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Structure of quantum entanglement at a finite temperature critical point
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We introduce a framework to distinguish long-range quantum entanglement from long-range classical cor-
relations close to a finite temperature critical point in a quantum system. In particular, we employ “tripartite
entanglement negativity,” a mixed-state entanglement measure, to cancel out critical correlations that are purely
classical in origin. As an application, we study an exactly solvable model, and find that the tripartite negativity
does not exhibit any singularity in the thermodynamic limit across the transition. This indicates that the
long-distance critical fluctuations are completely classical, and it allows one to define a “quantum correlation
length” that remains finite at the transition despite a divergent physical correlation length. Motivated by our
model, we also study mixed-state entanglement in tight-binding models of bosons with U(1) and time-reversal
symmetries. By employing Glauber-Sudarshan representation, we find a surprising result that such states have
zero entanglement.
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I. INTRODUCTION

Qualitatively, there are two distinct classes of phase
transitions in quantum-mechanical Hamiltonians: those that
occur at the absolute zero temperature, and those at a
finite (i.e., nonzero) temperature. Heuristically, the zero
temperature phase transitions result due to quantum fluctua-
tions while the finite temperature ones typically result from
thermal fluctuations. For example, consider the transverse-
field Ising model on a d-dimensional hypercubic lattice,
HTFI = −∑〈i, j〉 ZiZ j − h

∑
i Xi. This Hamiltonian supports

two phases: a ferromagnetic phase and a paramagnetic phase.
The critical exponents associated with the zero temperature
transition belong to the (d + 1)-dimensional Ising universal-
ity while those for the finite temperature transition belong
to the d-dimensional Ising universality, i.e., at finite tem-
perature, one may as well set h = 0 to obtain the critical
exponents [1,2]. This is consistent with the conventional wis-
dom that quantum mechanics does not play any role in the
long-distance equilibrium physics of finite temperature phase
transitions.

However, there also exist models such as the four-
dimensional toric code [3] which host finite temperature
“quantum memory,” that is, one can encode a qubit nonlocally
in this model at finite temperature such that it is well pro-
tected for an infinite time even when coupled to a heat bath.
This model also exhibits a finite temperature phase transition
across which the quantum memory is destroyed. Therefore,
one suspects that in this model, both at and below the critical
temperature, there exist intrinsically quantum effects even at
long distances. This raises the following question: Is there
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a quantity that sharply distinguishes the finite temperature
transition in a transverse-field Ising model from that in the
four-dimensional (4D) toric code?

A related question follows: How easy is it to prepare
thermal (mixed) states on a classical computer? It has been
argued that a thermal state can be prepared efficiently if the
system does not possess a finite temperature quantum mem-
ory, and has a short correlation length [4–6]. Similar results
have been argued for the preparation of thermofield double
state which corresponds to a purification of a thermal density
matrix [7–11]. However, if the long-range correlations in a
system arise purely due to classical effects (e.g., consider
HTFI at the finite temperature critical point for |h| � 1), one
might wonder if the corresponding state can again be prepared
efficiently?

The above discussion motivates us to ask the follow-
ing: How does one separate quantum-mechanical correlations
from classical correlations at a finite temperature, and in
particular, in the vicinity of a phase transition? At zero tem-
perature, a system can typically be described by a pure state
and, correspondingly, the von Neumann entropy of a reduced
density matrix corresponding to a subsystem is a faithful mea-
sure of long-range entanglement in the critical ground state
[12–16]. In contrast, at a finite temperature T , the system
is described by a thermal (i.e., Gibbs) state ∝e−H/T , which
is a mixed density matrix. To probe an intrinsic quantum
correlation at finite temperature, one must therefore resort to
an entanglement measure for mixed states [17,18]. To this end,
here we will employ “entanglement negativity” (henceforth
just “negativity” for brevity) which has the property that it is
an entanglement monotone and unlike most other mixed-state
measures, does not require optimizing a function over all pos-
sible quantum states [18–21]. Therefore, negativity has been
useful to study many-body systems including free bosonic
and fermionic systems [22–28], one-dimensional conformal
field theory [29–32], spin chains [33–38], and topologically
ordered phase [39–43]. In particular, as shown in Ref. [44],
one very interesting property of negativity is that for thermal
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FIG. 1. At a finite temperature T , the physical correlation length
ξ will generically be different from the length scale ξQ over which
quantum correlations exist (denoted by red blob). At a finite T critical
point, ξ diverges while ξQ can continue to remain finite. As discussed
in the main text, mixed-state entanglement between subregions A and
B can in principle distinguish ξQ from ξ .

states of local Hamiltonians it satisfies an “area law,” akin
to the von Neumann entanglement entropy of (pure) ground
states of gapped Hamiltonians [45–47], and in strong contrast
to the volume law for pure finite energy density eigenstates
[48–54].

A recent work [55] constructed a class of exactly solvable
models which host finite T order-disorder transition and for
which negativity can be calculated analytically. It was found
that in all models considered, whenever negativity is nonzero
in the vicinity of the transition, it is a singular function of the
tuning parameter driving the transition, despite the fact that
these phase transitions are driven purely by thermal fluctua-
tions and do not host finite T quantum memory. As argued
in Ref. [55], the area-law coefficient of negativity receives
contribution from the expectation value of local operators
close to the entangling boundary, and since the expectation
value of local operators is singular across the transition, the
area-law coefficient is singular as well.

The aforementioned singularity in area-law coefficient
across a finite T transition leaves open the question of ex-
tracting purely quantum correlations that are sensitive only
to long-distance physics, unlike the area-law coefficient of
negativity which certainly depends on short-distance physics
despite containing information about critical exponents. This
is the topic of this paper. Inspired by the methods used to
extract universal entanglement encoded in the ground states of
gapped Hamiltonians [56,57], we propose a tripartite negativ-
ity to probe long-distance, universal quantum correlations at
finite temperature. We study the tripartite negativity, denoted
as �3EN below, for a simple model that exhibits singular-
ity in correlation functions, von Neumann entropy as well
as the area-law coefficient of negativity across a finite T
transition. We find that �3EN completely cancels out the afore-
mentioned singularity associated with the transition, and is
exponentially small in the system size �3EN ∼ e−L/ξQ where
ξQ defines a “quantum correlation length” which, in contrast
to the physical correlation length, does not diverge at the finite
T transition (Fig. 1). As T → 0, ξQ diverges resulting in a
nonzero �3EN which corresponds to the universal nonzero
subleading term for Renyi entropy S1/2 at the quantum phase
transition. Note that at T = 0, for a gapped, topological

ordered phase �3EN also equals the topological entanglement
entropy [39,40].

