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Zero-point magnetic exchange interactions
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Quantum fluctuations are ubiquitous in physics. Ranging from conventional examples like the harmonic
oscillator to intricate theories on the origin of the universe, they alter virtually all aspects of matter, including
superconductivity, phase transitions, and nanoscale processes. As a rule of thumb, the smaller the object, the
larger its impact. This poses a serious challenge to modern nanotechnology, which aims at total control via
atom-by-atom engineered devices. In magnetic nanostructures, high stability of the magnetic signal is crucial
when targeting realistic applications in information technology, e.g., miniaturized bits. Here we show that zero-
point spin fluctuations play an important role in determining the fundamental magnetic exchange interactions
that dictate the nature and stability of the magnetic state. Based on the fluctuation-dissipation theorem, we
show that quantum fluctuations correctly account for the large overestimation of the interactions as obtained
from conventional static first-principles frameworks, filling in an important gap between theory and experiment
[Zhou et al., Nat. Phys. 6, 187 (2010); Khajetoorians et al., ibid. 8, 497 (2012)]. Our analysis further reveals
that zero-point spin fluctuations tend to promote the noncollinearity and stability of chiral magnetic textures
such as skyrmions, a counterintuitive quantum effect that inspires practical guidelines for designing disruptive
nanodevices.
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I. INTRODUCTION

Matter is constituted by a collection of ions and a sur-
rounding cloud of electrons. These microscopic entities
obey quantum mechanical laws that, in addition to ther-
mal fluctuations, involve intrinsic quantum fluctuations, a
direct consequence of Heisenberg’s uncertainty principle. The
presence of fluctuations can alter the collective behavior of
particles, modifying the physical properties of matter at the
macroscopic level, such as the Curie temperature of magnets
[1]. In addition, quantum fluctuations determine the energy of
the system at its lowest level, the so-called zero-point energy
that provides an extra contribution absent in the classical
world. A notorious signature is the long-known Casimir ef-
fect [2], in which an attractive force emerges spontaneously
between two metallic planes separated by vacuum. However,
zero-point effects can emerge in a variety of contexts, in-
cluding recently found light superconducting compounds like
LaH10, a quantum crystal stabilized by atomic zero-point
fluctuations [3], nuclear spin-lattice relaxation of molecular
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magnets [4], and even the internal degrees of freedom in
electrical circuit components [5].

As realized in early works [1], quantum fluctuations play
a particularly relevant role concerning a central property
of the electron, namely, its spin. Known as zero-point spin
fluctuations (ZPSFs), they represent an essential ingredient
of itinerant electron magnetism and affect a wide range of
phenomena, including high-temperature [6–9] and iron-based
[10,11] superconductivity, quantum phase-transitions at 0 K
[12], and potentially even skyrmion lattices [13]. Zero-point
spin fluctuations are also predicted to play a notorious role
in elemental bulk transition-metal paramagnets and ferromag-
nets [14,15] by modifying the effective magnitude of the spin
moments and possibly inducing spin anharmonic effects [16],
which can alter the magnetic stability of the ground state [17].

Zero-point spin fluctuations become increasingly impor-
tant as the size of the system is decreased down to a handful
of atoms, a regime where quantum effects prevail. Due to
the tremendous current appeal of such low-dimensional sys-
tems in the context of information technology and storage
as miniaturized magnetic bits [18–20], it becomes crucial to
understand and control the effect of quantum fluctuations over
their magnetic properties. In the ultimate limit of a single mag-
netic adatom deposited on a nonmagnetic substrate, different
measurements display contrasting magnetic trends depend-
ing on the probing protocol [18,19,21–24]; while ensemble
measurements based on x-ray magnetic circular dichroism
report the presence of a huge magnetic anisotropy energy
(MAE) that protects the magnetic moment against external
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FIG. 1. Distance dependence of the magnetic exchange interaction. (a) Schematic depiction of the magnetic exchange interaction between
two fluctuating magnetic moments as a function of interatomic distance (the repeated yellow atom portrays distance dependence). The
characteristic RKKY-like dependence is depicted by the oscillating curves, which also exhibit the strong renormalization from the classical (red
solid curve) to the quantum (blue dashed curve) prediction. Also shown is the calculated direct exchange interaction as a function of interatomic
distance of dimers (b) Co/Pt111, (c) Fe/Cu111, and (d) Fe/Pt111. The bare and fluctuation-renormalized Heisenberg exchange interactions
are denoted by red circles and blue triangles, respectively. In (b) and (c) the respective experimental data (black stars) from Refs. [27,28] are
also included with permission from Nature Publishing Group.

interactions, local probing techniques generally find no stable
magnetic signal in the very same systems. To resolve this
apparent contradiction, first-principles theory has successfully
invoked ZPSF as a mechanism that destroys the magnetic
bistability by locally reducing the MAE barrier; the larger the
fluctuations, the larger the local reduction, clarifying many of
the observed trends [25,26].

