper bounds for the coherence cost in implementation of
US within error δ:

AUS

δ
− 6�AS �

√
F cost

δ [US] � AUS

δ
+

√
2�AS , (20)

where the upper bound holds for the region 0 � δ �
4
√

2AUS /(9�AS ). We emphasize that we do not impose any
conditions on the unitary operation US and hence the two
theorems hold for any desired unitary operation. The desired
implementation set, the existence of which is guaranteed by
Theorem 2, will be given constructively in Sec. VI.

We numerically demonstrate Theorems 1 and 2 by tak-
ing a specific example. We consider S as a qubit, AS as a
Hamiltonian |1〉〈1| (i.e., the energy eigenvalue of |0〉 is zero),
and US as a bit flip unitary |0〉〈1| + |1〉〈0|. Thereafter, the
inequality (18) in Theorem 1 draws a regime of the imple-
mentation error and the quantum Fisher information that we
cannot achieve. We depict the unachievable regime as the
region A in Fig. 3. In the region A, one cannot implement
the desired unitary operation within error δ by any implemen-
tation set I satisfying FρE (AE ) = F . That is, in the region
A, the amount of coherence F is insufficient to implement
the desired unitary operation within error δ. Moreover, the
inequality (19) in Theorem 2 indicates an achievable region
that is shown as the region B in Fig. 3. In the region B, we
can implement the desired unitary operation within error δ

using an implementation set I satisfying FρE (AE ) = F . That

FIG. 3. A graph indicating (18) and (19) for the specific model.
The system is a qubit system the Hamiltonian of which is |1〉〈1| (i.e.,
the energy eigenvalue of the ground state |0〉 is zero) and the desired
unitary operation is the bit flip unitary |1〉〈0| + |0〉〈1|. In the region
A, no set achieves the desired unitary operation, as indicated from the
inequality (18), whereas in the region B at least one set achieves the
desired unitary operation.

is, in the region B, the amount of coherence F is sufficient to
implement the desired unitary within the error δ [45].

As illustrated in Fig. 3, the two regions A and B (achievable
and unachievable regimes) converge to the same line as the
implementation error δ approaches zero. This implies that the
coherence cost F cost

δ [US] approaches the bound in Theorem 1.
The upper and lower bounds in (20) indicate the following
asymptotic relation for the coherence cost:√

F cost
δ [US] = AUS

δ
+ O(1), (21)

where O is Bachmann-Landau notation as δ → 0. The asymp-
totic equality (21) explicitly shows a closed relation among
the coherence cost, and the degree of asymmetry and the im-
plementation error of the desired unitary operation. For a fixed
asymmetry, a large coherence is necessary for an accurate
implementation of the unitary operation. The equation (21)
represents the tradeoff relation between them. Also, large
asymmetry requires large coherence.

The asymptotic equality (21) shows that the coherence
cost quadratically depends on the asymmetry AUS . From the
definition (17), the asymmetry AUS is of the same order as
the conserved quantity AS . Suppose that the system of interest
is a macroscopic system, and the conserved quantities satisfy
extensivity with respect to the system size. In this case, the
coherence cost for achieving the desired operation must be
the square of the system size. Remarkably, this implies that
the implementation of unitary operations for macroscopic sys-
tems requires significantly large coherence cost.

B. Coherence cost for restricted initial states

In the previous subsection, we established an asymptoti-
cally tight relation among the coherence cost, error of the
unitary operation, and amount of asymmetry. Note that in
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the previous subsection, we have quantified the error as that
of the worst case over all possible initial states. However,
sometimes we are interested in the implementation of desired
unitary dynamics for specific initial states. In this case, what
conditions must be imposed on the coherence cost in external
systems? We herein address this question.

Let US be a transformation providing the desired final state
from the initial state ρS . We herein discuss the properties of
transformation on the implementation set I. For the goal, we
take reference state {ψi} that is an orthonormal basis of the
system satisfying ri := 〈ψi|ρS|ψi〉 < 1 for all i. We have the
following inequality that presents a necessary condition for
the implementation set similar to Theorem 1:

√
FρE (AE ) � χ (ρS, {ψi})

5
√

δ(ρS )2 +∑
i riδ(ψi )2

− 4�AS , (22)

where A′
S := U †

S ASUS , and ri := 〈ψi|ρS|ψi〉 quantifies the
weight of |ψi〉 in ρS . In the above, χ is defined as the fluc-
tuation of the change in AS with respect to the reference states
{ψi} as follows:

χ (ρS, {ψi}) :=
√∑

i

ri(〈A′
S − AS〉ψi − 〈A′

S − AS〉ρS )2,

(23)

where 〈...〉ψi = tr(...|ψi〉〈ψi|) and 〈...〉ρS = tr(...ρS ).
The inequality (22) shows that for various nonunitary

CPTP maps, much coherence is necessary to implement the
CPTP map within small error. In general, the inequality (22)
guarantees that there is a tradeoff relation between the error
and the coherence cost for an arbitrary implementation of an
arbitrary CPTP map E satisfying the following three condi-
tions [46].

(1) E acts as unitary dynamics US for a certain initial state
ρS .

(2) E acts as unitary dynamics US for the orthonormal states
{ψk}k∈K that span the support of ρS

(3) For states ψi satisfying ri > 0, at least one of
{〈AS − A′

S〉ψk
}k∈K has a different value from others.

A typical example of CPTP maps satisfying the above
three conditions is a CPTP map that acts as an asymmetric
unitary for a subspace of the Hilbert space of S. To illus-
trate this, we consider the gate on a d-level system S that
behaves as a bit flip unitary only for the space spanned by
the ground state and the first excited state but behaves as a
nonunitary gate for other states. Because this is not a unitary
operation for the entire Hilbert space, we cannot apply The-
orem 1. However, the inequality (22) is available to estimate
the required coherence cost for implementing this nonunitary
gate within error δ under the energy conservation law. We
examine how (22) works for this bit flip example. We refer
to the ground state and the first excited state as ψ0 and ψ1,
respectively. We also define the energy eigenvalues of ψ0

and ψ1 as E0 and E1, respectively. Let ρS be defined by
ρS = ψ0+ψ1

2 . Then, χ (ρS, {ψi}) =
√

(E0 − E1)2/2, δ(ρS ) � δ,
and δ(ψk ) � δ for k = 0, 1 hold. Because rk = 0 holds for
all k � 2 in this case,

√
δ(ρS )2 +∑

i riδ(ψi )2 �
√

2δ holds.
Therefore, the inequality (22) guarantees that the necessary

coherence is larger than or equal to |E0 − E1|/10δ − 4‖HS‖,
where HS is the Hamiltonian of the system S.

IV. APPLICATION

In this section, based on the relations (21) and (22), we
discuss the underlying physical mechanisms in manipulating
quantum states. For several cases, special attention is paid
to the coherence cost that must be prepared in the external
system. The cases in subsections A and B are discussed with
the relation (21) and the case in subsection C is discussed with
the relation (22).

A. Underlying physics to implement the time-dependent
Hamiltonian

Our results clarify the coherence cost for realizing unitary
dynamics that changes the conserved quantity. Since energy is
a conserved quantity, our theory is of course applicable to the
implementation the following unitary dynamics US , which is
caused by a time-dependent Hamiltonian H̃S (t ) that changes
the energy inside the system:

US := T exp

(
−i
∫ τ

0
dt H̃S (t )

)
, (24)

where T implies the time-ordered operator.
As an example, let us consider the Jaynes-Cummings (JC)

model. In the JC model, we consider a two-level atom inter-
acting with the electromagnetic field. The Hamiltonians are
written as

HS = εσz, HSE = λ(σ+a + a†σ−), HE = 2εa†a, (25)

where λ is the amplitude of the interaction, and the operator
σz is the z component of the Pauli matrix. The operator σ+
(σ−) flips the z spin from down (up) to up (down), and the
operators a† and a are, respectively, the creation and annihi-
lation operators of the photon. In the JC model, the coherent
light approximately induces the time-dependent Hamiltonian
on the atom that changes the energy. By setting AS and AE in
Theorems 1 and 2 to HS and HE , we figure out the fundamental
bounds for the amount of coherence of the coherent light that
is necessary to realize the desired time-dependent Hamilto-
nian on the two-level atom. Let us consider the case where the
initial state of the electromagnetic field is the coherent state:

ρE = |α〉〈α|, |α〉 = eα(a†−a)|0〉, (26)

where |0〉 is the vacuum state, and the parameter α is a real
number. If we take the limit of λ → +0 setting λα to a
constant, the reduced dynamics converges to the unitary time
evolution (24), where the Hamiltonian H̃S (t ) is

H̃S (t ) = εσz + λα(σ+e−i2εt + σ−ei2εt ). (27)

If we do not take the above limitation, namely, if we take a
finite λ, there is an error between the reduced dynamics of
the two-level atom and the unitary dynamics US . Our results
clarify the tradeoff relation between the amount of coherence
in the external system (in this case, the external electromag-
netic field) and the error of realization of the time-dependent
Hamiltonian [in this case (27)] on the target system.
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From the above example, our results show that to realize
the time-dependent Hamiltonian accurately, we need to pre-
pare much quantum fluctuation in the external system. This
fact gives a resource-theoretic interpretation for the so-called
classicalization of external systems. When we implement a
time-dependent Hamiltonian, we usually treat the external
system as a classical system. Our results indicate that to treat
the external system as a classical system, the external system
must have much coherence. In the implementation of the
time-dependent Hamiltonian using an external apparatus, the
apparatus typically uses the classical electromagnetic interac-
tion with the target system. And the classical electromagnetic
fields are obtained in the limit of large amplitude of the coher-
ent state. Therefore, it is consistent with the present theory.

Since a classical electromagnetic field has a uniquely de-
termined value, it is important to understand how the above
large quantum fluctuations and the classicalization are con-
sistent. Let us consider the above JC model again. If the
reduced dynamics of the atom (= S) changes its energy, the
amount of change must be compensated by the energy in the
electromagnetic field (= E ). Moreover, to make the reduced
dynamics close to unitary, the state in the external system
should not be damaged by exchanging energy between S and
E . This is possible if the external state has a large variance
with respect to the energy scale of S [47], while the variance
is small with respect to the energy scale of E . Therefore, if
we realize a time-dependent Hamiltonian on the target system
using a “classical” external system, the external system has
quantum energy fluctuation much larger than the energy scale
of the target system, while fluctuation is negligibly small with
respect to the energy scale of the external system itself.

B. Quantum heat engines: Quantum work storage

In this subsection, we consider the application of our re-
sults to quantum cyclic heat engines, which is particularly
suggestive. In the analysis of quantum heat engines, a model
called the standard model is widely used [48–57]. In the
standard model, we consider a composite system of a working
body and a heat bath as a target system S, and assume that
the dynamics of the target system is described by the time-
dependent Hamiltonian. Namely, the time evolution of the
target system is described as

ρS (t ) = US (t )ρS (0)U †
S (t ), (28)

US (t ) = T exp

(
−i
∫ t

0
ds H̃S[λ(s)]

)
(29)

where λ(t ) is a control parameter of the system Hamiltonian,
e.g., the strength of the magnetic field and/or the position
of a piston, etc. In the standard model, we also assume that
the work extracted from the target system is stored in an
external work storage (it is often called the “external agent”)
through the back action of control parameters. Namely, the
conservation law of energy in the composite system of the
target system and the work storage is assumed. The amount of
extracted work is defined by the difference of the expectation
value of energy in the target system:

〈W 〉 := Tr{ρSH̃S[λ(0)] − USρSU †
S H̃S[λ(τ )]}. (30)

FIG. 4. Schematic diagram of how we apply our result to the
quantum heat engine and work storage. We consider three systems:
working body, heat bath, and work storage. In quantum thermo-
dynamics, we consider all of these three as quantum systems, and
assume the time evolution of the composite system of these three
to be energy-preserving unitary. On the other hand, in the standard
model, we consider only the composite system of the working body
and the heat bath as a quantum system (that we call “target system”),
and assume the time evolution of the target system to be energy-
nonpreserving unitary. The problem is to clarify conditions that work
storage must satisfy to obtain a standard model from the quantum
thermodynamic setup as a kind of macroscopic limit. Since the total
system (the target system and the work storage) satisfies the conser-
vation law of energy, we can apply our theory to clarify conditions. In
order for the standard model to be a good approximation, the work
storage must contain a much larger fluctuation of energy than the
amount of extracted work.

In the standard model, we do not usually treat the external
work storage as a quantum system. This treatment of the
external work storage goes well with experimental setups, in
that the work storage is a classical experimental apparatus that
controls parameters [58]. On the other hand, in the frame-
work of purely quantum thermodynamics, the work storage
is explicitly treated as a quantum system [11,59–67]. In the
quantum thermodynamic setup, dynamics of the composite
system of the target system and the work storage is described
as an invariant unitary operation, and the work storage stores
the work. It is important to understand when and with what
condition the setup of the standard model can be justified
from the viewpoint of purely quantum thermodynamic setups.
Note that purely quantum thermodynamic setup fits our gen-
eral framework by regarding the work storage as an external
system. When the dimension of the Hilbert-space dimension
of the bath is large but finite, we can use our theory to clarify
what conditions the work storage must satisfy to justify the
framework of the standard model (see Fig. 4).

We now apply Theorem 1 to the setup by setting AS to the
Hamiltonian of target system HS and AE to the Hamiltonian
of work storage. Then, according to Theorem 1, the external
system must have sufficiently large energy fluctuations when
realizing a time-dependent Hamiltonian. As argued in the pre-
vious subsection, for a perfect unitary control on the system,
the required energy fluctuation must be large such that the
energy gain of the work storage is negligibly small compared
to the energy fluctuation of the work storage.

043374-7



TAJIMA, SHIRAISHI, AND SAITO PHYSICAL REVIEW RESEARCH 2, 043374 (2020)

FIG. 5. Schematic diagram of the inequality (40). If the dynam-
ics of the system A is close to unitary, the final state of B is close to
independent of the initial state of A.

