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Quasi-many-body localization of interacting fermions with long-range couplings
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A number of experimental platforms for quantum simulations of disordered quantum matter, from dipolar
systems to trapped ions, involve degrees of freedom which are coupled by power-law decaying hoppings or
interactions, yet the interplay of disorder and interactions in these systems is far less understood than in their
short-ranged counterpart. Here, we consider a prototype model of interacting fermions with disordered long-
ranged hoppings and interactions and use the flow equation approach to map out its dynamical phase diagram
as a function of hopping and interaction exponents. We demonstrate that the flow equation technique is ideally
suited to problems involving long-range couplings due to its ability to accurately simulate very large system sizes.
We show that at large on-site disorder and for short-range interactions, a transition from a delocalized phase to
a quasi-many-body localized (MBL) phase exists as the hopping range is decreased. This quasi-MBL phase is
characterized by intriguing properties such as a set of emergent conserved quantities which decay algebraically
with distance. Surprisingly, we find that a crossover between delocalized and quasi-MBL phases survives even
in the presence of long-range interactions.
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I. INTRODUCTION

Recent years have seen tremendous progress in our un-
derstanding of how isolated quantum many-body systems
approach thermal equilibrium or fail to do so, sparking great
interest in the possibility of engineering exotic nonergodic
phases of quantum matter [1–4]. The interest around this ques-
tion has substantially broadened across disciplines, evolving
from a purely speculative issue in the foundation of quantum
statistical mechanics [5] to a central topic of modern research,
from condensed matter [6] to high-energy physics [7,8], with
direct implications for the robustness of future quantum tech-
nologies. In particular, quantum ergodicity breaking may pave
the way towards novel platforms to store and protect quantum
information from intrinsic decoherence [9,10], a development
with clear technological significance.

Among possible scenarios for ergodicity breaking, spe-
cial attention has been devoted in the recent past to the
role of quenched disorder and interactions, leading to many-
body Anderson localization (MBL) [11–15]. Experimental
advances in quantum simulators have allowed unprece-
dented control over disordered many-body systems and
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reported evidence of MBL behavior in a number of plat-
forms, ranging from one- and two-dimensional arrays of
ultracold atoms [16–20] to ion traps with programmable ran-
dom disorder [21,22] and dipolar systems made by nuclear
spins [23,24]. Interestingly, most of the relevant platforms
for quantum simulations of disordered many-body systems
involve degrees of freedom which are coupled by long-range
hopping processes or interactions, typically decaying as a
power law of the distance. While the interplay of disor-
der and interaction leading to MBL is by now rather well
understood for one-dimensional models with short-range in-
teractions, where a set of mutually commuting, exponentially
localized integrals of motion (LIOMs, or l-bits) can be iden-
tified [25–28], its fate in the presence of long-range couplings
is far less settled. From one side, perturbative arguments
suggest an instability of the MBL phase in quantum spin
chains with interactions of random sign [29–32] decaying
with an exponent β < 2d (with d being the spatial dimen-
sion of the system), while avalanche arguments [33] would
rule out a genuine MBL behavior for interactions decaying
slower than exponentially, as do numerical simulations of
spin transport close to the MBL transition [34]. On the other
hand, experiments continue to find evidence of localization
in this regime [21–24], and several scenarios have recently
emerged which are consistent with localized behavior even for
slowly decaying power laws [35–41]. Exact diagonalization,
which played a crucial role in understanding conventional
short-ranged MBL, is limited to small sizes and suffers from
strong finite-size effects in long-range models, making the
theoretical descriptions of disordered interacting quantum
systems with power-law couplings a major open challenge,
whose solution is particularly pressing given the experimental
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evidence of quasi-MBL in a number of quantum simulators at
the interface between solid-state and atomic physics.

In this paper we address this problem for a model of
interacting fermions where both hopping and interaction are
disordered and power-law decaying, with different exponents.
Using a significantly improved and extended variant of the
truncated flow equation approach, already proven to be able
to describe both the short-ranged MBL phase in both one and
two dimensions [42] and the well-understood delocalization
of noninteracting fermions with power-law hopping [43], we
map out the static and dynamical properties of the system
as a function of the hopping and interaction exponents. We
find that for rapidly decaying power laws the system at large
on-site disorder is in a quasi-MBL phase [44] characterized
by algebraically decaying l-bit interactions [39,45] that we
explicitly construct. Remarkably, the flow equation technique
is able to capture the delocalization of this quasi-MBL phase
upon decreasing the hopping exponent, a nontrivial result
that confirms the reliability of this approach. Surprisingly, we
find that the quasi-MBL phase survives upon increasing the
range of the interactions, though with a significantly broad-
ened crossover to the ergodic regime. We speculate that this
phase may be unstable in the thermodynamic limit and discuss
possible connections with other works.

The paper is organized as follows. In Sec. II we first
describe the model we propose and discuss how it links to
other models studied in the literature. In Sec. III, we discuss
in detail the flow equation method which we use, and in
Sec. IV we provide detailed benchmarks for both static and
dynamic quantities to demonstrate the high accuracy that can
be achieved by this technique. In Sec. V A we present results
for the local integrals of motion computed using this method,
as well as the coupling constants of the fixed-point Hamil-
tonian, and show that they behave markedly differently. In
Sec. V B, we go on to compute the nonequilibrium dynamics
using flow equations, presenting results for the imbalance
and a complete phase diagram. We end with a discussion
in Sec. VI, conclude with an outlook towards the future in
Sec. VII, and, finally, include a series of technical appendices
which include additional details and comparisons with other
disorder distributions.