Nevertheless, the magnetic signal of multiatomic quantum
devices [19,27–31] not only depends on the quantum fluc-
tuations of the single magnetic moments, but also emerges
from the way magnetic moments talk to each other via the
magnetic exchange interaction (MEI). The impact of local and
dynamical correlations on the MEI has been investigated by
means of dynamical mean-field theory for elemental bulk and
surface materials (see, e.g., Refs. [32,33]) without accounting
for spin-orbit coupling. However, the impact of ZPSFs on the
different components of the MEI in nanoscale systems formed
by a handful of atoms remains to be explored, understood,
and eventually quantified theoretically and experimentally.
Advances in spin-polarized scanning probing techniques un-
dergone in the past decade allowed pioneering magnetometric
measurements of the most fundamental MEI between two
magnetic adatoms (i.e., a magnetic dimer) [19,27,28]. Re-
markably, first-principles calculations based on the local

spin-density approximation (LSDA) predict very precisely the
nature of the coupling measured experimentally [i.e., ferro-
magnetic (FM) or antiferromagnetic (AFM)] as a function of
the interatomic distance [27,28] [see Fig. 1(a) for a schematic
illustration]. However, in direct contrast to this success, the
magnitude of the MEI obtained theoretically systematically
overestimates the experimental value, with a relative error of
more than 100%, as shown in Figs. 1(b) and 1(c).

In this work we show that quantum fluctuations are behind
the gap between standard theory and experiments, providing
thereby means to quantify them. In particular, we establish
a route based on a first-principles dynamical theory for the
realistic evaluation of ZPSFs impacting the MEI. By adapt-
ing the coupling constant integral formalism [1,7,34] to the
modern framework of time-dependent density functional the-
ory (TDDFT) [35–37], we show that the reduction of the
MEI magnitude induced by local and nonlocal ZPSFs re-
sults in very good agreement with previous experimental
results [27,28]. In addition, our analysis reveals that anti-
symmetric spin interactions of Dzyaloshinskii-Moriya type
are particularly robust against ZPSFs, implying that quantum
fluctuations favor the emergence of chiral magnetic textures.
These findings highlight the importance of quantum effects in
the study of nanoscale magnets and their future applications.
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II. ZERO-POINT SPIN FLUCTUATIONS
FROM FIRST PRINCIPLES

As the first step in our theoretical analysis, we obtain
an expression for the zero-point energy induced by the spin
fluctuations, which can then be used to assess the impact on
the MEI. For this purpose, we make use of TDDFT linear
response theory within the adiabatic LSDA, which represents
one of the most powerful tools for analyzing dynamical prop-
erties of spins via ab initio methods [35,38]. As a mean-field
theory, however, it does not incorporate near-critical fluctua-
tions [39,40], which can be key in low-dimensional systems
[25,26]. A notable way in which ZPSFs can be incorporated
into the theoretical framework is by making use of the so-
called fluctuation-dissipation theorem, a fundamental relation
that gives access to the magnitude of the local fluctuation of
the magnetic moment [7,25]

ξ 2
i,± = 1

π

∫ +∞

−∞
Imχ+−

i (ω)sgn(ω)dω, (1)

with χ+−
i (ω) representing spatial average of the interacting

transverse susceptibility of a magnetic atom at site i [36,37],
evaluated using the Dyson-like equation

χ+−(ω) = χ+−
0

(ω) + χ+−
0

(ω)Kχ+−(ω). (2)

Above, χ+−
0

(ω) and K represent the Kohn-Sham suscepti-
bility, describing electron-hole excitations and the exchange-
correlation kernel, respectively; the underline is used to
denote the tensorial character of objects. Going one step
further, we obtain the zero-point energy associated with the
ZPSFs by combining the modern TDDFT framework with
the coupling constant integral method [7,34,41], giving rise
to the first important relation (see Appendix A for the detailed
derivation)

E± = − 1

2π
Im Tr

∫ +∞

−∞
{χ+−

0
(ω)K + ln[1 − χ+−

0
(ω)K]}

× sgn(ω)dω, (3)

where the trace runs over the number of magnetic units present
in the system.

We now introduce the fluctuation-corrected magnetic ex-
change interactions J SF

i j , which are defined assuming an
extended Heisenberg Hamiltonian of the form

ESF = −1

2

∑
i �= j

�eiJ SF
i j �e j + EMAE. (4)

Here ESF represents the fluctuation-corrected band energy of
the system and EMAE the local contribution from the on-site
MAE. In the first-principles framework, ESF is given by the
sum of the LSDA band energy Eb and E± of Eq. (3). Then
the magnetic exchange interactions renormalized by quantum
fluctuations can be obtained from the curvature of ESF as

J SF,αβ
i j ≡ − ∂2ESF

∂eα
i ∂eβ

j

= − ∂2Eb

∂eα
i ∂eβ

j

− ∂2E±
∂eα

i ∂eβ
j

, (5)

with

Jαβ
i j ≡ − ∂2Eb

∂eα
i ∂eβ

j

(6)

the bare exchange interaction parameters that are commonly
computed using standard DFT. In Eqs. (5) and (6), eα

i denotes
the transverse component α of the vector �ei defining the ori-
entation of the magnetic moment at site i.

Therefore, the challenge consists in finding an expression
for the extra term − ∂2E±

∂eα
i ∂eβ

j

in Eq. (5). Relying on the mag-

netic force theorem together with the infinitesimal rotational
method [42–44], the correction of the elements of the MEI
tensor is determined as (see Appendix C)

− ∂2E±
∂eα

i ∂eβ
j

� 1

2π
Im Tr

∫ +∞

−∞
χ+−(ω)

× ∂2[χ+−(ω)]−1

∂eα
i ∂eβ

j

sgn(ω)dω. (7)

As a final step, we derive a simple expression for the
renormalized MEI in terms of the fluctuating moments by
mapping the ab initio χ+−(ω) to the one obtained from the
Landau-Lifshitz-Gilbert (LLG) model. This allows the identi-
fication of the analytical dependence between the dynamical
susceptibility and the MEI, giving rise to (see Appendix C)