A similar argument to the above also provides an important
message regarding the detectability of work of quantum heat
engines, that is analyzed in previous results [68,69]. Again,
we consider a heat engine that is a composite system of a
working body and heat baths, and an external work storage
that stores the work extracted from the heat engine. Consider
the situation wherein we aim to detect the energy gain in the
work storage by measuring the work storage. For example,
this situation corresponds to determining the amount of work
by comparing the initial and final positions of the weight
lifted by the heat engine. Using the tradeoff relation between
information gain and disturbance in measurements, previous
studies [68,69] showed that if the time evolution of the heat
engine can be described in terms of unitary dynamics as
assumed by the standard model, the amount of work cannot
be detected by measuring the storage. Our result provides an
intuitive explanation on why such loss of detectability occurs.
As discussed above, the work storage must exhibit a much
larger energy fluctuation than the energy gain from the heat
engine so that the energy gain of the work storage does not
damage the overall energy distribution of the work storage:
Thus, we cannot detect the amount of energy gain.

C. Coherence cost for entanglement erasure

Our main result (21) provides the coherence cost for the
implementation of unitary gates. However, we can also con-
sider the coherence costs for nonunitary state transformations
using the relation (22). As a typical example, we apply our re-
sults to entanglement erasure. Given an entangled initial state
α|00〉 + β|11〉 with arbitrary α, β satisfying |α|2 + |β|2 = 1,
we perform the following entanglement erasure process:

α|00〉 + β|11〉 → α|00〉 + β|10〉. (31)

This erasure process might be a nonunitary CPTP operation,
since the state transformation is not specified for initial states
except for the states written in the form of α|00〉 + β|11〉.
Therefore, the formula (21) cannot evaluate the necessary
coherence for the state transition (31). Even for this case, our
second main result (22) is still valid and claims that if some
devices can perform the state transition (31) within the error δ

for arbitrary α, the device must contain much coherence (i.e.,
quantum Fisher information) in proportion to 1/δ2.

In order to apply our framework to this case, we set the two
qubits as the system S, and an implementation device as the
external system E . We assume that the total magnetization,
i.e., the amount of z component of the two spins, is con-
served. We here write the magnetization as AS = 2|1〉〈1|⊗2 +
|1〉〈1| ⊗ |0〉〈0| + |0〉〈0| ⊗ |1〉〈1|. We also assume that an im-
plementation set I = (HE , AE , ρE ,USE ) realizes the state
transition (31) within the error δ for arbitrary α, and that
the total dynamics USE satisfies [USE , AS + AE ] = 0. Subse-
quently, for arbitrary α and β such that |α|2 + |β|2 = 1, three
inequalities δ(|00〉) � δ, δ(|11〉) � δ and δ(α|00〉 + β|11〉) �
δ are satisfied by setting the specific unitary transforma-
tion U ′

S := |00〉〈00| + |01〉〈01| + |11〉〈10| + |10〉〈11|. Note
that the states |00〉 and |11〉 are the eigenstates of A′′

S − AS with
A′′

S = U ′†
S ASU ′

S . Substituting the above into (22), we obtain the
following inequality for an arbitrary pair of (α, β ):√

FρE (AE ) �χ (α|00〉 + β|11〉, {|00〉, |11〉})

5
√

2δ
− 4�AS . (32)

Since we have assumed that I satisfies δ(α|00〉 + β|11〉) � δ

for any (α, β ), the initial state ρE of E must satisfy (32) for
all (α, β ). Therefore we obtain√

FρE (AE ) � max
α

χ (α|00〉 + β|11〉, {|00〉, |11〉})

5
√

2δ
− 4�AS

� 1

5
√

2δ
− 4�AS . (33)

In the second inequality, we used the fact that the maximum
value of χ (α|00〉 + β|11〉, {|00〉, |11〉}) is 1. In this derivation,
we only assume that the CPTP map implemented by I is
closed to U ′

S only for the special initial states α|00〉 + β|11〉.
Even when the CPTP map given by I is far from unitary for
other initial states, inequality (33) holds. The inequality (33)
demonstrates that a large coherence is required for entangle-
ment erasure, even considering the implementation of gates
that are not unitary gates.

V. DERIVATION OF LOWER BOUNDS
OF COHERENCE COST

Here, we derive the lower bounds of coherence cost, i.e.,
Theorem 1 and the inequality (22). We initially show that
it is enough to show the case that �SE is an invariant uni-
tary, since a covariant operation can always be realized by
combining an invariant unitary and a symmetric state [28]
as we have explained in Sec. II A (note that the quantum
Fisher information of a symmetric state is zero and that the
quantum Fisher information is additive for a product state).
Therefore, in this section, we treat the case where �SE is
invariant unitary dynamics such that �SE [...] = USE [...]U †

SE ,
where USE satisfies [USE , AS + AE ] = 0. In this case, the
expectation value of AS + AE is conserved, and hence in
this dynamics the quantity AE must compensate the change
in AS .

A. Main idea of proof of lower bounds of coherence cost

Before discussing the proofs of Theorem 1 and (22), we
will present the main idea (outline) of these proofs. The key
ingredient in these proofs is the following.
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Lemma 1. Consider two quantum states, σ1 and σ2, and an
observable X . We define the difference between the expecta-
tion values of X for σ1 and σ2 as � := |Tr[X (σ1 − σ2)]|, and
the Bures distance

L(σ1, σ2) :=
√

2(1 − Tr[
√√

σ1σ2
√

σ1]). (34)

We obtain the following key relation, that was first presented
in Ref. [16]:

� � L(σ1, σ2)(Vσ1 (X ) + Vσ2 (X ) + �), (35)

where Vσ (X ) is the standard deviation of σ with respect to X .
The key relation (35) claims that the expectation values

of X can differ significantly in two states only if (i) these
two states differ significantly, or (ii) at least one of the stan-
dard deviations of X in these states is large. To understand
the meaning of the condition (ii), we provide an example:
Consider 〈0|X |0〉 = 0, 〈x|X |x〉 = x, and set |σ1〉 = |0〉 and
|σ2〉 = √

1 − ε|0〉 + √
ε|x〉. The distance between these two

states, L(σ1, σ2), depends only on ε, not on x. Hence, even
if ε is small (i.e., two states are close to each other), � can
increase by setting x large. In this case, the standard deviation
of X in σ2 increases with x.

In the derivation of the lower bounds for coherence, we
use the key relation (35) by setting X as AE , the conserved
quantity in E , and σ1 and σ2 as the two final states of E with
different initial states of S. In addition, we use the following
three relations.

(a) If the time evolution of S is well approximated by a
unitary operation, then any two final states of E with different
initial states of S are close to each other (See Fig. 5).

(b) If the variance of AE for a final state of E is large, then
that for the initial state of E is also large.

(c) If the fluctuation of the exchange of the conserved
quantity A between S and E is large, then the expectation value
of AE for the final state of E largely varies depending on the
initial states of S.

The relation (a) is given as a consequence of the fact that
a very small correlation between S and E is formed when
the time evolution of S is close to unitary. To describe this
relation quantitatively, we use an important lemma shown
in Appendix A. The relations (b) and (c) are given as the
consequences of the conservation law [USE , AS + AE ] = 0. In
deriving Theorem 1, the relation (a) connects L(σ1, σ2) and δ,
(b) connects Vσi (X ) (i = 1, 2) and FρE (AE ), and (c) connects
� and AUS .

B. Proof of Theorem 1

In this subsection, we explain the proof of Theorem 1.
As pointed out at the beginning of this section, it is enough
to prove Theorem 1 for the case where �SE is unitary. We
show the following proposition that is the contraposition of
Theorem 1.

Proposition 1. Let δ be a real positive number sat-
isfying 0 � δ �

√
2. For any implementation set I =

(HE , AE , ρE ,USE ) satisfying δI � δ, the following inequality
holds: √

FρE (AE ) � AUS

δ
− 6�AS . (36)

To prove this proposition, we introduce some symbols.
We prepare three initial states of S; ρS,↑, ρS,↓; and ρS,↑+↓ :=
(ρS,↑ + ρS,↓)/2. The state ρS,↑ (ρS,↓) maximizes (minimizes)
the loss of the quantity A in the system through the unitary
dynamics US:

ρS,↑ := argmaxρS
Tr[ρS (A′

S − AS )],
(37)

ρS,↓ := argminρS
Tr[ρS (A′

S − AS )],

where we used the abbreviation A′
S = U †

S ASUS . Using the
definition (37), AUS is expressed as

AUS = 〈A′
S − AS〉ρS,↑ + 〈A′

S − AS〉ρS,↓

2
. (38)

We write the final state of E in actual dynamics with the initial
state ρS,i (i =↑,↓,↑ + ↓) as

σE ,i := TrS[USE (ρS,i ⊗ ρE )U †
SE ]. (39)

We now state the aforementioned three relations (a)–(c) in
a concrete form. First, the relation (a) is represented by the
following inequality:

L(σE ,↑, σE ,↓) � 2
√

2δ(ρS,↑+↓). (40)

For δ � 1/2
√

2, a stronger inequality,

L(σE ,↑, σE ,↓) � 2δ(ρS,↑+↓), (41)

is satisfied. These inequalities indicate a clear connection be-
tween the distance of two final states in E and the accuracy
of implementation (for the initial state ρS,↑+↓). We note that
these inequalities apply even if USE does not commute with
AS + AE , and even if the dynamics of SE is not unitary.
We prove the generalized version of these inequalities in
Appendix A.

Next, the relation (b) is represented by the following in-
equality:

VσE ,↑ (AE ) + VσE ,↓ (AE ) � 2
(
VρE (AE ) + �AS

)
. (42)

The term �AS is a correction term. This inequality connects
the variance in the final state and that in the initial state.

Finally, the relation (c) is represented by the following
inequality:

2AUS − 4δ(ρS,↑+↓)�AS � � � 2�AS , (43)

where we set � := |Tr[(σE ,↑ − σE ,↓)AE ]|. Again
δ(ρS,↑+↓)�AS is a correction term. This inequality connects
the degree of violation of the conservation of A and the
difference between the expected change in AS with the
initial state ρS,↑ and ρS,↓. We prove these two inequalities in
Appendix B.
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Proof. Theorem 1 We initially note that δI � δ(ρS,↑+↓).
Therefore, to prove (36), we only have to show the inequality

√
FρE (AE ) � AUS

δ(ρS,↑+↓)
− 6�AS (44)

for any implementation set (HE , AE , ρE ,USE ) satisfying δI �
δ for the desired unitary US . We divide the problem into
two cases: δ > AUS /6�AS and δ � AUS /6�AS . The former
is trivial because in this case the right-hand side of (44) is
negative while the quantum Fisher information F is always
non-negative. Therefore, if we prove (44) for the case of
0 < δ � AUS /6�AS , the inequality (44) holds for arbitrary
0 < δ �

√
2. In the following, we consider the latter case:

δ � AUS /6�AS .
We first show (44) in the case that ρE is a pure state. Since

δ � AUS /6�AS � 1/6, the stronger inequality (41) is satisfied,
that suggests

L(σE ,↑, σE ,↓) � 2δ(ρS,↑+↓). (45)

Substituting the above relation, (42), and (43), into Lemma 1,

� � L(σE ,↑, σE ,↓)(VσE ,↑ (AE ) + VσE ,↓ (AE ) + �) (46)

and, using � � 2�AS , we obtain

AUS � δ(ρS,↑+↓)
[
2VρE (AE ) + 6�AS

]
. (47)

Note that (47) holds for all 0 < δ(ρS,↑+↓) �
√

2, since (47) is
trivial in the case of AUS /6�AS < δ(ρS,↑+↓). By definition of
the quantum Fisher information (7), 2VρE (AE ) = √

FρE (AE )
holds for a pure state ρ. Thus, we obtain (44) for the case that
ρE is pure.

Next, we show (44) in the case that ρE is a mixed state.
We expand the initial state of the external system as ρE :=∑

j p jφE , j satisfying FρE (AE ) = 4
∑

j p jV 2
φE , j

(AE ). We de-
note δ(ρS,↑+↓) for the case that the initial state of E is φE , j

by δ j :

δ j := Le
(
ρS,↑+↓,�U †

S
◦ �S, j

)
, (48)

where �S, j is the dynamics of S for the case that φ j is the
initial state of E , i.e., �S, j (...) := TrE [USE (... ⊗ φE , j )U

†
SE ].

The inequality (44) for pure states, which we earlier proved,
yields

2VφE , j (AE ) � AUS

δ j
− 6�AS (49)

for any j. By defining k(x) := (max{0,
AUS

x − 6�AS })2, (49)
and the downward convexity of k(x) yield

FρE (AE ) = 4
∑

j

p jVφE , j (AE )2 �
∑

j

p jk(δ j ) � k

(∑
j

p jδ j

)
.

(50)

Hence, to prove (44) for a mixed state, it suffices to show∑
j

p jδ j � δ(ρS,↑+↓), (51)

because the function k is nonincreasing.

FIG. 6. Graphs of the functions y = g(x) = (1 − x2/2)2 and
16

√
2/27(

√
2 − x). The function y = l (x) := 16

√
2/27(

√
2 − x) is

the tangent line on y = g(x) at the point (x, y) = (
√

2/3, 64/81).
Since g(x) is upward convex for 0 � x �

√
2/3, the function g′

defined in (53) is upward convex and satisfies g � g′.

Finally, we shall show (51). We employ the following
equality:(

1 − δ(ρS,↑+↓)2

2

)2

= 〈ψSR,↑+↓|U †
S �S (ψSR,↑+↓)US|ψSR,↑+↓〉

=
∑

j

p j〈ψSR,↑+↓|U †
S �S, j (ψSR,↑+↓)US|ψSR,↑+↓〉

=
∑

j

p j

(
1 − δ2

j

2

)2

, (52)

where ψSR,↑+↓ is the purification of ρS,↑+↓.
To show (51) from (52), we define g(x) := (1 − x2/2)2. As

we show in Fig. 6, the function y = l (x) := 16
√

2/27(
√

2 −
x) is the tangent line on at the point (x, y) = (

√
2/3, 64/81).