II. THE MODEL

Theoretical investigations of localization in long-range
systems date back to Anderson’s original work [11]. One
well-understood example is the noninteracting random hop-
ping problem, where the hopping terms decay as a power law
with exponent α, also known as the power-law random banded
matrix (PRBM) model. In this case, localization is destroyed
for α < d (where d is the spatial dimension), and the system
is critical at α = d [46–54]. Here, we wish to study an in-
teracting variant of the PRBM model, incorporating random
long-range interactions in addition to the random long-range
hopping terms. We therefore consider a Hamiltonian describ-
ing a one-dimensional chain of interacting fermions given by

H =
∑

i

hini + 1

2

∑
i j

Vi jnin j +
∑

i j

Ji jc
†
i c j, (1)

where the on-site disorder is drawn from a box distribu-
tion hi ∈ [0,W ]. The couplings Ji j = Jji and Vi j = Vji are
also random and drawn from Gaussian distributions with
zero mean and standard deviations which decay with dis-
tance as σJ = J0/|i − j|α and σV = V0/|i − j|β , respectively.
Unless otherwise specified, we fix J0 = 0.5, V0 = 0.1, and
W = 5, such that the model with short-ranged hopping
and interactions (respectively α = β = ∞) would be in the
MBL phase, and vary the power-law exponents α and β

only.
To our knowledge, this model has not been studied in

the literature before. In Ref. [55], a related model of in-
teracting fermions with random power-law hopping was
studied numerically, but the role of on-site disorder and
random, power-law interactions was not considered. Inter-
estingly, in the α, β → 0 limit, Eq. (1) reduces to a model
of fermions with all-to-all random couplings, reminiscent of
the maximally chaotic Sachdev-Ye-Kitaev model [56] with
the addition of a random, on-site disorder. In the literature,
several studies have focused on quantum spin models with
power-law decaying exchange couplings of random signs,
which, however, are not equivalent to fermionic models due
to the long-range nature of the couplings. For these models,
estimates based on the locator expansion and its breakdown
suggest an instability of the (many-body) localized phase
for slowly decaying transverse exchange with exponent β <

2d [29–31], independently of the longitudinal exponent α

which controls the degrees of freedom involved in resonance
formation [30,32]. The robustness and generality of those
perturbative arguments, however, has not been fully discussed.
In particular, convergence of the locator expansion provides
at most a sufficient condition for localization but does not
usually guarantee delocalization. Different scenarios have
emerged recently which are consistent with localized behavior
even in the presence of slowly decaying power-law interac-
tions, for which the locator expansion does not converge.
Examples include order-enabled localization [35], coopera-
tive shielding [36,37,39], correlation-induced localization in
single-particle problems [40,41], or the existence of a critical
disorder for localization at finite size [57], vanishing in the
thermodynamic limit.

III. METHOD

Systems with long-range couplings are typically extremely
challenging to study numerically, as they require very large
system sizes in order to avoid finite-size effects as the inter-
action range is increased. With the addition of disorder in the
long-range couplings, the model in Eq. (1) falls into a class
of systems which cannot be efficiently simulated using matrix
product state methods, where long-range couplings are typi-
cally represented as a sum of decaying exponentials, which is
not straightforward for disordered long-range couplings. As
a consequence a vast majority of numerical results rely on
exact diagonalization (ED), which in a nonsparse model with
long-range couplings is limited to small system sizes where
finite-size effects will be significant.

To address this challenging problem, here we make use of
the flow equation approach [58–69], which we have recently
used to study MBL in the short-ranged case [42] as well as
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in the noninteracting PRBM model [43] and in a periodically
driven Floquet system with weak interactions [70].

The main idea is to diagonalize the Hamiltonian through
a series of infinitesimal unitary transforms parametrized by a
fictitious “flow time” l which runs from l = 0 (initial basis) to
l → ∞ (diagonal basis). The Hamiltonian flow reads

dH
dl

= [η(l ),H(l )], (2)

where η(l ) is the generator of the flow and the initial condition
at l = 0 is given by the Hamiltonian in Eq. (1). In the follow-
ing, we shall use Wegner’s choice of generator [58] η(l ) =
[H0(l ),V (l )], where H0 contains the terms which are diago-
nal in a given basis, while V contains the off-diagonal terms.
This choice of generator, although not unique [43,64,71],
guarantees [58,59] that the off-diagonal terms vanish in the
l → ∞ limit. While for quadratic problems the flow equation
approach is exact, in the presence of interactions the flow
generates higher-order couplings not present in the original
microscopic model. To deal with these, we use a truncation
scheme, originally introduced in Ref. [42], that we briefly
discuss below for the present case.

A. Generator of the flow and truncation

We make an ansatz for the form of the running Hamiltonian
H(l ) = H0(l ) + V (l ), with

H0(l ) =
∑

i

hi(l ) : c†
i ci : +1

2

∑
i j

�i j (l ) : c†
i cic

†
j c j :, (3)

V (l ) =
∑

i j

Ji j (l ) : c†
i c j :, (4)

where the : O : notation signifies normal ordering. We adopt
normal ordering using the : Ô : notation in order to (i) ensure
a consistent ordering of operators when computing commu-
tation relations and (ii) efficiently resum contributions from
higher-order terms to turn the flow equation method into

a powerful nonperturbative scheme—see Refs. [59,72] and
Appendix A for details. Given the ansatz above, the Wegner
generator reads

η =
∑

i j

Fi j : c†
i c j : +

∑
i jk

ζ k
i j : c†

kckc†
i c j : (5)

with Fi j ≡ Ji j[(hi − h j ) − �i j (〈ni〉 − 〈n j〉)] and ζ k
i j ≡

Ji j (�ik − � jk ), where the scale dependence of the coefficients
has been suppressed for clarity.

