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Self-force on moving electric and magnetic dipoles: Dipole radiation, Vavilov-Čerenkov radiation,
friction with a conducting surface, and the Einstein-Hopf effect
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The classical electromagnetic self-force on an arbitrary time-dependent electric or magnetic dipole moving
with constant velocity in vacuum, and in a medium, is considered. Of course, in vacuum there is no net force
on such a particle. Rather, because of loss of mass by the particle due to radiation, the self-force precisely
cancels this inertial effect, and thus the spectral distribution of the energy radiated by dipole radiation is deduced
without any consideration of radiation fields or of radiation reaction, in both the nonrelativistic and relativistic
regimes. If the particle is moving in a homogeneous medium faster than the speed of light in the medium,
Vavilov-Čerenkov radiation results. This is derived for the different polarization states, in agreement with the
earlier results of Frank. The friction experienced by a point (time-independent) dipole moving parallel to an
imperfectly conducting surface is examined. Finally, the relativistic quantum/thermal Einstein-Hopf effect is
rederived. We obtain a closed form for the spectral distribution of the force and demonstrate that, even if the atom
and the blackbody background have independent temperatures, the force is indeed a drag when the imaginary
part of the polarizability is proportional to a power of the frequency. The unifying theme of these investigations is
that friction on an atom requires a dissipative mechanism, be it through radiation or resistivity in the environment.
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I. INTRODUCTION

Quantum electrodynamic friction has a long history. It
is typically referred to as Casimir or quantum friction, and
occurs when a polarizable object or atom moves parallel to
another such body. For a review with many references, see
Ref. [1].

But frictional drag also occurs in the classical regime. Re-
cently, we considered the friction on a charged particle passing
parallel to a metallic surface described by the Drude model
[2]. We have now investigated the analogous effect when the
particle is neutral, but carries an electric or a magnetic dipole
moment. We report our results here. We further show how
quantum friction emerges, even if the particle does not carry
an intrinsic dipole moment, by considering fluctuational aver-
ages of dipole moments and electromagnetic fields.

In the course of this investigation, we discovered that, even
if the metallic surface is not present, that is, if the particle

*kmilton@ou.edu
†hannah.j.day-1@ou.edu
‡leon@ncu.edu.cn
§guoxinmike@ou.edu
‖g.kennedy@soton.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

is moving with constant velocity in vacuum, a classical fi-
nite self-force can arise. This seems rather different from the
Einstein-Hopf effect [3] due to thermal fluctuations in the
electromagnetic field, or the Boyer effect [4] due to zero-point
fluctuations. The effect we observe does not, of course, mean
that the particle slows down (because the configuration can be
obtained from that of the particle at rest by a Lorentz trans-
formation). Rather, when the dipole moment possesses time
dependence, the radiation produced by the dipole decreases
the mass of the particle slightly, so the corresponding decrease
in the particle’s (relativistic) momentum, transferred to the
momentum of the radiation field, is interpreted as the impulse
of a drag force. In fact, this force is proportional to the total
energy radiated by the dipole. That is, the formula for the en-
ergy spectrum emitted by dipole radiation, or equivalently, the
radiation reaction force, is derived entirely from the Lorentz
force law and the Maxwell-Heaviside equations, without any
explicit reference to radiation fields. The physics behind this
effect was also noted in a less general context in Ref. [5].

If the vacuum is replaced by a homogeneous medium
of permittivity ε(ω), and the particle moves at a speed v

faster than the speed of light in the medium 1/
√

ε, Vavilov-
Čerenkov radiation is produced. This was worked out for
electric and magnetic dipoles many years ago by Frank [6],
although there seemed to be some ambiguity in the case of a
magnetic dipole [7]. (For a fascinating historical discussion,
see Ref. [8].) We discuss these ambiguities here by doing
direct calculations using our formalism.

Then, we return to the original problem, that of a neutral
particle, possessing either an electric or a magnetic dipole
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moment, moving parallel to an imperfectly conducting sur-
face. Because of dissipation in the material, the particle
experiences a frictional force, which depends on the direction
of orientation of the dipole. (Our formalism also allows us to
derive the friction due to induced Vavilov-Čerenkov radiation
in the material when the velocity of the particle exceeds the
speed of light in the substrate [9]. This will be described
elsewhere.) Although our approach is general, we limit our de-
tailed results to a time-independent dipole, in the low-velocity
limit, which is the regime most likely to be accessible to
observation.

Finally, we begin our foray into the quantum vacuum
regime by quantizing our system, replacing the product
of dipole moments by its fluctuational average using the
fluctuation-dissipation theorem. Field fluctuations are simi-
larly considered. The force is equivalent to that given by
Dedkov and Kyasov [10] and Volokitin and Persson [11],
which reduces to the Einstein-Hopf effect [3] in the nonrel-
ativistic limit.

Although the calculations presented here may seem some-
what disparate, and to a large extent reproduce known results,
there is a clear commonality in the physics of a moving
dipole in a nontrivial background, including the vacuum. Our
purpose, in this methodological paper, is to show that all
these frictional effects have a common basis, and can be
obtained from a simple, relativistic formulation following di-
rectly from the Heaviside-Maxwell equations. The interplay
between radiation reaction, Vavilov-Čerenkov radiation in the
environment, and dissipation in the particle and the environ-
ment imply interesting synergic effects. We hope that our
investigations spur experimental studies of such phenomena.

The outline of this paper is as follows. In the next section
we give general expressions for the self-force on a moving
dipole. In Sec. II A we consider the simplest case, where an
electric dipole, moving through the vacuum, is oriented in
the same direction as the motion, while perpendicular ori-
entation is treated in Sec. II B. The interpretation in terms
of dipole radiation is given in Sec. II C. In Sec. II D it is
shown that equivalent formulas are obtained for a moving
magnetic dipole. The relation between the currents we use
and the electric and magnetic polarizations are also given
there. In Sec. III we consider Vavilov-Čerenkov radiation in a
uniform dielectric medium due to a moving time-independent
electric or magnetic dipole, and obtain, using our machinery,
the energy loss rate, or frictional force, and the corresponding
energy spectrum, first derived by Frank in 1942 [6], and, in
particular, confirm the second form proposed by Frank in 1984
[7] (and see earlier references given there). In Sec. IV we ex-
amine the classical friction experienced by a time-independent
dipole moving parallel to an imperfectly conducting plate,
complementing Ref. [2]. Finally, in Sec. V, we use the
fluctuation-dissipation theorem to connect the corresponding
quantum friction in vacuum to the Einstein-Hopf effect. Con-
cluding remarks follow in Sec. VI. In Appendix A we show
how the current densities for a moving time-dependent dipole
are obtained by a Lorentz transformation from those in the rest
frame. In Appendix B we give some properties of the Green’s
functions used, while in Appendix C we illustrate how our
method reproduces the usual static Casimir-Polder force in
general. Appendix D describes how the blackbody spectrum

appears in a moving frame. Appendix E demonstrates that the
relativistic Einstein-Hopf friction is indeed a drag force when
the imaginary part of the polarizability is a power law in the
frequency.

In this paper we use Heaviside-Lorentz (rationalized) elec-
tromagnetic units, and set c = h̄ = 1.