J SF,αβ
i j = Jαβ

i j

[
1 − Jαβ

ji

Jαβ
i j

(
ξ 2

i,±
M2

i

+ ξ 2
j,±

M2
j

+ ξ 2
i j,±

MiMj

)]
, (8)

where ξ 2
i j,± denotes a nonlocal contribution to the ZPSF,

ξ 2
i j,± = 1

2π
Im

∫ +∞

−∞
[χ+−

i j (ω) + χ+−
ji (ω)]sgn(ω)dω. (9)

Equation (8) represents a central result of the present work,
as it provides a quantitative expression showing how the
standard tensor of MEI is renormalized by quantum spin fluc-
tuations. As a general and most important trend, this equation
shows that fluctuations systematically reduce the predomi-
nant symmetric component of the tensor of MEI, given that
the hierarchy |ξi,±| < |Mi| holds in general; we will refer to
this important contribution (J αα

i j ) as the Heisenberg exchange
interaction (HEI) component. On closer inspection, Eq. (8)
further reveals that the antisymmetric piece of the tensor
(J SF,αβ

i j with α �= β) giving rise to the Dzyaloshinskii-Moriya
interaction (DMI) increases upon the action of ZPSF due to
its antisymmetric nature, i.e., the property Jαβ

i j = −Jαβ
ji . The

combination of these features may have profound implica-
tions for the stability, wavelength, and shape of intensively
studied chiral spin textures, such as spirals, skyrmions, and
antiskyrmions [45], which are strongly dependent on the ratio
of DMI and HEI.

III. QUANTUM CORRECTIONS AGAINST
EXPERIMENTAL EVIDENCE

With the purpose of connecting the developed first-
principles framework to the microscopic experimental designs
of Refs. [27,28], we investigate magnetic dimers deposited
on nonmagnetic metallic substrates as a function of inter-
atomic distance, as schematically depicted in Fig. 1. This
analysis exposes the oscillatory behavior of the MEI, bringing
into play different exchange mechanisms. In the short-range
limit, direct exchange dominates due the strong hybridization
among the adatom’s d orbitals, while for larger distances the
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(a) (b)

FIG. 2. Spin excitations and zero-point spin fluctuations for Co/Pt(111). (a) Transverse spin-excitation spectra computed at the five shortest
interatomic distances. The corresponding atomic configuration is depicted in the inset of (b); the magenta sphere represents a fixed atom, while
the other spheres correspond to varying positions of the second atom, whose colors correlate with the lines of Imχ+−(ω). (b) Calculated
magnetic moment, local, and nonlocal zero-point spin fluctuations are depicted by gray circles, brown squares, and pink triangles, respectively.
Results are shown as a function of interatomic distance; the five shortest distances are encircled by colors that correlate with the atomic
configuration portrayed in the inset.

Ruderman-Kittel-Kasuya-Yoshida (RKKY) mechanism pre-
vails, indirectly mediating the interaction via the conduction
electrons of the metallic substrate [46–48].

A. Computational details

We consider Co and Fe dimers deposited on the fcc
stacking sites of the Pt(111) and Cu(111) surfaces, re-
spectively; these systems were assessed experimentally, via
scanning tunneling microscope (STM) measurements, and
theoretically, via bare LSDA calculations, in Refs. [27,28].
In addition, we further investigate an fcc-stacked Fe dimer
on Pt(111) in order to provide theoretical predictions on the
fluctuation-renormalized MEI that can be tested in future
STM experiments. The dimers are relaxed by 14% and 20%
for Cu(111) and Pt(111) surfaces [49,50]. Briefly, we first
determine the nature of the coupling (i.e., FM or AFM) us-
ing the infinitesimal rotation method, while the easy axis
(MAE) is resolved from the static transverse susceptibility
[51]. Subsequently, the spin-excitation spectrum is computed
from the corresponding collinear ground-state configuration,
in the spirit of the magnetic force theorem approach.

The simulations have been carried out using the scalar-
relativistic all-electron Korringa-Kohn-Rostoker Green’s-
function method, including the spin-orbit interaction self-
consistently [52,53]. An angular momentum cutoff of lmax =
3 and a k mesh of 600 × 600 have been used for the con-
struction of the Green’s functions in real space. The magnetic
impurities have been embedded into a real-space impurity
cluster containing 56 sites and 30 substrate atoms. The mag-
netic excitations have been assessed in the framework of
TDDFT [35,37], using the adiabatic LSDA for the exchange-
correlation kernel. Finally, the ZPSFs have been obtained
from the frequency integral of the imaginary part of the mag-
netic susceptibility, with a cutoff frequency set at 250 meV

(given that the spin-excitation energies are around few meV),
after which an ω−2 decay is assumed [25,26].

B. Results

We begin by briefly describing the calculated ground-
state magnetic properties of the adatoms conforming the
dimers, which evolve large magnetic moments of 2.3μB

for Co/Pt(111), 3.3μB for Fe/Cu(111), and 3.5μB for
Fe/Pt(111). In all the systems, the MAE is of the order of a
few meV and favors an out-of-plane orientation. These values
are found to be mildly affected by the interatomic distance.

Taking Co/Pt(111) as a case study, next we illustrate the
main properties of the spin-excitation spectrum of the dimer
as a function of interatomic distance in Fig. 2(a). Our calcula-
tions reveal that the spectrum is largely dominated by a strong
acoustic mode at ∼4 meV. The optical mode (not shown) is
much weaker, lying above 60 meV for the shortest distance
and quickly merging with the acoustic mode as the atoms are
moved far apart. We note that the position of the acoustic
mode correlates with the magnitude of the MAE, while the
broadening of the spin excitation is induced by electron-hole
excitations [35,37]. Our results evidence two clear regimes as
a function of interatomic distance: the dimerlike (� 0.7 nm)
and the atomiclike (�0.7 nm). In the dimerlike regime, the
symmetry is lowered [51] and the interaction between the two
magnetic adatoms makes the acoustic mode highly distance
dependent, converging to the single-adatom limit (atomiclike
regime) as the strength of the interaction decays.