The flow of the Hamiltonian is given by Eq. (2). Using the
expressions above, it can be clearly seen that the commutation
relation between the interaction term of the Hamiltonian and
the interacting part of the generator will lead to the generation
of new higher-order terms in the Hamiltonian during the flow.
In practice, the successive generation of these higher-order
terms quickly renders the calculation analytically intractable;
however, for weak interactions the newly generated terms
have only an extremely small spectral weight. Specifically,
the lowest-order commutator responsible for generating new
higher-order terms has the following form:∑

i jk

∑
lm

Ji j (�ik − � jk )�lm[: c†
kckc†

i c j :, : nlnm :]. (6)

The result of this term will be at maximum of order J0V 2
0 ;

as V0 � 1, the generation of high-order terms is heavily
suppressed, and this term may be considered negligible. We
therefore discard all newly generated terms and restrict our-
selves to the variational manifold. Thus we can conclude to a
high degree of certainty that this truncation is accurate for the
weak interactions considered here. Crucially, we can monitor
the accuracy of our truncation scheme, as we discuss further
in Sec. IV.

B. Flow equations

The flow of the Hamiltonian coefficients can be read off
from dH/dl = [η(l ),H(l )], following a lengthy calculation.
Explicit expressions for the flow equations are as follows:

dhi(l )

dl
= 2

∑
j

J2
i j (hi − h j ) − 4

∑
j

J2
i j�i j (〈ni〉 − 〈n j〉) +

∑
jk

J2
jk (�ik − �i j )(〈nk〉 − 〈n j〉), (7)

dJi j (l )

dl
= −Ji j (hi − h j )

2 −
∑

k

JikJk j (2hk − hi − h j ) + 2Ji j�i j (hi − h j )(〈ni〉 − 〈n j〉) − Ji j�
2
i j (〈ni〉 + 〈n j〉 − 2〈ni〉〈n j〉)

− 1

2

∑
k

Ji j (�ik − � jk )2〈nk〉(1 − 〈nk〉) +
∑

k

JikJk jt[(�i j − 2� jk )(〈n j〉 − 〈nk〉) + (�i j − 2�ik )(〈ni〉 − 〈nk〉)],

(8)

d�i j (l )

dl
= 2

∑
k 	=i, j

[
J2

ik (�i j − �k j ) + J2
jk (�i j − �ik )

]
. (9)

In the l → ∞ limit, the off-diagonal terms Ji j vanish, and we
obtain a diagonal Hamiltonian given by

H̃ =
∑

i

h̃ini + 1

2

∑
i j

�̃i jnin j . (10)

In all of the following, the tilde notation indicates quantities
in the l → ∞ diagonal basis. In practice, we numerically
integrate these equations until the off-diagonal elements have
decayed to the required accuracy, typically using lmax ≈ 103

and discarding couplings which have reached zero below
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some cutoff (typically 10−6 or less). In cases where the flow
is slow to converge, e.g., the weak-disorder limit, Eq. (9) can
exhibit spurious divergences which must be handled care-
fully in order to obtain physically reasonable results. The
consequence of this divergence is that the normal-ordering
corrections in Eq. (8) can contribute an unphysically large
negative contribution to the flow of the off-diagonal elements,
effectively sending them to zero exponentially quickly as the
system of equations attempts to stop the divergence, resulting
in a deviation from unitarity. In order to maintain an accurate
flow in this regime, one can monitor the flow equations at each
flow time step and, if a divergence occurs, subtract both the di-
vergent term in Eq. (9) and its counterterm in Eq. (8). This has
the effect of “freezing” the divergent terms while still allowing
the other terms to continue flowing. We note, however, that
this is typically not a problem in the strong-disorder regime
we consider here.

C. Nonequilibrium dynamics

In addition to obtaining the fixed-point Hamiltonian and its
approximated spectrum, restricted to the ansatz in Eq. (3), we
can also compute the real-time dynamics of an operator by
transforming it into the basis which diagonalizes the Hamilto-
nian, time-evolving with respect to the diagonal Hamiltonian,
and then flowing the operator back into the physical basis.
We discuss this in detail for the number operator ni(t ), whose
dynamics will be presented in Sec. V.

To parametrize the flow of this operator, we make the fol-
lowing ansatz for the running number operator at time t = 0:

ni(l, t = 0) =
∑

j

A(i)
j (l )n j +

∑
jk

B(i)
jk (l )c†

j ck (11)

with initial conditions A(i)
j (l = 0) = δi j and B(i)

jk (l = 0) =
0 ∀ j, k. The flow equations for this operator can be obtained
by computing dni(l )/dl = [η(l ), ni(l )] and are given by

dAi
j

dl
= −2

∑
k

Jjk (hk − h j )Bk j, (12)

dBjk

dl
= −Jjk (hk − h j )

(
Ai

k − Ai
j

)
−

∑
n

[Jn j (hn − h j )Bnk + Jnk (hn − hk )Bn j]. (13)

Note that higher-order terms cannot be consistently included
at this order of the truncation scheme, as their flow is con-
strained by terms not included in the ansatz for the running
Hamiltonian. One may attempt to include higher-order terms
in Eq. (11) even without the corresponding terms in the
Hamiltonian; however, in this case we find that they are
typically poorly controlled and often divergent. The normal-
ordering procedure employed as part of this construction (see
Appendix A) does, however, allow us to take into account the
leading effects of the interactions even at this order. After
transforming ni(t = 0) into the diagonal basis, by solving
Eqs. (12) and (13) from l = 0 up to l = ∞, we can time-
evolve it with respect to the diagonal Hamiltonian (10). As
this is still interacting, despite being diagonal, the exact time
evolution would require us to sum over the exponentially

many classical configurations spanned by ni = {0, 1}, for ev-
ery i, which is not practical for large system sizes. Instead,
we proceed by writing down the Heisenberg equations of
motion and performing a time-dependent decoupling of the
interaction term to get