II. SELF-FORCE ON DIPOLE

The force is computed from the Lorentz law for the force
density,

f (r, t ) = ρ(r, t )E(r, t ) + j(r, t ) × B(r, t ). (2.1)

For a time-dependent electric dipole moving with constant
velocity v = x̂v in the x direction, the charge and current
densities are

ρ(r, t ) = −d(t ) · ∇δ(x − vt )δ(y)δ(z), (2.2a)

j(r, t ) = −v d(t ) · ∇δ(x − vt )δ(y)δ(z)

+ḋ(t )δ(x − vt )δ(y)δ(z). (2.2b)

Here d(t ) is the dipole moment in the moving (lab) frame. The
relation between the dipole moment in the moving frame and
that in the rest frame is given by (2.24) below. This current is
that obtained by a Lorentz boost from the charge density of a
time-dependent dipole at rest. (See Appendix A.) The second
term in the current density arises because the dipole moment
is assumed time dependent, so it is required by current con-
servation:

∂

∂t
ρ + ∇ · j = 0. (2.3)

(Adding a curl term to j in the rest frame would correspond
to an intrinsic magnetic dipole moment. See Sec. II D.) In the
following, it will be convenient to use the frequency Fourier
transform of these quantities:

ρ(r; ω) = −1

v
∇ ·

[
d
( x

v

)
eiωx/vδ(y)δ(z)

]
, (2.4a)

j(r; ω) = −v
v
∇ ·

[
d
( x

v

)
eiωx/vδ(y)δ(z)

]

+ d

dx
d
( x

v

)
eiωx/vδ(y)δ(z). (2.4b)

In the frequency domain, the electric field can be expressed
in terms of the Green’s function,

E(r; ω) = − 1

iω

∫
(dr′)�(r, r′; ω) · j(r′; ω). (2.5)

It will be convenient to adopt the transverse Fourier represen-
tation

�(r, r′; ω) =
∫

(dk⊥)

(2π )2
eik⊥·(r−r′ )⊥g(z, z′; k⊥, ω), (2.6)

because we have in mind, as treated in Sec. IV, motion next to
a surface in the x-y plane. This assumes the system has trans-
lational invariance in x and y directions, for which we have
the breakup into transverse electric (TE or E ) and transverse
magnetic (TM or H) modes, with k2 = k2

⊥, in a dielectric
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medium with permittivity ε(z, ω):

g =

⎛
⎜⎜⎝

k2
x

k2
1

εε′ ∂z∂z′gH + k2
y

k2 ω
2gE kxky

k2

(
1

εε′ ∂z∂z′gH − ω2gE
)

ikx
1

εε′ ∂zgH

kxky

k2

(
1

εε′ ∂z∂z′gH − ω2gE
) k2

y

k2
1

εε′ ∂z∂z′gH + k2
x

k2 ω
2gE iky

1
εε′ ∂zgH

−ikx
1

εε′ ∂z′gH −iky
1

εε′ ∂z′gH k2 1
εε′ gH

⎞
⎟⎟⎠, (2.7)

where ε = ε(z, ω) and ε′ = ε(z′, ω). Here we specialize to the vacuum case, ε = 1, but we will generalize in Sec. III. Here the
transverse electric and transverse magnetic Green’s functions are equal in vacuum,

gE (z, z′; k⊥, ω) = gH (z, z′; k⊥, ω) = 1

2κ
e−κ|z−z′ |, (2.8)

with κ =
√

k2
x + k2

y − ω2, which is, in general, complex.

To compute the Lorentz force on the moving dipole, we first eliminate, by use of Eq. (2.3), the charge density from the
time-averaged force density in Eq. (2.1), integrated over all space,

FT =
∫

dω

2π

∫
(dr)[ρ(r; ω)∗E(r; ω) + j(r; ω)∗ × B(r; ω)]

=
∫

dω

2π

∫
(dr)(dr′)

1

ω2
ji(r; ω)∗∇	ik (r, r′; ω) jk (r′; ω) ≡ Tr

1

ω2
j∗(∇)�j. (2.9)

The last form is a matrix notation where the trace Tr includes the integration over coordinates and frequency. Here, T is the (large)
time that the configuration exists. This form of the mean force, including both the electric and magnetic terms, is reminiscent of
the expression used in quantum mechanics [12]. Now inserting the current densities (2.4b) into this, we obtain for the force in
the direction of motion, taking advantage of the δ functions,

FxT =
∫

dω

2π

∫
dx dx′e−iωx/v 1

v

[
d
( x

v

)
· ∇v + ḋ

( x

v

)]
· 1

ω2

∫
(dk⊥)

(2π )2
eikx (x−x′ )ikxg(z, z′; k⊥, ω)

∣∣∣∣
z=z′

·1

v

[
v
←−∇ ′ · d

(
x′

v

)
+ ḋ

(
x′

v

)]
eiωx′/v. (2.10)

Here, we have integrated by parts, and the minus sign obtained
from so doing is incorporated in the differential operator

←−∇ ′.
In the transverse directions, the gradient operators are to be
interpreted as ∇⊥ = ik⊥ and ∇′

⊥ = −ik⊥. Similarly, the ḋ
term can be integrated by parts, yielding a factor i(ω − kxv).
Now, carrying out the integrations over x and x′ leads to the
Fourier transform of the dipole moment,

d̃(ω) =
∫ ∞

−∞
dt eiωt d(t ), (2.11)

so the product of dipole moments appears as d̃(ω −
vkx )∗d̃(ω − vkx ).

A. d ‖ v

Suppose first the dipole is polarized parallel to the mo-
tion, that is, d and v are both in the x direction. Then, from
Eqs. (2.10) and (2.7), the force in the x direction is

F ‖
x T = i

8π3

∫ ∞

−∞
dω

∫
dkxdky|d̃ (ω − vkx )|2kx

(
ω2 − k2

x

)
2κ

.

(2.12)

The real part of the integral is zero, because the integrand
is odd under the substitutions ω → −ω and kx → −kx. The
imaginary part of the integrand can only arise from κ , which
becomes imaginary when k2 < ω2. The appropriate branch
of the square root is determined by the requirement that the
singularities lie in the lower-half ω plane, since we are dealing

with the retarded propagator. Then

ω2 > k2 :
√

k2 − ω2 = −i sgn(ω)
√

ω2 − k2. (2.13)

When ω2 − k2
x > 0, the ky integral is simply

∫ √
ω2−k2

x

−
√

ω2−k2
x

dky√
ω2 − k2

x − k2
y

= π, (2.14)

and we are left with

F ‖
x T = − 1

16π2

∫
dω dkx|d̃ (ω − vkx )|2sgn(ω)kx

(
ω2 − k2

x

)
.

(2.15)
When we change variables by writing ν = ω − kxv and kx =
uν, we obtain

F ‖
x T = − 1

16π2

∫ ∞

−∞
dν ν4|d̃ (ν)|2

∫ 1/(1−v)

−1/(1+v)
du

× u[(1 + vu)2 − u2]

= − v

12π2
γ 6

∫ ∞

−∞
dν ν4|d̃ (ν)|2. (2.16)

Here γ = (1 − v2)−1/2 is the usual relativistic dilation factor.