Since g(x) is upward convex for 0 � x �
√

2/3, the following
function g′ is upward convex and satisfies g � g′:

g′(x) :=
{

g(x)
(
0 � x �

√
2

3

)
,

l (x)
(√

2
3 < x �

√
2
)
.

(53)

Therefore, by using Jensen’s inequality, we obtain the follow-
ing inequality for any probability distribution {qj} and real
numbers 0 � x j �

√
2:

∑
j

q jg(x j ) �
∑

j

q jg
′(x j ) � g′

(∑
j

q jx j

)
. (54)

As we have pointed out at the beginning of this proof, we only
have to show (44) for the case of δ � AUS

6�AS
. Due to AUS � �AS ,

we have
AUS
6�AS

� 1/6. Therefore, from (53) and δ(ρS,↑+↓) �
δ � 1/6, we obtain

g′(δ(ρS,↑+↓)) = g[δ(ρS,↑+↓)]. (55)

Due to (52), we obtain

g[δ(ρS,↑+↓)] =
∑

j

p jg(δ j ). (56)
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Combining (54)–(56), we obtain

g′[δ(ρS,↑+↓)] � g′
(∑

j

p jδ j

)
. (57)

Since g′ is a nonincreasing function of x, we obtain (51). �

C. The proof of (22) for pure states

We consider the inequality for a single initial state (22).
Because the complete proof is a little complicated, we here
only prove it for pure states ρS and ρE using several inequali-
ties that are shown in Appendix. We shall present a complete
proof in Appendix D.

We first introduce some symbols used in the proof. We
denote the desired final state and realized final state by

|ρ ′
S〉 := US|ρS〉, (58)

|� ′
SE 〉 := USE |ρS〉 ⊗ |ρE 〉, (59)

σE := TrS[� ′
SE ], (60)

σS := TrE [� ′
SE ]. (61)

In a similar manner, the final state corresponding to the initial
state ψi is denoted by

|ψ ′
i 〉 := US|ψi〉, (62)

|� ′
i,SE 〉 := USE |ψi〉 ⊗ |ρE 〉, (63)

σi,E := TrS[� ′
i,SE ], (64)

σi,S := TrE [� ′
i,SE ]. (65)

Note that now ρS , ρ ′
S ψi, and ψ ′

i are pure and that

1 − δ(ρS )2

2
= F (σS, ρ

′
S ), (66)

1 − δ(ψi )2

2
= F (σi,S, ψ

′
i ) (67)

hold. Therefore, due to Uhlmann’s theorem [43], there are two
pure states φ′

E and φ′
i,E satisfying

|〈� ′
SE |ρ ′

S ⊗ φ′
E 〉| = F (σS, ρ

′
S ) = 1 − δ(ρS )2

2
, (68)

|〈� ′
i,SE |ψ ′

i ⊗ φ′
i,E 〉| = F (σi,S, ψ

′
i ) = 1 − δ(ψi )2

2
, (69)

where we wrote |ρ〉 ⊗ |φ〉 as |ρ ⊗ φ〉. We also employ the
abbreviation

δ
2
(ρS, {ψi}) := δ(ρS )2 +

∑
i

riδ(ψi )
2. (70)

Since (22) becomes trivial if δ >
χ (ρs,{ψi})

20�AS
, we hereafter focus

on the case of δ � χ (ρs,{ψi})
20�AS

.
Similar to (36), the derivation of (22) is based on the

relations corresponding to Lemma 1 and the relations (a)–(c).
Let us start from the relation (c). The relation (c) in this case

is represented as

χ (ρS, {ψi}) �
√∑

i

ri�
2
i + �′ + 4δ(ρS )�AS , (71)

where we defined

�i := |〈AE 〉σi,E − 〈AE 〉φ′
E
|,

�′ := |〈AE 〉σE − 〈AE 〉φ′
E
|. (72)

To bound �i and �′, we use Lemma 1. Using Lemma 1, (68),
and δ(ρS ) � δ̃ < 1, the quantity �′ is bounded as follows:

�′ � δ(ρS )

1 − δ(ρS )

[
VσE (AE ) + Vφ′

E
(AE )

]
. (73)

We also bound
∑

i ri�
2
i by using Lemma 1 in the following

form:∑
i

ri�
2
i �

∑
i

riL(σi,E , φ′
E )2[Vσi,E (AE ) + Vφ′

E
(AE ) + �i

]2
.

(74)

The third term �i in the right-hand side of (74) is bounded by
�′ and �AS as follows (its proof is in Appendix D):

�i � �′ + 2�AS . (75)

We note that VρE (AE ) has a direct connection to the Fisher
information FρE (AE ) in the case with a pure state. There-
fore, we obtain (22) by bounding the three remaining terms∑

i riL(σi,E , φ′
E )2, Vσi,E (AE ), and Vφ′

E
(AE ) by VρE (AE ) and

δ(ρS, {ψi}). To do this, we use the relations (a)–(c).
The relation (a) in this case is represented as∑

i

riL(φ′
E , σi,E )2 � 4δ(ρS, {ψi})2, (76)

that is close to the relation (40). The version relation (b) in
this case is represented as

Vσi,E (AE ) � VρE (AE ) + �AS , (77)

Vφ′
E
(AE ) �

√
1
4�2

AS
+ VρE (AE )2

1 − δ2(ρS )
2

(78)

that are close to the relation (42). These relations are shown
in a similar manner to those for (40) and (42), and shown
in Appendix D. Combining these relations and evaluating all
correction terms, we arrive at the desired relation (22).

VI. DERIVATION OF THE SUFFICIENT CONDITION
OF COHERENCE COST (THEOREM 2)

We prove Theorem 2 by using the following lemma:
Lemma 2. For ζ � 9AUS /2

√
2, there exists an implemen-

tation set Iζ = (HE , AE , φζ ,USE ) the HE of which is a
finite-dimensional system, and Iζ provides a good implemen-
tation of US in the following sense:

δIζ
� AUS

2ζ

(
1 + �AS√

2ζ

)
, (79)

Fφζ
(AE ) = 4ξ 2. (80)

We leave the proof of Lemma 2 to Appendix C.
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Proof. Theorem 2 Given an arbitrary US on S, arbi-

trary precision δ with 0 � δ � 4
√

2AUS
9�AS

, and an arbitrary real

number F satisfying
√
F � AUS

δ
+ √

2�AS , we construct an
implementation set I for US satisfying δI � δ and FρE (AE ) =
F . We set a real positive number ζ as follows:

2ζ :=
√
F . (81)

Here, we show that the implementation set Iζ =
(HE , AE , φζ ,USE ) constructed in Lemma 2 is I which we
seek. Namely, we show Fφζ

(AE ) = F and δIζ
� δ. The re-

lation Fφζ
(AE ) = F is easily derived from (80) and (81). To

show δIζ
� δ, let us substitute (81) into (79):

δIζ
� AUS√

F

(
1 +

√
2�AS√
F

)
. (82)

By substituting
√
F � AUS

δ
+ √

2�AS into the above, we
obtain

δIζ
� δ

AUS

AUS + √
2δ�AS

(
1 +

√
2δ�AS

AUS + √
2δ�AS

)

= δ

(
A2

US
+ 2

√
2AUS δ�AS

)
(
AUS + √

2δ�AS

)2

� δ, (83)

which means that Iζ implements US within error δ. �

VII. SUMMARY AND DISCUSSION

In this paper, we established simple relations between
quantum coherence and asymmetry (violation of a conserva-
tion law). The coherence cost to realize unitary dynamics in
a partial system under a symmetry (a conservation law) in
a total system is asymptotically equal to the ratio between
the degree of asymmetry of the implemented unitary and the
implementation error. We derive the upper and lower bounds
for the coherence cost that are asymptotically identical in
the region where the error is small. This asymptotic equation
quantitatively links two fundamental concepts in physics, i.e.,
symmetry and coherence.

Our results are applicable even when the whole system has
multiple conservation laws. If the desired unitary dynamics
alters two physical quantities and if the two physical quantities
are conserved in the total system, then the external system
must have the coherence required by Theorem 1 for each
quantity.

Since our results are valid for any unitary operation, there
are various applications of our results. In this paper, applica-
tions to the implementation of quantum heat engines, resource
theories, and entanglement erasure are described as examples.
In addition, our results are applicable to implementation of a
time-dependent Hamiltonian and some controls while main-
taining the quantum superposition.

The relation between our results and previous tradeoff re-
lations in implementation of unitary dynamics [12–16] is as
follows. The results given by Ozawa showed a tradeoff rela-
tion between accuracy of implementation of the CNOT gate and
fluctuation of a conserved quantity [12]. Although these re-

sults were generalized to other various unitary gates [13–15],
it was an open problem whether there is a similar tradeoff
relation for general unitary gates. In Ref. [16], this open
problem was solved. Reference [16] also showed that the
fluctuation must have quantum origin. However, the bound
given by Ref. [16] was not tight. In this paper, we improve
the bound in Ref. [16]. We show the asymptotic optimality
of the improved bound, and give an asymptotic equality of
coherence cost.

The given asymptotic equality for the coherence cost
also has a close relation to the Wigner-Araki-Yanase the-
orem [70–74], that is a very famous theorem for quantum
measurements. Particularly, an asymptotic equality of the co-
herence cost for quantum measurements under conservation
laws was recently given [74]. The equality given in Ref. [74]
has the same form as (21).

Is there a similar tradeoff equality for arbitrary CPTP
maps? Here, we present a possible extension of our result.
Let us consider an arbitrary CPTP map ES on S. We will
implement this CPTP map by using the same type of im-
plementation set I = (HE , AE , ρE ,USE ). Its total dynamics
USE conserves AS + AE and the initial state ρE might have
coherence, i.e., [USE , AS + AE ] must be zero and FρE (AE ) can
be zero. To define the degree of asymmetry (violation of the
conservation of AS), we consider another type of implemen-
tation J = (HE , AE , ηE ,VSE ), the initial state of which does
not have coherence, that is, FρE (AE ) must be zero, and VSE

might not conserve AS + AE , that is, [VSE , AS + AE ] might be
nonzero. We define the degree of asymmetry of ES as the min-
imum degree of asymmetry in all possible J that implement
ES with no error [75]:

AES := min
J :δJ =0

AVSE . (84)

We also define the coherence cost of ES as

F cost
δ [ES] := min

I|�δES

FρE (AE ). (85)

Note that if ES = US , the quantities A�S and F cost
δ [ES] reduce

to AUS and F cost
δ [US], respectively. Hence, A�S and F cost

δ [�S]
are generalizations of AUS and F cost

δ [US]. Theorem 2 provides
the same form of inequality with these quantities:√

F cost
δ [ES] � AES

δ
+

√
2�AS . (86)

However, unfortunately we do not have an inequality similar
to Theorem 1. If such an inequality is shown, we obtain the
following asymptotic relation in a concise form:

Conjecture:
√
F cost

δ [ES] = AES

δ
+ O(�AS ). (87)

We leave this problem as a future work.
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APPENDIX A: PROOF OF (40)
AND (41)—NO-CORRELATION LEMMA

In this Appendix, we prove (40) and (41). More precisely,
we prove the following generalized version of (40) and (41).
This lemma is an improved version of Eq. (16) in Ref. [16].

Lemma 3. Consider two quantum systems A and B. Let
�AB be a CPTP map on the composite system AB and let UA

be a unitary operation on A. We consider three possible initial
states of A: ρ

(0)
A , ρ

(1)
A , and ρ

(0+1)
A := (ρ (0)

A + ρ
(1)
A )/2. We write

the initial state of B as ρB. We refer to the final states of AB
and B with the initial state ρ

(i)
A (i = 0, 1, 0 + 1) as

σ
(i)
AB := �AB

(
ρ

(i)
A ⊗ ρB

)
, (A1)

σ
(i)
B := TrA

[
σ

(i)
AB

]
. (A2)

We refer to the time evolution of A determined by �AB

and ρB as �A(ρ) := TrB[�AB(ρ ⊗ ρB)]. Using this symbol,
we define the accuracy of implementation of UA by �AB for
the initial states ρ

(i)
A (i = 0, 1, 0 + 1) as

δ
(i)
U := Le

(
ρ

(i)
A ,�U †

A
◦ �A

)
. (A3)

In this setup, we have the following results.
(1) The following inequality holds:

L
(
σ

(0)
AB ,UAρ

(0)
A U †

A ⊗ σ
(0)
B

)
� 2δ

(0)
U . (A4)

(2) There exists a state σ
′(0+1)
B of B such that

L
(
σ

(0)
B , σ

′(0+1)
B

)+ L
(
σ

′(0+1)
B , σ

(1)
B

)
� 2

√
2δ

(0+1)
U . (A5)

Moreover, if δ
(0+1)
U � 1/2

√
2 holds, there exists a state

σ
′(0+1)
B of B such that

L
(
σ

(0)
B , σ

′(0+1)
B

)+ L
(
σ

′(0+1)
B , σ

(1)
B

)
� 2δ

(0+1)
U . (A6)

If ρB is a pure state and �AB is a unitary operation, the
aforementioned σ

′(0+1)
B is a pure state.

Proof. Lemma 3 We first introduce some symbols. We take
the purification ψ

(i)
ARA

of ρ
(i)
A (i = 0, 1, 0 + 1) such that ρ

(0)
RA

:=
TrA[ψ (0)

ARA
] and ρ

(1)
RA

:= TrA[ψ (1)
ARA

] are pure states and orthog-
onal to each other. In that case, |ψ (0+1)〉AR = (|ψ (0)〉AR +
|ψ (1)〉AR)/

√
2 holds. We write the purification of ρB as ψBRB .

