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Rectification in nonequilibrium steady states of open many-body systems
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We study how translationally invariant couplings between many-particle systems and nonequilibrium baths
can be used to rectify particle currents, for which we consider minimal setups to realize bath-induced currents in
nonequilibrium steady states of one-dimensional open fermionic systems. We first analyze dissipative dynamics
associated with a nonreciprocal Lindblad operator and identify a class of Lindblad operators that are sufficient
to acquire a unidirectional current. We show that unidirectional particle transport can, in general, occur when
a Lindblad operator is reciprocal provided that the inversion symmetry and the time-reversal symmetry of
the microscopic Hamiltonian are broken. We demonstrate this mechanism on the basis of both analytical and
numerical approaches, including the Rashba spin-orbit coupling and the Zeeman magnetic field.
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I. INTRODUCTION

In recent years, open quantum systems have been widely
explored, as exemplified by driven-dissipative many-body
systems [1–5] and non-Hermitian phenomena [6]. They have
revealed that dissipation can qualitatively change various
aspects of many-body physics such as in quantum critical
phenomena [7–10], phase transitions [11–15], magnetism
[16–18], and quench dynamics [19–21]. In particular, ex-
perimental advances in controlling dissipation have allowed
one to study nonequilibrium and non-Hermitian phenomena
in trapped ions [22,23], photonics [24,25], ultracold atoms
[26–32], and exciton-polariton systems [33–38]. These re-
markable developments have offered new opportunities for
exploring intriguing phenomena unique to open quantum
systems in homogeneous setups in contrast to, e.g., boundary-
driven systems [39].

On another front, nonreciprocal phenomena, which have
been a long-standing problem in condensed-matter physics
and nonequilibrium statistical mechanics, play a vital role in
a variety of areas, including solid-state physics [40–46], pho-
tonics [47–51], acoustics [52–57], and active matter [58–61].
While p-n junctions are nonreciprocal devices of commercial
success, there is significant interest in exploring alternative
mechanisms, and recent discoveries have shed light on gen-
erating nonreciprocal flows without any temperature biases
[61–66]. While dissipation has been recognized as a key
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ingredient to control transport properties, Onsager’s recip-
rocal theorem [67,68] prohibits rectification by equilibrium
baths and thus it is of central importance to introduce nonequi-
librium baths.

In open quantum systems, one common way to introduce
rectification is to couple a system with two different baths
at boundaries and use temperature gradients as exemplified
by thermal diodes [69–75]. Indeed, many previous studies
have focused on inhomogeneous setups such as by intro-
ducing boundary driving [76–88]. In contrast, rectification
induced by homogeneous dissipation of nonequilibrium baths
has scarcely been explored despite the recent experimental
advances mentioned above. To our knowledge, there are so far
only a few studies in this direction, where nonreciprocal pho-
ton transmissions [89–91] and rectified heat currents in spin
chains [92] are discussed. Thus, it is still unclear how transla-
tionally invariant homogeneous dissipation of nonequilibrium
baths can be harnessed to realize unidirectional fermionic
transports.

In this paper, we propose minimal setups to obtain a uni-
directional particle transport in nonequilibrium steady states
(NESSs) of one-dimensional open fermionic systems, where
a nonequilibrium bath is uniformly coupled to the system
and gives rise to homogeneous dissipation (see Fig. 1). We
first consider a nonreciprocal Lindblad operator, which is
translationally invariant and conserves the particle number
of the system, and elucidate a general condition to acquire
a nonreciprocal particle transport in NESSs. We numerically
calculate the current by considering a specific dissipator that
can be realized in ultracold atoms [1,2]. Then, we demonstrate
that a reciprocal Lindblad operator can also induce unidirec-
tional particle transport in NESSs provided that the inversion
symmetry and the time-reversal symmetry of the Hamiltonian
are broken. We consider spin-dependent dephasing as a recip-
rocal Lindblad operator and evaluate the current by analytical
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FIG. 1. Schematic illustration of our setup. Fermions are trapped
in a one-dimensional lattice and uniformly coupled to a nonequilib-
rium bath, which gives rise to translationally invariant dissipation. An
equilibrium heat bath with the inverse temperature β is also coupled
to the system to ensure that the system reaches the Gibbs state in the
absence of nonequilibrium driving. The coupling strength to each
bath is given by γeq and γneq = 1 − γeq, respectively. Unidirectional
current I can arise in NESS only when the system is driven out of
equilibrium.

and numerical methods in the presence of the Rashba spin-
orbit coupling and the Zeeman magnetic field [93]. Our results
should be tested by using ultracold atoms or semiconductor
quantum dots, where the master-equation description can be
used [94].