Partly inspired by our model, we also study mixed-state
entanglement in tight-binding models of free bosons with
time-reversal and U(1) symmetries. We show that the cor-
responding thermal state is separable and, therefore, any
measure of mixed-state entanglement for such a state, such
as entanglement of negativity or entanglement of formation,
is zero.

The paper is organized as follows: In Sec. II A, we discuss
the general structure of negativity for local Hamiltonians. In
Sec. II B, we introduce our scheme for calculating the uni-
versal part of negativity, and implement it for a model that
shows a finite temperature transition. In Sec. II C, we dis-
cuss crossover towards the zero temperature quantum phase
transition, and in Sec. II D we discuss the eigenvalues and
eigenfunctions of correlation matrix that determines negativ-
ity. In Sec. III, we conclude with a summary and possible
implications of our results, as well as the aforementioned
result on separability of bosonic Gaussian states with U(1)
and time-reversal symmetries.

II. NEGATIVITY ACROSS FINITE T CRITICAL POINTS

A. General structure of negativity:
Local versus nonlocal contributions

Given a state ρ acting on the Hilbert space HA ⊗ HĀ, the
negativity is defined as EN (A) = log ‖ρTA‖1. Due to the area
law of negativity for thermal states of local Hamiltonians
[44], the problem to characterize the universal part of their
negativity is somewhat analogous to the characterization of
long-distance entanglement in ground states of gapped Hamil-
tonians. Following Ref. [58], we consider a coarse-grained,
continuum description, and write

EN = EN,local + EN,nonlocal, (1)

where EN,local is expressible as a sum of local terms along the
entangling surface: EN,local = ∫

∂A F ({κ, ∂iκ, . . .}) where κ is
the local curvature along the entangling surface. Similar to
the von Neumann entropy of pure states, negativity of mixed
states satisfies EN (A) = EN (Ā). This is because

EN (A) = log ‖ρTA‖1 = log ‖(ρTĀ )T ‖1 = log ‖ρTĀ‖1, (2)

where the last equality results from invariance of eigen-
spectrum under matrix transpose operation. Since under the
exchange A ↔ Ā, the curvature κ ↔ −κ , F must be an even
functional of the curvature κ and, consequently, EN,local =
αd−1Ld−1

A + αd−3Ld−3
A + · · · , i.e., only alternate terms in the

expansion in terms of LA are allowed, again similar to the
discussion of gapped ground states [58]. One implication of
this is that in two dimensions, a nonzero constant term γ in
EN ∼ LA − γ necessarily implies a nonzero EN,nonlocal.

Again motivated by the theory of gapped ground states
[56,57], below we use a subtraction scheme to cancel out
EN,local to understand the behavior of EN,nonlocal, and specif-
ically whether it has a nonzero value at a finite T phase
transition in the thermodynamic limit. It is worth emphasizing
that the coefficients αi that enter EN,local will generically be
singular functions of the tuning parameter driving the tran-
sition. This is because these coefficients will depend on the
expectation value of local operators, such as energy density,

043345-2



STRUCTURE OF QUANTUM ENTANGLEMENT AT A FINITE … PHYSICAL REVIEW RESEARCH 2, 043345 (2020)

which themselves are a singular function of the tuning param-
eter. This leads to the singularity in the area-law coefficient of
negativity as discussed in Ref. [55], and which we will again
encounter below.

It is also important to note that for pure states which exhibit
power-law correlations, such as a ground state corresponding
to a conformal field theory, or a Fermi surface, the nonlocal
part of entanglement is necessarily nonzero [12,13,59–62]. In
contrast, for thermal (mixed) states of quantum systems that
display power-law correlations, such as those corresponding
to a finite T phase transition, the entanglement structure close
to the transition remains completely unexplored. To that end,
we now turn to studying negativity in a specific model that
displays a finite T phase transition.

The aforementioned curvature expansion for negativity re-
lies on a coarse-grained continuum description. For such a
description to be valid, one requires that all length scales
involved are much larger than the short-distance lattice cutoff
a. Close to a finite temperature critical point, the physical
correlation length ξ of course satisfies ξ � a, but as hinted
above, we will also encounter a length scale ξQ that does not
diverge. As we will see below, ξQ � a at low temperature and,
therefore, the argument is valid over a range of temperatures.
This is similar to the discussion in the context of gapped
ground states [58] where the correlation length is assumed to
stay large compared to the lattice cutoff.

B. Universal negativity of a model with finite T phase transition

We consider a d-dimensional cubic lattice of N = Ld

sites, where a site at r is associated with a degree of free-
dom described by a canonically conjugate pair (φr, πr ). The
Hamiltonian reads as

H = 1

2

∑
r

(
π2

r + m2φ2
r

)+ 1

2

∑
〈r,r′〉

K (φr − φr′ )2, (3)

where the physical mass obeys

m(g) =
{√

g − gc for g > gc,√
2(gc − g) for g < gc.

(4)

gc sets the critical point where correlation length diverges
due to the vanishing mass term. The motivation to study this
specific model comes from the transverse-field Ising model:
HTFI = −∑〈r,r′〉 ZrZr′ − h

∑
r Xr. Both H and HTFI have Z2

symmetry, and H can be thought of as a mean-field approx-
imation to HTFI where π2

r /2 plays the role of the transverse
field Xr, and φr plays the role of Zr. Our model is also in
spirit similar to a d-dimensional quantum spherical model
[63], which exhibits a finite temperature transition for d > 2:
H = g

2

∑
r π2

r −∑〈r,r′〉 φrφr′ + μ(
∑

r φ2
r − N/4), where μ is

singular across a critical point, and is fixed by the spherical
constraint

∑
r〈φ2

r 〉 = N/4.
In our model [Eq. (3)], the function m(g) corresponds to the

effective mass (= inverse correlation length) within the mean-
field theory. Close to gc, at finite temperature, the system
exhibits long-range correlation functions. For example, in
two dimensions (2D), at gc 〈φr φr′ 〉 ∼ log(|r − r′|). Another
signature of the divergent correlation length is that the von
Neumann entropy S = −tr(ρ log ρ) shows a logarithmic
divergence as approaching to gc: S ∼ − log(mL) [64]