We employ the Steinspring representation [43] of �AB, that is,
we describe �AB(ρ) by using a pure state ψC and a unitary
transformation UABC as �AB(ρ) = TrC[UABC(ρ ⊗ ψC )U †

ABC].
We denote the initial and final states of the total system
ARABRBC by

ψ
(i)
tot := ψ

(i)
ARA

⊗ ψBRB ⊗ ψC, (A7)

ψ
′(i)
tot := UABCψ

(i)
totU

†
ABC, (A8)

respectively. We also denote the final states of ARA and BRBC
by

σ
(i)
ARA

:= TrBRBC
[
ψ

′(i)
tot

]
, (A9)

σ
(i)
BRBC := TrARA

[
ψ

′(i)
tot

]
, (A10)

respectively.

From Uhlmann’s theorem, the definition of δ
(i)
U ,

δ
(i)
U = L

(
UAψ

(i)
ARA

U †
A , σ

(i)
ARA

)
, (A11)

has another expression with a proper pure state φ
′(i)
BRBC as

δ
(i)
U = L

(
UAψ

(i)
ARA

U †
A ⊗ φ

′(i)
BRBC, ψ

′(i)
tot

)
. (A12)

Owing to the contractivity of the Bures distance, by taking the
partial trace of ARA in (A12) we obtain

δ
(i)
U � L

(
φ

′(i)
BRBC, σ

(i)
BRBC

)
. (A13)

We now derive (A5) and (A4) by using (A13). We first
derive (A4). We start from the following triangle inequality:

L
(
ψ

′(i)
tot ,UAψ

(i)
ARA

U †
A ⊗ σ

(i)
BRBC

)
� L

(
ψ

′(i)
tot ,UAψ

(i)
ARA

U †
A ⊗ φ

′(i)
BRBC

)
+ L

(
UAψ

(i)
ARA

U †
A ⊗ φ

′(i)
BRBC,UAψ

(i)
ARA

U †
A ⊗ σ

(i)
BRBC

)
.

(A14)

The first and second terms of the right-hand side are bounded
by (A12) and (A13), respectively, which yields

L
(
ψ

′(i)
tot ,UAψ

(i)
ARA

U †
A ⊗ σ

(i)
BRBC

)
� 2δ

(i)
U . (A15)

By taking the partial trace of ARA in the above inequality, we
obtain the desired relation (A4):

L
(
σ

(i)
AB,UAρ

(i)
A U †

A ⊗ σ
(i)
B

)
� 2δ

(i)
U . (A16)

Next we show (A5). We note the following relation:

σ
(0+1)
BRBC = σ

(0)
BRBC + σ

(1)
BRBC

2
, (A17)

which comes from a relation TrABRBC[ψ ′(a)
tot ] = ρ

(a)
RA

for a =
0, 1, and the fact that ρ (0)

RA
and ρ

(1)
RA

are orthogonal to each other.
Then, (A13) implies

δ
(0+1)
U � L

(
φ

′(0+1)
BRBC , σ

(0+1)
BRBC

) = L
(
φ

′(0+1)
BRBC ,

σ
(0)
BRBC+σ

(1)
BRBC

2

)
,

(A18)

or, equivalently,

F

(
φ

′(0+1)
BRBC ,

σ
(0)
BRBC + σ

(1)
BRBC

2

)
� 1 −

(
δ

(0+1)
U

)2

2
. (A19)

Noting that φ
′(0+1)
BRBC is a pure state, the left-hand side of the

above inequality is transformed into

F

(
φ

′(0+1)
BRBC ,

σ
(0)
BRBC + σ

(1)
BRBC

2

)2

= 〈
φ

′(0+1)
BRBC

∣∣σ (0)
BRBC + σ

(1)
BRBC

2

∣∣φ′(0+1)
BRBC

〉
= 1

2

∑
i=0,1

F
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

)2
. (A20)

Combining the above equations and the relation (1 −
x2/2)2 � 1 − x2, we obtain

1

2

∑
i=0,1

F
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

)2 � 1 − (δ(0+1)
U )2, (A21)
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which can be evaluated as

(
δ

(0+1)
U

)2 � 1 − 1

2

∑
i=0,1

F
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

)2

� 1 − 1

2

∑
i=0,1

F
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

)

= 1

4

∑
i=0,1

L
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

)2

� 1

8

(∑
i=0,1

L
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

))2

� 1

8

(∑
i=0,1

L
(
σ

′(0+1)
B , σ

(i)
B

))2

. (A22)

This is equivalent to the desired relation (A5). Here, we
defined σ

′(0+1)
B := TrRBC[φ′(0+1)

BRBC ], and we used the relation

X 2 + Y 2 � (X+Y )2

2 for positive numbers X and Y in the fourth
line, and the contractivity of the Bures distance in the last
line. We remark that if ρB is pure and �AB is unitary, by
following the above derivation without RBC, we obtain the
fact that σ

′(0+1)
B is a pure state.

We finally derive (A6) when δ
(0+1)
U � 1/2

√
2 holds. Using

again the fact that φ
′(0+1)
BRBC is a pure state, (A19) reads

1

2

∑
i=0,1

(
1 − L

(
φ

′(0+1)
BRBC , σ

(i)
BRBC

)2

2

)2

�
(

1 −
(
δ

(0+1)
U

)2

2

)2

.

(A23)

Noting the relation

1

2

[(
1 − X 2

2

)2

+
(

1 − Y 2

2

)2]
�
(

1 − (X + Y )2

8

)2

(A24)

for real numbers X and Y satisfying 0 � X + Y � 1, we arrive
at

1 −
(∑

i=0,1 L
(
φ

′(0+1)
BRBC , σ

(i)
BRBC

))2

8
� 1 −

(
δ

(0+1)
U

)2

2
. (A25)

Here we used the relation L(φ′(0+1)
BRBC , σ

(0)
BRBC ) +

L(φ′(0+1)
BRBC , σ

(1)
BRBC ) � 2

√
2δ

(0+1)
U � 1, which follows from (A5),

in application of (A24). By taking the partial trace of RBC, the
above inequality directly implies the desired relation (A6). �

APPENDIX B: PROOF OF (42) AND (43)

Proof. (42) The conservation of AS + AE under USE yields

V 2
ρS,i

(AS ) + V 2
ρE

(AE ) = V 2
σS,i

(AS ) + V 2
σE ,i

(AE )

+2CovAS+AE [USE (ρS,i ⊗ ρE )U †
SE ], (B1)

where i ∈ {↑,↓} and σS,i := TrE [USE (ρS,i ⊗ ρE )U †
SE ]. Vρ (AS )

represents the standard deviation of the quantity AS in ρ,
and CovAS+AE (σ ) is the covariance between AS and AE

with the state σ . Using a basic property of covariance
−VσS,i (AS )VσE ,i (AE ) � CovAS+AE (USE (ρS,i ⊗ ρE )U †

SE ), we ar-
rive at

VσE ,i (AE ) − VσS,i (AS )

�
√

V 2
σS,i

(AS ) + V 2
σE ,i

(AE ) − 2VσS,i (AS )VσE ,i (AE )

�
√

V 2
ρE

(AE ) + V 2
ρS,i

(AS )

� VρE (AE ) + VρS,i (AS ). (B2)

Using a relation Vρ (AS ) � �AS /2 for any state ρ and taking
the sum of i ∈ {↑,↓}, we obtain (42). �

Proof. (43) Let us introduce the following quantities:

�i := Tr[AE (σE ,i − ρE )] = Tr[AS (ρS,i − σS,i )], (B3)

�U,i := Tr[AS (ρS,i − USρS,iU
†
S )], (B4)

where i ∈ {↑,↓} and σS,i := TrE [USE (ρS,i ⊗ ρE )U †
SE ]. The

three quantities appearing in (43) can be written or evaluated
in terms of the above quantities:

� = |�↓ − �↑|, (B5)

AUS = �U,↑ − �U,↓
2

, (B6)

2δ(ρS,i )�AS � 2LB(σS,i,USρS,iU
†
S )�AS

� ‖σS,i − USρS,iU
†
S ‖1�AS

� |�i − �U,i|, (B7)

where i ∈ {↑,↓}, ‖X‖1 := Tr
√

X †X is the trace norm, and we
used ‖ρ − σ‖1 � 2

√
1 − F 2(ρ, σ ) � 2LB(ρ, σ ) [43] in (B7).

Combining (B5)–(B7), we obtain

2AUS = |�U,↑ − �U,↓|
� |�↑ − �↓| + 2[δ(ρS,↑) + δ(ρS,↓)]�AS

= � + 2[δ(ρS,↑) + δ(ρS,↓)]�AS . (B8)

Hence, proving

δ(ρS,↑) + δ(ρS,↓) � 2δ(ρS,↑+↓) (B9)

suffices to show the left-hand side inequality of the de-
sired (43). We first define some symbols. We take purifi-
cation ψSRS ,i of ρS,i (i =↑,↓,↑ + ↓) such that ρRS ,↑ :=
TrS[ψSRS ,↑] and ρRS ,↓ := TrS[ψSRS ,↓] are pure states and or-
thogonal to each other. In this case, |ψSRS ,↑+↓〉 = (|ψSRS,↑〉 +
|ψSRS ,↓〉)/

√
2 holds. We denote the purification of ρE by

ψERE . We denote the initial and final states of the to-
tal system SRSERE by ψtot,i := ψSRS ,i ⊗ ψERE and ψ ′

tot,i :=
USEψtot,iU

†
SE , respectively. We also denote the final states

of SRS and ERE by σSRS ,i := TrERE [ψ ′
tot,i] and σERE ,i :=

TrSRS [ψ ′
tot,i], respectively.

We recall the fact that δ(ρ) is expressed in terms of fidelity:

1 − δ(ρS,i )2

2
= F (σSRS ,i,USψSRS ,iU

†
S ). (B10)
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Uhlmann’s theorem implies that there is a proper pure state
φ′

ERE
on ERE such that

F (σSRS ,↑+↓,USψSRS ,↑+↓U †
S )

= |〈ψtot,↑+↓|US|ψSRS ,↑+↓ ⊗ φ′
ERE

〉|. (B11)

Using |ψSRS ,↑+↓〉 = (|ψSRS ,↑〉 + |ψSRS ,↓〉)/
√

2 and
|ψtot,↑+↓〉 = (|ψtot,↑〉 + |ψtot,↓〉)/

√
2, the right-hand side

of the above relation is bounded from above as

|〈ψtot,↑+↓|US|ψSRS ,↑+↓ ⊗ φ′
ERE

〉|

=
∣∣∣∣∣12

∑
m=↑,↓

〈ψtot,m|US|ψSRS ,m ⊗ φ′
ERE

〉
∣∣∣∣∣

� 1

2

∑
m=↑,↓

∣∣〈ψtot,m|US|ψSRS ,m ⊗ φ′
ERE

〉∣∣
� 1

2

∑
m=↑,↓

F (σSRS ,m,USψSRS ,mU †
S ). (B12)

Combining (B10)–(B12), we obtain (B9).
Next, let us show the right-hand side inequality of (43). It

is easily shown as follows:

� � |�↓| + |�↑|
= |Tr[AS (ρS,↑ − σS,↑)]| + |Tr[AS (ρS,↓ − ρ ′

S,↓)]|
� 2�AS . (B13)

Here we use (B3) in the second equality in (B13). �

APPENDIX C: PROOF OF LEMMA 2

In this section, we prove Lemma 2 in the main text. In the
proof, we use the following abbreviation for convenience:

�X = λmax(X ) − λmin(X ), (C1)

where λmax(X ) and λmin(X ) are the maximum and minimum
eigenvalues of X . Note that AUS = �AS−U †

S ASUS
/2.

1. Strategy of the proof: How to construct a “good”
implementation set

In Appendix C, we prove Lemma 2 implementation set Iζ

which satisfies (79) and (80). In this subsection, we explain
our strategy for how to construct such an implementation set.

To define an implementation set, we have to give an exter-
nal system E , an initial state on E , and an interaction unitary
dynamics USE between S and E . Our external system E is
divided into five subsystems: S′, E0, Eα , Eβ , and Eγ .

Let us explain the role of each subsystem. S′ is an approx-
imate copy system of S, the Hilbert space of which has the
same dimension as S. The conserved quantity AS′ is very close
to AS , but all the eigenvalues of AS′ are integer multiples of a
real positive number 1/M2. As we will see later, 1/M2 is equal
to the minimum difference of eigenvalues of the conserved
quantity A in the main part of the external system. The sub-
systems Eα and Eβ are used to perform approximately a SWAP

gate between S and S′. As we will show in the next subsection,
when M is very large, we can perform the SWAP gate with
negligibly small coherence in Eα and Eβ . The subsystem E0 is

FIG. 7. Schematic of the sequence of use of the subsystems
S′, ..., Eβ .

the main part of E , and is used to perform approximately US

on S′. The E0 is a discrete finite-dimensional ladder system,
and contains an approximate Gaussian pure state, which will
be defined in (C14). The order of use of S′, E0, Eα , and Eβ is
shown in Fig. 7.

As we will see later, with choosing parameters of S′,
E0, Eα , and Eβ properly, we can make the error δIζ

and
the quantum Fisher information of S′E0EαEβ smaller than
AUS
2ζ

(1 + �AS√
2ζ

) and 4ζ 2, respectively. To make the total Fisher

information in E equal to 4ζ 2 and obtain (80), we use a
two-dimensional system Eγ . Note that the two-dimensional
system Eγ does not interact with other systems. The role of
Eγ is only to make the total Fisher information in E equal to
4ζ 2.