B. d ⊥ v

If the polarization of the dipole is perpendicular to the
motion, say in the y direction, we again start from Eq. (2.10).
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Following the same procedure we detailed in the previous
subsection, and inserting the appropriate components of the
reduced Green’s function from Eq. (2.7), we find, after some
algebra, for the drag force in the direction of motion

F⊥
x T = v2

∫
dω(dk⊥)

(2π )3
|d̃ (ω − vkx )|2

(
− kx

2iκ

)

×
[

k2
y

(
1 − 1

v2

)
+

(
kx − ω

v

)2
]
. (2.17)

Again, carrying out the integral on ky above the branch line of
the square root, and making the same changes of variables as
before, we find

F⊥
x T = − v2

16π2

∫ ∞

−∞
dν |d̃ (ν)|2ν4

×
∫ 1/(1−v)

−1/(1+v)
du u

1

2

{
1

v2
+

[
1 + vu

(
1 − 1

v2

)]2}

= − v

12π2
γ 4

∫ ∞

−∞
dν ν4|d̃ (ν)|2. (2.18)

C. Interpretation and discussion

In the above two subsections, we have performed straight-
forward calculations of the classical electromagnetic self-
force on an arbitrary time-varying electric dipole undergoing
uniform motion. The results are slightly different depending
on the orientation of the dipole. If the dipole is perpendicular
(parallel) to the motion, the time-averaged force in the direc-
tion of the motion is

F⊥
x

F ‖
x

}
= − v

12π2T

{
γ 4

γ 6

}∫ ∞

−∞
dν ν4|d̃ (ν)|2, (2.19)

in terms of the Fourier transform of the dipole moment. In
the above we assumed that the direction of the dipole moment
was fixed either parallel or perpendicular to the direction of
motion. For general orientation, the off-diagonal elements of
the reduced Green’s dyadic are either odd in ky or proportional
to sgn(z − z′), which vanishes in the coincident limit. Thus we
have in general

Fx = − v

12π2T
γ 4

∫ ∞

−∞
dν ν4[|d̃⊥(ν)|2 + γ 2|d̃‖(ν)|2],

(2.20)

in terms of the dipole moment components perpendicular
(parallel) to the direction of motion.

Three observations immediately jump out.
(i) For an undamped oscillator of frequency ω0, the integral

over ν is proportional to

2πδ(0) = lim
T →∞

∫ T/2

−T/2
dt eiωt

∣∣
ω=0 = T, (2.21)

because d̃ (ν) ∝ δ(ν − ω0).
(ii) In the nonrelativistic limit the drag forces are identical.
(iii) The friction is proportional to the total energy radiated

by an oscillating dipole at rest [13]

E ′
R = 1

12π2

∫ ∞

−∞
dν ν4|d̃′(ν)|2, (2.22)

where the integrand is the spectral energy distribution of a
radiating dipole. (Primes denote quantities in the particle’s
rest frame.)

Thus, for low velocities, the force satisfies

FxT = −vE ′
R. (2.23)

This result has an extremely simple interpretation. Of course,
there is no force on a uniformly moving dipole in vacuum,
since it may be obtained from a dipole at rest by a Lorentz
boost. But, because the dipole loses energy E ′

R over the course
of its motion, its mass decreases accordingly, and therefore,
nonrelativistically, its momentum decreases by E ′

Rv. This is
the negative of the momentum carried off by the radiation
field. Momentum conservation means that a radiation reaction
force Fx = −E ′

Rv/T is acting on the moving dipole.
In the relativistic regime, the different factors of γ are

easily understood. One factor of γ comes from the Lorentz
transformation of the momentum of the radiated energy,
(PR)x = vγ E ′

R. Then if we transform the dipole moments in
the moving frame to those in the rest frame,

γ dx(γ t ) = d ′
x(t ), dy(γ t ) = d ′

y(t ), (2.24)

the Fourier transforms are related by

d̃x

(
ν

γ

)
= d̃ ′

x(ν),
1

γ
d̃y

(
ν

γ

)
= d̃ ′

y(ν). (2.25)

Thus when PR is expressed in terms of the dipole moment in
the moving frame d, we obtain exactly the structure seen in
Eq. (2.19). In terms of the dipole moment in the rest frame of
the particle, the average force is given by

Fx = − vγ

6π2T

∫ ∞

0
dν ν4|d̃′(ν)|2. (2.26)

This effect, nonrelativistically, was seen in Ref. [5]
in the special case of a two-level system with transition
frequency ω0. This is described by a dipole with a single fre-
quency, as mentioned above, d (ω) = d02πδ(ω − ω0), so from
Eq. (2.26)

F = −v
ω4

0d2
0

3π
, (2.27)

which is the result (16) of Ref. [5]. The inertial origin of the
effect is given in Eq. (17) of that reference. What might not be
immediately obvious in that work is that the effect is entirely
classical. It further appears that our method is somewhat more
straightforward.

D. Magnetic dipole

What about a magnetic dipole moving through vacuum?
Precisely the same considerations apply, and because the re-
sults are obtained by a duality transformation, d → μ and
gH = gE in vacuum,1 the same form of the inertial effect

1In dual electrodynamics, the magnetic current would have the
same form as Eq. (2.2b), except d → μ.
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emerges:

Fx = − v

12π2T
γ 4

∫ ∞

−∞
dν ν4[|μ̃⊥(ν)|2 + γ 2|μ̃‖(ν)|2]

= − vγ

12π2T

∫ ∞

−∞
dν ν4|μ̃′(ν)|2, (2.28)

again expressed in terms of the energy loss due to magnetic
dipole radiation, where μ̃′ is the dipole moment in the rest
frame of the particle.

For the following applications, however, duality will fail,
because a dielectric medium breaks the symmetry between
electric and magnetic quantities. So we must use the electric
current density of a moving time-dependent magnetic dipole,
obtained from the current of a magnetic dipole at rest

j′(r′, t ′) = ∇′ × μ′(t ′)δ(r′), (2.29)

which after a boost of velocity v yields

ρ(r, t ) = −[v × μ(t )] · ∇δ(r − vt ), (2.30a)

j(r, t ) = −μ(t ) × ∇δ(r − vt ) + ∂t [v × μ(t )δ(r − vt )],

(2.30b)

where μ(t ) is the magnetic dipole moment in the moving
frame. The time derivative term is required by current con-
servation, Eq. (2.3). It is then straightforward algebra to show
this current, inserted into our general construction (2.9), yields
the radiation formula (2.28), as asserted.

It actually might seem more natural to pose this problem in
terms of electric and magnetic polarizations P and M, instead
of electric currents and charges. Of course, the two are related
by

ρ = −∇ · P, j = ∇ × M + ∂

∂t
P. (2.31)

By inspection of Eqs. (2.2) and (2.30), it is immediately seen
that

P(r, t ) = [d(t ) − μ(t ) × v]δ(r − vt ), (2.32a)

M(r, t ) = [μ(t ) + d(t ) × v]δ(r − vt ). (2.32b)

III. VAVILOV-ČERENKOV RADIATION

The above calculations were performed assuming the back-
ground was vacuum. It is easy to extend them to the motion
of a dipole through a homogeneous dielectric medium. In this
case, a new phenomenon can emerge, when the velocity of the
particle exceeds the speed of light in the medium 1/n, where
the index of refraction is n(ω) = √

ε(ω). This is the famous
Vavilov-Čerenkov effect, usually considered for a charged
particle [14,15].

We repeat the above calculations using the general form of
the Green’s dyadic (2.7), where now

gE (z, z′) = 1

2κ
e−κ|z−z′ |, gH (z, z′) = ε

2κ
e−κ|z−z′ |,

κ =
√

k2 − ω2ε(ω). (3.1)

Then,

gxx(0, 0) = 1

2κ

[
ω2 − k2

x

ε(ω)

]
, (3.2)

and for a longitudinally polarized electric dipole we have the
drag force given by

F ‖
x T = 1

16π2

∫ ∞

−∞
dν ν3|ν||d̃ (ν)|2

∫
du u sgn[ν(1 + vu)]

×
[

(1 + vu)2 − u2

ε[ν(1 + vu)]

]
. (3.3)

Here, the limits of the u integration are determined by

ω2ε(ω) > k2
x or (1 + vu)2ε[ν(1 + vu)] > u2. (3.4)

In the case that ε is independent of frequency, the limits
become

− 1

1/n + v
,

1

1/n − v
, (3.5)

where n = √
ε, and then if the speed of the dipole is smaller

than the speed of light in the medium, v < 1/n,

F ‖
x T = −v

n3

(1 − v2n2)3
ER, ER = 1

12π2

∫ ∞

−∞
dν ν4|d̃(ν)|2,

(3.6)

in terms of the radiated dipole energy ER. Similarly, for the
transverse polarization, we find