Owing to the relation established by the fluctuation-
dissipation theorem [cf. Eq. (1)], these two markedly different
regimes are translated into the evolution of the local and
nonlocal ZPSF depicted in Fig. 2(b); while the size of the
dominant local spin fluctuations oscillates between ∼1.3μB

and ∼1.5μB at short distances, it converges to a steady value
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of ∼1.4μB in the atomiclike regime. In turn, the nonlocal
ZPSFs decay quickly as a function of distance from ∼0.7μB to
virtually zero and are therefore only relevant in the dimerlike
regime. Notably, the calculated magnitude of the ZPSF is of
the same order as the ground-state magnetic moment itself
[also depicted in Fig. 2(b)], a huge relative value for a purely
quantum effect.

Having determined the evolution of the spin-excitation
spectrum and ZPSFs as a function of interatomic distance
(Fig. 2), we now assess the impact of the calculated spin
fluctuations on the renormalization of the HEI, namely, the
average of the diagonal components of J SF,αβ

i j in Eq. (8). Cal-
culated results for Co/Pt(111), Fe/Cu(111), and Fe/Pt(111)
are presented in Figs. 1(b), 1(c), and 1(d), respectively; for
the two first systems, we additionally include experimental
STM data available from Refs. [27,28]. The adatoms couple
ferromagnetically (positive HEI) for the nearest-neighbor dis-
tance and display a characteristic RKKY decaying oscillatory
behavior as the interatomic distance is increased, with dif-
ferent oscillation periods determined by the Fermi surface of
the substrate. Notably, the renormalization effects caused by
quantum fluctuations fix the disagreement between standard
theory and experiments at virtually all interatomic distances,
as demonstrated in Figs. 1(b) and 1(c). As revealed by our
results, the main role of the fluctuations is to systematically
reduce the magnitude of the HEI, correcting for the overesti-
mation arising from the LSDA. We note that in Refs. [27,28],
the bare HEI was systematically divided by a factor equal to
either 3 or 2 in order to theoretical results closer to exper-
iments. Remarkably, including ZPSFs achieves an excellent
comparison without the need of invoking a posteriori parame-
ters, thus proving that quantum fluctuations are a fundamental
mechanism at play in these type of low-dimensional magnets.

IV. UNDERSTANDING QUANTUM FLUCTUATIONS VIA
THE LLG MODEL

In order to identify the role of the fundamental factors that
determine the behavior of ZPSFs, we resort to the widely used

LLG model for characterizing the microscopic spin dynamics
[54]. Our main goal is to obtain an analytical expression of
the TDDFT spin susceptibility entering Eq. (7). Then, by
working out the evolution of the magnetic moments forming a
dimer, we will synthesize the main properties of the local and
nonlocal ZPSFs in terms of the physical parameters entering
the LLG model.

The LLG equation describing the damped precessional
motion of two magnetic moments Mi (i = 1, 2) on top of a
substrate is

dMi

dt
= −γ Mi × Beff

i + η

Mi
Mi × dMi

dt
, (10)

with γ the gyromagnetic ratio and η the Gilbert damping. The
first term on the right-hand side represents the torque gener-
ated by an effective field Beff

i = −∂E/∂Mi, where E ({Mi}) =∑
i Ei(Mi ) − M1J12M2/M2, with Ei(Mi) denoting the on-site

MAE. The second term on the right-hand side of Eq. (10)
models the damping process that drives the magnetization
back to equilibrium.

The low symmetry of the problem (Cs) dictates that the
quantities involved in the LLG equation for a magnetic dimer
have tensorial form (see Appendix B). However, for the sake
of clarity, in the following we consider a simpler model with
M1 = M2 ≡ M and where the ZPSFs are determined as a
function of two central quantities. The first one consists of
an effective MEI weighed by the magnetic moment, Jeff =
Ji jγ /M. We note that this quantity accounts for the distance
dependence of the system, given that a large (small) Ji j cor-
responds to a small (large) interatomic distance. The second
ingredient is the Gilbert damping η, a quantity that is closely
connected to the width of the spin-excitation peak [55] shown
in Fig. 2(a) and is known to be a key player for local ZPSFs,
as it quantifies the magnitude of electron-hole Stoner excita-
tions [25]. In the dimers studied in this work, the calculated
values of η range between ∼0.1 for Fe/Pt(111) and ∼0.4 for
Co/Pt(111).

The key information is encoded into the local and nonlocal
LLG spin-flip susceptibilities, which can be synthesized as

χ+−
i j (ω) = Mγ

2

Jeff + [2Keff − (1 + iη)ω]δi j

[2Keff − (1 + iη)ω][2Jeff + 2Keff − (1 + iη)ω]
, (11)

with Keff = Mγ /M, where M denotes the MAE. The ZPSFs
are obtained via the frequency integral of the imaginary
part of Eq. (11), which we have numerically computed us-
ing the trapezoidal rule in terms of the quantities Jeff, Keff,
and η.