FIG. 2. (a) Phase diagram of the model described by Hamil-
tonian in Eq. (3). The color codes the magnitude of the order
parameter. (b) Divergence of the universal part of the von Neumann
entropy at the finite temperature phase transition obtained by defin-
ing �S = [4 S(L) − S(2L)]/3 to cancel the volume law component,
where S(L) is the von Neumann entropy of the thermal state cor-
responding to the Hamiltonian given by Eq. (3) on a L × L square
lattice.

as shown in Fig. 2(b) (see Appendix A for derivation,
and Ref. [65] regarding how the massless limit is taken).
Relatedly, such a logarithmic divergence with the system
size also shows up at a finite temperature critical point of
Lipkin-Meshkov-Glick model using mutual information as
a diagnosis [66]. Note that, instead of tuning g, one can
also tune the temperature to drive the finite T transition [see
Fig. 2(a)]. All of our results below are unchanged if one
simply replaces g − gc by (T − Tc)/Tc.

Next, we analyze the structure of quantum correlations
close to the transition using entanglement negativity. Since H
is quadratic, a thermal state ρ at inverse temperature β, i.e.,
ρ ∼ e−βH , is a Gaussian state. This allows an efficient calcula-
tion of negativity [22,67–70] because one can perform partial
transposition on ρ using the covariance matrix technique. For
concreteness, we consider a two-dimensional lattice (d = 2),
and set K = 1. We first plot the negativity of a subregion A
and its complement as a function of (g − gc) in Fig. 3(a).
In agreement with the result of Ref. [55], we find that the
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FIG. 3. Negativity for the Hamiltonian given by Eq. (3) in two spatial dimensions. (a) Area-law coefficient of negativity as a function of
g − gc at T = 0.2. Inset: mass dependence of negativity close to the transition at T = 0.2. (b) Long-distance component �3EN of negativity at
T = 0.2, where the tripartite geometry is shown in the inset. (c) Finite-size scaling of �3EN at T = 0.1.

area-law coefficient of the negativity is singular at g = gc. As
mentioned above, this singularity originates from the singular
behavior of the expectation value of local operators close to
the entangling boundary [55]. What is the precise nature of
this singularity? We numerically find that in the limit a �
β � 1/m, at the lowest order, the singular part of area-law
coefficient is proportional to m2. Since m2 ∼ |t | where t is the
thermal tuning parameter (either T − Tc or g − gc),

EN,local = [α + b±|t |]Ld−1, (5)

where α is an analytic function of underlying parameters,
and b+ (b−) is coefficient of |t | for g > gc (g < gc) with
b−/b+ = 2 due to the singular dependence of mass close to
the transition [(Eq. (4)]. As shown in Appendix C, one can
gain some intuition for the m2 dependence by analytically
studying the negativity between two sites. We comment on
the relation of this singularity to critical exponents in Sec. III.

To isolate long-distance quantum correlations, we now
define a quantity analogous to “topological entanglement en-
tropy” in the context of ground states of gapped Hamiltonians
[56,57] that cancels out the EN,local component of the nega-
tivity. Consider three subregions A, B, and C, and define a
tripartite negativity

�3EN = EN,A + EN,B + EN,C − EN,AB

− EN,BC − EN,CA + EN,ABC . (6)

Here, EN,A denotes the negativity between the region A and its
complement, and similarly for all the other quantities present
in �3EN . On a square lattice of size L with the periodic
boundary condition, we consider the partition shown in the
inset of Fig. 3(b), where A, B, and A

⋃
B
⋃

C are squares of
size 2/5L, 2/5L, and 4/5L, respectively. Figure 3(b) shows
the dependence of �3EN on g − gc for various system sizes.
Despite the fact that each of the seven individual terms that en-
ters the definition of �3EN [Eq. (6)] is singular [see Fig. 3(a)],
one finds that �3EN itself does not exhibit any singularity
across gc, up to terms that are exponentially small in the total
system size L. In fact, �3EN itself vanishes exponentially with
L at all nonzero temperatures [see Fig. 3(c)]:

�3EN ∼ e−L/ξQ (7)

which defines a quantum correlation length ξQ that remains
finite even at the critical point. The peak in �3EN at the critical

point [Fig. 3(b)] indicates that ξQ is largest at the critical
point. We discuss the detailed behavior of ξQ below for the
case of a straight bipartition without any corners. It is worth
emphasizing that the singularity in quantities that are sensitive
both to classical and quantum correlations survives in the
thermodynamic limit after an analogous subtraction scheme.
For example, an analogously defined tripartite von Neumann
entropy �3S continues to show singular behavior identical to
Fig. 2(b).

A partial analytical understanding of finiteness of ξQ at the
critical point is provided by considering a bipartition without
any curvature or corners by dividing a torus of size L × L
into two strips of equal size L/2 × L. Based on the discussion
above, we expect that for such bipartition, EN,local ∝ Ld−1

A , i.e.,
it is strictly an area law without any subleading corrections.
The universal part of the negativity can now be extracted by
studying �2EN = EN (2L) − 2EN (L) which cancels out the
aforementioned EN,local contribution, leaving only EN,nonlocal,
the term of interest. The subtraction scheme based on �2EN is
conceptually quite similar to that based on �3EN , the former is
more suited toward a bipartition without any curvature, while
the latter is more general. Note that setting m = 0 explicitly
leads to numerical instability in the diagonalization of the
covariance matrix, which we regularize by setting m = 10−5,
and confirm that a further decrease of the mass (while keeping
it nonzero) does not change the numerical value of negativity.
We find that in this massless limit, �2EN continues to decay
exponentially with system size L for all finite temperatures
[Fig. 4(a)], similar to the behavior of �3EN studied above.
Furthermore, we find that the quantum correlation length
scale ξQ is roughly proportional to the inverse temperature
β as shown in the inset. Using conservation of momentum
along the ŷ direction, one can express the negativity for this
bipartition as the sum of negativities corresponding to the
following one-dimensional (1D) Hamiltonians H1D,ky labeled
by ky, the momentum along the ŷ direction (see Appendix B
for derivation):