2. Preparation: Construction of a good implementation set

In this subsection, we give a concrete definition of an im-
plementation set Iζ ,L,M,ε = (HL,M

E , AL,M,ε
E , φL,M

ζ ,U L,M
SE ) as a

function of real positive numbers ζ and ε and positive integers
L and M, satisfying M > L > 8dS max{dS‖AS‖} and M/L ∈
N is a positive integer. As we will see later, L determines
the maximum and minimum eigenvalues of AE0 , and 1/M2

is equal to the minimum difference of eigenvalues of AE0 . In
the next subsection, we will construct Iζ in Lemma 2 from
Iζ ,L,M,ε .

We define the Hilbert space of the external system as fol-
lows:

HL,M
E := (⊗2dS+1

i=0 HL,M
Ei

)⊗ HM
S′ , (C2)

where dS is the dimension of the Hilbert space of S, and the
dimensions of HL,M

Ei
and HM

Si
are

dim
(
HL,M

Ei

)
:=

⎧⎨
⎩

8LM2 (i = 0)
2M2 + 1 (1 � i � 2dS )
2 (i = 2dS + 1),

(C3)

dim
(
HM

S′
)

:= dS. (C4)

S′, E0, ⊗dS
k=1Ek , ⊗dS

k=1Ek+dS , and E2dS+1 correspond to S′, E0,
Eα , Eβ , and Eγ in subsection C 1, respectively.

The conserved quantity AL,M,ε
E is defined as follows:

AL,M,ε
E = AL,M

E0
+ Aε

E2dS+1
+

2dS∑
i=1

AM
Ei

+ ÃM
S′ , (C5)
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where

AL,M
E0

:=
8LM2∑
m=1

xm|m〉〈m|E0
, (C6)

AL,M
Ei

:= AL,M
EdS+i

=
M2∑

m=−M2

εim|m〉〈m|Ei
(1 � i � dS ), (C7)

AL,M
E2dS+1

:= ε|1〉〈1|E2dS+1
, (C8)

ÃM
S′ :=

dS∑
i=1

h̃i|i〉〈i|S′. (C9)

Here, xm, εm, and h̃i are defined as

xm := −4L + 1

M2

(
m − 1

2

)
, (C10)

εi := hi − h̃i, (C11)

h̃i := 1

M2
ni, (C12)

where ni := �M2hi� and hi is the ith eigenvalue of AS . Note
that 0 � εi < 1/M2 holds by definition. We will define ε in
the next subsection.

The pure initial state φL,M
ζ of E is given as follows:

φL,M
ζ = φ

L,M,ζ
E0

⊗ (⊗dS
i=1φ

L,M
Ei

)⊗ |1〉〈1|S′ ⊗ φEdS+1 , (C13)

where |1〉S′ is the first eigenstate of ÃM
S′ and∣∣φL,M,ζ

E0

〉
:= Cζ ,L,M

1

2
√

LM

∑
m∈B2L

e
− x2

m
4ζ2 |m〉E0

, (C14)

∣∣φL,M
Ei

〉
:= 1√

M

M∑
m=1

|m〉Ei
, (C15)

∣∣φEdS+1

〉
:=

|0〉EdS+1
+ |1〉EdS+1√

2
, (C16)

where Cζ ,L,M is the normalized factor and

B2L := {m||xm| < 2L}. (C17)

To construct U L,M
SE , we introduce two types of unitary oper-

ations:

U L,M
S′E0

:=
∑

i

∑
( j,m)∈B

ui j |i〉〈 j|S′ ⊗ |m − ni + n j〉〈m|E0

+
∑

( j,m)/∈B

| j〉〈 j|S′ ⊗ |m〉〈m|E0
, (C18)

B := {( j, m)| − 3L � h̃ j + xm � 3L}, (C19)

where ui j is defined as ui j := 〈i|SUS| j〉S:

U L,M

SS′,{Ek}dS
k=1

:=
∑

(i, j,{mk})∈C

| j〉〈i|S ⊗ |i〉〈 j|S′

⊗ (⊗dS
k=1|mk + δk,i − δk, j〉〈mk|Ek

)
+

∑
(i, j,m)/∈C

|i〉〈i|S ⊗ | j〉〈 j|S′

⊗ (⊗dS
k=1|mk〉〈mk|Ek

)
, (C20)

C := {(
i, j, {mk}dS

k=1

)∣∣
− 2M � mk + δk,i − δk, j � 2M for each k

}
. (C21)

With using these two unitary operations, we construct U L,M
SE

as follows:

U L,M
SE := (

U L,M
SS′{EdS+k}U

L,M
S′E0

U L,M
SS′{Ek}

)⊗ 1E2dS+1 , (C22)

where U L,M
SS′{EdS+k} is a unitary operation defined by substituting

EdS+k for Ek of (C20). In this section, we sometimes use the
abbreviation of U L,M

S′E0
, U L,M

SS′{Ek}, and U L,M
SS′{Ek} as U0, U{k}, and

U{k+dS}, respectively.
Now, we have defined Iζ ,L,M,ε = (HL,M

E , AL,M,ε
E , φL,M

ζ ,

U L,M
SE ). To show that Iζ ,L,M,ε is well defined, we have to show

the unitarity of U L,M
SE and [U L,M

SE , AS + AL,M,ε
E ] = 0. Due to

U0, ÃM
S′ + AL,M

E0
= 0, (C23)

U{k}, AS + ÃM
S′ +

dS∑
k=1

AL,M
Ek

= 0, (C24)

U{k+dS}, AS + ÃM
S′ +

dS∑
k=1

AL,M
Ek+dS

= 0, (C25)

the relation [U L,M
SE , AS + AL,M,ε

E ] = 0 clearly holds. Below, we
show the unitarity of U L,M

SE .
Proof. the unitarity of U L,M

SE To show this, we only have to
show the unitarity of U0 and U{k}, respectively. We first show
the unitarity of U0, i.e., U †

0 U0 = U †
0 U0 = I . Let us refer to the

first and second summations in (C18) as U0,A and U0,B, re-
spectively. Due to U0 = U0,A + U0,B and U †

0,B = U0,B = U 2
0,B,

we only have to show the following:

U0,AU0,B = U0,BU0,A = 0, (C26)

U †
0,AU0,A + U0,B = U0,AU †

0,A + U0,B = I. (C27)

To show these relations, we show the following relation:

U0,A =
∑

i

∑
( j,m)∈B

u ji| j〉〈i|S′ ⊗ |m〉〈m + n j − ni|E0
. (C28)

To obtain the relation (C28), we only have to note the follow-
ing relation:

( j, m) ∈ B ⇔ (i, m − ni + n j ) ∈ B. (C29)

Therefore, by relabeling (i, j, m − ni + mj ) of the first term
of (C18) to ( j, i, m), we obtain (C28). [Here, note that when
( j, m) ∈ B holds, the inequality −3L � xm+n j � 3L holds by
definition. Since ‖AS‖ < L, the inequality −4L < xm−ni+n j <

4L always holds. Therefore, |m − ni + n j〉E0
always exists

when ( j, m) ∈ B holds. Similarly, we can show that |m〉E0

always exists when (i, m − ni + n j ) ∈ B holds, and thus the
above relation (C29) is well defined.]

Using the relation (C28) and the definition (C18), we ob-
tain the following relation:

U0,A = �BU0,A = U0,A�B, (C30)

where �B := ∑
( j,m)∈B | j〉〈 j|S′ ⊗ |m〉〈m|E0

. Here, to derive
U0,A = �BU0,A in (C30), note that the left half of the
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right-hand side of (C28) has the same form as the right half
of the first term of the right-hand side of (C18). Due to (C30)
and UB = I − �B, we obtain (C26).

Next, we obtain (C27). Due to UB = I − �B, we only
have to show U †

0,AU0,A = U0,AU †
0,A = �B. By using (C18), we

obtain

U †
0,AU0,A =

∑
i,i′

∑
( j,m)∈B

∑
( j′,m′ )∈B

u∗
i′ j′ui j | j′, m′〉〈 j, m|S′E0

×〈i′, m′ − ni′ + n j′ |i, m − ni + n j〉S′E0

=
∑

i

∑
( j,m)∈B

∑
( j′,m′ )∈B

u∗
i j′ui j | j′, m′〉〈 j, m|S′E0

× δm′+n j′ ,m+n j

=
∑

( j,m)∈B

| j, m〉〈 j, m|S′E0

= �B. (C31)

Similarly, by using (C30), we obtain

U0,AU †
0,A =

∑
j, j′

∑
(i,m)∈B

∑
(i′,m′ )∈B

ui′ j′u
∗
i j |i′, m′〉〈i, m|S′E0

×〈 j′, m′ + ni′ − n j′ | j, m + ni − n j〉S′E0

=
∑

j

∑
(i,m)∈B

∑
(i′,m′ )∈B

ui′ j′u
∗
i j |i′, m′〉〈i, m|S′E0

× δm′+ni′ ,m+ni

=
∑

(i,m)∈B

|i, m〉〈i, m|S′E0

= �B. (C32)

Therefore, U0 is unitary.
Next, we show the unitarity of U{k}. We refer to the first and

second summations in (C20) as U{k},A and U{k},B, respectively.
In the same manner as the proof of unitarity of U0, we only
have to show

U{k},AU{k},B = U{k},BU{k},A = 0, (C33)

U †
{k},AU{k},A + U{k},B = U{k},AU †

{k},A + U{k},B = I. (C34)

Again, we note the following relation:

U{k},A =
∑

(i, j,{mk})∈Ck

|i〉〈 j|S′
k−1

⊗ | j〉〈i|S′
k

⊗ (⊗dS
k=1|mk〉〈mk + δk,i − δk, j |Ek

)
. (C35)

Therefore, U{k},A = U{k},A�C = U{k},A�C holds,
and thus (C33) holds. (Here we define �C :=∑

(i, j,{mk})∈C |i, j〉〈i, j|S,S′ ⊗ ⊗dS
k=1|mk〉〈mk|Ek

).
Finally, we show (C34). Due to U{k},B = I − �C , we

only have to show U †
{k},AU{k},A = U{k},AU †

{k},A = �C . Due

to (C20), we obtain U †
{k},AU{k},A = �C . Due to (C35), we ob-

tain U{k},AU †
{k},A = �C . �

3. Three lemmas to prove Lemma 2

Using Iζ ,L,M,ε , we prove Lemma 2. To prove it, we use the
following three lemmas.

Lemma 4. There exist positive real numbers b and c such
that the following inequalities hold for arbitrary enough large
positive integers L and M:

∣∣∣∣〈φL,M,ζ
E0,nh

∣∣φL,M,ζ
E0,−n j+ni

〉− e
− (hi−h j −h)2

8ζ2

∣∣∣∣ � b

L
+ c

M
, (C36)

∣∣〈φL,M
Ei

∣∣φL,M
Ei,±1

〉− 1
∣∣ � 1

M
, (C37)

where shifted |φL,M,ζ
E0

〉 and |φL,M
Ei

〉 are defined as follows:

∣∣φL,M,ζ
E0,n

〉
:= Cζ ,L,M

1

2
√

LM

∑
m∈B2L

e
− x2

m
4ζ2 |m + n〉E0

, (C38)

∣∣φL,M
Ei,±1

〉
:= 1√

M

M∑
m=1

|m ± 1〉Ei
. (C39)

And we define h as a real number satisfying ‖AS − A′
S −

h1̂‖ = �A′
S−AS

2 = AUS and also define

nh := �hM2�, (C40)

h̃ := M2nh. (C41)

Lemma 5. For ζ � 9AUS /2
√

2, there exists a real pos-
itive number r, such that for any sufficiently large posi-
tive integers L and M, the implementation set Iζ ,L,M,ε =
(HL,M

E , AL,M,ε
E , φL,M

ζ ,U L,M
SE ) satisfies the following inequality

for an arbitrary initial state ρS on S:

Fe
(
ρS,�U †

S
◦ �

ζ,L,M
S

)
�
∣∣〈T [e−(AS−A′

S−h1̂)2/8ζ 2]〉
ρS

∣∣(1 − rd2
S

L
− rd2

S

M

)
, (C42)

where we set �
ζ,L,M
S (ρS ) := TrE [U L,M

SE (ρS ⊗ φL,M
ζ )U L,M†

SE ],

A′
S := U †

S ASUS , and h is a real number satisfying ‖AS −
A′

S − h1̂‖ = �A′
S−AS

2 = AUS . The symbol T represents the time-
ordering product (e.g., T [A′

SASA′
S] = A′2

S AS).
Lemma 6. We consider a quantum system, and take an ar-

bitrary Hermitian X and arbitrary unitary U on the system. For
X and X ′ := U †XU , we define X0 := x01̂ such that ‖X − X ′ −
X0‖ = �X−X ′/2. When ‖X − X ′ − X0‖ � ‖X‖ � a holds for
a positive number a � 1/9, the following inequality holds:

min
ρ

|〈T [e−(X−X ′−X0 )2
]〉ρ | � 1 − �2

X−X ′

4

e6a − 1

6a
. (C43)

Let us prove Lemmas 4–6.
Proof. Lemma 4 We first show (C37):

∣∣〈φL,M
Ei

|φL,M
Ei,±1

〉− 1
∣∣ =

∣∣∣∣∣ 1

M

M∑
m=1

M∑
m′=1

〈m|m′ ± 1〉 − 1

∣∣∣∣∣
=
∣∣∣∣M − 1

M
− 1

∣∣∣∣ = 1

M
. (C44)
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To show (C36), we note that〈
φ

L,M,ζ
E0,−nh

|φL,M,ζ
E0,−n j+ni

〉
= C2

ζ ,L,M

4LM2

∑
m′∈B2L

∑
m∈B2L

e
− x2

m′ +x2
m

4ζ2 δm′+nh,m−n j+ni

= C2
ζ ,L,M

4LM2

∑
m∈B2L

e
−

x2
m+ni−n j −nh

+x2
m

4ζ2 + o(e−L ). (C45)

We transform the first term of the right-hand side of (C45) as
follows:

C2
ζ ,L,M

4LM2

∑
m∈B2L

e
−

x2
m+ni−n j −nh

+x2
m

4ζ2

= C2
ζ ,L,M

4LM2

∑
m∈B2L

e
− (xm+hi−h j +h+γ )2+x2

m

4ζ2

= C2
ζ ,L,M

4LM2

∑
m∈B2L

e
− 2(xm+ hi−h j +h+γ

2 )2+ (hi−h j +h+γ )2

2
4ζ2

= e
− (hi−h j +h+γ )2

8ζ2
C2

ζ ,L,M

4LM2

∑
m∈B2L

e
− (xm+ hi−h j +h+γ

2 )2

2ζ2 , (C46)

where γ := h̃i − h̃ j + h̃ − (hi − h j + h).
Let us evaluate the right-hand side of (C46). By defining

ym := xm + γ

2 , and noting that |γ | < 2/M2, we obtain

C2
ζ ,L,M

4LM2

∑
m∈B2L

e
− (xm+ hi−h j +h+γ

2 )2

2ζ2

= C2
ζ ,L,M

4LM2

∑
m:−2L−γ /2�ym�2L−γ /2

e
− (ym+ hi−h j +h

2 )2

2ζ2

=
1

4LM2

∑
m:−2L−γ /2�ym�2L−γ /2 e

− (ym+ hi−h j +h
2 )2

2ζ2

1
4LM2

∑
m:−2L�xm�2L e

− x2
m

2ζ2

. (C47)

To evaluate the right-hand side of (C47), we use the follow-
ing relation for a smooth function f , which was given by
Chui [76]:

1

n

n∑
i=1

f

(
i(β − α)

n
− (β − α)

2n

)

=
∫ β

α

f (x)dx + (β − α)2

24n2
[ f ′(β ) − f ′(α)] + o

(
1

n2

)
.