Figure 3 illustrates the LLG solutions for the local and
nonlocal contributions to the spin-fluctuation amplitude as a
function of Jeff and η in the region relevant for experiments
(we have set the MAE along the out-of-plane direction, match-
ing the experimental situation). The figure reveals valuable
information on the nature of the ZPSFs. First and foremost,
quantum fluctuations induce a much larger impact on the
AFM regime (Jeff < 0) as compared to the FM one (Jeff >

0). This result holds for both local and nonlocal contribu-
tions and supports the generally assumed notion whereby

ferromagnets are more robust against quantum fluctuations
than their antiferromagnetic counterparts [51,56]. As a second
major message, Fig. 3 shows that the magnitudes of both
the effective MEI and Gilbert damping play a different role
depending on the nature of the magnetic coupling. In the
FM regime, η tends to significantly increase both local and
nonlocal quantum fluctuations (in line with a previous study
on the single-adatom case [25,26]), whereas the effect of Jeff is
much milder. In turn, the AFM regime shows a more complex
pattern. The effect of |Jeff| is significant, inducing large local
and nonlocal fluctuations as it increases; as for the Gilbert
damping, it induces larger local fluctuations but reduces the
nonlocal ones, resulting in a competing mechanism. As an im-
portant remark we note that for Jeff � 0, the nonlocal ZPSFs
vanish in both the FM and AFM regions independently of η,
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(a) (b)

FIG. 3. Colormaps of quantum fluctuations. (a) Local and (b) Nonlocal contributions of the fluctuation-to-magnetization ratio as a function
of the effective exchange parameter Jeff = Ji jγ /M and the Gilbert damping η. Results were obtained with the Landau-Lifshitz-Gilbert equation
of motion with the effective magnetic anisotropy energy M, Keff = Mγ /M, set to 1 meV, accounting for an out-of-plane MAE in the order of
magnitude of interest.

a feature that explains the quick fall of ξ 2
i j,± observed in the

ab initio results of Fig. 2(b).
In order to extract a final lesson, let us focus on the limit

of zero damping, i.e., η → 0. This allows the identification
of the intrinsic local ZPSFs, which are predominant at large
interatomic distances. In this regime, we have ξ 2

±,i � γ Mi/2,
which is the lower limit of the ZPSFs [see vertical scales
in Figs. 3(a) and 3(b)] and provides a similar but inferior
approach for the renormalization of the HEI components from
Eq. (8):

J SF,αα
i j = Jαα

i j

(
1 − γ

2

Mi + Mj

MiMj

)
. (12)

Notably, this simple expression can be readily incorporated
into the conventional DFT framework when computing the
MEI with virtually no added cost, given that it only involves
ground-state magnetic moments. Note also that Eq. (12)
provides a sensible macroscopic limit, whereby the renormal-
ization due to quantum fluctuations tends to vanish for large
values of the magnetic moment.

V. CONCLUSION

Besides providing insight into the features of the ab initio
calculations, the parameter-space map built in Fig. 3 pro-
vides a simple recipe to design robust collinear nanomagnets.
As its central prediction, an optimal shield against quantum
spin fluctuations can be achieved by a combination of large
ferromagnetic HEI coupling, relatively low Gilbert damping
(i.e., low electronic hybridization), and a strong out-of-plane
MAE. On the other hand, in remarkable contrast to the
direct-exchange mechanism, ZPSFs play in favor of the an-
tisymmetric nature of the DMI, as proven by Eq. (8) (see
also Appendix C). This finding provides an important pre-

diction, namely, that quantum spin fluctuations enhance the
noncollinearity and the stability of chiral magnetic textures
such as skyrmions, governed by the DMI-to-HEI ratio that
increases upon the action of ZPSF. This counterintuitive effect
appears to be particularly relevant for the ongoing minia-
turization process of skyrmions, whose characteristic length
scale is approaching the size of the lattice constant and classi-
cal predictions start to break down [57].

In summary, we have analyzed the role of quantum spin
fluctuations in the fundamental magnetic coupling mechanism
of atoms within a TDDFT framework. We have furthermore
provided a simple prescription for quantitatively assessing the
impact of quantum spin fluctuations in the renormalization of
magnetic exchange interactions [cf. Eq. (12)], an expression
that can be readily applied to the widespread DFT framework.
By applying the approach to magnetic dimers deposited on
metallic substrates, we demonstrated that accounting for zero-
point spin fluctuations results in better agreement with the
experimentally available data, fixing a relative error of a factor
2–3. Our work therefore suggests that ZPSFs are an important
ingredient for the study of nanomagnets and their applications
[29,30].

ACKNOWLEDGMENTS

We are grateful to Jens Wiebe and Roland Wiesendan-
ger for sharing with us the experimental data published in
Refs. [27,28]. This work was supported by the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (ERC-consolidator
Grant No. 681405, DYNASORE). J.I.-A. acknowledges fund-
ing from the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie
Grant Agreement No. 839237. We acknowledge the com-
puting time granted by the JARA-HPC Vergabegremium

043357-6



ZERO-POINT MAGNETIC EXCHANGE INTERACTIONS PHYSICAL REVIEW RESEARCH 2, 043357 (2020)

and VSR commission on the supercomputer JURECA at
Forschungszentrum Jülich [58].