H1D,ky = 1

2

∑
x

(
π2

x + m2
ky
φ2

x

)+ 1

2

∑
〈x,x′〉

K (φx − φx′ )2, (8)

where m2
ky

= 4K [sin( ky

2 )]2. Note that this dimensional reduc-
tion has been applied in the study of entanglement entropy
before [71,72]. One expects that any nonlocal contribution
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FIG. 4. Denote EN (L) as the negativity between two strips of equal size L/2 × L on a torus of size L × L in the model defined in Eq. (3),
we define the subtracted negativity as �2EN = EN (2L) − 2EN (L) to cancel the area-law/short-distance component in EN . (a) The scaling
of �2EN as a function of L at the critical point for various inverse temperature β. Inset: quantum correlation length ξQ extracted via the
scaling �2EN ∼ e−L/ξQ as a function of β. (b) Behavior of �2EN in the vicinity of the transition. Inset: length scale ξQ at temperature T = 0.1.
(c) Scaling of �2EN at the critical point as a function of T for various system sizes. Inset: scaling collapse of the data when plotted as a function
of e−L/β . For this plot, we set m = 0 and chose antiperiodic boundary condition along the y direction, and periodic along the x direction.

to negativity can arise only when the mass mky = 0, i.e., the
contribution of ky = 0 mode. Since the contribution of ky = 0
mode is identical to negativity corresponding to the thermal
state of a central charge c = 1 (1 + 1)-dimensional [(1 + 1)D]
CFT studied in Ref. [31], one finds

EN,ky=0 = 1

2
ln

[
β

πa
sinh

(
πLA

β

)]

− πLA

2β
+ f (e−2πLA/β ) + 2 ln c1/2, (9)

where f is a universal scaling function which tends to a con-
stant when LA � β, c1/2 is not universal, and a is the lattice
constant. When LA � β, the expression can be written as

=
[

1

2
log

(
β

2πa

)
+ c1/2

]

+ [log(1 − e−2πLA/β ) + f (e−2πLA/β )]. (10)

This expression implies that when LA/β → ∞, EN,ky=0 ap-
proaches a constant value over a characteristic length scale β

in line with our numerical results for �2EN .
We also study the behavior of ξQ in the vicinity of the

transition, and find that it is maximum at the transition and
exhibits a cusp singularity [Fig. 4(b)]. This is expected since
ξQ is a function of the mass m which itself is singular across
the transition.

C. Approach to quantum critical point

The quantum correlation length diverges as T → 0, and
in the (pure) ground state the negativity equals S1/2 where
Sn = − 1

n−1 log trρn
A is the nth Renyi entropy. Since a massless

scalar has long-range entanglement in its ground state which
is reflected in Renyi entropies as well, one expects that the
nonlocal part of negativity will be nonzero in the ground state.
Figure 4(c) shows how the nonlocal negativity interpolates
between its exponentially small value at any nonzero T to a
nonzero, universal O(1) value at T = 0. The scaling collapse
of the data when plotted as a function of e−L/β again indicates
that the quantum correlation length ξQ ∼ β. We verified that

the O(1) constant contribution to negativity at zero tempera-
ture agrees with the known result for a massless scalar [73,74].

D. Eigenvalue structure of the partial transposed
correlation matrix

We find that the eigenvalues and eigenvectors of the
correlation matrix that determines negativity have a very
specific pattern which reveals more information about the
mixed-state entanglement. For a Gaussian density ma-
trix such as ours, the negativity is determined by the
eigenvalues of the matrix

√
γφPγπP which we will de-

note as the “partial transposed correlation matrix.” Here
γφ (r, r′) = 2〈φrφr′ 〉, γπ (r, r′) = 2〈πrπr′ 〉, and P(r, r′) =
δr,r′ for r ∈ A and −δr,r′ for r ∈ Ā. Specifically, EN =
−∑N

i=1 min{0, log νi} where {νi} are the eigenvalues of√
γφPγπP. Therefore, only eigenvalues less than unity con-

tribute to negativity.
Consider, for instance, the Hamiltonian in Eq. (3) in d = 1

(as discussed above, for a bipartition without any corners, the
eigenvalues in d > 1 can be determined in terms of eigenval-
ues for the d = 1 problem). We find that the spectrum consists
of a “bulk” continuum part and and two discrete eigenvalues
isolated from the continuum spectrum [see Fig. 5(a)]. We
numerically find that the bulk continuum part in fact matches
with the eigenvalues of

√
γφγπ , the correlation matrix without

any partial transpose operation. Quite strikingly, as one notes
from Fig. 5(a), only the isolated discrete eigenvalue less than
unity contributes to the negativity.

Given the distinctive nature of eigenvalue spectrum, it is
instructive to contrast the eigenfunctions corresponding to
the continuum eigenvalues with those for the isolated eigen-
value that contributes to negativity. We find that while the
eigenfunctions corresponding to the bulk continuum spec-
trum essentially behave as a plane wave, the eigenfunction
corresponding to the discrete eigenvalue is localized at the
bipartition boundary [see Fig. 5(b)], signifying the fact that
quantum entanglement is localized close to the boundary. Fur-
thermore, the localized eigenfunction decays exponentially
away from the entanglement cut even in the massless limit
[Fig. 5(c)]. In particular, the characteristic decay length is
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FIG. 5. Eigenvalue spectrum and eigenfunction for the matrix
√

γφPγπ P (see main text for details) corresponding to the model defined
in Eq. (3) in one dimension with open boundary condition. We choose L = 200 and the subsystem size LA = L/2. (a) Eigenvalue spectrum
of
√

γφPγπ P compared with coth(1/2βωk ), the eigenvalues of
√

γφγπ at m = 0.5, and T = 0.25. (b) While the eigenfunction corresponding
to ν = 0.76 is localized at the bipartition boundary (x = 0), the eigenfunction corresponding to ν = 1.1, i.e., an eigenvalue in the bulk of the
spectrum, behaves as a plane wave. (c) The eigenfunction with the lowest eigenvalue for

√
γφPγπ P. We choose m = 10−5 to simulate the

massless limit. Inset: the same data plotted on a rescale horizontal coordinate x/β.

proportional to the inverse temperature β as indicated by the
scaling collapse analysis [see Fig. 5(c) inset], quite similar
to the aforementioned behavior of the quantum correlation
length determined using the decay of the nonlocal negativity.

For plots in Fig. 5, we impose open boundary condition.
We have checked that these observations apply to periodic
boundary condition as well, the only difference being that now
the discrete eigenvalues will be twofold degenerate due to the
presence of two entanglement cuts.

