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Spreading nonlocality in a quantum network
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Starting from several copies of bipartite noisy entangled states, we design a global and optimal local
measurement-based protocol in one- and two-dimensional lattices by which any two or more prefix sites can
be connected via entanglement. Production of bipartite as well as multipartite entangled states in a network is
verified in a device-independent way through the violation of Bell inequalities with two settings per site and
with continuous range of settings. We also note that if the parties refuse to perform local measurements, the
entanglement distribution scheme fails. We obtain critical values of noise allowed in the initial state so that
the resulting output state show nonlocal correlation in different networks with arbitrary number of connections.
We report that by employing our method, it is possible to create a multipartite entangled state, violating Bell
inequality and having a continuous range of settings, from bipartite states which do not violate Clauser-Horne-
Shimony-Halt Bell inequalities in an one-dimensional lattice with the minimal coordination number being six.
Such a feature of superadditivity in violation can also be observed in a triangular two-dimensional lattice but not
in a square lattice.
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I. INTRODUCTION

In the age of the internet, the ability to share information
among an arbitrary number of parties situated in different
locations is the basic building block for a communication
network [1–4]. The information distributed can both be clas-
sical and quantum in nature. In both cases, it was shown that
entangled states shared between the senders and the receivers
can enhance the performance of the protocol, which cannot
be achieved by unentangled states [5]. Therefore, the first step
toward establishing a communication network is to generate
highly entangled bipartite and multipartite states connect-
ing different sites. To achieve this goal, several protocols
have been developed, which include quantum repeaters [6,7]
based on entanglement distillation from noisy shared states
followed by entanglement swapping [8,9], entanglement
percolation [10–13], which originated from the notion bor-
rowed from statistical mechanics, and k-pair communication
problem [3].

A network can be defined in one- and two-dimensional
lattices with different geometrical structures—the edges of
the lattice are covered by bipartite states and, depending on
the lattice, several edges are connected through each vertex
or node, determining the coordination number of the lattice
(see, e.g., Refs. [10,14] and references therein). Initial states
covering the lattice can also be ground states, a canonical
equilibrium, or evolved states at certain times of a suitable
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Hamiltonian. A prominent example is the resonating valence
bond states in which all nodes are connected by a singlet [15].
Typically, suitable joint measurements performed at each node
can create a multipartite quantum correlated state between
prefix sites [10] which can be used later for quantum informa-
tion processing tasks. Note that such a notion has also been
used to build a measurement-based quantum computer [16].
Performance of all these tasks are measured, for example, by
localizable entanglement [17], singlet conversion probability
[10], and gate fidelity [16].

One of the most counterintuitive features of entangled state
is that it exhibits a kind of “nonlocal” effect. Specifically,
it means no local realistic model can account for all the
correlations emerging from local measurements on entangled
states [18–20]. Although not all entangled states violate Bell
inequality [21], the Bell test [22,23] turns out to be the
determiner of device-independent certification of entangled
states. Violation of Bell inequalities are shown to be useful
in quantum cryptography [24], random number generation
[25], etc. Moreover, several preprocessing protocols were pre-
scribed to probe violation of Bell inequality for states which
do not respond to the Bell test. In this direction, in the sem-
inal paper Popescu [26] showed that local filtering can help
to reveal the nonlocality known as hidden nonlocality (see
also Refs. [27,28]). Other activation protocols involving the
Bell test with multiple copies were proposed [29,30]. In a
similar spirit, violation of local realism was demonstrated in
a multisite domain employing entanglement swapping—the
initial seven or more copies of Werner states which do not
violate Clauser-Horne-Shimony-Halt (CHSH) Bell inequality
[19], forming a star network, leads to the final multipartite
state that violates functional Bell inequality [31]. It is known
as superadditivity or superactivation in nonlocality [32]
(cf. Ref. [33]).
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It was shown that if two copies of a quantum state or two
different quantum states do not individually violate CHSH
inequalities, the joint state after a suitable measurement can
violate local realism [32–35]. Moreover, the quantitative anal-
ysis [35] shows that starting from quantum states which do
not violate Bell inequalities, one can obtain violation of Bell
inequalities when several copies of them are provided. Such
a superactivation scenario can be used to connect violation of
Bell inequalities with the teleportation protocol, specifically
with the networks [36]. In particular, it was proved that all
states that are useful for quantum teleportation deterministi-
cally violate the Bell inequality if suitable measurements are
performed on a large number of copies of a shared state.

In this work, we propose a framework of a quantum
network based on global and local measurement, in which
bipartite and multipartite entangled states are generated in two
or more arbitrary prefixed sites in one- and two-dimensional
lattices. In contrast to the previous works [32–35], we
consider here local measurements along with global mea-
surement, such that a few prefixed parties become entangled.
Specifically, the entire lattice is covered by the Werner states,
and depending on the sites which we want to connect, a
minimum number of joint and local measurements are imple-
mented resulting in an entangled state which can be certified
through the Bell test [18,19,31,37,38]. Notice that after global
measurements, if instead of performing local measurements
the parties does not collaborate, the resulting state turns out to
be separable, thereby having a local realistic model. For the
bipartite case, we consider the CHSH inequality [19], while
for multipartite states, we employ Mermin-Belinskii-Klyshko
(MBK) [37,38] and functional Bell (FB) inequalities [31].