ñi(l = ∞, t ) =
∑

j

A(i)
j (l )n j +

∑
jk

B(i)
jk (l )eiφ jk (t )c†

j ck, (14)

φ jk (t ) =
∫ t

0
dt ′

[
(h̃k − h̃ j ) +

∑
m

(�̃km − �̃ jm)〈nm(t ′)〉
]
,

(15)

where the expectation values are calculated self-consistently
at each time step, an approach which represents a significant
improvement upon the previous version of this method pre-
sented in Ref. [42]. We then use the flow equations [Eqs. (12)
and (13)] to transform the number operator back into the
original basis, where it will take the form

ni(l = 0, t ) =
∑

j

A(i)
j (t )n j +

∑
jk

B(i)
jk (t )c†

j ck, (16)

where the A(i)
j (t ) terms picks up an implicit time dependence

during the transform back into the initial basis. At this point,
the expectation value of this operator may be computed with
respect to the desired initial state.

IV. BENCHMARKS

In this section we present, for the model defined in Eq. (1),
detailed benchmark results of the flow equation method.
Specifically, we compare the flow equation results with exact
numerics on small system sizes for eigenstates and dynamics.
Furthermore, we assess the validity of the truncation scheme
discussed in Sec. III by monitoring the conservation of the
so-called flow invariants. The readers interested more in the
physics of the problem (1) and the interplay between MBL
and power-law couplings can directly jump to Sec. V.

A. Eigenvalue comparison with exact diagonalization

We first compare the static properties (i.e., the eigenvalues)
for a small system of size L = 12 with exact-diagonalization
(ED) results obtained using the QUSPIN package [73,74]. We
define the averaged relative error as

δε = 1

N

N∑
i

∣∣εFE
i − εED

i

∣∣
εED

i

, (17)

where εFE/ED refer to the many-body eigenvalues obtained
using flow equations (FEs) and ED methods, respectively,
and the sum runs over states in the many-body Hilbert space.
We can compute this quantity, here restricting ourselves to
the half-filled states, for a variety of power-law exponents α

and β in order to benchmark the accuracy of our results. The
results are summarized in Fig. 1, where we show the average
relative error across the parameter range we will consider in
this paper, here for a system size of L = 12 and with Ns = 512
disorder realizations. We also verified that the error decreases
rapidly with increasing disorder strength, as expected, shown
in Fig. 1(b). We note that it is almost always possible to reduce
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FIG. 1. The logarithm of the disorder-averaged relative error in
the eigenvalues δε computed with respect to exact diagonalization.
(a) The relative error plotted across the same parameter values as
the phase diagram in Fig. 7 and averaged over Ns = 512 disorder
realizations. The error is largest in the case where all couplings are
both long range and decreases sharply when either or both exponents
have a value greater than zero. Note, however, that the average error
remains extremely small across the entire parameter region. (b) The
disorder-averaged relative error plotted for four fixed values of (α, β )
against the on-site disorder strength W . In the remainder of this
paper, we fix W = 5; however, here we show how the relative error
decreases as the system becomes more strongly disordered.

the error further by increasing the maximum flow time lmax;
however, as the method asymptotically approaches the exact
eigenvalues we see diminishing returns by increasing the flow
time further, compared with the increased CPU time required
to obtain the results.

B. Invariants of the flow

As with any other unitary transform, there are a variety of
conserved quantities of the flow equation formalism. Specifi-
cally, traces of integer powers of the Hamiltonian Ip = Tr[Hp]
are commonly known as “invariants of the flow” and are
preserved by an exact implementation of the flow equation
formalism. As we have seen, however, in order for the cal-
culation to remain tractable we must make an approximation
for the running Hamiltonian of the system. The neglect of any
terms not contained within the ansatz Hamiltonian introduces
an error: This error may be quantified by computing the in-
variants of the flow at the start and end of the procedure and
then computing the difference between them. This difference
is zero if the unitary transform is exact and nonzero if the
truncation has introduced an error. This allows us to have a
self-consistent estimate of the error in the transform which we
can compute for any system size, in addition to the relative er-
ror measured with respect to ED which we can only compute

FIG. 2. Behavior of the flow invariant across the phase diagram,
with L = 64 and W = 5. The flow invariant is maximal for β = 0.
Note that the color scale shows the logarithm of δI2: The deviation
of the flow equation transform from perfect unitarity is less than
1% across the majority of the phase diagram. Each of the 11 × 11
points in this phase diagram is the result of 50 � Ns � 128 disorder
realizations, as required for convergence.

on small system sizes accessible to exact numerical methods.
Here, we focus on the second invariant [64] (p = 2) and define
the truncation error as

δI2 = |I2(l = 0) − I2(l = ∞)|
1
2 [I2(l = 0) + I2(l = ∞)]

. (18)

The main source of error in this scheme is the strength
of the interactions, which contribute to the generation of
higher-order terms not included in our variational manifold.
In the present case, as the truncated higher-order terms scale
approximately with integer powers of the interaction strength
V0 � 1, the neglected terms are typically small and the ac-
curacy very good. However, in the limit of β → 0, there are
a large number of interaction terms, and the neglected terms
can begin to become significant. To get an idea of the accuracy
of our results, we can compute this quantity across the phase
diagram in the (α, β ) plane. The result is shown in Fig. 2.
We find that the transform is almost perfectly unitary across
the entire phase diagram, with the main deviations away from
unitarity occurring close to β = 0.

C. Comparison with exact dynamics

Finally, in order to verify the accuracy of the time evo-
lution obtained with flow equations, we benchmark it with
exact quantum dynamics (ED). For this, we again employed
the QUSPIN package [73,74]. Sample results for the density
dynamics on a single site are shown in Fig. 3 for a variety of
values of α and β across the phase diagram. The agreement in
all cases is excellent, with flow equations differing only very
slightly from the exact results.