(C48)

When β − α is a positive integer taking n = n′(β − α) with
an integer n′, we obtain the following relation from (C48):

1

n′(β − α)

n′(β−α)∑
i=1

f

(
i

n′ − 1

2n′

)

=
∫ β

α

f (x)dx + 1

24n′2 [ f ′(β ) − f ′(α)] + o

(
1

n′2

)
.

(C49)

Due to (C49), we can take a positive number r1 which is
independent of M and L such that the following inequality
is valid for any sufficiently large M and L:∣∣∣∣∣ 1

4LM2

∑
m:−2L�xm�2L

e
− x2

m
2ζ2 −

∫ 2L

−2L
e
− x2

2ζ2 dx

∣∣∣∣∣
� L

6(M2)2ζ 2
e
− 2L2

ζ2 + r1

M4
. (C50)

Here, we substitute e
− x2

2ζ2 , M2, 2L, −2L, and m for f (x), n′, β,
α, and i in (C49).

Since
∫ 2L
−2L e

− x2

2ζ2 dx = ∫∞
−∞ e

− x2

2ζ2 dx − 2Erfc[2L/(
√

2ζ )]

and Erfc(x) = o(e−x2
), there exist positive numbers r2 and

r3 which are independent of M and L, and the following
inequality holds for any sufficiently large M and L:∣∣∣∣∣ 1

4LM2

∑
m:−2L�xm�2L

e
− x2

m
2ζ2 −

∫ ∞

−∞
e
− x2

2ζ2 dx

∣∣∣∣∣
� r1

M4
+ r2e−L + r3Le−L

M2
. (C51)

Similarly, there exist positive numbers s1, s2, and s3 which
are independent of L and M such that the following inequality
holds for any sufficiently large L and M:∣∣∣∣∣ 1

4LM2

∑
−2L−γ /2�ym�2L−γ /2

e
− (ym+ hi−h j +h

2 )2

2ζ2 −
∫ ∞

−∞
e
− x2

2ζ2 dx

∣∣∣∣∣
� s1

M4
+ s2e−L + s3Le−L

M2
. (C52)

Now, we can evaluate the right-hand side of (C45). Due to
|γ | < 1/M2,

e
− (hi−h j +h+γ )2

8ζ2 = e
− (hi−h j +h)2

8ζ2

[
1 + O

(
1

M2

)]
. (C53)

Due to (C45), (C46), and (C51)–(C53), there exist b, c > 0
which are independent of L and M such that the following
inequality is valid for any sufficiently large L and M:

∣∣〈φL,M,ζ
E0,nh

∣∣φL,M,ζ
E0,−n j+ni

〉− e
− (hi−h j −h)2

8ζ2 | � b

L
+ c

M
. (C54)

�
Proof. Lemma 5 We expand the initial state as

ρS :=
∑

λ

pλ

∣∣ψ (λ)
S

〉〈
ψ

(λ)
S

∣∣, (C55)

∣∣ψ (λ)
S

〉
:=

∑
i

a(λ)
i |i〉, (C56)

|ψSR〉 :=
∑

i

√
p(λ)a(λ)

i |i〉|λ〉R. (C57)

Using these symbols, we can describe Fe(ρS,�U †
S

◦ �S ) as
follows:

Fe(ρS,�U †
S

◦ �S )2

= 〈ψSR|TrE [U †
S USE (ψSR ⊗ φζ )U †

SEUS]|ψSR〉. (C58)
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By defining shifted φL,M
ζ ,h̃

as

φL,M
ζ ,h̃

:= φ
L,M,ζ
E0,nh

⊗ (⊗dS
i=1φ

L,M
Ei

)⊗ |1〉〈1|S′ ⊗ φEdS+1 , (C59)

we construct an orthonormal basis of E as {|φL,M
ζ ,h̃

〉, |φ(1)
E 〉, ...}. (Here, φL,M

ζ ,h̃
depends on h̃ through h̃ = nhM2 and φ

L,M,ζ
E0,nh

.)
Expanding |φE 〉 with this basis, we find

Fe
(
ρS,�

L,M
U †

S

◦ �S
)2 = 〈ψSR|TrE

[
U †

S USE
(
ψSR ⊗ φL,M

ζ ,h̃

)
U †

SEUS
]|ψSR〉

= 〈
ψSR ⊗ φL,M

ζ ,h̃

∣∣U †
S USE

(
ψSR ⊗ φL,M

ζ ,h̃

)
U †

SEUS

∣∣ψSR ⊗ φL,M
ζ ,h̃

〉
+ 〈

ψSR ⊗ φ
(1)
E

∣∣U †
S USE

(
ψSR ⊗ φL,M

ζ ,h̃

)
U †

SEUS

∣∣ψSR ⊗ φ
(1)
E

〉+ ...

�
〈
ψSR ⊗ φL,M

ζ ,h̃

∣∣U †
S USE

(
ψSR ⊗ φL,M

ζ ,h̃

)
U †

SEUS

∣∣ψSR ⊗ φL,M
ζ ,h̃

〉
= ∣∣〈ψSR ⊗ φL,M

ζ ,h̃

∣∣U †
S USE

∣∣ψSR ⊗ φL,M
ζ ,h̃

〉∣∣2, (C60)

which is equivalent to

Fe
(
ρS,�U †

S
◦ �L,M

S

)
�
∣∣〈φL,M

ζ ,h̃
⊗ ψSR

∣∣U †
S USE

∣∣ψSR ⊗ φL,M
ζ ,h̃

〉∣∣. (C61)

To evaluate the right-hand side of (C61), we transform the right-hand side of (C61) as∣∣〈φL,M
ζ ,h̃

⊗ ψSR

∣∣U †
S USE

∣∣ψSR ⊗ φL,M
ζ ,h̃

〉∣∣
=
∣∣∣∣∣∣
∑

λ

pλ

∑
i jk

a(λ)
i u jia

(λ)∗
k u∗

jk · �
dS
k=1

(〈
φL,M

Ek
|φL,M

Ek ,−δk,i

〉〈
φL,M

Ek+dS
|φL,M

Ek+dS ,+δk, j

〉) · 〈φL,M,ζ
E0,−nh

|φL,M,ζ
E0,−n j+ni

〉∣∣∣∣∣∣. (C62)

For arbitrary complex numbers {αx} and real positive numbers {βx} and {β̃x} satisfying |βx − β̃x| < γ (γ is a real positive
number), the following inequality holds: ∣∣∣∣∣

∑
x

αxβ̃x

∣∣∣∣∣ >

∣∣∣∣∣
∑

x

αxβx

∣∣∣∣∣− γ
∑

x

|αx|. (C63)

Therefore, due to Lemma 4 and the fact |∑λ pλ

∑
k a(λ)

i u jia
(λ)∗
k u∗

jk| � 1, there exists a real positive number r which is
independent of L and M such that the following inequality holds:∣∣〈φL,M

ζ ,h̃
⊗ ψSR

∣∣U †
S USE

∣∣ψSR ⊗ φL,M
ζ ,h̃

〉∣∣
�

∣∣∣∣∣∣
∑

λ

pλ

∑
i jk

a(λ)
i u jia

(λ)∗
k u∗

jke
− (hi−h j −h)2

8ζ2

∣∣∣∣∣∣ ·
[

1 −
(

rd2
S

M
+ rd2

S

L

)]

=
∣∣∣∣∣∣
∑

λ

pλ

∑
i jk

a(λ)
i u jia

(λ)∗
k u∗

jk

∞∑
l=0

(−1)l

l!

(
(hi − h j − h)2

8ζ 2

)l
∣∣∣∣∣∣ ·
[

1 −
(

rd2
S

M
+ rd2

S

L

)]
. (C64)

Finally, applying

∑
i jk

a(λ)
i u jia

(λ)∗
k u∗

jk

(
(hi − h j − h)2

8ζ 2

)l

= 〈
ψ

(λ)
S

∣∣T
[(

(AS − A′
S − hÎ )2

8ζ 2

)l
]∣∣ψ (λ)

S

〉
(C65)

to the right-hand side of (C64), we obtain∣∣∣∣∣∣
∑

λ

pλ

∑
i jk

a(λ)
i u jia

(λ)∗
k u∗

jk

∞∑
l=0

(−1)l

l!

(
(hi − h j − h)2

8ζ 2

)l
∣∣∣∣∣∣

=
∣∣∣∣∣
∑

λ

pλ

〈
ψ

(λ)
S

∣∣ ∞∑
l=0

(−1)l

l!
T

[(
(AS − A′

S − hÎ )2

8ζ 2

)l
]∣∣ψ (λ)

S

〉∣∣∣∣∣ = ∣∣〈T [e−(AS−A′
S−hÎ )2/8ζ 2]〉

ρ

∣∣. (C66)

In conclusion, we arrive at the desired inequality

Fe
(
ρS,�U †

S
◦ �

ζ,L,M
S

)
�
∣∣〈T [e−(AS−A′

S−h1̂)2/8ζ 2]〉
ρS

∣∣(1 − rd2
S

L
− rd2

S

M

)
. (C67)

�
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Proof. Lemma 6 The Taylor expansion of T [e−(X−X ′−X0 )2
] reads

T [e−(X−X ′−X0 )2
] = 1 − T2 + 1

2!
T4 − 1

3!
T6 + . . . , (C68)

where we employed the abbreviation Tm := T [(X − X ′ − X0)m]. Using this expression, we have the following inequality:

∣∣〈T [e−(X−X ′−X0 )2
]
〉
ρ

∣∣ �
∣∣Re

(〈
T [e−(X−X ′−X0 )2

]
〉
ρ

)∣∣ � 1 −
∞∑

m=1

1

m!
|〈S2m〉ρ | � 1 −

∞∑
m=1

1

m!
‖S2m‖, (C69)

where we denoted the Hermitian part of T2m by S2m := (T2m + T †
2m)/2. For convenience, we also define the anti-Hermitian part

of Tsm as A2m. The operator norms of S2m and A2m are bounded from above as

‖S2m‖ � ‖X − X ′ − X0‖2(6a)m−1, (C70)

‖A2m‖ � ‖X − X ′ − X0‖(6a)m−1. (C71)

We first see how (C70) leads to the desired inequality (C43), and then we prove the above inequalities. Using (C70), the left-hand
side of (C43) is evaluated as

min
ρ

∣∣〈T [e−(X−X ′−X0 )2
]
〉
ρ

∣∣ � 1 − ‖X − X ′ − X0‖2

(
1 + 1

2!
(6a) + 1

3!
(6a)2 + ...