F⊥
x T = −v

n3

(1 − v2n2)2
ER. (3.7)

These are simple generalizations of Eq. (2.19).
The assumption of dispersionless permittivity is quite un-

realistic, of course. Instead, assume dispersion, but let us
suppose in the relevant frequency region that the index of
refraction is real and greater than one. In order to obtain
a simple result, let us further consider only the case where
the dipole has no time dependence, d(t ) = d0, so there is no
radiation in the rest frame. But now there is Vavilov-Čerenkov
radiation in the frame where the dipole moves with constant
velocity greater than that of the speed of light, v > 1/n(ω).
The ν integral in Eq. (3.3) becomes trivial because

d̃(ω) = 2πδ(ω)d0, (3.8)

where, again as in Eq. (2.21), we interpret 2πδ(0) = T . The
result for the drag in the case of a moving electric dipole po-
larized in the direction parallel to the motion is, after changing
variable, kxv = ω,

(F ‖
x )d = − d2

0

4π

1

v2

∫
ω>0

dω ω3

[
1 − 1

v2n(ω)2

]
, (3.9)

where the integration extends over those positive frequencies
for which the spectral distribution is positive. This distribu-
tion coincides with the result of Frank [6], Eq. (2.33) there.
(See also Refs. [7,16].) Note that the force on the particle is
the energy loss rate per unit length traveled by the particle,
−∂E/∂x. The frequency integrand is the frequency spectrum
of radiated energy. See, for example, Ref. [13], Chap. 36.

The result for perpendicular polarization is somewhat dif-
ferent, but obtained in precisely the same way:

(F⊥
x )d = − d2

0

8π

∫
ω>0

dω ω3n(ω)2

[
1 − 1

v2n(ω)2

]2

, (3.10)
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coinciding with the spectral distribution found by Frank [6],
Eq. (2.34).

As noted above, in vacuum there is no difference between
the formulas for the drag forces for a magnetic dipole as
compared to an electric dipole. But this is not the case in the
medium. Nevertheless, the steps are just the same, with the
duality transformations, d0 → μ0, gE ↔ gH , and in the con-
struction (2.7), ε → μ = 1 (the latter being the permeability).
So for a constant magnetic dipole polarized longitudinally,

(F ‖
x )μ = − μ2

0

4πv2

∫
ω>0

dω ω3n(ω)2

[
1 − 1

v2n(ω)2

]
, (3.11)

which agrees with Ref. [7], Eq. (4.35), but there seems to be
a missing n2 in Ref. [16]. For perpendicular polarization, the
result, after a bit of algebra, is

(F⊥
x )μ = − μ2

0

8π

∫
ω>0

dω ω3n(ω)4

[
1 − 1

v2n(ω)2

]2

, (3.12)

which agrees with one of the two alternatives, Eq. (4.37),
given by Ref. [7].2 In fact, the extra n(ω)2 in Eqs. (3.12) and
(3.11) compared to Eqs. (3.10) and (3.9) is a trivial conse-

quence of Babinet’s principle [17], p. 91, the invariance of the
Heaviside-Maxwell equations in the frequency domain under

E(r; ω) →
√

μ(ω)

ε(ω)
H(r; ω),

H(r; ω) → −
√

ε(ω)

μ(ω)
E(r; ω), (3.13a)

jνe (r; ω) →
√

ε(ω)

μ(ω)
jνm(r; ω),

jνm(r; ω) → −
√

μ(ω)

ε(ω)
jνe (r; ω). (3.13b)

However, this treatment is suspect, since the dielectric
medium breaks dual symmetry, because it has electric sus-
ceptibility, but no magnetic susceptibility. We should repeat
the calculation using the electric current (2.30b). Perhaps not
surprisingly, the same result (3.11) is obtained for parallel
polarization. But that is not the case for perpendicular po-
larization. Since this is a bit more complicated, and perhaps
controversial, let us supply a few more details. Assuming μ

points in the y direction, with the velocity in the x direction,
the general formula reduces to

(F⊥
x )μT =

∫
dω dkx dky

(2π )3

ikx

ω2
|μ̃(ω − vkx )|2[∂z∂z′gxx + i(kx − vω)(∂zgxz − ∂z′gzx ) + (kx − vω)2gzz

]

= T
μ2

0

8π2

∫
dkx dky

ikx

κ

[
(vkx )2

(√
ε − 1√

ε

)2

+ k2
y

(
v2

ε
− 1

)]
. (3.14)

Here, we have assumed the dipole has no time variation, μ(t ) = ŷμ0. Carrying out the ky integration as before, we obtain the
result (letting vkx = ω)

(F⊥
x )μ = − μ2

0

8πv2

∫
ω>0

dω ω3n2(ω)

[
2

(
1 − 1

n(ω)2

)2

−
(

1 − v2

n(ω)2

)(
1 − 1

v2n(ω)2

)]
. (3.15)

The integral is over those positive frequencies for which
n(ω)v > 1. The integrand is the spectral distribution of
Vavilov-Čerenkov radiation found by Frank in Ref. [7],
Eq. (4.36). It is somewhat surprising because it is discontin-
uous at threshold; that is, it is zero if vn < 1, but it jumps to
a finite value when the particle exceeds the speed of light for
a given frequency. The earlier result (3.12), obtained by the
plausible duality argument, is indeed incorrect.

In fact, the issue is quite subtle: the duality argument and,
therefore, Eq. (3.12) is correct for a “Gilbert” magnetic dipole
composed of a magnetic monopole-antimonopole pair, but
for an “Ampèrian” dipole due to electric currents Eq. (3.15)
is correct. This is discussed in detail in Ref. [8]; see also
Refs. [18,19]. On the other hand, for the special case of a
dipole oriented in the direction parallel to the motion, it is

2It might be noted that Eq. (3.9) is obtained from Eq. (3.10) by
differentiating with respect to ln v2. The same is true for Eqs. (3.11)
and (3.12).

straightforward to show that the duality argument is valid, and
hence Eq. (3.11) holds in either description.

The dipolar Vavilov-Čenenkov effect is rather small.
Compared to the corresponding charged particle effect, as de-
scribed, for example, in Refs. [2,13], where the corresponding
frictional force is

(Fx )e = − e2

4π

∫
dω ω

(
1 − 1

v2n(ω)2

)
, (3.16)

the electric dipole effect is smaller by a factor of order
[d/(eλ)]2, where λ is the characteristic wavelength of the
radiation emitted. This is typically a very small number, be-
cause the size of the particle is small compared to an optical
wavelength.

IV. FRICTION OF DIPOLE PASSING CLOSE
TO CONDUCTING SURFACE

Next, we consider either an electric or a magnetic dipole
moving in vacuum with constant velocity parallel to an
imperfectly conducting surface in the x-y plane. The idea is an
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immediate generalization of the analysis of the same situation
for a charged particle [2]. We start with Eq. (2.10), which for
a time-independent electric dipole d(t ) = d0 yields

(Fx )d = d2
0 v2

4π2

∫
dkx dky

ikx

ω2
∇n∇′

ngxx, ω = vkx, (4.1)

where ∇n = n̂ · ∇, with n̂ = d0/d0. Here gxx is given in
Eq. (2.7) with ε = 1, but now

gE ,H = 1

2κ

[
e−κ|z−z′ | + rE ,H e−κ (z+z′ )], z, z′ > 0, (4.2)

in the vacuum region above the conductor, which occupies the
semispace z < 0, where the reflection coefficients are

rE = κ − κ ′

κ + κ ′ , rH = κ − κ ′/ε
κ + κ ′/ε

,

κ =
√

k2 − ω2, κ ′ =
√

k2 − ω2ε. (4.3)

The required imaginary part can only come from the reflection
coefficients, because κ is real. It is convenient to write the
above integral in polar coordinates, with kx = γ κ cos θ and
ky = κ sin θ .