In a one-dimensional (1D) lattice, for a fixed number of
nodes, the value of critical noise allowed in the initial state,
leading to a nonlocal multiparty state, is determined for dif-
ferent coordination numbers. A similar analysis has also been
performed with varying numbers of nodes for a fixed coor-
dination number. The analysis also reveals that for exhibiting
superadditivity, the minimum coordination number required
is six in a given lattice. Note here that if the Werner states
are furnished in a linear chain, instead of a star network,
and only Bell measurements are allowed, such superadditiv-
ity cannot be observed [32]. We also report the maximum
amount of noise accepted in the initial state resulting in
nonlocal correlations in the output state in square and trian-
gular two-dimensional (2D) lattices. Moreover, we observe
that the superadditivity in violation can only be shown in a
two-dimensional lattice having lowest coordination number
of six, e.g., in a triangular lattice but not in a square lattice.
Specifically, we show that for a fixed number of joint and
local measurements it is always possible to find a minimal
number of nodes for which superadditivity in nonlocality can
be exhibited.

We organize the paper in the following way. In Sec. II,
we first introduce the notion of violation of Bell inequality in
a multipartite domain when some of the parties collaborate,
which we call as localizable nonlocality. We then consider
localizable nonlocality in a star network in Sec. III and find the
critical noise required to obtain violation in the output state.
Section IV is devoted to the results obtained for 1D and 2D
lattices and we conclude with discussion in Sec. V.

II. VIOLATION OF BELL INEQUALITY WITH
COLLABORATION

Let us consider that N parties share a multipartite state,
ρN , and among N parties, m number of parties collabo-
rate by performing local projective measurements {Mi} in
their respective part of the state, which leads to an ensem-
ble {pi, ρ

i
N−m}. Here pi is the probability pertaining to a

specific outcome combination obtained by m parties who
want to collaborate with other N − m parties to perform Bell
test. We define the average value of Bell expression of the
postmeasurement ensemble consisting of N − m party state,
{pi, ρ

i
N−m} as localizable nonlocality (LNL):

LNL = max
{Mi}

∑
i

pi BV
(
ρ i

N−m

)
, (1)

where BV indicates the amount of violation of appropriate
Bell inequality and maximization is performed over the set of
all local measurements, {Mi}, by m number of parties. For ex-
ample, when N − 2 parties measure locally on their respective
subsystems, the violation of CHSH inequality of the resulting
bipartite state is studied, thereby certifying the entanglement
of the bipartite state in a device-independent manner. On the
other hand, when N − m > 2, the output is a multipartite
state and we analyze the violation of MBK [37,38] and FB
[31] inequalities. Before investigating LNL in network, let us
briefly discuss the Bell operators that we will use in this paper.
It is important to stress here that in both Ref. [32] and our
study, the N-partite state is obtained via global measurement,
as we will discuss in detail in the succeeding section, although
the local measurements on m parties of the multipartite states
are not considered in the previous study [32].

A. Condition for violation of CHSH inequality

As stated earlier, let us first describe the CHSH inequality
and its violation for two spin-half particles [19]. Suppose a
bipartite state ρAB is shared between two spatially separated
observers, say, Alice and Bob. They both can choose to per-
form a dichotomic measurement at a time from a different set
of two observables. CHSH inequality puts a restriction on a
particular algebraic expression imposing locality and reality
assumptions. It involves correlation between local measure-
ment statistics of Alice and Bob, i.e.,

B ≡ |〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉| � 2. (2)

Here 〈AiBj〉 = Tr(Ai ⊗ BjρAB) is the correlation between
measurement outcomes ai and b j for the measurement Ai and
Bj performed by Alice and Bob respectively. For an arbitrary
two-qubit state, the maximal violation of the CHSH inequality
in terms of state parameters were derived [39]. In particular,
maximal violation of local realism in this case can be writ-
ten in terms of correlation matrix, T , whose elements are
defined as

Ti j = Tr[ρABσi ⊗ σ j], (3)

where σi (i = x, y, z) are Pauli matrices. A state is considered
to violate Bell inequality if

M(ρAB) > 1, (4)
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where M is the sum of the two maximum eigenvalues of T †T .
Hence, maximal Bell violation is quantified as

BV (ρAB) = M(ρAB) − 1, (5)

and finally LNL reads as

LCHSH
NL = max

{Mi}

2N−2∑
i=1

piBV
(
ρ i

AB

)
, (6)

where ρ i
AB is obtained after performing local measurements

on N − 2 parties of an initial state ρN .

B. Violation of Mermin-Belinskii-Klyshko inequality

It is a multiparty correlation function Bell inequality in
which each party can choose to measure from a set of two
observables [38]. In an N-partite state, when m number of
parties perform local measurements, the violation of MBK
inequality for the rest of the (N − m)-qubit state is given by
the expectation value of the MBK operator [40,41],

Bk = 1
2 Bk−1 ⊗ (

σak + σa′
k

) + 1
2 B′

k−1 ⊗ (
σak − σa′

k

)
, (7)

where ak and a′
ks are the two vectors on the unit sphere that in-

dicate possible measurement directions of the corresponding
party. Bk is obtained recursively from Bk−1 and B′

k is obtained
from Bk by interchanging all the aks by a′

ks. A state ρN is
said to violate the MBK inequality if the average value of this
operator becomes greater than 1, i.e.,

|Tr[BNρN ]| > 1, (8)

and the corresponding LNL can be computed as

LMBK
NL = max

{Mi}

2m∑
i=1

pi|Tr[BN−mρN−m]|i − 1. (9)

C. Violation of functional Bell inequality

Like the MBK inequality, this multisite inequality is based
on the Schwartz inequality. Instead of two settings at each site
like CHSH and MBK inequalities, it considers a set-up involv-
ing a continuous range of settings [31]. Let Gn be an local
observable at the nth party (n = 1, ..., N ), and each of them
depends on some parameter ηn. Based on these measurements,
Gns, we define the correlation function as