)

= 1 − ‖X − X ′ − X0‖2 e6a − 1

6a

= 1 − �2
X−X ′

4

e6a − 1

6a
. (C72)

We now prove (C70) by using the mathematical induction on m. We also prove (C71) as a byproduct. In this proof, we put
Y := X − X ′ − X0 for brevity. We first show (C70) and (C71) for m = 1. Recalling T2 = T [(X − X ′ − X0)2], we have

S2 = Y 2, A2 = [X ′, X ] = [Y, X ], (C73)

which directly imply

‖S2‖ = ‖Y ‖2, ‖A2‖ � 2a‖Y ‖ � ‖Y ‖. (C74)

Hence, (C70) and (C71) hold for m = 1.
We next show the inductive step. Assume that (C70) and (C71) hold for m � k. We shall show that (C70) and (C71) also hold

for m = k + 1. Inserting the following recursion twice to the definition of T2m,

Tn = Tn−1X − (X ′ + X0)Tn−1 = [Tn−1, X ] + Y Tn−1, (C75)

we obtain the recursion relation between T2n and T2(n−1):

T2n = [T2n−1, X ] + Y T2n−1 = [[T2(n−1), X ], X ] + [Y T2(n−1), X ] + Y [T2(n−1), X ] + Y 2T2(n−1). (C76)

Using the relations T2(n−1) = S2(n−1) + A2(n−1), S2n = T2n+T †
2n

2 and A2n = T2n−T †
2n

2 , we divide this recursion into the ones about S2n

and A2n, respectively. From T2(n−1) = S2(n−1) + A2(n−1), we obtain

T2n = [[S2(n−1), X ], X ] + [Y S2(n−1), X ] + Y [S2(n−1), X ] + Y 2S2(n−1) + [[A2(n−1), X ], X ] + [YA2(n−1), X ]

+ Y [A2(n−1), X ] + Y 2A2(n−1)

= [[S2(n−1), X ], X ] + 2Y S2(n−1)X − XY S2(n−1) − Y XS2(n−1) + Y 2S2(n−1) + [[A2(n−1), X ], X ] + 2YA2(n−1)X − XYA2(n−1)

− Y XA2(n−1) + Y 2A2(n−1). (C77)

From S2n = T2n+T †
2n

2 and A2n = T2n−T †
2n

2 , the above equality reads

S2n = [[S2(n−1), X ], X ] + 1
2 (2Y S2(n−1)X − {X,Y }S2(n−1) + Y 2S2(n−1)) + 1

2 (2XS2(n−1)Y − S2(n−1){X,Y } + S2(n−1)Y
2)

+ 1
2 (2YA2(n−1)X − {X,Y }A2(n−1) + Y 2A2(n−1)) − 1

2 (2XA2(n−1)Y − A2(n−1){X,Y } + A2(n−1)Y
2),

A2n =[[A2(n−1), X ], X ] + 1
2 (2Y S2(n−1)X − {X,Y }S2(n−1) + Y 2S2(n−1)) − 1

2 (2XS2(n−1)Y − S2(n−1){X,Y } + S2(n−1)Y
2)

+ 1
2 (2YA2(n−1)X − {X,Y }A2(n−1) + Y 2A2(n−1)) + 1

2 (2XA2(n−1)Y − A2(n−1){X,Y } + A2(n−1)Y
2). (C78)
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By taking operator norms of the above relations, the following recursion relations are obtained:

‖S2n‖ � ‖S2(n−1)‖4‖X‖2 + ‖S2(n−1)‖(4‖X‖‖Y ‖ + ‖Y ‖2)| + ‖A2(n−1)‖(4‖X‖‖Y ‖ + ‖Y ‖2)|
� ‖S2(n−1)‖9a2 + ‖A2(n−1)‖5a‖Y ‖, (C79)

‖A2n‖ �‖A2(n−1)‖4‖X‖2 + ‖S2(n−1)‖(4‖X‖‖Y ‖ + ‖Y ‖2)| + ‖A2(n−1)‖(4‖X‖‖Y ‖ + ‖Y ‖2)| � ‖A2(n−1)‖9a2 + ‖S2(n−1)‖5a‖Y ‖.
(C80)

Finally, using the induction hypothesis, we find that (C70) and (C71) hold for m = k + 1:

‖S2(k+1)‖ � ‖Y ‖2(6a)k−19a2 + ‖Y ‖(6a)k−15a‖Y ‖ � ‖Y ‖2(6a)k

(
9a

6
+ 5

6

)
� ‖Y ‖2(6a)k, (C81)

‖A2(k+1)‖ � ‖Y ‖(6a)k−19a2 + ‖Y ‖2(6a)k−15a‖Y ‖ � ‖Y ‖(6a)k

(
9a

6
+ a

6

)
� ‖Y ‖(6a)k . (C82)

By mathematical induction, (C70) and (C71) hold for any m. �

4. Proof of Lemma 2

These two lemmas directly imply Lemma 2 as follows.
Proof. Lemma 2 Let us take h′ such that the lowest eigen-

value of AS − h′IS is zero. Substituting (AS − h′IS )/(2
√

2ζ ),
US , and ‖AS − h′IS‖/(2

√
2ζ ) for X , U , and a in (C43), we

obtain

min
ρS

Fe
(
ρS,�U †

S
◦ �

ζ,L,M
S

)

�
(

1 −
�2

AS−A′
S

32ζ 2

e6a − 1

6a

)(
1 − d2

S r

L
− d2

S r

M

)

=
(

1 − A2
US

8ζ 2

e6a − 1

6a

)(
1 − d2

S r

L
− d2

S r

M

)
, (C83)

where a = ‖AS − h′IS‖/(2
√

2ζ ) = �AS /(2
√

2ζ ).
Due to ζ � 9AUS /2

√
2 and AUS � �AS , a � 1/9 holds,

and thus

e6a − 1

6a
< (1 + 2a)2. (C84)

Therefore, there exist enough large L0 and M0 such that for
arbitrary L > L0 and M > M0 the following inequality holds:

min
ρS

Fe
(
ρS,�U †

S
◦ �

ζ,L,M
S

)
� 1 − A2

US

8ζ 2
(1 + 2a)2. (C85)

Therefore, when L > L0 and M > M0 hold,

δIζ ,L,M,ε
� AUS

2ζ

(
1 + �AS√

2ζ

)
. (C86)

Now, let us give the implementation that we seek. We note
that

lim
M→∞

VφL,M,ζ

(
AM,L

E0

) = C2
ζ ,L

∫ 2L

−2L
x2e

− x2

2ζ2 dx < ζ 2, (C87)

where Cζ ,L := 1/

√∫ 2L
−2L e

− x2

2ζ2 dx. Hence, there exists a posi-

tive integer ML,0 depending on L such that if M > ML,0,

VφL,M,ζ

(
AL,M

E0

)
< ζ 2. (C88)

We also note that

dS∑
i=1

Vφ
L,M
Ei

(
AL,M

Ei

)
<

dS∑
i=1

1

M2
= dS

M2
. (C89)

Hence, there exists a positive integer ML,1 > ML,0 such that if
M > ML,1,

VφL,M,ζ

(
AM,L

E0

)+
dS∑

i=1

Vφ
L,M
Ei

(
AL,M

Ei

)
< ζ 2. (C90)

Therefore, we take L > L0, and define ML as

ML := max{M0, ML,1}, (C91)

and then define εL as

εL := 2

√√√√ζ 2 − V
φ

L,ML ,ζ

E0

(
AL,ML

E0

)−
ds∑

i=1

V
φ

L,ML
Ei

(
AL,ML

Ei

)
. (C92)

Let us define Iζ ,L := Iζ ,L,ML,εL and refer to its components as
(H(L)

E , A(L)
E , φ

(L)
ζ ,U (L)

SE ). Then, Iζ ,L satisfies

δIζ ,L � AUS

2ζ

(
1 + �AS√

2ζ

)
, (C93)

F
φ

(L)
ζ

(
A(L)

E

) = 4V
φ

(L)
E

(
A(L)

E

) = 4ζ 2. (C94)

�

APPENDIX D: PROOF OF (22)

Proof. (22) We first consider the case where both ρS and
ρE are pure states. We here reshow some definitions of sym-
bols used in this proof. We denote the desired final state and
realized final state by

|ρ ′
S〉 := US|ρS〉, (D1)

|� ′
SE 〉 := USE |ρS〉|ρE 〉, (D2)

σE := TrS[� ′
SE ], (D3)

σS := TrE [� ′
SE ]. (D4)
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In a similar manner, the final state of ψi is denoted by

|ψ ′
i 〉 := US|ψi〉, (D5)

|� ′
i,SE 〉 := USE |ψi〉|ρE 〉, (D6)

σi,E := TrS[� ′
i,SE ], (D7)

σi,S := TrE [� ′
i,SE ]. (D8)

Noting the definition of δ(ρ), Uhlmann’s theorem leads to the fact that there are two pure states φ′
E and φ′

i,E satisfying

|〈� ′
SE |ρ ′

S ⊗ φ′
E 〉| =

(
1 − δ(ρS )2

2

)
, (D9)

|〈� ′
i,SE |ψ ′

i ⊗ φ′
i,E 〉| =

(
1 − δ(ψi )2

2

)
, (D10)

where we wrote |ρ〉 ⊗ |φ〉 as |ρ ⊗ φ〉.
In the case of a pure state, 2VρE (AE ) = √

FρE (AE ) holds by definition, and the pure state ρS is written as |ρS〉 = ∑
i αi|ψi〉. In

this case, ri = |αi|2 holds, and the desired inequality (22) follows from

χ (ρS, {ψi})2 � 50δ(ρS, {ψi})2(VρE (AE ) + 2�AS )2, (D11)

where we used the abbreviation

δ
2
(ρS, {ψi}) := δ(ρS )2 +

∑
i

riδ(ψi )
2. (D12)

Since the above inequality (D11) reduces to a trivial relation VρE (AE ) � 0 when δ(ρS, {ψi}) > χ (ρS, {ψi})2/10
√

2�AS is
satisfied, in the following we prove (D11) only for the case of δ(ρS, {ψi}) � χ (ρS, {ψi})2/10

√
2�AS .

We first employ (71) [the relation (c)], which is repeated below:

χ (ρS, {ψi}) �
√∑

i

ri�
2
i + �′ + 4δ(ρS )�AS , (D13)

where �i := |〈AE 〉σi,E
− 〈AE 〉φ′

E
| and �′ := |〈AE 〉σE

− 〈AE 〉φ′
E
|. The equation (D13) is shown as follows:

χ (ρS, {ψi})2 =
∑

i

ri(〈AS〉ψi
− 〈AS〉USψiU

†
S

+ 〈AS〉USρSU †
S

− 〈AS〉ρS
)2

�
∑

i

ri{|〈AS〉ψi
− 〈AS〉σi,S

+ 〈AS〉σS
− 〈AS〉ρS

| + 2[δ(ψi ) + δ(ρS )]�AS }2,

=
∑

i

ri{|〈AE 〉σi,E
− 〈AE 〉ρE

+ 〈AE 〉ρE
− 〈AE 〉σE

| + 2[δ(ψi ) + δ(ρS )]�AS }2

=
∑

i

ri{|〈AE 〉σi,E
− 〈AE 〉σE

| + 2[δ(ψi ) + δ(ρS )]�AS }2

�

⎛
⎝√∑

i

ri(〈AE 〉σi,E
− 〈AE 〉σE

)2 + 2

√∑
i

ri[δ(ψi ) + δ(ρS )]2�2
AS

⎞
⎠

2

�

⎛
⎝√∑

i

ri(〈AE 〉σi,E
− 〈AE 〉φ′

E
)2 + |〈AE 〉σE

− 〈AE 〉φ′
E
| + 2

√∑
i

ri[δ(ψi ) + δ(ρS )]2�2
AS

⎞
⎠

2

=
⎛
⎝√∑

i

ri�
2
i + �′ + 2

√∑
i

ri[δ(ψi ) + δ(ρS )]2�2
AS

⎞
⎠

2

, (D14)

where we used the conservation of A in the total system in the third line. We obtain (D13) since the third term in the right-hand
side of (D14) is easily bounded as ∑

i

ri[δ(ψi ) + δ(ρS )]2�2
AS

� 4δ(ρS, {ψi})2�2
AS

. (D15)
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Below we consider the first term in the right-hand side of (D14). This term is evaluated by using Lemma 1, or (74):∑
i

ri�
2
i =

∑
i

ri(〈AE 〉σi,E
− 〈AE 〉φ′

E
)2 �

∑
i

riL(σi,E , φ′
E )2[Vσi,E (AE ) + Vφ′

E
(AE ) + �i]

2. (D16)

The first term in the bracket, Vσi,E (AE ), is bounded as (78) [relation (b)]:

Vσi,E (AE ) � VρE (AE ) + �AS . (D17)

In the subsequent analysis, we first bound the two correction terms, Vφ′
E
(AE ) and |〈AE 〉σi,E

− 〈AE 〉φ′
E
|, by quantities independent

of i. We then evaluate
∑

i riL(σi,E , φ′
E )2 by using (76) [relation (a)].

We first derive the bound for Vφ′
E
(AE ). We compare the fluctuation of A in ρS ⊗ ρE and ρ ′

S ⊗ φ′
E :

VρS⊗ρE (AS + AE )2 = V� ′
SE

(AS + AE )2

= Tr[(AS + AE − 〈AS + AE 〉� ′
SE

)2� ′
SE ]

� Tr[(AS + AE − 〈AS + AE 〉� ′
SE

)2Pρ ′
S⊗φ′

E
� ′

SE Pρ ′
S⊗φ′

E
]

= Tr[(AS + AE − 〈AS + AE 〉� ′
SE

)2ρ ′
S ⊗ φ′

E ]Tr[Pρ ′
S⊗φ′

E
� ′

SE ]

= Tr[(AS + AE − 〈AS + AE 〉� ′
SE

)2ρ ′
S ⊗ φ′

E ]

(
1 − δ(ρS )2

2

)2

� Vρ ′
S⊗φ′

E
(AS + AE )2

(
1 − δ(ρS )2

2

)2

. (D18)

Here, Pρ ′
S⊗φ′

E
:= |ρ ′

S ⊗ φ′
E 〉〈ρ ′

S ⊗ φ′
E | is the projection operator onto ρ ′

S ⊗ φ′
E . By substituting VρS⊗ρE (AS + AE )2 = VρS (AS )2 +

VρE (AE )2 � �2
AS

/4 + VρE (AE )2 and Vρ ′
S⊗φ′

E
(AS + AE )2 = Vρ ′

S
(AS )2 + Vφ′

E
(AE )2 � Vφ′

E
(AE )2, we arrive at an upper bound for

Vφ′
E
(AE ):

Vφ′
E
(AE ) �

√
1
4�2

AS
+ VρE (AE )2

1 − δ(ρS )2

2

. (D19)

We next derive the bound for �i := |〈AE 〉σi,E
− 〈AE 〉φ′

E
|. We evaluate |〈AE 〉σi,E

− 〈AE 〉φ′
E
| as

|〈AE 〉σi,E
− 〈AE 〉φ′

E
| � |〈AE 〉σi,E

− 〈AE 〉σE
| + |〈AE 〉σE

− 〈AE 〉φ′
E
| = |〈AS〉ψi

− 〈AS〉σi,S
− 〈AS〉σS

+ 〈AS〉ρS
| + �′ � 2�AS + �′.