Depending on the polarization of the dipole relative to the
surface and the direction of motion, the force can be written
in terms of transverse electric and transverse magnetic contri-
butions:

(Fx )d = − d2
0

8π2
(γ 2 − 1)

∫ ∞

0
dκ κ3e−2κa

∫ 2π

0
dθ

cos θ

1 + (γ 2 − 1) cos2 θ
( f E + f H )

⎧⎨
⎩

γ 2 cos2 θ, d0 = x̂d0,

sin2 θ, d0 = ŷd0,

1, d0 = ẑd0,

(4.4)

where a is the distance between the trajectory of the dipole and the surface. Here f E ,H are the same functions appearing in
Ref. [2]:

f E (κ, θ, γ ) = 2 sin2 θ Im[1 +
√

1 − (γ 2 − 1)(ε − 1) cos2 θ ]−1, (4.5a)

f H (κ, θ, γ ) = 2
γ 2

γ 2 − 1
Im

[
1 + 1

ε

√
1 − (γ 2 − 1)(ε − 1) cos2 θ

]−1

. (4.5b)

We model the conductor by the Drude model3:

ε(ω) = 1 − ω2
p

ω2 + iνω
, (4.6)

in terms of the plasma frequency ωp and the damping param-
eter ν.

Because the f ’s are the same as discussed previously, we
can carry over various limits from Ref. [2]. We will con-
tent ourselves here with the low-velocity limit, v � νa � 1.
Defining α̂ = 2ωpa, β̂ = 2νa, and û = 2κa, we have [2]

f E = α̂2v

4ûβ̂
cos θ sin2 θ, f H = 2ûβ̂

α̂2v
cos θ, v � β̂ � 1.

(4.7)

Obviously, the TE contribution is subdominant, and the lead-
ing behavior is

(
F x,y,z

x

)
d ≈ − 3d2

0

32πa4

β̂v

α̂2
(3, 1, 4), v � β̂ � 1, (4.8)

where the superscript refers to the direction of polarization of
d0. If this is averaged over the three polarizations, we obtain
the force on a “tumbling” dipole, expressed in terms of the
static conductivity, σ = ω2

p/(4πν),

Fx = − 1

32π2

d2
0

σa5
. (4.9)

3In this case the imaginary part only comes from that of ε(ω). Even
if ε is real, but v > 1/

√
ε(ω), we will encounter an imaginary part

from the induced Vavilov-Čerenkov effect [9]. We will examine this
situation in detail elsewhere.

This is the result given in Ref. [20].
The magnetic friction is derived similarly. We use the cur-

rent (2.30b) to write the force as (ω = vkx)

(Fx )μ =
∫

dkx dky

(2π )2

ikx

ω2
μ0 × (∇ − ivω) · g · μ0 × (

←−∇′ + ivω).

(4.10)

For the different orientations of the magnetic dipole, we carry
out the algebra and find a result of the form of Eq. (4.4), or

(Fx )μ = − μ2
0

128π2a4
(γ 2 − 1)

∫ ∞

0
dû û3e−û

×
∫ 2π

0
dθ

cos θ

1 + (γ 2 − 1) cos2 θ
( f̃ E + f̃ H )

×
⎧⎨
⎩

γ 2 cos2 θ, μ0 = x̂μ0,

sin2 θ, μ0 = ŷμ0,

1, μ0 = ẑμ0,

(4.11)

which looks just like Eq. (4.4) except that d0 → μ0, and the
f ’s are replaced by f̃ ’s which are defined by

f̃ E = γ 2

γ 2 − 1

1

sin2 θ
f E , f̃ H = sin2 θ

γ 2 − 1

γ 2
f H . (4.12)

Now, because of the kinematic factors, the TE contribution
dominates, and using the previously stated behaviors (4.7) for
small v, we find

(
F x,y,z

x

)
μ

= − μ2
0

128πa4

α̂2

8β̂
v(3, 1, 4), v � β̂ � 1, (4.13)

since the angular integrals are the same as for the electric
dipole.
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Again the electric dipole friction is relatively smaller than
the corresponding electric charge case [2], by a factor of order
(d/ea)2.

V. QUANTUM VACUUM FRICTION

A. dd fluctuations

Let us return to the situation of a particle moving uni-
formly in vacuum, but now quantize the dipole. We assume
the particle has no mean dipole moment in its rest frame,
〈d′(t ′)〉 = 0. The formula we obtained in Sec. II C for the
force in the moving frame of the particle expressed in terms
of the rest-frame dipole moments, Eq. (2.26), is quantized by
using the fluctuation-dissipation theorem [21,22]〈

d′(t ′
1)d′(t ′

2) + d′(t ′
2)d′(t ′

1)

2

〉
≡ 〈S d′(t ′

1)d′(t ′
2)〉

=
∫ ∞

−∞

dν

2π
e−iν(t ′

1−t ′
2 ) Im α(ν) coth

β ′ν
2

, (5.1)

where we have symmetrized the dipole operators. Here, β ′
is the inverse temperature in the particle’s rest frame and α

is the electric polarizability tensor of the particle in its rest
frame. We Fourier transform Eq. (5.1) and find the proper
replacement to be made in Eq. (2.26) when quantizing the
dipole is

|d̃′(ω)|2 → T ′Im α(ω) coth
β ′ω

2
. (5.2)

Here, T ′ is the total time that the configuration exists mea-
sured in the rest frame of the particle, related to T by T =
γ T ′, because the change in the particle coordinate is dx′ = 0.
For an isotropic particle, α = α1, then, the force arising from
the dipole fluctuations is

(Fx )dd = − v

4π2

∫ ∞

−∞
dω ω4Im α(ω) coth

β ′ω
2

. (5.3)

The above argument is somewhat heuristic. For a more
rigorous approach, consider first the free energy in the rest
frame of the particle, located at r′

1 at time t ′
1, which may be

written as4

F ′(t ′
1) = −〈d′(t ′

1) · E′(r′
1, t ′

1)〉

= −
∫ ∞

−∞
dt ′

2

∫ ∞

−∞

dω

2π
e−iω(t ′

1−t ′
2 )
∫

(dk′
⊥)

(2π )2
eik′

⊥·(r′
1−r′

2 )⊥

× trg′
R(z′

1, z′
2; k′

⊥, ω) 〈S d′(t ′
2)d′(t ′

1)〉
∣∣∣∣
r′

1⊥=r′
2⊥,z′

1=z′
2

.

(5.4)

In the frame in which the particle is moving with velocity
v = vx̂, the transformed free energy is F = 1

γ
F ′.5 The cor-

responding force on the particle may then be obtained by

4Here R is an explicit acknowledgment that we are using the re-
tarded Green’s function as opposed to the thermal Green’s function.
For the relation between these Green’s functions, see Appendix B.

5Note that the action W = −FT is Lorentz invariant, which is why
T and F transform contravariantly.

the insertion of a factor of −i(k′
x + vω) in Eq. (5.4). Using

Eq. (5.1), we then have, in general,

(Fx )dd = −
∫ ∞

−∞

dω

2π
tr Im α(ω)

∫
(dk′

⊥)

(2π )2
(k′

x + vω)

× Im g′
R(0, 0; k′

⊥, ω) coth
β ′ω

2
. (5.5)

The imaginary part of the Green’s function emerges from the
symmetry under ω → −ω and k′

x → −k′
x. For an isotropic

particle, the trace of g′
R(0, 0) is in vacuum ω2/κ ,6 where

κ =
√

k′2
⊥ − ω2. This yields

(Fx )dd = − 1

8π3

∫ ∞

−∞
dω ω2Im α(ω)

× coth
β ′ω

2

∫
dk′

x dk′
yIm

1

κ
(k′

x + vω). (5.6)

The imaginary part of 1/κ arises from the branch line in κ ,
according to Eqs. (2.13) and (2.14). And then doing the kx

integration over the interval from −|ω| to |ω| we are left with
precisely Eq. (5.3).