CQM (η1, . . . , ηN ) = Tr(ρN G1, . . . , GN ), (10)

and the corresponding correlation admitting the local hidden
variable model, with the distribution of local variable, denoted
by v(λ), reads as

CLHV(η1, . . . , ηN ) =
∫

dλv(λ)
N∏

n=1

In(ηn, λ). (11)

Here In(ηn, λ) is the predetermined measurement result of Gn

for λ. To show CQM �= CLHV, one can use the basic principle
of Schwartz inequality, and so we compute

〈CQM |CLHV〉

=
∫

dη1 . . . dηNCQM (η1, . . . , ηN )CLHV(η1, . . . , ηN )

and the

‖CQM‖2 =
∫

dη1 . . . dηN (CQM (η1, . . . , ηN ))2, (12)

which finally leads to CQM �= CLHV.
In this case, to calculate localized nonlocality, we first con-

sider the average overlap of CQM and CLHV over 2m outcomes
after m parties perform local measurements. Suppose we can
show

2m∑
i=1

pi〈CQM |CLHV〉i � H, (13)

where H depends on local measurement parameters of m
parties. On the other hand, for a given outcome i, we can get
‖CQM‖2

i calculated for a postmeasurement state of (N − m)
parties. Finally, we have

LFB
NL = max

{Mi}

2m∑
i=1

pi‖CQM‖2
i − H.

Here 〈CQM |CLHV〉i (overlap of CQM and CLHV for the ith out-
come) and ‖CQM‖2

i (the norm of CQM also with measurement
result i) are defined as

〈CQM |CLHV〉i =
∫

dη1 . . . dηN−mCQM (η1, . . . , ηN−m)i

×CLHV(η1, . . . , ηN−m)i, (14)

‖CQM‖2
i =

∫
dη1 . . . dηN−m(CQM (η1, . . . , ηN−m)i )2. (15)

III. LOCALIZABLE NONLOCALITY IN A STAR
NETWORK: A BUILDING BLOCK

Before detecting entanglement via the Bell test in a lattice,
let us first fix the operations that we are going to perform
for establishing a connection between any two or more nodes
in a network. In this section, we study the violation of Bell
inequality in a geometry which turned out to be a building
block (unit) of an entire network.

Suppose 2N number of parties, Ai and Bi (i = 1, 2 . . . N ),
sharing N identical copies of arbitrary bipartite state among
them as shown in the Fig. 1. Let us consider a scenario in
which all the Ais are assumed to be situated in one place
and hence we can replace them by an observer, say, Alice
(A), while Bis are located in distant positions forming a star
network [32]. Alice performs a projective joint measurement
on the N parties in her possession and consequently a mul-
tipartite entangled state ρN is created among other distant N
sites. Note that the creation of ρN in this way is similar to the
one considered in previous works [32,33].

We consider a scenario in which all the Ai and Bi share N
identical copies of the Werner state, given by

ρW = p|ψ−〉〈ψ−| + (1 − p)
I

4
, (16)

where p ∈ (0, 1). We know that it is entangled for p > 1/3,
while it violates CHSH inequality having two settings when
p > 1/

√
2 = 0.7071 [21]. In the original paper [21], Werner

proposed a local hidden variable model in the region p � 1
2
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FIG. 1. Schematic diagram of a single block. It consists of N
copies of ρW states. An N-party GHZ measurement is performed
on the N qubits situated in the center marked as purple circles
[32,33] while local measurements are carried out on the (green)
qubits, marked with arrow. Note that the last step involving local
measurement was not considered in previous works. Our aim is to
produce an entangled state between the yellow qubits.

with projective measurements, while for general positive op-
erator valued measurements (POVMs), the LHV model was
given in a smaller region, namely p � 5

12 [42]. Depending
on the Grothendieck constant KG(3), the LHV model was
later improved and was known for p � 0.6829 with projective
measurements, p � 0.4553 with POVMs [43,44], and for the
entire range, i.e., for p < 1/

√
2, when one of the parties is re-

stricted to the planar measurements [45]. On the other hand, it
was shown that the Werner state violates a different set of Bell
inequalities when 0.7056 � p � 1 [46]. In our paper, when
the final state is bipartite, we will evaluate CHSH inequalities.

As previously mentioned, A is measured in an N-qubit
basis consisting of a Greenberger- Horne-Zeilinger state
(GHZ) [47] in the center of the star. If one of the out-
comes, say, 1√

2
(|00..0〉 + |11 . . . 1〉) occurs, the state shared

between B1, . . . , BN is projected to an entangled N-qubit
state. For example, if the initial state is ρ⊗3

W , A per-
forms measurements in the { 1√

2
(|000〉 ± |111〉), 1√

2
(|001〉 ±

|110〉), 1√
2
(|010〉 ± |101〉), 1√

2
(|100〉 ± |011〉)} basis, which

we call the GHZ basis, easily extended to an arbitrary number
of qubits. It results in an output state of the form

q1|GHZ〉〈GHZ| + q2
I

8
+(1 − q1 − q2)(|000〉〈000| + |111〉〈111|). (17)

Note that the probability of obtaining any of the outcomes
by the joint measurement of A is equal for the initial state,
ρ⊗3

W . In general, when the input state is ρ⊗N
W , the form of the

output state after the joint measurement by A remains same as
in Eq. (17), which is known as an X -type state having nonva-
nishing diagonal and two cross-diagonal terms. In particular,
if one writes the final state in the computational basis, we find
nonvanishing coefficients appearing in all the diagonal and in

two off-diagonal terms, which are given by

|00 . . . 0〉〈11 . . . 1| and |11 . . . 1〉〈00 . . . 0|. (18)

Interestingly, we notice that in the evaluations of the Bell-
CHSH, MBK, and FB inequalities, the above off-diagonal
terms play a crucial role which we investigate carefully.