(D20)

From Lemma 1 and L(σE , φ′
E ) � δ(ρS ), we derive the bound for �′ as follows:

�′ � L(σE , φ′
E )

1 − L(σE , φ′
E )

[VσE (AE ) + Vφ′
E
(AE )] � δ(ρS )

1 − δ(ρS )

⎛
⎝VρE (AE ) + �AS +

√
1
4�2

AS
+ VρE (AE )2

1 − δ(ρS )2

2

⎞
⎠. (D21)

At present, we have an upper bound for the right-hand side of (D16) as∑
i

riL(σi,E , φ′
E )2[Vσi,E (AE ) + Vφ′

E
(AE ) + �i]

2

�

⎡
⎣ 1

1 − δ(ρS )
VρE (AE ) + 3 − 2δ(ρS )

1 − δ(ρS )
�AS + 1

1 − δ(ρS )

√
1
4�2

AS
+ VρE (AE )2

1 − δ(ρS )2

2

⎤
⎦

2 ∑
i

riL(σi,E , φ′
E )2. (D22)

We finally calculate the bound for
∑

i riL(σi,E , φ′
E )2. Using a relation Tr[AB] � Tr[ρAρB] for positive Hermitian operators A, B

and a density matrix ρ repeatedly, we have

ri〈φ′
E |σi,E |φ′

E 〉 = Tr[(ρ ′
S ⊗ φ′

E )(ψ ′
i ⊗ σi,E )]

� Tr[� ′
SE (ρ ′

S ⊗ φ′
E )� ′

SE (ψ ′
i ⊗ σi,E )]

= Tr[� ′
SE (ρ ′

S ⊗ φ′
E )]Tr[� ′

SE (ψ ′
i ⊗ σi,E )]

� Tr[� ′
SE (ρ ′

S ⊗ φ′
E )]Tr[� ′

SE� ′
i,SE (ψ ′

i ⊗ σi,E )� ′
i,SE ]

= Tr[� ′
SE (ρ ′

S ⊗ φ′
E )]Tr[� ′

SE� ′
i,SE ]Tr[(ψ ′

i ⊗ σi,E )� ′
i,SE ]

� Tr[� ′
SE (ρ ′

S ⊗ φ′
E )]Tr[� ′

SE� ′
i,SE ]Tr[(ψ ′

i ⊗ φ′
i,E )(ψ ′

i ⊗ σi,E )(ψ ′
i ⊗ φ′

i,E )� ′
i,SE ]
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= Tr[� ′
SE (ρ ′

S ⊗ φ′
E )]Tr[� ′

SE� ′
i,SE ]Tr[(ψ ′

i ⊗ φ′
i,E )(ψ ′

i ⊗ σi,E )]Tr[(ψ ′
i ⊗ φ′

i,E )� ′
i,SE ]

= Tr[� ′
SE (ρ ′

S ⊗ φ′
E )]Tr[� ′

SE� ′
i,SE ]Tr[(ψ ′

i ⊗ φ′
i,E )� ′

i,SE ]Tr[φ′
i,Eσi,E ]

� ri

(
1 − δ(ρS )2

2

)2(
1 − δ(ψi )2

2

)4

. (D23)

We combine 〈φ′
E |σi,E |φ′

E 〉 = (1 − L(φ′
E , σi,E )2/2)2 and

∑
i

ri

(
1 − δ(ρS )2

2

)2(
1 − δ(ψi )2

2

)4

�
(

1 − δ(ρS )2

2

)2(
1 −

∑
i riδ(ψi )2

2

)4

, (D24)

which follows from Jensen’s inequality, noting 0 � 1 −
L(φ′

E , σi,E )2/2 � 1, and obtain

1 −
∑

i riL(φ′
E , σi,E )2

2
� 1 − [δ(ρS )2 + 2

∑
i

riδ(ψi )
2],

(D25)

which directly implies the desired bound

∑
i

riL(φ′
E , σi,E )2 � 2[δ(ρS )2 + 2

∑
i

riδ(ψi )
2]

� 4δ(ρS, {ψi})2. (D26)

In summary, by substituting all the obtained results into the
right-hand side of (D14) and noting δ(ρS ) � δ(ρS, {ψi}), we
obtain the following inequality:

χ (ρS, {ψi}) � 2δ(ρS, {ψi})

×
[

1.5

1 − δ(ρS )
VρE (AE ) + 5.5 − 4δ(ρS )

1 − δ(ρS )
�AS

+ 1.5

1 − δ(ρS )

√
1
4�2

AS
+ VρE (AE )2

1 − δ(ρS )2

2

⎤
⎦. (D27)

We note the inequality δ(ρS ) � 1/10
√

2, which follows
from the condition δ(ρS, {ψi}) � χ (ρS, {ψi})/10

√
2�AS �

1/10
√

2. Then, using the relation
√

1
4�2

AS
+ VρE (AE )2 �

�AS
2 + VρE (AE ), we obtain

χ (ρS, {ψi})

� δ(ρS, {ψi})[6.464... × VρE (AE ) + 12.84... × �AS ]

� δ(ρS, {ψi})[5
√

2VρE (AE ) + 10
√

2�AS ], (D28)

which readily implies (D11) for the case where both ρS and
ρE are pure states.

Next, we consider the case where ρS is mixed and
ρE is pure. We take a purification of ρS as |ψSR〉 :=∑

λ,i
√

pλ|λ〉|ρλ〉. We expand each pure state ρλ with the

orthogonal basis {ψi} as |ρλ〉 = ∑
i α

(λ)
i |ψi〉. Then, |ψSR〉 is

rewritten as

|ψSR〉 =
∑
i,λ

√
pλα

(λ)
i |λ〉|ψi〉. (D29)

By setting {√pλα
(λ)
i } and {|λ〉|ψi〉} to {αi} and {|ψi〉} in the

derivation of (D28) for pure ρS and ρE , we obtain (D28) in
this case. Therefore, we obtain (D11) in the case where ρE is
a pure state.

Finally, we show (D11) for the case where ρE is a mixed
state. We prove this in a similar manner to the proof of The-
orem 1 in the case where ρE is a mixed state. We employ
the decomposition of ρE into pure states {ρη} (i.e., ρE =∑

η qηρη) as satisfying FρE (AE ) = 4
∑

η qηVρη
(AE )2. We de-

note quantities δ(ρS, {ψi}), δ(ρS ), and δ(ψi ), with the initial
state of E as ρη by putting the subscript η such as δ(ρS, {ψi})η,
δ(ρS )η, and δ(ψi )η.

Since (D28) has already been proven for a pure ρE , we have
that the following inequality holds for each ρη:

Vρη
(AE ) � χ (ρS, {ψi})

5
√

2 × δ(ρS, {ψi})η
− 2�AS , (D30)

where δ(ρS, {ψi})η has the following expression:

δ(ρS, {ψi})η =
√

δ(ψi )2
η +

∑
i

riδ(ρS )2
η (D31)

with ri := ∑
λ pλ|α(λ)

i |2. With keeping (D30) in mind,
VρE (AE ) is evaluated with a downward convex function
l (x) := (max{0,

χ (ρS,{ψi})
5
√

2x
− 2�AS })2 (x > 0) as

1

4
FρE (AE ) =

∑
η

qηVρη
(AE )2

�
∑

η

qηl[δ(ρS, {ψi})η]

� l

[∑
η

qηδ(ρS, {ψi})η

]
. (D32)

Here, we shall prove∑
η

qηδ(ρS, {ψi})η �
√

2 × δ(ρS, {ψi}). (D33)

We start from the following simple inequality:∑
η

qηδ(ρS, {ψi})η �
√∑

η

qηδ(ρS, {ψi})2
η

=
√∑

η

qηδ(ρS )2
η +

∑
η,i

qηriδ(ψi )2
η.

(D34)
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Here, the following inequality holds for any ρ:∑
η

qηδ(ρ)2
η � 2δ(ρ)2, (D35)

which is proven as follows. We denote the purification of ρ by
|ψSR〉, and we define σSR := �S (ψSR) and σSR,η as that with
the initial state of E as ρη. We then have(

1 − [δ(ρ)]2

2

)2

= 〈ψSR|U †
S σSRUS|ψSR〉

=
∑

η

qη〈ψSR|U †
S σSR,ηUS|ψSR〉

=
∑

η

qη

(
1 − δ(ρ)2

η

2

)2

�
(

1 −
∑

η qηδ(ρ)2
η

2

)

�
(

1 −
∑

η qηδ(ρ)2
η

4

)2

, (D36)

which directly implies (D35). Applying (D35) to (D34), we
arrive at the relation (D33).

Finally, substituting (D33) into (D32), along with the non-
increasingness of l (x), we obtain

√
FρE (AE ) � 2

√√√√l

[∑
η

qηδ(ρS, {ψi})η

]

� 2
√

l[
√

2 × δ(ρS, {ψi})]

= χ (ρS, {ψi})

5δ(ρS )
− 4�AS , (D37)

which readily implies the desired result (D11). �

APPENDIX E: A GENERALIZED VERSION OF THEOREM
1 FOR THE CASE WHERE AS + AE IS NOT CONSERVED

In this section, we consider the case that the total dynamics
is unitary, but the quantity A is not conserved perfectly, i.e.,
the case of [USE , AS + AE ] �= 0. In this case, we can define
the degree of asymmetry of USE :

AUSE := �i[USE ,AS+AE ]

2
. (E1)

Then, we can obtain the following theorem.
Theorem 3. When an implementation set (HE , AE ,

ρE ,USE ) implements US within error δ, the following
inequality holds:√

F cost
δ [US] � AUS − AUSE

δ
− 6 max{�AS , 2AUSE }. (E2)

We can obtain the proof of this theorem just by substituting
the following inequalities for (42), (43), and � � �AS in the
proof of Theorem 1:

max{VσE ,↑ (AE ),VσE ,↓ (AE )} � δ + 2 max{�AS , 2AUSE },
(E3)

2(AUS − AUSE ) � � + 4δ(ρS,↑+↓)�AS , (E4)

� � �AS + AUSE . (E5)

We show these inequalities below. The inequality (E5) is
obvious. Let us show (E4). We define

�S
↑ := Tr[AS (ρS,↑ − σS,↑)], (E6)

�S
↓ := Tr[AS (ρS,↓ − ρ ′

S,↓)]. (E7)

Then, clearly |�S
↑ − �S

↓| � � + 2AUSE . In the same manner
as the derivation of (B8), we obtain

2AUS � |�S
↑ − �S

↓| + 4δ(ρS,↑+↓)�AS . (E8)

Therefore, we obtain (E4).
Next, we show (E3). We use the following important fact:

Let us take an arbitrary positive operator A and arbitrary uni-
tary U. When ‖[U, A]‖ � χ holds for a positive real number
χ , the following inequality holds for an arbitrary state ρ:

∣∣V 2
ρ (A) − V 2

ρ (U †AU )
∣∣ � χ [2Vρ (A) + χ ], (E9)

where Vρ (A) is the standard deviation of A in ρ.
Proof of (E9): Because of ‖[A,U ]‖ = ‖A − U †AU‖, the

Hermitian X := A − U †AU satisfies ‖X‖ � χ . By using X ,
we can express V 2

ρ (U †AU ) as follows:

V 2
ρ (U †AU ) = 〈(A − X )2〉ρ − 〈A − X 〉2

ρ

= V 2
ρ (A) − 2Covρ (A; X ) + V 2

ρ (X ), (E10)

where Covρ (A; X ) := 1
2 Tr[ρ(AX + XA)] − 〈A〉ρ〈X 〉ρ . Be-

cause of Vρ (X ) � ‖X‖ � χ and the quantum correlation
coefficient is lower than or equal to 1, we obtain

∣∣V 2
ρ (U †AU ) − V 2

ρ (A)
∣∣ � 2|Covρ (A; X )| + V 2

ρ (X )

� 2Vρ (X )Vρ (A) + V 2
ρ (X )

� χ (2Vρ (A) + χ ). (E11)

�
Let us show (E3). By using (E9), we first show that

the variances of AS + AE in the initial and the final states
are very close to each other. The variance of AS + AE

in the initial state is V 2
ρS,i

(AS ) + V 2
ρE

(AE ), and corresponds
to V 2

ρ (A) in (E9). The variance of AS + AE in the fi-
nal state is V 2

σS,i
(AS ) + V 2

σE ,i
(AE ) + 2CovAS+AE (e−iHτ (ρS,i ⊗

ρE )eiHτ ), and corresponds to V 2
ρ (U †AU ) in (E9). Substitut-

ing AS + AE , e−iHτ , and ρS,i ⊗ ρE for A, U , and ρ of (E9),
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we obtain

V 2
ρS,i

(AS ) + V 2
ρE

(AE )

� V 2
σS,i

(AS )+V 2
σE ,i

(AE )+2CovAS+AE (e−iHτ (ρS,i⊗ρE )eiHτ )

− χ
(
2
√

V 2
ρS,i

(AS ) + V 2
ρE

(AE ) + χ
)
, (E12)

where Vρ (AS ) is the standard deviation of the quantity A in
ρ, and CovAS+AE (σ ) is the covariance of A of the state of σ

on SE . Because −VσS,i (AS )VσE ,i (AE ) � CovAS+AE (e−iHτ (ρS,i ⊗
ρE )eiHτ ) (this is a basic feature of the covariance) and

Vρ (AS ) � �AS /2 for any ρ, we obtain

VσE ,i (AE ) − VσS,i (AS )

�
√

V 2
σS,i

(AS ) + V 2
σE ,i

(AE ) − 2VσS,i (AS )VσE ,i (AE )

�
√

V 2
ρE

(AE )+V 2
ρS,i

(AS )+χ (2
√

V 2
ρS,i

(AS )+V 2
ρE

(AE ) + χ )

� VρE (AE ) + 1.5 max{�AS , χ}. (E13)

By substituting 2AUSE for χ , we obtain (E3).
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