III. SUMMARY AND DISCUSSION

In this work we set out to reconcile the tension between the
following two observations: (a) The universal long-distance
correlations for typical finite T transitions are described by a
low-energy effective theory that is fully classical [2]. (b) The
mixed-state quantum entanglement, as quantified by entan-
glement negativity, is singular across several such transitions
[55]. We studied a specific model that hosts a finite T tran-
sition in a mean-field universality class to understand and
resolve this tension. Conceptually, our basic idea is to separate
the negativity into a local term, i.e., a term which can be
written as sum of local terms along the entangling boundary,
and contributes to the leading area-law behavior, and a non-
local term, which cannot be written in this way and therefore
encodes long-distance quantum correlations. We found that in
the thermodynamic limit, the singularity of negativity origi-
nates only from the local term, and can be fully canceled out
by a subtraction scheme that leaves only the nonlocal term,
which vanishes exponentially with the total system size L.
Therefore, in the model studied, the long-distance quantum
correlations are nonsingular across the transition in the ther-
modynamic limit. We defined a length scale ξQ over which
quantum correlations exist, and showed that at nonzero T ,
ξQ remains finite even when the physical correlation length
ξ diverges. Therefore, quantum mechanically, the system
continues to be short-range correlated, despite a diverging
physical correlation length. This provides a sharp distinction
between a “quantum phase transition” and a “classical phase
transition”: the quantum correlation length diverges only at a
quantum phase transition.

Our discussion was focused on a Gaussian theory that
exhibits mean-field critical exponents. Interactions at a finite
T transition in a quantum Ising model modify the critical
exponents, but the critical field theory again belongs to the
universality class of a classical Ising model [2]. Therefore, our
expectation is that the tripartite negativity �3EN will continue
to decay exponentially with system size even at the Wilson-
Fisher fixed point. Note that it is already rather nontrivial
to find a quantity, namely �3EN , that decays exponentially
in the Gaussian critical theory. All correlation functions of
local operators decay as power law, simply because the phys-
ical correlation length is infinite. As an analogy, consider
the quantum phase transition in the quantum Ising model at
T = 0. Quantum entanglement at the interacting fixed point
has the same general structure as that at the Gaussian critical
theory at T = 0, the only difference being that the value of the
universal O(1) subleading term in entanglement is modified
[15,16,75,76]. It will of course be very interesting to do an
actual calculation of negativity at the finite T transition using
field-theoretic techniques, to check this intuition.

We also studied the singularity associated with the area-
law coefficient in detail. Although all our calculations are
restricted to the Hamiltonian in Eq. (3), we expect these con-
clusions to generalize to other finite T transitions. Based on
results in Ref. [55], we conjecture that the leading singular
part of area-law coefficient originates from the expectation
value of a local operator that is invariant under the symmetries
of the Hamiltonian, and has the lowest scaling dimension.
In the case of Ising model, this operator corresponds to the
energy density and, therefore, we expect

EN,local, singular ∼ |t |1−αLd−1, (11)

where t is the thermal tuning parameter, i.e., t = (T −
Tc)/Tc or t = g − gc, and α is the critical exponent that
defines the divergence of specific heat C ∼ |t |−α (and, con-
sequently, the energy density has a singular part that scales as
|t |1−α). This scaling matches with the results for our mean-
field model: within mean-field theory, α = 0, and therefore
EN,local, singular ∼ |t | ∼ m2.

As shown in Ref. [20], negativity upper
bounds“entanglement of distillation,” which intuitively
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corresponds to the best rate at which one can extract
near-perfect electron paramagnetic resonance (EPR) singlets
from multiple copies of a state using local operations
and classical communications (LOCC). The absence of
long-range negativity in our model even at the finite T critical
point indicates that the distilled EPR pairs originate only from
correlations close to the entangling boundary, as suggested in
Fig. 1. Relatedly, one expects that operators that contribute to
the violation of Bell’s inequality between regions A and Ā are
located close to the entangling boundary.

Motivated by the calculation of negativity in our model
that has a Z2 symmetry, we also studied negativity in closely
related models that instead have a U(1) symmetry. We found
a surprising result that the thermal density matrices cor-
responding to bosonic tight-binding models with U(1) and
time-reversal symmetries are separable and, therefore, any
mixed-state measure of entanglement, including negativity,
vanishes for such states (see Appendix D). One consequence
of this result is that a convex sum of density matrices ρ =∑

i piρi, where each ρi is Gaussian and has U(1) and time-
reversal symmetries, is also separable. Note that ρ itself is not
Gaussian and corresponds to an interacting, albeit generically
nonlocal, Hamiltonian.

Our results raise an intriguing question. It has been argued
that a thermal state can be efficiently prepared if a system
does not possess finite T topological order, and if it is above
any finite T phase transition, so that the correlation func-
tions of local operators are short ranged [4–11]. Our results
indicate that quantum correlations can be short ranged even
when the correlation functions of local operators are long
ranged. Although our calculations were specific to a rather
simple Hamiltonian [Eq. (3)], we suspect that this is true more
generally as long as finite T topological order is absent [77].
This raises the possibility that even density matrices that have
infinite correlation length, such as quantum systems below
or even at a symmetry-breaking finite temperature transition,
might be efficiently preparable. A starting point could be to
consider a purely classical density matrix below or at the
critical temperature Tc, and variationally apply a finite-depth
quantum channel on it, so as to minimize the trace distance
between the resulting density matrix and the actual density
matrix ρ ∝ e−βH .

It is worth comparing our protocol with other measures in-
troduced previously to detect quantum coherence at finite tem-
perature. In particular, Ref. [78] introduced a measure called
“quantum correlation function” (QCF) that takes the form
〈δOA δOB〉Q = 〈δOA δOB〉 − 1

β

∫ β

0 dτ 〈δOA(τ ) δOB(0)〉 where
δO = O − 〈O〉, and all averages are with respect to the ther-
mal density matrix. It was argued in Ref. [78] that this quantity
is smooth across finite T transitions, and decays exponen-
tially, allowing one to define a quantum coherence length. One
advantage of QCF is that it is relatively simple to calculate
compared to entanglement-based measures such as negativity.
On the other hand, due to its definition in terms of local
operators, QCF is not suitable to capture nonlocal many-body
entanglement. As a concrete illustration, consider a gapped,
topologically ordered phase at zero temperature. Since �3EN

equals the topological entanglement entropy, the quantum cor-
relation length introduced in our paper is infinite throughout
the gapped phase. In strong contrast, the quantum coherence

length based on QCF is finite and just equals the correlation
length defined via local operators.