In order to establish nonclassical correlation in the network
in terms of violation of CHSH, MBK, or FB inequalities,
we invoke two different strategies. In both the scenarios, we
assume N parties perform joint measurement and the out-
put state is shared between N parties, which may face two
situations. Our aim is to produce a state, ρN−m, for which
Bell violation is maximized over all local projective measure-
ments. Note that we here consider only rank-1 measurement.
In particular, we divide the entire protocol into the following
three steps:

Step 1: We start with N copies of a given bipartite states
forming a star network. Alice performs a global measurement
on N parties in the center, consequently creating a N-partite
entangled state.

Step 2: Any m number of parties either can perform local
measurements or leave the protocol. It leads to the following
cases:

(1) Noncollaborative strategy. m number of parties leave
the protocol without any measurements; i.e., they do not
collaborate with N − m parties. Mathematically, ρN−m =
Tr1...mρN .

(2) Collaborative strategy. Among N parties, m parties
collaborate in a sense that they perform local projective mea-
surements on their subsystems, so that an output state of
N − m party is produced.

Step 3: We finally evaluate the violation of Bell inequality
of the (N − m)-party state. If the final state is bipartite, we
consider the CHSH inequality, while for a multipartite state,
we check the violation of MBK as well as functional Bell
inequality.

In the second step, if strategy 1 is followed, we call the
associated nonclassical correlation certified via violation of
local realism the N − m reduced nonlocality, while if strategy
2 is followed, we call it localisable nonlocality. As we will
see, the above scenario, especially the collaborative strategy,
can help to spread entanglement over a large distance in a
network from initial bipartite noisy entangled states.

No reduced nonlocality. If the initial state shared between
2N parties is the Werner state, we can easily find that non-
collaborative strategy leads to an (N − m)-party state which
is separable. Therefore, the noncollaborative strategy is not
suitable for spreading nonclassicality. In the rest of the paper,
we only concentrate on the collaborative strategy.

Chain scenario. Let us now suppose that there are three
copies of Werner states shared between AB, BC, and CD pairs,
and B and C perform measurements in the Bell basis. It can
be shown that, after measurement, the resulting state between
A and D is again a Werner state with p3 and hence it violates
Bell CHSH inequality for a smaller range of p than that of
the initial state. With the increase of the number of copies, the
situation deteriorates more, i.e., there always exists a range of
p where the initial states violate CHSH inequalities while the
final state does not.
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A. Locating bipartite nonlocality

Suppose among m parties, the lth party performs a local
measurement in the {|±〉l} basis, given by

|±〉l = cos θl |0〉 ± e−iφl sin θl |1〉, (19)

where l = 1, 2, ..., m. There are 2m possible outcomes of the
measurements. For each outcome, we evaluate the maximum
possible violation of Bell-type inequality for the remaining
(N − m)-partite state. If the state violates any kind of Bell
inequality, we call the state nonlocal. The postselected state,
ρN−m, takes the same form as the N-partite state with modified
coefficients given in Eq. (17), provided the initial Werner
states are projected by the joint measurement.

As mentioned earlier, in all the Bell expressions considered
here, the off-diagonal terms of the density matrix, ρN−m, are
important and are explicitly given by

〈00 . . . 0|ρN−m|11 . . . 1〉i = ± pN
[
e+i

∑m
1 φl

∏m
1 sin θl

]
2[1 − fi(θ1, θ2, . . . , θm)]

, (20)

〈11 . . . 1|ρN−m|00 . . . 0〉i = ± pN
[
e−i

∑m
1 φl

∏m
1 sin θl

]
2[1 − fi(θ1, θ2, . . . , θm)]

. (21)

The probability of getting a particular outcome is a function
of local measurement parameters, namely

pi = [1 − fi(θ1, θ2, . . . θm)]

2m
. (22)

First assume that after the N-qubit GHZ-basis measure-
ment we are able to create N-party entangled state, and
let us also focus on bipartite nonlocality. To consider the
Bell-CHSH inequalities, (N − 2) parties perform local mea-
surements having 2N−2 outcomes and the bipartite state ρ2 is
obtained. For each measurement result, we find that two max-

imum eigenvalues of T †T of ρ12 are p4 and p2N ∏N−2
l=1 sin2(θl )

[1− fi (θ1,...,θN−2 )]2 .
The average Bell-CHSH violation can be calculated as

LCHSH
NL ≡

∑
piBV (ρi )

= p4 + max
θl ,φl

2N−2∑
i=1

p2N
∏N−2

l=1 sin2(θl )

2N−2[1 − fi(θ1, . . . , θN−2)]
− 1.

(23)

For a moderate number of parties i.e., for N = 4, 5, 6, we
check that maximization in LCHSH

NL is obtained when all the
parties perform same measurements, θi = π/2, and it does not
depend on φi. We also notice that

max
{θi}

2N−2∑
i=1

∏N−2
k=1 sin(θk )

2N−2[1 − fi(θ1, . . . , θN−2)]
|θi=π/2 = 1. (24)

If we assume that maximum is attained at θi = π/2 for higher
values of N as well, we obtain the condition for the critical
value of noise allowed in the initial state so that the violation
of the resulting state after steps 1 and 2 occurs. Specifically,
we obtain pcr by solving the equation given by

p4 + p2N − 1 = 0. (25)

It implies that the initial Werner state should possess the
mixing parameter, p > pcr , which produces an output state

violating the Bell-CHSH inequality. For example, if N = 3,
we find that the critical value of the parent Werner state has to
be greater than 0.869 to obtain the violation of Bell inequality
of the resulting state, the value of pcr increases with the
number of parties in the network.