B. EE fluctuations

This is not the end of the story. We must now also include
fluctuations in the electromagnetic field. This contribution
arises from the force term

(Fx )EE = 1

γ

∫ ∞

−∞

dω

2π
tr α(ω)∗∇x〈E′E′〉(ω), (5.7)

which represents the interaction between the dipoles induced
by the field fluctuations. Here the factor of 1/γ is present to
transform the energy in the rest frame of the particle to that
in the rest frame of the blackbody radiation. We will here
assume once again that the field operators are to be merely
symmetrized,

〈E′E′〉(r′
1, r′

2; ω) ≡
∫ ∞

−∞
d (t ′

1 − t ′
2) eiω(t ′

1−t ′
2 )

× 〈S E′(r′
1, t ′

1)E′(r′
2, t ′

2)〉. (5.8)

Here E′(r′, t ′) is the electric field in the rest frame of the
particle. We need to Lorentz transform the fields to the rest
frame of the blackbody radiation in the vacuum, accomplished
by using

E ′
x(r′, t ′) = Ex(r, t ),

E ′
y(r′, t ′) = γ [Ey(r, t ) − vBz(r, t )],

E ′
z(r′, t ′) = γ [Ez(r, t ) + vBy(r, t )], (5.9)

where

x′ = γ (x − vt ), y′ = y, z′ = z, t ′ = γ (t − vx).
(5.10)

6The vacuum and the vacuum retarded Green’s function are Lorentz
invariant. On the other hand, if we thought of 	R in terms of an
expectation value of field products, those transform as described in
the next subsection, with the same result.
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Using Maxwell’s equations to eliminate B in favor of E, that
is, in the frequency domain ∇ × E = −iνB [corresponding
to the sign of the Fourier transform in Eq. (5.11)], we can

express the desired correlation function in the rest frame of the
blackbody radiation using the fluctuation-dissipation theorem
again:

〈S E(r1, t1)E(r2, t2)〉 =
∫ ∞

−∞

dν

2π
e−iν(t1−t2 )Im �R(r1, r2; ν) coth

βν

2
, (5.11)

where the retarded Green’s dyadic �R is given by Eqs. (2.6) and (2.7) and β is the inverse temperature of the blackbody radiation.
Again, let us consider an isotropic particle, so the trace is taken over the field correlation function in the particle rest frame,

tr〈S E′(r′
1, t ′

1)E′(r′
2, t ′

2)〉 =
∫

dν

2π

(dk⊥)

(2π )2
e−iγ (ν−kxv)(t ′

1−t ′
2 )eiγ (kx−νv)(x′

1−x′
2 ) f (ν, kx )Im

1

2κ
coth

βν

2
, (5.12)

where a straightforward bit of algebra yields

f (ν, kx ) = 2γ 2v2
(ν

v
− kx

)2
. (5.13)

Carrying out the frequency Fourier transform of Eq. (5.12) yields a δ function setting ν = ω/γ + vkx, for which f (ν, kx ) = 2ω2.
The gradient in Eq. (5.7) supplies a factor of ikx, since it refers to the blackbody rest frame. The imaginary part of the Green’s
dyadic arises again from carrying out the ky integral over the branch line of 1/κ , with the result

(Fx )EE = i

8π2γ 2

∫ ∞

−∞
dω ω2α(ω)∗

∫
dkx kxsgn

(
ω

γ
+ vkx

)
coth

[
β

2

(
ω

γ
+ vkx

)]
, (5.14)

where the limits on the kx integration are determined by the condition k2
x < ν2. Then, with kx = uω, we have

(Fx )EE = 1

8π2γ 2

∫ ∞

−∞
dω ω4Im α(ω)

∫ u+

−u−
du u coth

[
βω

2

(
1

γ
+ vu

)]
, (5.15)

where the limits on the u integration are now given in terms of u+ =
√

1+v
1−v

and u− =
√

1−v
1+v

. Here, we have used the fact that

α(ω)∗ = α(−ω). Thus only the imaginary part of α appears because otherwise the integrand is odd. Finally, on performing the
u integration, we obtain

(Fx )EE = 1

4π2v2β2γ 2

∫ ∞

−∞
dω Im α(ω) ω2

(
Li2(e−βω− ) − Li2(e−βω+ ) − vβ2γ 2ω2

+ vβ

{
ω− ln

[
2 sinh

(
βω−

2

)]
+ ω+ ln

[
2 sinh

(
βω+

2

)]})
, (5.16)

where ω− = ω

√
1−v
1+v

and ω+ = ω

√
1+v
1−v

are the corresponding Doppler-shifted frequencies and Li2 denotes the dilogarithm

function. It is immediate that this expression is odd in v. That the integrand is even in ω, which is already evident from Eq. (5.14),
follows from the reflection property of the dilogarithm: Li2(z−1) = −Li2(z) − π2

6 − 1
2 ln2(−z).

An alternative approach is to evaluate the ensemble average of the symmetrized field operators directly in the rest frame of
the particle. This may be achieved by employing the fluctuation-dissipation theorem at the level of each k′

x Fourier component,
using the corresponding Lorentz-transformed inverse temperature from Eq. (D4):

〈S E′(r′
1, t ′

1)E′(r′
2, t ′

2)〉 =
∫ ∞

−∞

dω

2π
e−iω(t ′

1−t ′
2 )
∫

(dk′
⊥)

(2π )2
eik′

⊥·(r′
1−r′

2 )⊥Im g′
R(z′

1, z′
2; k′

⊥, ω) coth

(
βγ

2
(ω + vk′

x )

)
. (5.17)

The analog of Eq. (5.5) is then generally

(Fx )EE =
∫ ∞

−∞

dω

2π
tr Im α(ω)

∫
(dk′

⊥)

(2π )2
(k′

x + vω) Im g′
R(0, 0; k′

⊥, ω) coth

(
βγ

2
(ω + vk′

x )

)
. (5.18)

Here the imaginary part of the Green’s function emerges as before, so for the isotropic case,

(Fx )EE = 1

8π2

∫ ∞

−∞
dω Im α(ω) ω2 sgn(ω)

∫
dk′

x (k′
x + vω) coth

(
βγ

2
(ω + vk′

x )

)
, (5.19)

where the limits on the k′
x integration are determined by the condition k′

x
2

< ω2. This is equivalent to Eq. (5.14) as seen by
making the substitution kx = γ (k′

x + vω).
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C. Einstein-Hopf effect

The vacuum frictional forces (5.3) and (5.15) agree with those in Refs. [10,11,23,24], and references therein, except for a
factor of 4π , due to the use of rationalized units in our case. The two terms are combined to yield the total vacuum frictional
force

Ftot = Fdd + FEE = − 1

4π2γ 2

∫ ∞

0
dω ω4Im α(ω)

∫ u+

u−

dy

v

1

v

(
y − 1

γ

)[
coth

β ′ω
2

− coth
βωy

2

]
, (5.20)

which vanishes at zero temperature and at zero velocity.
We might expect β ′ = γ β, assuming β transforms like the
time component of a four-vector.7 This is further explored in
Appendix D.