We note that negativity of bosonic and spin systems has a
“sudden death temperature” Td above which it vanishes identi-
cally [29,43,44,67,68,79]. This could be an issue for studying
universal aspects of negativity if the critical temperature Tc in
a system happens to lie above Td , i.e., if Tc > Td . One possible
way around this issue could be to instead study “Renyi neg-
ativity” which does not seem to suffer from a sudden death
temperature at least in simple models [80].

Let us mention a few other future directions. Since our
proposed method is designed to isolate the nonlocal part of
negativity, it will be worthwhile to apply it to characterize
finite T topological order in models such as 4D toric code
[3,77]. It will also be interesting to study Renyi versions
of negativity for interacting models using quantum Monte
Carlo method [80–83], and implement the subtraction scheme
introduced here numerically. Another direction is to study
negativity for interacting fermion systems that exhibit fi-
nite temperature phase transition such as the model of two
Sachdev-Ye-Kitaev (SYK) systems [84,85] coupled to each
other [10]. We note that for fermions, two different definitions
of partial transpose have been introduced [23,27,28] and it
will be interesting to understand the qualitative differences
between the two in interacting theories.

Note added. We would like to draw the reader’s attention
to the work by Wald, Arias, and Alba [86], which appeared
recently. They study entanglement negativity across a fi-
nite temperature transition in the three-dimensional quantum
spherical model. It was found that negativity and its first
derivative are continuous across the transition. This is con-
sistent with our conjecture (11), which predicts the leading
singular contribution in negativity goes as |g − gc|2 (since
α = −1), and thus a discontinuity can be seen in the second
derivative of negativity.
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APPENDIX A: VON NEUMANN ENTROPY
IN THE GAUSSIAN THEORY

Consider a d-dimensional system of size L described by
the classical Hamiltonian

H = 1

2

∫
dd x m2φ(x) + (∇φ(x))2, (A1)

we prove that as mL → 0, L → ∞, the von Neumann en-
tropy of the Gibbs state ρ ∼ exp −βH contains a subleading
term �S = − log mL with the periodic boundary condition
imposed on all spatial directions.
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To proceed, we first discretize the continuum theory in a
finite box of volume V = Ld with lattice cutoff being 1. A
standard calculation of the Gaussian theory gives the thermal
partition function

Z =
√

(2πT )V∏
k λk

, (A2)

where λk = m2 + 4
∑d

n=1 sin2( 1
2 ki ), and ki ∈ 2πn/L with n =

0, . . . , L − 1. It follows that the thermal free energy F is

F = −T log Z = −1

2
V T log(2πT ) + 1

2
T log

[∏
k

λk

]
,

(A3)

and the von Neumann entropy is given by S = −∂F/∂T :

S = V

2
[1 + log (2πT )] − 1

2
log

[∏
k

λk

]
. (A4)

Since the first term contributes to the volume law part of S, we
will only focus on the second term. To proceed, we employ the
identity [87]

L−1∏
n=0

[
a2 + 4 sin2

(
n
π

L

)]
= g(a), (A5)

where g(a) = {2−L[
√

a2 + 4 + a]
L − 2L[

√
a2 + 4 + a]

−L}2
.

Thus, one can first evaluate the product along the dth spatial
direction to obtain∏

k

λk =
∏

k1, . . . , kd

λk

=
∏

k1, . . . , kd−1

g

⎛
⎝
√√√√m2 + 4

d−1∑
n=1

sin2

(
1

2
ki

)⎞⎠. (A6)

By singling out the contribution of the zero mode, one finds

∏
k

λk = g(m)
∏

(k1,...,kd−1 )�=0

g

⎛
⎝
√√√√m2 + 4

d−1∑
n=1

sin2

(
1

2
ki

)⎞⎠.

(A7)
As L → ∞ with mL → 0, one finds g(m) → (mL)2, and thus

log

[∏
k

λk

]
= 2 log(mL) +

∑
(k1,··· ,kd−1 )�=0

log [g(2ω̃)], (A8)

where ω̃ =
√∑d−1

n=1 sin2( 1
2 ki ). By noticing that as ω̃ = O(1),

L → ∞, log g(2ω̃) = 2L log [(
√

ω̃2 + 1 + ω̃)]. We find

log

[∏
k

λk

]
→ 2 log(mL)

+ 2Ld
∫

dd−1k

(2π )d−1
log[
√

ω̃2 + 1 + ω̃]. (A9)

Note that the above result is not exact since ω̃ can be of order
1/L, in which case log g(2ω̃) ∼ O(1) instead of O(L). Never-
theless it does not affect the logarithmic divergence caused by

the first term. By plugging this result into Eq. (A4), we find
the logarithmic divergence for the entropy S ∼ − log(mL)
for mL → 0 at arbitrary dimension. In this calculation, we
start from a purely classical Gaussian theory for deriving the
logarithmic divergence in the massless limit. However, this
result is applicable to the quantum Gaussian model studied in
the main text as well by mapping a d-dimensional quantum
problem to a classical problem with one extra dimension of
size β.

APPENDIX B: MAPPING OF NEGATIVITY OF A
d-DIMENSIONAL PROBLEM

TO A ONE-DIMENSIONAL PROBLEM

Consider a d-dimensional lattice of N sites with the Hamil-
tonian

H = 1

2

∑
r

(
π2

r + m2φ2
r

)+ 1

2

∑
〈r,r′〉

K (φr − φr′ )2. (B1)

Imposing the periodic boundary condition for all spatial di-
rections, a standard calculation for two-point functions gives

γφ (r, r′) = 2〈φrφr′ 〉 = 1

N

∑
k

eik·(r−r′ ) 1

ωk
coth

(
1

2
βωk

)
,

γπ (r, r′) = 2〈πrπr′ 〉 = 1

N

∑
k

eik·(r−r′ )ωk coth

(
1

2
βωk

)
,

(B2)

where k = (k1, k2, . . . , kd ) = 2π
L (n1, n2, . . . , nd ) for ni =

0, 1, . . . , L − 1, and ωk =
√

m2 + 4K
∑d

i=1 sin2( 1
2 ki ). To cal-

culate the negativity between the subregion A and its
complement B, we follow the correlation matrix technique
introduced in Ref. [22]. One defines a matrix P with the matrix
element