APPENDIX A: TRANSVERSE SPIN FLUCTUATIONS AND
ZERO-POINT ENERGY

In this Appendix we derive the zero-point energy present
in the system due to ZPSFs, which emerge as a consequence
of the electron-electron interaction. For clarity, a single-band
Hubbard model is employed [59], where the Hamiltonian can
be written as

Ĥ = Ĥ0 + Ĥint =
∑
i jσ

ti jc
†
iσ c jσ +

∑
i

Uin̂i↑n̂i↓, (A1)

where the first term Ĥ0 accounts for the electrons hopping
ti j from site i to j and the second one Ĥint contains the
effective Coulomb electron-electron interaction Ui. In addi-
tion, n̂iσ = c†

iσ ciσ is the occupation operator, with c†
iσ (ciσ ) the

creation (annihilation) operator of an electron at site i with
spin σ . The sum runs over all the sites of the system. Using
the commutation relations between ciσ and c†

iσ , the interaction
Hamiltonian Ĥint can be reexpressed in terms of the total oc-
cupation number n̂i = n̂i↑ + n̂i↓ and the net magnetic moment
m̂iz = n̂i↑ − n̂i↓ as [60]

Ĥint = 1

4

∑
i

Ui
[
n̂2

i − (
m̂z

i

)2]
. (A2)

Considering that Ŝiz = m̂z
i

2 and Ŝ2
iz = Ŝ2

i − 1
2 (Ŝi+Ŝi− + Ŝi−Ŝi+),

Eq. (A2) can be recast in terms of spin operators

Hint =
∑

i

Ui

(
n̂2

i

4
− Ŝ2

i

)
+ 1

2

∑
i

Ui(Ŝi+Ŝi− + Ŝi−Ŝi+).

(A3)

The resulting interaction energy Eint can be obtained using
the coupling constant integral method [7,34,41]. Using λ as
a constant parameter that scales Ui adiabatically,

Eint =
∑

i

Ui

∫ 1

0
dλ

〈
n̂2

i

4
− Ŝ2

i

〉
λ

+ 1

2

∑
i

Ui

∫ 1

0
dλ〈Ŝi+Ŝi− + Ŝi−Ŝi+〉λ. (A4)

The fluctuation energy �E is defined [7] as the difference between the total Eint calculated in Eq. (A4) and the Hartree-Fock
energy (mean-field energy), denoted here by 〈· · ·〉0. Therefore,

�E =
∑

i

Ui

∫ 1

0
dλ

(〈
n̂2

i

4
− Ŝ2

i

〉
λ

−
〈

n̂2
i

4
− Ŝ2

i

〉
0

)

+ 1

2

∑
i

Ui

∫ 1

0
dλ(〈Ŝi+Ŝi− + Ŝi−Ŝi+〉λ − 〈Ŝi+Ŝi− + Ŝi−Ŝi+〉0), (A5)

where �E includes longitudinal and transverse spin fluctua-
tions, as well as charge fluctuations. We focus our subsequent
analysis on the transverse spin-fluctuation contribution alone
for two main reasons: First, it represents the largest contri-
bution by far for low-dimensional magnets [25], and second,
it is the relevant piece for the analysis of the magnetic
stability since its energy scale coincides with that of the
magnetic anisotropy energy (meV). Consequently, we focus
on the transverse spin-fluctuation energy denoted by E± and
given by

E± = 1

2

∑
i

Ui

∫ 1

0
dλ(〈Ŝi+Ŝi− + Ŝi−Ŝi+〉λ

− 〈Ŝi+Ŝi− + Ŝi−Ŝi+〉0). (A6)

This equation can be rewritten using the spin-flip suscepti-
bilities χ+−

i (ω) and χ−+
i (ω) via the fluctuation-dissipation

theorem [61]

〈Ŝi+Ŝi−〉 + 〈Ŝi−Ŝi+〉 = 1

π

∫ +∞

0
[Imχ+−

i (ω) + Imχ−+
i (ω)]dω

= 1

π

∫ +∞

−∞
Imχ+−

i (ω)sgn(ω)dω.

(A7)

The last line has been obtained using the symmetry rela-
tion [χ−+(ω)]∗ = χ+−(−ω). The transverse spin-fluctuation
contribution to E± [Eq. (A6)] can be recast into [7]

E± = 1

2π
Im Tr

∫ 1

0
dλ

∫ +∞

−∞
U [χ+−

λ
(ω) − χ+−

0
(ω)]sgn(ω)dω.

(A8)

Above, the trace runs over the number of atomic sites present
in the system. In addition, U is a diagonal matrix containing
the elements Ui and χ+−

0(λ)
(ω) is the Hartree-Fock (λUi-

interacting state) susceptibility. In the random-phase approx-
imation we have χ+−

λ
(ω) = χ+−

0
(ω) + χ+−

0
(ω)λUχ+−

λ
(ω)

and E± finally reads

E± = − 1

2π
Im Tr

∫ +∞

−∞
{χ+−

0
(ω)U

+ ln[1 − χ+−
0

(ω)U ]}sgn(ω)dω. (A9)

Notably, this expression can be used in the framework of
TDDFT by making the connections [36]

χ+−
0,i j (ω) → χ+−

KS,i j (ω) =
∫

dr
∫

dr′χ+−
KS,i j (r, r′, ω),

Ui → Ki =
∫

dr
∫

dr′Ki(r, r′),
(A10)
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with χ+−
KS the Kohn-Sham susceptibility and Ki the adiabatic

exchange-correlation kernel, which is local in space. Note that
the radial integrals are performed around each atomic site i
or j.