As pointed out in Ref. [11] this result is equivalent to
the Einstein-Hopf effect, which refers to low velocities.
That force may be written in terms of the blackbody spec-
tral density ρ(ω) as (recall that the relation between the
Heaviside-Lorentz and the more usual Gaussian units for po-
larizability is αHL = 4παG)

F EH
x = −v

∫ ∞

0
dω ω Im α(ω)

[
ρ(ω) − ω

3

d

dω
ρ(ω)

]
. (5.21)

For the Planck spectrum,

ρ(ω) = ω3

2π2
coth

βω

2
. (5.22)

Inserting this into Eq. (5.21) we have for the Einstein-Hopf
friction [25]

F EH
x = − 2v

3π

1

4π

∫ ∞

0
dω ω4 Im α(ω)

βω/2

sinh2 βω/2
. (5.23)

This is exactly what is obtained from Eq. (5.20) if it is ex-
panded for small v when β = β ′.

It seems appropriate to conclude this section with a few
remarks concerning numerical magnitudes. For example, sup-
pose that the moving particle is a small gold nanosphere of
radius a. The polarizability of such a particle is

α(ω) = 4πa3 ε(ω) − 1

ε(ω) + 2
. (5.24)

Let the permittivity be described by the Drude model (4.6).
Then for low frequencies [also as seen in Ref. [11], since ν =
ω2

p/(4πσ ), σ being the conductivity]

Im α(ω) ≈ 4πa3 3ων

ω2
p

. (5.25)

Inserting this into Eq. (5.23), we obtain

F EH = −v
ν

a

1

21π

(2πa/β )6

(ωpa)2
≈ −v × 10−23 N, (5.26)

where we used values appropriate for gold, ωp = 9 eV and
ν = 0.035 eV, and considered room temperature β = 40 eV−1

and a sphere of radius a = 100 nm. This is apparently beyond
experimental reach, as we see by comparing with the usual

7However, Ref. [11] suggests a different, model-dependent, veloc-
ity dependence in equilibrium as we will explore elsewhere. In any
case, for low velocities, β ′ should be β.

Casimir-Polder force for a perfectly conducting sphere of
radius a a distance d above a conducting plate,

F CP = − 3αG

2πd5
= − 3a3

2πd5
∼ 10−17 N, (5.27)

for a = 100 nm and d = 1000 nm, which is already quite
small. [If we had used a radiation reaction model instead, so
Im α(ω) = 1

6π
ω3α2

0 , as in Ref. [11], a much smaller value than
that in Eq. (5.26) would result.]

Finally, we note that the integrand in Eq. (5.20) is not
positive definite. Nevertheless, we would expect the frictional
force to always be negative, at least when Im α(ω) is a power
function of ω. We illustrate this numerically in Fig. 1, which
plots the dimensionless integral

In(β/β ′, v) =
∫ ∞

0
dx x4+n f (x, β/β ′, v), (5.28)

where

f (x, β/β ′, v) = 1

v2

∫ u+

u−
dy(y −

√
1 − v2)

×
[

coth
x

2
− coth

βxy

2β ′

]
. (5.29)

Here for the “nanosphere” model (5.25) n = 1, while for the
radiation-reaction model n = 3. To convert these integrals
into frictional forces, we have the following expressions for

FIG. 1. Quantum frictional force written in the form of the di-
mensionless integral (5.28) plotted as a function of the velocity v.
The lower set of curves (black) is for n = 1 and the upper set (red) is
for n = 3. In each case, three situations are envisaged: β = β ′ (solid),
β = β ′/2 (dashed), and β = 2β ′ (dotted).

043347-10



SELF-FORCE ON MOVING ELECTRIC AND MAGNETIC … PHYSICAL REVIEW RESEARCH 2, 043347 (2020)

the two models:

(Fx )RR = − 1

6π2γ 2

α2
0

β ′8 I3, (Fx )NS = − 3

π

ν

aγ 2

(a/β ′)6

(ωpa)2
I1.

(5.30)

In Appendix E we show that In is expressible in closed form,
and always positive. Further exploration of the sign of F will
appear elsewhere.

VI. CONCLUSIONS

What is remarkable about the straightforward calculations
sketched in this paper is that starting simply from Maxwell’s
equations, and the corresponding Lorentz force law, familiar
in elementary physics, one deduces the formula for the energy
emitted by dipole radiation, without ever invoking radiation
fields or the concept of radiation reaction. This analysis may
appear similar to the discussion of friction due to thermal [3]
or zero-point [4] fluctuations, in which a dipole, including
radiation reaction, is coupled to fluctuating electromagnetic
fields. In the latter case, of course, no force on the dipole
is found at zero temperature [26,27]. The classical theory
does not involve fluctuations. Our results generalize those of
Ref. [5].

To demonstrate that our considerations are sensible, we
recover known results for the spectral distribution of the
Vavilov-Čerenkov radiation emitted by a superluminal elec-
tric or magnetic dipole. In the latter case, we confirm, in
accordance with Refs. [7,16], that there is a discontinuity in
the radiation at threshold, vn(ω) = 1, for polarization of the
magnetic dipole perpendicular to the direction of motion.

We then present a discussion of the classical electromag-
netic friction experienced by a time-independent electric or
magnetic dipole moving parallel to an imperfectly conducting
surface. We derive general formulas valid for all velocities and
polarizations. Explicit results are given for the low velocity
region, v � aν, where ν is the damping parameter, propor-
tional to the resistivity of the conductor, and a is the distance
of the dipole from the surface of the conductor. This is likely
the regime in which this friction might be more accessible
to experiment. Again, our results are more general and more
simply derived that those given previously [20].

We finally show how by minimal use of the fluctuation-
dissipation theorem applied to both dipoles and fields we can
recover the Einstein-Hopf effect, which, for arbitrary veloc-

ities, yields the quantum blackbody friction in vacuum for a
polarizable particle found by Dedkov and Kyasov [10] and
Volokitin and Persson [11]. In Appendix C we show that
the same considerations give rise to the usual Casimir-Polder
interaction with an arbitrary body. In subsequent publications,
we will further investigate quantum friction in the vicinity
of other bodies, and explore the energetics that can lead to
nonequilibrium stationary configurations [28].
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APPENDIX A: LORENTZ TRANSFORMATION OF
CHARGE AND CURRENT DENSITIES

Since it appears a bit subtle for a time-dependent dipole,
we sketch the inference of the charge and current density for
a moving dipole given in Eq. (2.2) from that for a stationary
dipole,

ρ ′(r′, t ′) = −d′(t ′) · ∇′δ(r′), j′(r′, t ′) = ḋ′(t ′)δ(r′). (A1)

Recall that unprimed quantities refer to the frame where the
particle has velocity v = x̂v, while primed quantities refer to
the particle’s rest frame. The dot always means derivative with
respect to the argument. The coordinates in the two frames are
related by

x = γ (x′ + vt ′), t = γ (t ′ + vx′), y = y′, z = z′.
(A2)

Now (ρ, j) constitutes a four-vector, so

ρ(r, t ) = γ [ρ ′(r′, t ′) + v j′x(r′, t ′)]

= γ [−d ′
x(γ (t − vx))γ (∂x + v∂t )−d′

⊥(γ (t −vx)) ·∇⊥
+ vḋ ′

x (γ (t − vx))]δ(γ (x − vt ))δ(x⊥), (A3)

where the ⊥ sign signifies the y, z directions. We use the
identity

f (x)∂xδ(x) = f (0)∂xδ(x) − δ(x)∂x f (0) (A4)

to write the above as

ρ(r, t ) =
[

− 1

γ
d ′

x

(
t

γ

)
∂xδ(x − vt ) + 1

γ
δ(x − vt )∂xd ′

x(γ (t − vx)) − d′
⊥

(
t

γ

)
· ∇⊥δ(x − vt )

+ vḋ ′
x(γ (t − vx))δ(x − vt )

]
δ(y)δ(z) = −d(t ) · ∇δ(x − vt )δ(y)δ(z), (A5)

which uses the transformation properties for the dipole moments, Eq. (2.24), and notes that the second and fourth terms in the
square brackets cancel.