P(r, r′) =
{
δr,r′ for r ∈ A,

−δr,r′ for r ∈ B,
(B3)

and the negativity is given by

EN = −1

2

N∑
i=1

min{0, log λi}, (B4)

where λi is the eigenvalue of γφPγπP.
Suppose that the boundary between A and B only cuts

through one of the spatial directions, say direction labeled by
1, the matrix γφPγπP preserves the translational invariance
along the other d − 1 directions, and therefore its eigenfunc-
tion ψ (r) takes the form

ψ (r) = ei
∑d

i=2 kiriψ1(r1). (B5)

Given this ansatz, one can reduce the d-dimensional problem
to a one-dimensional problem. In particular, the negativity is

EN =
∑

k2,...,kd

E (1)
N (k2, . . . , kd ), (B6)
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where E (1)
N (k2, . . . , kd ) is the negativity of the one-

dimensional theory with a modified mass term

m2 → m2 + 4K
d∑

i=2

[
sin

(
1

2
ki

)]2

. (B7)

Note that this implies the leading contribution in EN is an area-
law term if E (1)

N in one dimension follows an area law.

APPENDIX C: NEGATIVITY BETWEEN TWO SITES

Consider a system of two sites: the dispersion relation
reads as ωk =

√
m2 + 4 sin2(k/2) with k = 0, π , and the co-

variance matrices are γφ = (a+ a−
a− a+ ), γπ = (b+ b−

b− b+ ) where

a± = 1

2

[
1

m
coth

(
1

2
βm

)
± 1√

m2+ 1
4

coth

(
1

2
β
√

m2 + 4

)]
,

b± = 1

2

[
m coth

(
1

2
βm

)
±
√

m2 + 1

4
coth

(
1

2
β
√

m2 + 4

)]
.

(C1)

The eigenvalues of γφPγπP are

λ1 =
√

m2 + 4

m
coth

(
1

2
βm

)
coth

(
1

2
β
√

m2 + 4

)
,

λ2 = m√
m2 + 4

coth

(
1

2
βm

)
coth

(
1

2
β
√

m2 + 4

)
. (C2)

While λ1 � 1 for arbitrary β and m, λ2 can be less
than 1 for some parameters. Thus, the negativity
is EN = − 1

2 min{0, log λ2}. In particular, while λ1

diverges at the massless limit m → 0, the eigenvalue
λ2, which contributes to the negativity, remains finite
and is perturbative in m2. Specifically, − log λ2 =
− log( coth β

β
) + ( 1

8 − β2

12 + β

8 coth β − β

8 tanh β )m2 + O(m4).
Thus, the leading-order correction for the negativity in the
massless limit is of order O(m2).

APPENDIX D: SEPARABILITY OF BOSONIC GAUSSIAN
STATES WITH U(1) and TIME-REVERSAL SYMMETRIES

1. Main results

Here we report a somewhat surprising observation on
mixed-state entanglement for a bosonic tight-binding model
in arbitrary spatial dimension:

H = −
∑

i j

ti ja
†
i a j, (D1)

where i index labels the lattice sites and ai, a†
i are the cor-

responding annihilation and creation bosonic operators. Apart
from the U(1) symmetry corresponding to the particle-number
conservation, we also impose time-reversal symmetry so the
hopping amplitude ti j is real. Crucially, we work in grand-
canonical ensemble, i.e., we do not fix the number of bosons
exactly, but only on average via a chemical potential (which
will correspond to diagonal elements of the hopping matrix ti j

in H). This model is of interest since it exhibits Bose-Einstein

condensation (BEC) when cooled below a critical tempera-
ture. Therefore, one may wonder how quantum correlations
behave across such a finite T phase transition. Surprisingly,
we find that the Gibbs state, i.e., ρ = exp(−βH )/Z , for this
model can be written as a convex combination of product
states and thus is separable. Therefore, all measures of mixed-
state entanglement, including negativity, are identically zero
at all temperatures. It is important to note that negativity can
be zero even for nonseparable states [18,88], and therefore this
result is much stronger than just showing that negativity is
zero for this system.

The central idea in our proof is to employ the Glauber-
Sudarshan “P representation” [89,90] for the density matrix ρ:

ρ =
∫
CN

N∏
i=1

d2αiP(α)|α〉〈α|, (D2)

where |α〉 = ⊗i|αi〉 is a tensor product of coherent states at
all sites. P(α) is a quasiprobability distribution since it can be
negative in general. We find that when ρ is a Gibbs state corre-
sponding to the aforementioned tight-binding model, P(α) is a
proper probability distribution function, and thus ρ is separa-
ble for all inverse temperature β. See Appendix D 2 for details.

At first glance, this result seems puzzling since as T → 0,
one might expect that ρ will correspond to a pure ground state
of H , which can be entangled, and is contrary to our finding.
This tension is resolved by noticing that ρ is not pure even at
T = 0. To see this, consider the thermal state ρ ∝ e−βH for
a single-mode Hamiltonian H = εa†a. A simple calculation
shows purity trρ2 = 1/(2〈a†a〉β + 1), where 〈a†a〉β is the
expectation value of a†a in the thermal state, and thus the state
is never pure for any nonzero number of bosons. Alternatively,
the tension can be traced back to the difference between the
canonical ensemble and the grand-canonical ensemble. As
mentioned above, the Gibbs state ρ ∝ exp(−βH ) is treated
within grand-canonical ensemble, where the particle number
is fixed only on average by a chemical potential. On the other
hand, in the canonical ensemble, the Gibbs state is restricted
to a fixed particle-number sector ρ ∝ exp(−βH )δ(N −∑

i a†
i ai ). Due to the delta function constraint, all the bosons

are enforced to occupy the lowest single-particle state, which
is a pure state that may very well be entangled.