B. Mermin-Belinskii-Klyshko nonlocality in star network:
Critical noise

Let us now discuss the prescription by which multipartite
nonlocality among any prefix set of points in the star network
can be to established. For N-qubit multipartite state, the MBK
operator can be written as [41]

BN = 2(N−1)/2[eiβN |0〉〈1|⊗N + e−iβN |1〉〈0|⊗N ], (26)

where βN = π
4N−4 and is obtained by putting σak = σx and

σa′
k
= σy for all values of k. Using this operator, we find the

condition for violation of MBK inequality by the N-party state
in Eq. (17) as

2(N−1)/2PN cos βN > 1, (27)

which leads to

p > pcr = 1

2
N−1
2N (cos βN )

1
N

. (28)

On the other hand, in a collaborative network, m parties
perform local measurements and leave the network. Violation
of the MBK inequality can be calculated on the remaining
(N − m)-partite state, after performing optimization over local
projective measurements by m parties. The average violation
of MBK inequality reduces to

LMBK
NL =

2m∑
1

pi|Tr[BN−mρN−m]|i − 1

=
2m∑
1

2(N−m−1)/2 pN
[

cos
(
βN−m−∑m

1 φi
) ∏m

1 sin θi
]

2m
−1

= 2(N−m−1)/2 pN

[
cos

(
βN−m −

m∑
1

φi

) m∏
1

sin θi

]
− 1.

From the analysis of small N , it can again be shown to reach
maximal value when θi = π/2 and βN−m = ∑m

1 φi. There-
fore, the violation of MBK inequality of the resulting state
leads to a maximum amount of noise permissible in the initial
state. The condition reads as

2(N−m−1)/2 pN > 1, (29)

implying

pcr = 1(
2

N−m−1
2

) 1
N

. (30)

C. Noise threshold from functional Bell inequality:
Superadditivity

Let us move to a scenario where violation of FB inequality
of the output state of N − m parties in a star network is
investigated. As before, we are also interested to find out the
critical noise value of the initial Werner state leading to the
violation of FB inequality in the multipartite state created
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after executing the protocol. We can choose the measurement
operators in the x-y plane of the Bloch sphere to calculate the
violation of FB inequalities for states shared between Bis, i.e.,

Gn(ηn) = |+, ηn〉〈+, ηn| − |−, ηn〉〈−, ηn|, (31)

where |±, ηn〉 = |0〉 ± eiηn |1〉. Since the state has only two
off-diagonal terms and diagonal terms, quantum mechanical
prediction in this case reads as [32]

CQM (η1, . . . , ηN ) = Tr(G1 . . . GNρN ) = pN cos

(
N∑

i=1

ηi

)

and

‖CQM‖2 =
∫

dη1 . . . dηN (CQM (η1....ηn))2

= p2N
∫ 2π

0
dη1 . . . dηN

(
1 + cos

(
2

N∑
i=1

ηi

))
/2

= p2N (2π )N

2
.

Similarly, the inner product of CQM and CLHV takes the form

〈CQM |CLHV〉 =
∫ 2π

0
dη1 . . . dηNCQMCLHV

=
∫ 2π

0
dη1 . . . dηN

∫
dλρ(λ)

N∏
n=1

In(ηn, λ)pN

× cos

(
N∑

j=1

η j

)
� pN 4N , (32)

where we have used the fact that [31]∫ 2π

0
dη1...dηN

∫
dλρ(λ)

N∏
n=1

In(ηn, λ) cos

(
N∑

j=1

η j

)
� 4N .

(33)

When ‖CQM‖2 is greater than pN 4N , the state violates the FB
inequality, which leads to the threshold noise of the initial
state, given by

pN � 2(2/π )N .

pcr = 2
1
N (2/π ). (34)

It was shown in Ref. [32] that the resulting multipartite state
after the central GHZ measurement by Alice exhibits nonlo-
cality by violating functional Bell inequality even if the initial
state does not violate CHSH inequality; the feature was called
superadditivity, which is revealed when N � 7.

We will now show that such a superadditivity of nonlo-
cality can also be obtained in a collaborative star network.
After local measurements by m number of Bis, the quantum
mechanical correlation among N − m parties postselecting
upon ρN−m is given by

CQM (η1 . . . ηN−m)i

= Tr(G1 . . . GN−mρN−m)

= pN
[ ∏m

1 sin θi
]

cos
( ∑m

i=1 φi − ∑N−m
i=1 ηi

)
[1 − fi(θ1, θ2, . . . , θm)]

, (35)

and its norm can be found as

‖CQM‖2
i =

∫
dη1, . . . , dηN−m(CQM (η1, . . . , ηN−m)i )2

= p2N
[ ∏m

1 sin2 θi
] ∫

dη1 . . . ηn
(
1 + cos

(
2

∑m
j=1 φ j − 2

∑N−m
k=1 ηk

))
2[1 − fi(θ1, θ2, . . . , θm)]2

= p2N
[∏m

1 sin2 θi
]
(2π )N−m

2[1 − fi(θ1, θ2, . . . , θm))2 . (36)

The averaged QM predictions, where averaging is done over 2m outcomes, can then be written as

2m∑
i=1

pi‖CQM‖2
i = p2N

[
m∏
1

sin2 θi

]
(2π )N−m

2

2m∑
i=1

1

2m[1 − fi(θ1, θ2, . . . , θm)]2
.