Despite this striking agreement of the averaged density
dynamics, it is interesting to note that the results from the
flow equation method do not capture the decay of fluctuations
around their mean values (shown in the insets of Fig. 3).
The reason for this is due to the mean-field decoupling used
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FIG. 3. Benchmarks of the density dynamics on the central site of a chain of length L = 12 when quenched from a CDW initial state and
averaged over 512 disorder realizations, comparing ED (blue) with FE (orange). (a) α = 0.5, β = 2.0, (b) α = 2.0, β = 2.0, (c) α = 0.5, β =
0.5, and (d) α = 2.0, β = 0.5. In all cases, the results are close, but the FE method slightly overestimates the localization. In the more strongly
localized regime for α, β  1, the FE and ED results agree very closely. The insets show the decay of fluctuations around their long-time
mean value, with δn = σ 2(〈nL/2〉 − ñ) and ñ = 〈nL/2(t )〉t→∞. Note that the power-law decay in the ED data is not seen in the FE data, due to
the mean-field decoupling employed.

in Eq. (15), which does not allow for the slow buildup of
correlations that leads to the power-law decay of fluctuations
(or to the logarithmic growth of entanglement entropy). Sim-
ilar results are seen in the quantum Fisher information (not
shown), a proxy for the entanglement entropy, which does
not display the expected slow increase with time due to the
nature of the mean-field decoupling used here in computing
the dynamics.

V. RESULTS

We are now in position to present the main results of
this work, concerning the effect of long-range couplings on
MBL physics as encoded in the model in Eq. (1). In the
following we focus on the behavior of this model in the
weakly interacting regime (unless otherwise specified, we
fix J0 = 0.5, V0 = 0.1, and W = 5) with 0 � α, β � 2d and
study the interplay/competition between power-law hoppings
and power-law interactions. We first consider the two effects
separately, fixing α = ∞ and varying β and vice versa, while
later we present a complete phase diagram in the (α, β ) plane.

A. Decay of l-bit interactions and real-space support

We start discussing the properties of the fixed-point diago-
nal Hamiltonian (10) obtained by solving the flow equations.
This describes a model of localized bits (or l-bits) in the pres-
ence of random fields h̃i and pairwise interactions �̃i j . First,
we can straightforwardly extract the distance dependence of
the coefficients �̃i j , as our procedure automatically gener-
ates the Hamiltonian in the l-bit basis. These coefficients,
which decay exponentially in short-range systems [42,75,76]
and in periodically driven systems [70], are strongly mod-
ified by the existence of long-range couplings. In Fig. 4,
we show these quantities in the case of power-law hopping
and nearest-neighbor interactions (corresponding to β = ∞).
The �̃i j retain their exponentially decaying nature at short

distances but acquire power-law tails at long range, with a
decay exponent ζ ≈ 2α for α � 1. This follows immediately
from the structure of the eigenstates of the PRBM problem,
which are indeed exponentially localized at short distance
with power-law tails [48].

Second, we compute the real-space support of the l-bit
operators directly. This is something that is extremely natural
within the flow equation approach, in contrast to many other
numerical methods. Starting from a local-density operator ñi

defined in the diagonal l → ∞ basis with support only on a
single site, we can transform it back into the physical (i.e.,

FIG. 4. l-bit interactions (a) and real-space support (b) for
power-law hopping and nearest-neighbor interactions {α ∈ [0.0, 5.0]
(from top to bottom) in increments of 0.25, and β = ∞}. (a) The
disorder-averaged (median) �̃i j decay as a power law at long dis-
tances (notice log-log scale, dashed line is a power-law guide to the
eye) and as an exponential at short distances (see inset, semilog scale,
for α ∈ [3.5, 5]). (b) The l-bits exhibit an exponential decay (most
visible for large α) crossing over to an extended behavior with long
power-law tails. The dashed line is the (α → ∞, β → ∞) short-
range limit. Chain size L = 128, disorder realizations Ns = 256.
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FIG. 5. l-bit interactions (a) and real-space support (b) for
nearest-neighbor hopping and power-law interactions {α = ∞, β ∈
[0.0, 5.0] (from top to bottom) in increments of 0.25}. (a) The
disorder-averaged �̃i j retain their initial power-law distribution for
all β, except at very short distance and large β (see inset, semilog
scale, for β ∈ [3.5, 5]). (b) The l-bits remain exponentially localized
in real space, with almost no dependence on β. The dashed line is the
same quantity for a short-ranged many-body localized model [(α →
∞, β → ∞)]. Chain size L = 128, disorder realizations Ns = 256.

real space) basis by inverting the unitary transform used to
diagonalize the Hamiltonian.

The real-space support of the l-bits also shows power-law
tails characteristic of delocalization, after an initial exponen-
tial decay at short range. The precise distance where the decay
crosses from exponential to power law depends on the expo-
nent, as well as both the disorder and interaction strength. As
α → ∞, the real-space support of the l-bits decays exponen-
tially over a larger range before the power-law tail appears,
and the resulting l-bits closely match the nearest-neighbor
case [black dashed line in Fig. 4(b)]. This further illustrates
the critical need for methods able to reach very large system
sizes in order to accurately extract the long-distance behavior
of these systems, even in the case of “short-range” (α > 2d)
power-law exponents.