APPENDIX B: MAPPING TDDFT TO THE
LANDAU-LIFSHITZ-GILBERT EQUATION

In order to interpret results obtained in the framework of
TDDFT calculations, we consider a Heisenberg model for
localized magnetic moments, whose dynamics are dictated by
the LLG equation [54]

dMi

dt
= −γ Mi × Bi,eff(t ) + η

Mi

Mi
× dMi

dt
. (B1)

Above, the first term accounts for the precession of the
magnetic moment while the second one takes into account
relaxation effects, with η defining the Gilbert damping param-
eter. The effective field Bi,eff(t ) = Bi,ext(t ) + Bi(t ) includes
the transverse time-dependent external magnetic field driving
the magnetization out of its equilibrium orientation Bi,ext(t )
as well as internal contributions Bi(t ) originating from the
anisotropy and exchange interactions [see Eq. (B3)]. The in-
ternal fields are obtained from the magnetic part of the internal
energy EM (see the main text) of these localized moments

EM = −
∑

i

Mi · Ki

M2
i

· Mi − 1

2

∑
i j

i �= j

Mi · Ji j

MiMj
· M j, (B2)

where Mi and Ki are the magnetic moment and the magne-
tocrystalline anisotropy tensor of site i, respectively, and Ji j is
the magnetic exchange interaction tensor between sites i and
j. The effective magnetic field acting on the magnetic moment
at site i is defined as

Bi,eff = −∂EM

∂Mi

= 2Ki

M2
i

· Mi +
∑
j �=i

J i j

MiMj
· M j . (B3)

Next, in order to relate the magnetic susceptibility obtained
within linear response TDDFT to the LLG model, Eq. (B1)
is solved using linear response theory. Analytical expres-
sions for the magnetic susceptibility of the dimer in arbitrary
noncollinear magnetic configurations are obtained. For conve-
nience, the response function is computed in the local frame of
the magnetic moments Mi. Therefore, both local and nonlocal
components of Bi are rotated into the local frame of Mi. This
gives rise to a magnetic anisotropy tensor K ′

i and an exchange
tensor J ′

i j . Starting from a ferromagnetic configuration where
all the moments point along the z direction,

J ′
i j = Rα (θi )Ji jRT

β (θ j ),

K ′
i = Rα (θi )KiRT

β (θi ),
(B4)

where Rα (θ ) defines a vector rotation of an angle θ around the
α axis. Thus, J ′

i j and K ′
i are dependent on the magnetic orien-

tations. Furthermore, in the linear response regime the follow-
ing assumptions apply: vanishing torque at equilibrium Mi ×
Bi = 0 and small deviations from the equilibrium Mz

i = Mi

and Mx
i , My

i � Mz
i . Within this approximation, the transverse

components of Bi,eff can be related to the magnetization as

Bα
i,eff(t ) = Bα

i,ext(t ) +
∑

jβ

λ
αβ
i j Mβ

j (t ), {α, β} = {x, y},

λ
αβ
ii = 2K ′αβ

i

M2
i

, λ
αβ
i j = J ′αβ

i j

MiM j
,

(B5)

while the longitudinal one is static and reads

Bz
i,eff =

∑
j �=i

J ′zz
i j

Mi
+ 2K ′zz

Mi
. (B6)

Plugging the generalized form of the effective field [Eq. (B5)]
into the frequency-dependent LLG equation [Fourier
transform of Eq. (B1)], we obtain

(
Bz

i

Mi
− λαα

ii − i
ηω

γ Mi

)
Mα

i −
∑
j �=i

λαα
i j Mα

j + εαβ

(
i

ω

γ Mi
− εαβλ

αβ
ii

)
Mβ

i −
∑
j �=i

λ
αβ
i j Mβ

j = Bα
i,ext, (B7)

where {α, β} = {x, y} designate the transverse blocks and εαβ

is the Levi-Cività symbol. Equation (B7) defines the inverse
of the magnetic susceptibility in terms of spin-dynamics
parameters. Furthermore, the quantity of interest for the
evaluation of E± is the transverse spin susceptibility in the
{+,−} basis [see Eq. (A9)], which reads

−1
ii (ω) = −

(
2Bz

i

Mi
− λxx

ii + λ
yy
ii

)
+ 2ω

γ Mi
(iη − 1),

[χ+−(ω)]−1
i j (ω) = −(

λxx
i j + λ

yy
i j

) + i
(
λ

xy
i j + λ

yx
i j

)
.

(B8)

The above result enables the extraction of the spin-dynamics
parameters by performing a one-to-one mapping to the
dynamical susceptibility obtained from TDDFT calculations

with first-principles accuracy [51] and is utilized to determine
the zero-point spin-fluctuation correction to exchange
interactions (see Appendix C).

APPENDIX C: INFINITESIMAL ROTATIONS

In the preceding Appendix we provided a connection
between the spin-flip magnetic susceptibility and the Heisen-
berg exchange parameters. We now employ these relations to
evaluate the contribution of the fluctuations to the exchange
interactions, which leads to parameters that closely match
the experimental ones (see the main text). In practice, this
is achieved by computing the variation of E± upon infinites-
imal rotations of the magnetic moments and proceeding to
some approximations. Thus, we first compute the change

043357-8



ZERO-POINT MAGNETIC EXCHANGE INTERACTIONS PHYSICAL REVIEW RESEARCH 2, 043357 (2020)

in the Kohn-Sham susceptibility χ+−
KS

(ω) with respect to a

modification of the α component of the vector ei = Mi
Mi

,

∂χ+−
KS

(ω)

∂eα
i

= ∂

∂eα
i

{[χ+−(ω)]−1 + K}−1

= −{[χ+−(ω)]−1 + K}−1
∂[χ+−(ω)]−1

∂eα
i

× {[χ+−(ω)]−1 + K}−1

� −K−1
∂[χ+−(ω)]−1

∂eα
i

K−1, (C1)

where χ+−(ω) is the spatial average of the spin-flip suscep-
tibility computed within TDDFT and K is assumed to be
independent of eα

i (i.e., isotropic). Note that the expression
(C1) was obtained in the limit of magnetic anisotropy energy
Ki and magnetic exchange interaction Ji j � Ki, which per-
mits one to disentangle the collective spin excitations and the
Stoner contributions to the ZPSF energy. Indeed, Ki is on the
order of eV, while the energy scale of the spin excitations is the
range of a few meV, as studied in the present work. In addition,
as we checked analytically and numerically, the frequency

decay of the spin susceptibility [61] leads to vanishing ZPSF
energy contributions at high frequencies. Thus, the variation
of the integrand defined in Eq. (A9) due an infinitesimal
rotation of ei is written as