Similarly, the individual inner product of CQM and CLHV at the ith measurement outcome is

〈CQM |CLHV〉i =
∫

dη1, . . . , dηN−m

∫
dλρ(λ)

N−m∏
n=1

In(ηn, λ)
pN

[∏m
1 sin θ j

]
cos

( ∑m
k=1 φk − ∑N−m

l=1 ηl
)

[1 − fi(θ1, θ2, ..., θm )]

= pN
[∏m

1 sin θ j
]

[1 − fi(θ1, θ2, ..., θm )]

∫
dη1 . . . dηN−m

∫
dλρ(λ)

N−m∏
n=1

In(ηn, λ)

×
[

cos

(
m∑

k=1

φk

)
cos

(
N−m∑
l=1

ηl

)
+ sin

(
m∑

i=1

φi

)
sin

(
N−m∑
i=1

ηi

)]

� pN
[ ∏m

1 sin θi
]

[1 − fi(θ1, θ2, ..., θm )]
4N−m

[
cos

(
m∑

k=1

φk

)
+ sin

(
m∑

l=1

φl

)]
, (37)
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and its averged value can be written as

2m∑
i=1

pi〈CQM |CLHV〉i � pN

[
m∏
1

sin θi

]
4N−m

[
cos

(
m∑

k=1

φk

)
+ sin

(
m∑

l=1

φl

)]
� pN

[
m∏
1

sin θi

]
4N−m

√
2. (38)

Again, for small N , we find that the measurement gives the
optimal violation when all the θis take the value π/2 and
φis do not play a role. Therefore, from the violation of the
localized FB inequality, LFB

NL, we obtain the critical value of
the initial noise parameter, satisfying the condition, given by

pN > 2
√

2

(
2

π

)N−m

, (39)

which gives

pcr = 2
3

2N

(
2

π

) N−m
N

. (40)

Comparing Eqs. (30) and (40), we conclude that if we use
FB inequality to detect multipartite nonlocality in the network,
the amount of noise allowed for obtaining violation of the out-
put state is higher than that of the MBK inequality, implying
high robustness of localizable FB inequality against noise. We
also show that for a fixed N , pcr increases with the increase of
number of measurements, m, while for fixed m, it decreases
with N , as shown in Fig. 2. Moreover, we again report that the
nonvanishing value of LFB

NL can be obtained even when the ini-
tial shared state cannot violate CHSH inequality, as depicted
in Fig. 2, thereby also giving rise to superaditivity in violation
of FB inequality in a localized scenario (see Ref. [32] for
nonlocalized case).

N 

FIG. 2. Superadditivity in violation of local realism in a star
network with local measurements. Variation of the threshold noise
allowed in the initial state, pcr (vertical axis), decreases with the
number of copies of the initial state, N (horizontal axis). The number
of local measurements is fixed to be 3. Violations of MBK and FB
inequalities are calculated. Clearly, we see that to obtain violation via
FB inequality of the final state, the ρW state can have p < 1√

2
.

IV. DISTRIBUTION AND DETECTION OF
NONLOCALITY IN LATTICES

With the development of quantum communication proto-
cols, establishing and detecting nonclassical correlations in
one- and two-dimensional lattice networks play an important
role. We also investigate the minimal amount of entanglement
required to obtain the quantum correlation among any pre-
fix sites, detectable through the violation of Bell inequality
after the entire protocol is completed. In a one-dimensional
network, we will also report that the output state obtained
after the global and local measurement protocol can exhibit
superadditivity in violation of Bell-type inequalities.

A. One-dimensional lattice

Consider a one-dimensional lattice consisting of z number
of nodes with coordination number a (the coordination num-
ber is defined as the number of connection in each node, for
example, in Fig. 3, a = 4). We call A1, A2, . . . nodes. The
entire lattice is covered by bipartite quantum states, namely,
Werner state. First, Aks perform joint measurements and all
the sites except those parties whom we want to connect per-
form optimal local projective measurements. For example, in
Fig. 3, suppose we want to create an entangled state among
1, 2, 3, and 4; the local measurements are performed by all
the sites except these. In this situation, we are interested to
find out whether the resulting multiparty state, shared among
1, 2, 3, and 4, violates Bell-type inequalities. After the mea-
surement by Ais, we get a [z(a − 2) + 2]-party state, whose
off-diagonal terms only contribute in the violation of Bell-
CHSH, MBK, or FB inequalities and are given by

〈000 . . . |ρz(a−2)+2|111 . . .〉 = pz(a−1)+1/2, (41)

〈111 . . . |ρz(a−2)+2|000 . . .〉 = pz(a−1)+1/2. (42)

1. Spreading nonlocality

To obtain a two-party state in two distant locations, say,
between 1 and 2 in Fig. 3, we perform measurements on
remaining z(a − 2) parties having 2z(a−2) outcomes. The av-
erage violation of Bell-CHSH inequalities can be calculated
as

∑
piBV (ρi ) = p6+

2z(a−2)∑
i=1

p2[z(a−1)+1] ∏2z(a−2)

k=1 sin2(θi )

2z(a−2)[1 − fi(θ1, ..., θz(a−2) )]
− 1.