The x component of the current,

jx(r, t ) = γ [ j′x(r′, t ′) + vρ ′(r′, t ′)]

= [ḋ ′
x(γ (t − vx)) − vd ′

x(γ (t − vx))γ (∂x + v∂t ) − vd′
⊥(γ (t − vx)) · ∇⊥]δ(x − vt )δ(y)δ(z), (A6)
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becomes, using the identity (A4),

jx(r, t ) =
{

ḋ ′
x(γ (t − vx)) − v

γ

[
d ′

x

(
t

γ

)
∂x + v∂t d

′
x(γ (t − vx))

]
− vd′

⊥

(
t

γ

)
· ∇⊥

}
δ(x − vt )δ(y)δ(z). (A7)

The first and third terms here combine to give 1
γ 2 ḋ ′

x(γ (t −
vx)) so when we use the transformation properties (2.24) we
obtain the expected result,

jx(r, t ) = [−vd(t ) · ∇ + ḋx(t )]δ(x − vt )δ(y)δ(z). (A8)

More immediately, the y component of the current is trans-
formed to

jy(r, t ) = ḋy(t )δ(x − vt )δ(y)δ(z). (A9)

Thus the charge and current densities due to an electric dipole
in the moving frame of the particle, Eq. (2.2), are derived from
the rest-frame form. A similar argument applies for the charge
and current densities due to a magnetic dipole, Eq. (2.30).

APPENDIX B: RELATION BETWEEN GREEN’S
FUNCTIONS

In Sec. V we used the symmetrized correlation function of
the fields given in terms of the imaginary part of the retarded
Green function by the fluctuation-dissipation theorem, with
nν = (eβν − 1)−1:

〈S E(r1, t1)E(r2, t2)〉

=
∫ ∞

−∞

dν

2π
Im �R(r, r′; ν)(2nν + 1)e−iν(t1−t2 ). (B1)

In quantum field theory we usually use the time-ordered prod-
uct,

〈T E(r1, t1)E(r2, t2)〉 =
∫ ∞

−∞

dν

π
Im �R(r1, r2; ν)(nν + 1)

× e−iν|t1−t2|. (B2)

The Fourier transform of this gives the thermal Green’s func-
tion

�+β (r1, r2; ω) = i〈T EE〉(r1, r2; ω)

= 2

π

∫ ∞

−∞
dν ν(nν + 1)

Im �R(r1, r2; ν)

(ν − iε)2 − ω2
.

(B3)

This is to be contrasted with the representation for the retarded
Green’s function, which has the form of a Kramers-Kronig
relation,

�R(r1, r2; ω) = 2

π

∫ ∞

0
dν ν

Im �R(r1, r2; ν)

ν2 − (ω + iε)2
, (B4)

which has no temperature dependence. The relation between
the imaginary parts is

Im �+β (r1, r2; ω) = Im �R(r1, r2; ω)(2nω + 1),

2nω + 1 = coth
βω

2
, (B5a)

while the real parts are the same,

Re �+β (r1, r2; ω) = Re �R(r1, r2; ω). (B5b)

It is most usual to evaluate Casimir energies by integrating
over Euclidean frequencies, ω → iζ . In that case, the Green’s
functions are identical:

�+β (iζ ) = 2

π

∫ ∞

−∞
dν ν

Im �R(ν)

ν2 + ζ 2
(nν + 1)

= 2

π

∫ ∞

0
dν ν

Im �R(ν)

ν2 + ζ 2
= 	R(iζ ). (B6)

APPENDIX C: STATIC CASIMIR-POLDER ENERGY

Consider the static Casimir-Polder interaction between
some (unspecified) background object and a polarizable atom.
The contribution to the interaction free energy due to field
fluctuations is

FEE = −1

2
tr

∫ ∞

−∞

dω

2π
α(ω)∗〈S EE〉(ω)

= −1

2

∫ ∞

−∞

dω

2π
tr Re α(ω)Im �R(ω) coth

βω

2
, (C1)

since the imaginary part of the polarizability is odd. The
second contribution to the energy comes from the dipole fluc-
tuations, that is

Fdd = − 1

2T
Tr j∗

1

ω2
�j, (C2)

which follows from Eq. (2.9). This immediately leads to,
upon use of the current for a stationary dipole j(r, ω) =
−iωd(ω)δ(r),

Fdd = − 1

2T

∫ ∞

−∞

dω

2π
〈S d(ω)∗ · �R(ω) · d(ω)〉

= −1

2

∫ ∞

−∞

dω

2π
coth

βω

2
tr Im α(ω) · Re �R(ω). (C3)

Thus the total free energy is just as expected:

FCP = Fdd + FEE

= −1

2

∫ ∞

−∞

dω

2π
coth

βω

2
Im tr[α(ω)�R(ω)]. (C4)

This result could be recaptured using the time-ordered polar-
izability and the thermal Green’s function by use of Eq. (B5a)
and Eq. (B5b),

FCP = −1

2

∫ ∞

−∞

dω

2π
Im tr [α+β (ω)�+β (ω)], (C5)

where

α+β (ω) = i〈T dd〉(ω) = 2

π

∫ ∞

−∞
dν

ν(nν + 1)Im α(ν)

(ν − iε)2 − ω2
.

(C6)
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The form in Eq. (C4) is perhaps more familiarly expressed
in terms of Euclidean frequencies. Since the retarded Green’s
function and the polarizability have no singularities in the
upper half ω plane, the contour of integration can be distorted
to one encircling the positive imaginary axis, and then, ac-
counting for the poles of the cotangent along that axis, we
obtain

FCP = − 1

β

∞∑
n=0

′
tr α(iζn)�(iζn), (C7)

in terms of the Matsubara frequency ζn = 2πn/β. (The prime
on the summation sign means that the n = 0 term is counted
with half weight.)

APPENDIX D: TRANSFORMATION OF BLACKBODY
SPECTRAL DENSITY

It was shown by Ford and O’Connell [29] that the spectral
density (5.22) becomes in a frame moving with velocity v

ρ ′(ω′, k′) = ω′3

2π2
coth

[
β

2
γω′(1 + k̂′ · v)

]
. (D1)

Here β is the inverse temperature in the blackbody rest frame.
This is, in fact, just what we would expect if β is thought to
be the time component of four-vector, β = β0, β = 0. So we
could write

ρ(ω) = ρ(ω, k) = ω3

2π2
coth

1

2
βμkμ, kμ = (ω, k). (D2)

Indeed this would become

ρ ′(ω′, k′) = ω′3

2π2
coth

1

2
β ′

μk′μ, (D3)

where, for a boost in the x direction,

β ′
μk′μ = γ βω′ + γ vβk′

x = γ βω′
(

1 + v
k′

x

k′

)
, k′ = ω′.

(D4)

So the result of Ford and O’Connell corresponds to the ex-
pected transformation of βμ.

APPENDIX E: EVALUATION OF THE INTEGRAL In

To evaluate the integral In we carry out the x integration
first, with the result

In = 2	(5 + n)ζ (5 + n)
1

v2

∫ u+

u−
dy(y −

√
1 − v2)

×
[

1 −
(

β

β ′ y
)−5−n]

, (E1)

and then we obtain

In = 2	(5 + n)ζ (5 + n)

{
2vγ 2 + 1

(3 + n)(4 + n)

γ 3+n

v2

(
β ′

β

)5+n

×{(1 − v)3+n − (1 + v)3+n + (3 + n)v[(1 − v)3+n + (1 + v)3+n]}
}
. (E2)

Since the last line above consists only of odd powers in v, all with positive coefficients for integer n > −3, both it and In are
positive.
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