In Fig. 5, we show the case of power-law interactions and
nearest-neighbor hopping (corresponding to α = ∞). The �̃i j

retain their initial power-law distribution at all distances and at
all stages during the flow procedure. Surprisingly, we find that
the real-space support of the l-bits is essentially unmodified
by the range of the interactions. They retain their exponen-
tially decaying character even in the limit of β = 0, with only
an extremely small extended “tail” appearing following the
strong initial exponential decay. This may be an effect of the
truncation in Eq. (3) suppressing degrees of freedom respon-
sible for delocalization, or it may be that delocalization is only
seen in higher-order contributions to Eq. (11), corresponding
to multipole processes.

B. Dynamics of imbalance and phase diagram

We now move on to study the effect of power-law cou-
plings on the quantum dynamics of the system. We set up an
initial charge density wave (CDW) state and see how it relaxes
under its own quantum dynamics. To monitor this, we define

FIG. 6. Relaxation of the imbalance following a quench from a
CDW state with (a) power-law hopping α ∈ [0.0, 2.5] in increments
of 0.25 (from bottom to top) and β = ∞ (nearest-neighbor interac-
tions) and (b) power-law interactions β ∈ [0.0, 2.5] in increments of
0.25 (from top to bottom) with α = ∞ (nearest-neighbor hopping).
Decreasing α makes the long-time imbalance go to zero [as a power
law in time for small α; see inset in (a)], whereas changing β has
almost no effect on the long-time dynamics of the imbalance, which
approaches a finite plateau almost exponentially [see inset in (b)].
Chain size L = 64, disorder realizations Ns = 256.

the imbalance as

I (t ) = 2

L

∑
i

(−1)i〈ni(t )〉, (19)

which involves computing the density dynamics on each lat-
tice site using flow equations and then summing the results.
The long-time behavior of the imbalance is often used as a
proxy for the MBL transition, since in a localized phase any
initial inhomogeneity persists at long time due to enhanced
memory of initial conditions while in a thermal, delocal-
ized phase the imbalance is expected to decay to zero as a
power law with a disorder-dependent exponent, vanishing at
the transition [77,78]. Using the time-dependent mean-field
decoupling on the effective l-bit Hamiltonian, the results for
the relaxation dynamics of the imbalance are shown in Fig. 6,
for chains of length L = 64 in the cases of power-law hopping
with nearest-neighbor interactions [Fig. 6(a)] and nearest-
neighbor hopping with power-law interactions [Fig. 6(b)]. In
Fig. 6(a), we see that for α � 1 the system remains localized
as for the short-range model, while upon decreasing α, the
imbalance continuously decreases toward zero, a behavior that
is reminiscent of the PRBM model and similar models with
nonrandom short-range interactions [55]. For α = 0, the de-
cay of the imbalance is approximately exponential, while for
α > 0 it is consistent with a power law. In contrast, Fig. 6(b)
shows that decreasing β, i.e., making the range of interactions
larger, has little to no effect on the long-time imbalance and
the system remains localized, with small values of β leading to
the appearance of a short plateau that vanishes at longer times.
Though short-lived, this plateau is intriguing as it suggests that
long-range interactions may weakly stabilize localization at
short times.

Having examined their effects separately, we now compute
the imbalance in the presence of both long-ranged interactions
and long-range hopping and obtain the qualitative phase dia-
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FIG. 7. Phase diagram of model (1) as a function of α (hopping
exponent) and β (interaction exponent). The color scale shows the
imbalance I(t ) at a time t∗ = 100 following a quench. The dashed
lines show contours of the imbalance I(t∗) = 0.15, 0.25, 0.35, 0.45
computed using a linear interpolation. The solid white lines are
guides to the eye. The system size is L = 64, with 50 � Ns � 128
disorder realizations, as required for convergence. For β = 0.0, 0.25,
and 2.0, we also took additional data points (not shown) at double the
resolution along the α axis in order to ensure that our resolution was
sufficient to resolve the main features.

gram shown in Fig. 7, where we show the imbalance I (t ) at
a time t∗ = 100 after the quench as a function of α, β and su-
perimpose lines at fixed imbalance as a guide to the eye. In the
upper right corner, corresponding to fast-decaying hopping
and interactions (α, β � 2), the system is in a quasi-MBL
phase, with a finite and large imbalance. Keeping β � 2 and
decreasing the hopping exponent α, the imbalance displays a
sharp crossover from localized to delocalized behavior, con-
sistent with the similar model of Ref. [55].

We can now ask what happens to those two phases as
we increase the range of the interaction, i.e., β decreases
toward zero. The ergodic phase is expected to be robust to
long-range interactions, and indeed we see that the imbalance
for α < 1 remains constant and close to zero upon decreas-
ing β (see the almost vertical contour lines). On the other
hand, and quite surprisingly, we find the imbalance to remain
strongly unaffected by long-range interactions even for α � 1,
consistent with the results of Fig. 6 for the α = ∞ case.
However, the lines at fixed imbalance bend towards the right
for small β, suggesting that the localization of the lower right
corner of the phase diagram may be less robust than that of
the upper right corner, consistent with a significantly broad-
ened crossover from localized to delocalized behavior in this
regime.