(43)

As in the previous cases, average violation of Bell-CHSH
inequalities attains its maximal value for θi = π/2 and does
not depend on φi, which we check for a small lattice size.
Therefore, the maximum amount of noise permissible for the
initial state can be obtained from

p6 + p2[z(a−1)+1] − 1 > 0. (44)
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1 

2 

3 

4 

 A1 A2 A i-1 A i 

FIG. 3. Schematic diagram of an one-dimensional lattice composed of ρW states with a fixed coordination number of 4. Four-party GHZ
basis and optimal local measurements are performed on the red qubits. We intend to produce a multipartite entangled state between the yellow
qubits, marked as 1, 2, 3, and 4, whose entanglement can be verified by using the violation of local realism.

From the above equation, it is clear that pcr depends on both
z and a. For a fixed z, we observe that pcr obtained from
the violation of Bell-CHSH inequality increases with a and
the same trends persist when a is fixed and z is varying, as
depicted in Figs. 4 and 5.

2. Spreading multipartite nonlocality

Let us move to the violation of the averaged MBK in-
equality between the first site connected to the first node and
(a − 1) parties of the last node of this chain. To establish
such a connection, the rest sites, i.e., (z − 1)(a − 2) number
of parties, perform optimal local measurements, which results
an a-party state. The localizable MBK violation in an a-party
state reads as

l∑
1

pi|Tr[Baρa]|i − 1

=
l∑
1

2(a−1)/2 pz(a−1)+1
[

cos
(
βa − ∑l

1 φ j
) ∏l

1 sin θi
]

l
−1

= 2(a−1)/2 pz(a−1)+1

[
cos

(
βa −

l∑
1

φ j

)
l∏
1

sin θi

]
− 1,

FIG. 4. Variation of the critical value of the noise parameter of
the initial state against the co-ordination number, a, of a chain.
The abscissa and ordinate respectively represent pcr and a. We fix
z = 5. For fixed number of nodes, pcr increases with a for obtaining
violation of Bell CHSH inequality (circle) while it decreases when
MBK (square) and FB (triangle) inequalities are considered.

with

l = 2(z−1)(a−2),

which can again be shown to be maximized when θi = π/2
and βa = ∑l

1 φi. The state violates MBK inequality when p
satisfies the condition, given by

2(a−1)/2 pz(a−1)+1 > 1, (45)

and therefore, we get

pcr = 2
1−a

2z(a−1)+2 . (46)

3. Violation of functional Bell inequality and superadditivity

Similar consideration also leads to pcr using the FB in-
equality between the first site of the first node and (a − 1)
parties of the last node. It reads as

pz(a−1)+1 > 2
√

2

(
2

π

)a

⇒ pcr = 2
3

2z(a−1)+2

(
2

π

) a
z(a−1)+1

. (47)

Interestingly, in the multipartite case, the threshold value of
noise of the initial state decreases with a for fixed z. With
the moderate value of the coordination number, pcr , obtained
from the violation of FB inequality, decreases much faster
than that of the MBK inequality (see Fig. 4). However, for
fixed a, pcr increases with the increase of number of nodes z

FIG. 5. pcr (y axis) obtained by considering Bell-CHSH, MBK,
and FB inequalities with the increase of the number of nodes, z
(x axis). Here we have a = 4. Other specifications are the same as
Fig. 4.
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FIG. 6. Each node can be identified as (i, j). We require another
coordinate to indicate sites in each node. Each site can be spotted by
(i, j, q). Nearest nodes connected to (i, j) are shown.

(see Fig. 5). Without local measurements on sites, the multi-
party states violates FB inequality when the initial state has

p > pcr = 2
1

z(a−1)+1

(
2

π

) z(a−2)+2
z(a−1)+1

. (48)

Interestingly, superadditivity of nonlocality can be observed
in this scenario with a � 6 for any arbitrary z. Specifically, if
a one-dimensional lattice having a fixed number of nodes is
considered, we find that we require the coordination number
to be six to obtain an output state which can violate FB
inequality starting with non-CHSH violating Werner states.

On the other hand, in a chain with a = 6 and for a fixed
number of local measurements, we find the minimum number
of nodes, z, required to exhibit the superadditivity in viola-
tion. Notice that with the increase of m, z increases to show
superadditivity. With m number of local measurements, pcr is
modified as

pcr = 2
3

2z(a−1)+2

(
2

π

) z(a−2)+2−m
z(a−1)+1

. (49)

For example, if we restrict ourselves to local measurements at
10 sites, we find that z � 69 leads to superadditivity.

B. Two-dimensional lattice

We consider two kinds of lattices having two different
coordination numbers, namely square (with a = 4) and trian-
gular (having a = 6) lattices (see Figs. 6–8). In both cases,
we prescribe an algorithm to share an entangled state between
any two or more distant points of the network.

1. Square lattice

Suppose in a square lattice, as in Fig. 7, our aim is to
have a bipartite state between A and D. The prescription for
establishing the connection is as follows:

(1) Let us first fix the notation used to describe nodes.
First, the network is in a 2D plane and hence the position
of any node can be described by using two numbers. Since
a = 4, each node consists of four parties which are eventually
connected to four different nodes, in four directions. After
specifying the position of a node, another number is required

FIG. 7. A square lattice. To establish entanglement among A, B,
C, and D, the joint and local measurements are marked by circle and
arrow respectively.

to fix the position of the party within this node as shown in
Fig. 6. For an example, the number (i, j, q) denotes the qth
party in the (i, j)th node, where q can be 1, 2, 3, or 4.