2. Mathematical details

We define the N-sites coherent state: |α〉 = |α1, . . . , αN 〉
such that ai|α〉 = αi|α〉. Note that the coherent state |α〉 can
be generated by acting the displacement operator D̂(α) ≡
exp [

∑N
i=1 (αia

†
i − α∗

i ai )] on a vacuum state: |α〉 = D̂(α)|0〉.
The central ingredient we employ is the Glauber-

Sudarshan P representation [89,90], which can cast any
bosonic state into a diagonal matrix in the basis of coherent
states:

ρ =
∫
CN

N∏
i=1

d2αiP(α)|α〉〈α|, (D3)

where d2αi ≡ d Re(αi )d Im(αi). To define P(α), we first in-
troduce the characteristic function χ (α) [91]:

χ (α) = tr[D̂(α)ρ]e
1
2

∑N
i=1 |αi|2 . (D4)
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χ (α) serves as a generating function in the sense that its
derivatives give the expectation value of the observables:

tr
[
(a†

i )man
jρ
] =

[(
∂

∂αi

)m(
− ∂

∂α∗
j

)n

χ (α)

]∣∣∣∣
α=0

. (D5)

Then, P(α) is given by the complex Fourier transform of χ :

P(α) = 1

π2N

∫
CN

N∏
i=1

d2γie
∑N

i=1 αiγ
∗
i −α∗

i γiχ (γ ). (D6)

Up until this point, the discussion applies to any bosonic
state and, generically, P(α) is not necessarily positive. Now
we specialize to Gaussian states, such as the tight-binding
model of bosons [Eq. (D1)], the subject of our focus. By
defining αi = 1√

2
(xi + ipi ), one can show that for a Gaussian

state, P can be expressed as [91]

P(r) = 1

(2π2)N

∫
R2N

dr′eir′T (�r+�T r)e
1
4 r′T (1−�T σ�)r′

. (D7)

Here, rT = (x1, p1, . . . , xN , pN ) with r being the first moment
[ri = tr(ρri )] and σ being the 2N × 2N covariance matrix
[σi j = tr(ρ{ri, r j})]. � denotes the symplectic matrix: � =⊕N

i=1 ( 0 1
−1 0). The state ρ will be separable if 1 − �T σ� �

0 since then P(r) is a well-defined probability function. Below
we show that a bosonic tight-binding model with U(1) and
time-reversal symmetries [Eq. (D1)] indeed satisfies this con-
dition, which proves the separability in the form of Eq. (D3).

a. Proof that �T σ� � 1

We divide the proof into two parts. We first show that σ �
1, i.e., all eigenvalues of σ are greater than unity, and next
we show that �T σ� and σ have identical eigenspectrum, and
thus �T σ� � 1.

Proof that σ � 1. Given H = −∑i, j ti ja
†
i a j on an N-site

lattice in arbitrary spatial dimension, we can define the con-
jugate variables: xi = 1√

2
(ai + a†

i ) and pi = 1
i
√

2
(ai − a†

i ). By

introducing rT = (x1, . . . , xN , p1, . . . , pN ), our goal is to cal-
culate the covariance matrix σi j = 〈{ri − ri, r j − r j}〉, where
{A, B} = AB + BA, and ri = 〈ri〉 with the expectation values
taken with respect to a thermal state ρ = e−βH/Z . To pro-
ceed, we write ai =∑k uikbk to diagonalize the Hamiltonian:
H =∑k Ekb†

kbk . Given this result, we find

〈{xi, x j}〉 = 〈{pi, p j}〉 = δi j + 2
∑

k

Re[u∗
iku jk]〈b†

kbk〉,

〈{xi, p j}〉 = 2
∑

k

Im[u∗
iku jk]〈b†

kbk〉, (D8)

and ri = 0. Note that u can be chosen as an orthogonal matrix
since ti j is real (due to time-reversal symmetry of H). There-
fore, σ = γx

⊕
γp, with

γx,i j = γp,i j = δi j + 2
∑

k

uik〈b†
kbk〉u jk (D9)

or, equivalently, γx = u�u†, where � = diag {1 + 2〈b†
kbk〉

|for k = 1, 2, . . . , N} storing the eigenvalues of γx. This com-
pletes the proof that σ = γx

⊕
γp � 1. �

Proof that σ and �T σ� have identical spectrum. To prove
this, first notice that an orthogonal matrix O can diagonalize
σ since it is symmetric: σ = u�uT , where � is a diagonal
matrix. Then,

�T σ� = �T O�OT �. (D10)

Recall that �T � = ��T = −1, we then have

�T σ� = (�T O�)(�T ��)(�T OT �) = O′�′O′T , (D11)

where O′ ≡ �T O� and �′ = �T ��. A straightforward cal-
culation shows that O′ is an orthogonal matrix, and �′ is a
diagonal matrix. In particular, the set of the diagonal entries
of �′ is exactly the same as that of �, and hence �T σ� and
σ have the same eigenspectrum. Explicitly, if

� = diag(a1, b1, a2, b2, . . . ), (D12)

then

�′ = diag(b1, a1, b2, a2, . . . ). (D13)

�

b. An aside: Alternative proof for zero negativity for bosonic
tight-binding model

Recall that for a separable state, all measures of en-
tanglement, including negativity, are identically zero, but a
state with zero negativity can still be nonseparable [18,88].
Therefore, the above proof already establishes that negativity
corresponding to a tight-binding Hamiltonian of bosons with
U(1) and time-reversal symmetries is identically zero. Still, as
an aside, we provide an alternate proof of zero negativity for
this system.

From the fact that the eigenvalues of the correlation ma-
trix γx are greater than or equal to 1, i.e., γx � 1, we prove
that γxP � 1, and thus all eigenvalues of γxPγxP are greater
than or equal to 1. It follows that the negativity is zero from
Eq. (B4).

Proof for γxP � 1. Given a N × N symmetric matrix γx

with all eigenvalues λm � 1 and a diagonal matrix P with 1 or
−1 diagonal entries. First, we perform an eigendecomposition
of γx:

γx = OT �O, (D14)

where O is an orthogonal matrix and � = diag(λ1, . . . , λN ).
Next the eigenequation of γxP reads as

γxPvm = λ̃mvm, (D15)

where λ̃m and vm are the eigenvalue and eigenvector, respec-
tively. Taking the transpose of the above equation gives

vT
mPγx = λ̃mvT

m . (D16)

From the product of the above two equations and employing
Eq. (D14), we obtain

λ̃2
m = ṽT

m�ṽm =
N∑

i=1

ṽ2
m,iλ

2
i , (D17)

where ṽm = OPvm. Since ṽT
m ṽm =∑N

i=1 ṽ2
m,i = 1, λ̃2

m �∑N
i=1 ṽ2

m,iλ
2
min � 1, where λmin is the minimum eigenvalue of

γx. Thus, all eigenvalues λ̃m of γxP satisfy λ̃m � 1. �
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