VI. DISCUSSION

Our results show that upon increasing the range of the
hopping, a transition from delocalization to quasi-MBL exists,
both for short-ranged interactions as well as for β < 2, in
a regime where perturbative arguments based on a locator
expansion would exclude it. We have performed extensive

FIG. 8. Long-time imbalance I(t∗) (at a time t∗ = 10 following
a quench) versus system size L for different values of (α, β ), av-
eraged over Ns = 256 disorder realizations for the smallest system
sizes (L = 6, 8, 12, 24, 36), Ns = 128 for L = 48, Ns = 64 for L =
72, and Ns = 32 for L = 96. The plots are shown on a log-log scale,
and the solid lines are linear fits to the data. Error bars indicate the
variance across disorder realizations. For β = 1.0 (a), the imbalance
decreases with system size approximately as a power law (note the
log-log scale) for α � 1. For β = 0 (b) the imbalance decays with
system size for all values of α, suggesting slow delocalization with
system size. Interestingly, the imbalance in the delocalized (small α)
regime decays more slowly with system size in the case of long-range
interactions (β = 0.0).

checks to validate our approach in this regime, including
comparison with exact numerics for small system sizes and
monitoring the flow invariant, a sensitive probe of the va-
lidity of our scheme. This quasi-MBL phase could also be
metastable for finite size and/or finite time. Recent works sug-
gest that in the intermediate regime 1 < β < 2, an infinitely
large system would be delocalized while finite-size systems
will see a localization transition as a function of increas-
ing system size L [or, equivalently, exhibit a size-dependent
critical disorder Wc(L)] [29,31,57,79]. Our results show (see
Appendix B) that the quasi-MBL phase shrinks as the sys-
tem size is increased, consistent with this argument, and thus
we expect that the quasi-MBL phase is likely to be stable
for finite-size systems but unstable in the thermodynamic
limit. To further support this statement, we plot in Fig. 8 the
long-time imbalance I (t∗) versus system sizes L for different
values of (α, β ) in the phase diagram. As we can clearly
see, for β = 0 the imbalance decays as a power law for all
values of α suggesting slow delocalization in the thermody-
namic limit. Interestingly, for α = 0.5–1 the final value of
the imbalance is larger for β = 0 than for β = 1, supporting
the idea of a broad interaction-induced crossover region that
slowly becomes ergodic in the limit of large system sizes. The
Gaussian distribution of couplings (with zero mean) could
also play a role in the apparent robustness of the localized
phase, as by comparison, long-range couplings with random
signs, as commonly studied in quantum spin models, exhibit
enhanced delocalization, shown in Appendix C. Finally, it is
worth noticing that in the α, β → 0 limit, Eq. (1) reduces to
a model of fermions with all-to-all random couplings, remi-
niscent of the maximally chaotic Sachdev-Ye-Kitaev (SYK)
model [56]. As shown in Ref. [80], adding finite-range hop-
ping to SYK-like models can lead to an increased localized
behavior, at least for finite systems, consistent with the results
shown here.
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On a technical level, there are two key avenues for im-
proving the method further. The first is the incorporation
of higher-order terms into the ansatz for both the running
Hamiltonian and the running number operator. The neces-
sity of including the normal-ordering corrections makes this
procedure extremely algebraically challenging and difficult to
automate, however, complicating this procedure significantly.
Further work is currently underway on different techniques
by which to alleviate this issue. The second route towards im-
provement is the search for a more optimal generator, perhaps
one that does not result in a proliferation of new couplings
as the Wegner generator does. Recently, connections between
Wegner generators and adiabatic gauge potentials have been
noted [81], and it is likely that further ongoing work examin-
ing this connection will allow systematic improvements to be
made to Wegner-type generators, improving their convergence
properties and allowing the intelligent design of optimized
generators for specific problems, bypassing many of the im-
plementation issues around continuous unitary transforms for
arbitrary systems.

VII. CONCLUSION

We have used the flow equation method to study a model of
one-dimensional fermions with Gaussian-distributed, power-
law decaying hopping and interactions and diagonal box
disorder. For large diagonal disorder, compared with typical
scales of interactions and hoppings, we have provided evi-
dence of a transition from a delocalized ergodic phase to a
quasi-MBL phase upon increasing the exponent α controlling
the range of hopping. A crossover survives even for slowly
decaying interactions, β < 2, although it appears to become
less sharp. This quasi-MBL phase has intriguing properties
such as algebraically decaying l-bit interactions. To probe the
possible metastability of this phase, we studied the decay of
long-time imbalance with system sizes, finding the signature
of slow power-law delocalization, which, however, appears
more effective at finite β than in the regime of β → 0. As-
sessing the corresponding lifetime of the quasi-MBL case as
well as the possible existence of a critical disorder strength
is an interesting open question for future work. Another open
question is the stability of such a phase to the propagation of
ergodic bubbles. Further investigation based on our model and
approach could provide insights into this largely unexplored
question, e.g., by studying the coupling of this quasi-MBL
phase to an ergodic bath [82].

We have also used this work to demonstrate an improved
implementation of the truncated flow equation approach,
which to date remains the only controlled technique able both
to compute the local integrals of motion (l-bits) nonperturba-
tively and to numerically construct the effective Hamiltonian
in the l-bit basis for large system sizes, particularly in the
case of disordered long-range couplings, a situation which
is extremely challenging to numerically investigate. We have
shown that the method is capable of extremely high accuracy
across the entire phase diagram, able to extract both static and
dynamic properties, and error estimates both with respect to
exact numerical methods and self-consistent quantities remain
small for all parameters considered in this paper. Our results
demonstrate that the truncated flow equation method is an

extremely powerful, flexible method for the study of disor-
dered many-body systems, particularly in parameter regimes
difficult to access by other means, and we have shown that
it is able to access quantities which are impossible to obtain
with other methods. Other recent developments include the
extension of flow equation methods to study driven [70] and
dissipative [83] systems, highlighting the versatility and wide
applicability of this approach, which we hope will become a
key numerical method for the study of disordered systems in
the near future.