(2) Suppose we choose two sites of different nodes, given
by (i, j, q) and (i′, j′, q′). To connect these two parties, we can
apply the following rule:

(a) First, we have to find the nearest node connected to
(i, j, q) and (i′, j′, q′). Depending on the value of q, we can
specify the nearest connected node to (i, j, q) as follows:

q = 1 : (i + 1, j),

q = 2 : (i, j + 1),

q = 3 : (i − 1, j),

q = 4 : (i, j − 1). (50)

Similarly, nearest nodes to any point can be identified (see
Fig. 6).

FIG. 8. A triangular lattice with coordination number 6. Creation
of multipartite states after joint measurements are shown with the
dotted line.
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TABLE I. Example of pcr for spreading nonlocality from a fixed
point of a 2D network to three different points.

(i, j, q) (i′, j′, q′) (i1, j1) (i2, j2 ) z a pcr

(2,1,1) (6, 5, 3) (2,2) (5,5) 7 4 0.9658
(2,1,1) (3, 3, 2) (2,2) (3,4) 4 4 0.9427
(2,1,1) (3, 2, 4) (2,2) (3,2) 2 4 0.8963

(b) Suppose q = 1 and q′ = 3. The nearest connected
nodes are then (i + 1, j) and (i′ − 1, j′). Let us perform
four-party GHZ-basis measurements (marked as a circle in
Fig. 7) from the nodes denoted by (i + 1, j) to (i′ − 1, j),
denoted by (i + 1, j) → (i′ − 1, j). Then measurements
are performed in a direction given by (i′ − 1, j) → (i′ −
1, j′). After these measurements, we get a chain which
establishes multipartite entangled state between (i, j, q)
and (i′, j′, q′) and hence we can apply the results obtained
in the previous subsection. To get the violation of local
realism between A and D, one has to measure locally in
an optimal basis at all the sites except A and D. Similarly
we can also create a multiparty entangled state between
them by performing GHZ-basis measurements in the direc-
tion (i + 1, j) → (i + 1, j′) → (i′ − 1, j′). To obtain the
violation of Bell-CHSH inequality between A and D, the
maximal noise allowed in the Werner state can be obtained
by using Eq. (44). Specifically, after replacing z and a as

z = (i2 − i1) + ( j2 − j1 + 1); a = 4, (51)

where (i1, j1) and (i2, j2) are nearest connected nodes of
(i, j, q) and (i′, j′, q′) respectively.
The above prescription can also be used to generate mul-

tipartite entangled states when the entire lattice comprises of
ρW . Critical noise of the initial state leading to a multipartite
state among A, B, C, and D which violates FB inequality is
listed in Table I.

2. Triangular lattice

In the triangular lattice, the coordination number is 6. This
geometry is considered since we show a 1D lattice having
coordination number 6 is special. Hence, such a lattice has
potential to show superadditivity in violation of local realism.
Suppose we want to create a multipartite state between sites,
marked with yellow dots in Fig. 8. For generating such a
multipartite entangled state, six joint measurements have to be
performed in a six-qubit GHZ basis. From the results obtained
for a 1D lattice, it is clear that even if the initial Werner state
has p < 1√

2
, which does not violate CHSH inequality, the final

state still violates FB inequality.
As previously stated, the LHV model was shown to exist

in the whole range where CHSH inequality is not violated
(p � 1√

2
) if any one of the party is restricted to perform planar

projective measurements [44,45]. Our results show that even
when the initial state possesses a local hidden variable model,
we can obtain a resulting state which violates a multipartite

Bell inequality with continuous range of settings, thereby
showing a signature of superadditivity. Specifically, by using
Eq. (49), we find that in a triangular lattice, the superadditivity
can be observed for a multiparty state having 53 sites, if we
perform local measurement on a single site of the lattice.
Moreover, for a fixed number of local measurements, m, we
can always provide a minimum number of nodes required to
exhibit superadditivity by evaluating Eq. (49).

V. CONCLUSION

Establishing a connection between two or more parties by
producing entanglement between them is essential to imple-
ment quantum information protocols in network. Generation
of entanglement among an arbitrary prefix set of points has
to be guaranteed by using certain detection procedures. In
this paper, we employed bipartite as well as multipartite Bell
tests to certify entanglement in a device-independent way in
networks of one- and two-dimensional square and triangular
lattices, which are initially covered by an arbitrary number of
noisy entangled states. In a two-party scenario, we considered
Clauser-Horne-Shimony-Halt (CHSH) inequality, while for
multipartite states, we evaluated Mermin-Belinskii-Klyshko,
a two-setting Bell inequality, as well as a functional Bell
inequality having continuous settings. We proposed joint and
local measurement-based method to establish entanglement
in such a network with an arbitrary number of nodes. Note
that the previous works which considered similar scenarios are
only based on global measurements and do not involve local
measurements. For a fixed number of nodes and a fixed co-
ordination number, we found the entanglement content of the
initial state so that the resulting state violates certain types of
Bell inequalities. Our method shows that the number of nodes,
coordination number, and joint and local measurements have
a interplay in obtaining violation of Bell inequality.

We reported that a method presented here can produce a
state that violates Bell inequality and has a continuous range
of settings, although the initial state does not violate Bell
inequalities with two settings and two outcomes. In particular,
we found that the minimum coordination number required to
activate such a superadditivity phenomena is six in a one-
dimensional lattice with an arbitrary number of nodes. Based
on this result, we designed a protocol on a triangular lattice
in which there exists a final output state violating functional
Bell inequality after joint and local measurements, although
the initial states covering the lattice do not violate CHSH
inequality. Such a phenomena is absent in a square lattice. Our
proposed architecture of connecting any prefix sites in a lattice
can be a step toward building the quantum internet.
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