∂

∂eα
i

{χ+−
KS

(ω)K + ln[1 − χ+−
KS

(ω)K]}

= χ+−(ω)
∂[χ+−(ω)]−1

∂eα
i

. (C2)

To access the magnetic interactions (i.e., curvature of the
energy [42]) a second differentiation with respect to another
independent variable eβ

j is performed:

∂2

∂eα
i ∂eβ

j

{χ+−
KS

(ω)K + ln[1 − χ+−
KS

(ω)K]}

=
[

∂χ+−(ω)

∂eβ
i

∂[χ+−(ω)]−1

∂eα
j

+ χ+−(ω)
∂2[χ+−(ω)]−1

∂eα
i ∂eβ

j

]
.

(C3)

The frequency integral of this equation leads to the ZPSF
correction of the exchange interactions:

∂2E±
∂eα

i ∂eβ
j

= − 1

2π
Im Tr

∫ +∞

−∞

[
∂χ+−(ω)

∂eβ
i

∂[χ+−(ω)]−1

∂eα
j

+ χ+−(ω)
∂2[χ+−(ω)]−1

∂eα
i ∂eβ

j

]
sgn(ω)dω. (C4)

Assuming that the electron-hole excitations are weakly af-
fected by the infinitesimal rotation of the magnetic moments,
the first term on the right-hand side of the preceding equation

is found proportional to
∂ξ 2

i,±
∂eα

i
, i.e., the change of the local spin

fluctuation amplitude squared associated with the moment Mi

[25] [see Eq. (C8)], which can be safely neglected. Therefore,

∂2E±
∂eα

i ∂eβ
j

� − 1

2π
Im Tr

∫ +∞

−∞
χ+−(ω)

∂2[χ+−(ω)]−1

∂eα
i ∂eβ

j

sgn(ω)dω.

(C5)

Having obtained the general form, we next focus on the
particular system analyzed in the main text constituted of two
magnetic atoms sitting on a nonmagnetic surface. In this case,
the trace in Eq. (C5) becomes

Tr(χ+−χ+−
αβ

) = [χ+−
11 χ+−

αβ,11 + χ+−
12 χ+−

αβ,21]

+ [χ+−
21 χ+−

αβ,12 + χ+−
22 χ+−

αβ,22], (C6)

where we have introduced χ+−
αβ,i j = ∂2[χ+−(ω)]−1

∂eα
i ∂eβ

j

for concise-

ness. To evaluate these terms, we make use of the analytical
results provided in Eq. (B8) derived via the LLG equation.

Starting from an out-of-plane orientation of the magnetic
moments and bearing in mind the relations in Eq. (B5), the
diagonal components (i.e., αα = xx, yy) of ∂2E±

∂eα
i ∂eβ

j

are given

by

∂2E±
∂eα

1 ∂eα
2

= Jαα
12

[
ξ 2

1,±
M2

1

+ ξ 2
2,±

M2
2

+ Jzz
12

Jαα
12

ξ 2
12,±

M1M2

]
, (C7)

where ξ 2
i,± designates the aforementioned square of the local

spin fluctuation amplitude of the moment Mi [25],

ξ 2
i,± = 1

π
Im

∫ +∞

−∞
χ+−

ii (ω)sgn(ω)dω, (C8)

and the nonlocal contributions ξ 2
i j,± are defined as

ξ 2
i j,± = 1

2π
Im

∫ +∞

−∞
[χ+−

i j (ω) + χ+−
ji (ω)]sgn(ω)dω. (C9)

Note also that the nonlocal spin fluctuation contribution that
corrects Jαα

12 (for α = x, y) in Eq. (C7) is proportional to Jzz
12.

In general, these components may differ due to the anisotropy
of the system. However, these differences are relevant in the
investigated cases when the atoms are far apart [62], where
ξ 2

12,± is vanishingly small (as shown in the main text). In this
case, Eq. (C7) simplifies to

∂2E±
∂eα

1∂eα
2

= Jαα
12

(
ξ 2

1,±
M2

1

+ ξ 2
2,±

M2
2

+ ξ 2
12,±

M1M2

)
. (C10)
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The nondiagonal antisymmetric components can be obtained
from Eq. (C5) as well,

∂2E±
∂eα

1 ∂eβ

2

= −Jαβ

12

(
ξ 2

1,±
M2

1

+ ξ 2
2,±

M2
2

+ ξ 2
12,±

M1M2

)
. (C11)

Finally, we obtain the renormalized exchange interaction
tensor components by combining Eqs. (C10) and (C11) into
the definition of Eq. (5) and making use of the antisymmetric

property Jαβ

21 = −Jαβ

12 , yielding

J αβ

12 = Jαβ

12

[
1 − Jαβ

21

Jαβ

12

(
ξ 2

1,±
M2

1

+ ξ 2
2,±

M2
2

+ ξ 2
12,±

M1M2

)]
. (C12)

Equation (C12) corresponds to Eq. (7) and shows that diag-
onal components are decreased by the factor in parentheses,
whereas the off-diagonal components are increased by exactly
the same relative factor.
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