Note added. Recently, we became aware of another very
recent work studying the effect of disordered long-range cou-
plings, the results of which are consistent with those we
present here [84].
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APPENDIX A: NORMAL ORDERING

A key ingredient in the calculation is the adoption of a
normal-ordering procedure [42,59,72], which allows us to
consistently group together terms at each order of the Hamil-
tonian and to incorporate corrections from higher-order terms
which are then discarded from our variational manifold. We
will assume that all contractions will be computed with re-
spect to a product state, and the relevant contractions will be
denoted

{c†
i , c j} = Gi j + G̃ ji = δi j, (A1)

Gi j = 〈c†
i c j〉 = δi j〈ni〉, (A2)

G̃ ji = 〈c jc
†
i 〉 = δi j − 〈c†

i c j〉 = δi j (1 − 〈ni〉). (A3)

To calculate the commutators of normal-ordered strings of
operators, we need to use the theorem [59]

: O1(A) :: O2(A′) : =: exp

(∑
i j

Gi j
∂2

∂A′
j∂Ai

)
O1(A)O2(A′) :,

(A4)

which, for example, leads to the following commutation rela-
tion for pairs of fermion operators:

[: c†
αcβ :, : c†

γ cδ :] = (Gγ β + G̃βγ ) : c†
αcδ :

− (Gαδ + G̃δα ) : c†
γ cβ :

+ (GαδG̃βγ − G)γ βG̃δα ) (A5)

= δβγ : c†
αcδ : −δαδ : c†

γ cβ :

+ (GαδG̃βγ − Gγ βG̃δα ), (A6)

which is just the regular commutator plus a constant. All nec-
essary commutators can be computed from Eq. (A4), though
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FIG. 9. The same quantity as in Fig. 7 of the main text, here for
system size L = 36 and averaged over Ns = 100 disorder realiza-
tions. The solid white line represents I(t∗ = 100) = 0.25 (half the
maximum value) for the L = 36 system and is a rough indicator of
the position of the transition, while the dashed white line is the same
quantity for the L = 64 system shown in Fig. 7 of the main text.
There is a clear drift of the boundary towards larger values of α as
we increase the system size; however, the main features are robust.

the calculation is extremely tedious and will not be shown
here. For further details, see Refs. [42,59,72]. In principle,
one should define an l-dependent state and recompute the
normal-ordering corrections at each flow time step accord-
ingly; however, to capture the main physics it is sufficient to
simply pick a target state and compute the corrections with
respect to that state [59]. In the main text, we compute the

contractions with respect to an infinite-temperature product
state such that 〈ni〉 = 0.5 ∀i. This has the advantage that many
of the normal-ordering corrections [e.g., the final terms in
Eq. (A6) above] vanish identically.

APPENDIX B: EFFECT OF SYSTEM SIZE ON PHASE
DIAGRAM

To verify our conclusions, we have also computed the
phase diagram for a chain of L = 36 sites averaged over
Ns = 100 disorder realizations, shown in Fig. 9. The phase
boundary moves, as expected, but the general conclusion is
the same. This demonstrates that the main features of the
phase diagram presented in the main text are robust. The flow
invariant remains below a maximum value of δImax

2 = 0.012
at all points in this figure. These data suggest that, all other
things being equal, there is a slow growth in the number of
resonances as the system size is increased, consistent with
the resonance-counting arguments in the existing literature.
Our results are an indication that even for large system sizes,
localization still persists over a large region of the phase
diagram. Note, however, that the reversal of curvature seen
in Fig. 7 of the main text for α > 1 is not present in these data
and the L = 36 system is more localized in this region, with
a larger imbalance. This is consistent with the idea that larger
systems exhibit more delocalizing resonances, destabilizing
the localized phase.

APPENDIX C: RANDOM-SIGN DISORDER

Previous works on long-range couplings in spin chains
have considered so-called “random-sign disorder,” in which
the couplings are fixed in magnitude but allowed to vary in
sign, i.e., Ji j = ±J0/|i − j|α and Vi j = ±V0/|i − j|β , where

FIG. 10. Various static properties of the fixed-point Hamiltonian with random-sign disorder, rather than Gaussian-distributed disorder. All
data here are taken for system sizes L = 64 with Ns = 128 disorder realizations, and the color schemes are the same as in the main text. (a) and
(c) show data for long-range hopping, while (b) and (d) show data for long-range interactions. (a) Fixed-point couplings �i j in the case of
power-law hopping and nearest-neighbor interactions β → ∞, again with α ∈ [0, 5] as in the main text. The black dashed lines are the same
as in the main text. (b) The same quantity plotted for the case of power-law interactions (with α → ∞ and β ∈ [0, 5] as before). (c) The
real-space support of the l-bits in the case of long-range hopping. The black dashed line is the same as in the main text (the α, β → ∞ limit
with Gaussian-distributed disorder), while the blue dots show the α, β → ∞ limit of the random-sign disorder. (d) The same quantity plotted
for long-range interactions, with α → ∞ and β ∈ [0, 5]. The black dashed line is again the same as in the main text, while the red dots show
the α, β → ∞ limit of the random-sign disorder. Here, med, median.
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the signs are chosen randomly. These works have predicted
the absence of a localized phase in the regime d � β � 2d ,
whereas we find clear signs of localization in this regime.
While this could be a finite-size effect, or, equivalently, we
may simply be below the critical disorder threshold for this
system size, we have nonetheless simulated this type of dis-
order as well in order to compare with our (zero mean)
Gaussian-distributed random couplings. The results are shown
in Fig. 10.

Remarkably, we find that the case of Gaussian-distributed
random couplings is indeed significantly more localized than
the random-sign disorder, both quantitatively and qualita-

tively. This effect is most prominent at short distances, with
the long-distance tails behaving the same regardless of the
specific type of disorder. This difference, while striking at
first sight, can be explained simply by the typical magnitude
of the coupling terms being large (and, crucially, nonzero)
in the case of random-sign disorder, while the typical value
is zero for the Gaussian-distributed disorder considered in
the main text. This clearly demonstrates that the short-range
behavior of these systems is a complex function of the
disorder and the long range of the couplings, whereas at
large distances only the asymptotic form of the disorder is
important.
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