II. MODEL

We consider a one-dimensional lattice model coupled to
both an equilibrium heat bath and a nonequilibrium Marko-
vian bath. Such a situation is described by the Lindblad master
equation,

∂tρ = −i[H0, ρ] + L1ρ, (1)

L1ρ = ε(γeqDeq(ρ) + γneqDneq(ρ)), (2)

with dissipators

D(i)(ρ) =
∑

m

(
L(i)

m ρL(i)†
m − 1

2

{
L(i)†

m L(i)
m , ρ

})
, (3)

where H0 is a noninteracting Hamiltonian governing the in-
ternal dynamics, Lm is a so-called Lindblad operator, γeq

and γneq = 1 − γeq denote the relative coupling strengths
between two baths, γeq ∈ [0, 1]. We assume that the baths
are weakly coupled to the system with a small dimension-
less parameter ε. Here and henceforth, we set h̄ = 1. In
atomic, molecular, and optical (AMO) systems, the approx-
imations involved in deriving the Lindblad master equation
are typically well-satisfied to many orders of magnitudes,
and a lot of experimental studies have revealed that these
approximations are indeed applicable to various situations
[4]. The Lindblad equation can be derived from a fully
microscopic Hamiltonian of the system, the system-bath
coupling, and the bath after tracing out the bath degrees
of freedom with the Born approximation, Markov approx-
imation, and rotating-wave approximation. We remark that

FIG. 2. Dynamics of Langrange parameters λq without nonequi-
librium driving obtained from Eq. (10), which satisfies the detailed
balance condition Eq. (8) with γeq = 1. The system goes to the Gibbs
state (dashed lines) after sufficiently long-time evolution of the order
of 1/ε. The initial state is set to infinite temperature. The parameters
are set to β = 2/J and ε = 0.05.

the present model is an intrinsically interacting many-body
problem because the dissipator cannot, in general, be ex-
pressed in terms of quadratic annihilation/creation operators
as detailed below.

III. TIME-DEPENDENT GENERALIZED
GIBBS ENSEMBLES

When the integrability of the translationally invariant in-
ternal system is weakly broken due to the coupling with the
reservoir, the time evolution of the system can be described
by a time-dependent generalized Gibbs ensemble (tGGE)
[92,95–97], which is justified for times t of the order of 1/ε

and larger,

ρGGE(t ) = e− ∑
q λq (t )Iq

Tr[e− ∑
q λq (t )Iq ]

, (4)

where Iq is an approximately conserved quantity as a con-
sequence of weak driving. Previous studies [92,96,97] have
shown that, by applying a linear-order perturbation theory to
the Lindblad equation, one can obtain a differential equation
that determines the dynamics of Lagrange parameters,

λ̇q = −
∑

p

(χ (t )−1)qptr[IpL1ρGGE(t )], (5)

χqp(t ) = 〈IqIp〉GGE − 〈Iq〉GGE〈Ip〉GGE, (6)

where 〈· · · 〉GGE = tr[· · · ρGGE(t )] (for the detailed calcula-
tion, see Appendix A). We note that λq and 〈Iq〉GGE are of
the order of ε0 in NESSs, and this fact causes large current
responses at arbitrarily weak system-bath coupling as shown
below. The validity of these equations has been shown in
Ref. [92] by comparing the results obtained from tGGE with
those from the exact diagonalization, as also seen from Fig. 2
below.
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FIG. 3. (a) Lagrange parameters in NESS that are driven out of
equilibrium as the nonequilibrium dissipation rate γneq is increased.
The grey dashed line denotes the Gibbs state. (b) Current I in NESS
as a function of γneq with Lindblad operators (8) and (15). The pa-
rameters are set to β = 2/J , ε = 0.05, δ = 1 + i, and δ′ = 1 + 0.5i.

IV. RESULTS

In the following, we evaluate the current in NESSs by
using the tGGE approach with Eqs. (4)–(6) at arbitrarily weak
system-bath coupling. We propose two minimal setups for
rectifying the current in NESSs both for nonreciprocal dis-
sipators and reciprocal dissipators.

A. Rectification by nonreciprocal dissipator

We first consider the one-dimensional tight-binding model,

H0 = −J
L−1∑
j=0

(c†
j+1c j + H.c.) =

∑
−π�k<π

εkc†
kck, (7)

where J is the hopping amplitude and εk = −2J cos(k) is
the eigenspectrum. We focus on the homogeneous couplings
with nonequilibrium baths of infinite system sizes and assume
that the system is subject to periodic boundary conditions and
periodic dissipation of length L. Here, we note that a realistic
system is sometimes affected by a particle source and sink at
the edges, but we ignore such effects for simplicity. Then, Iq in
Eq. (4) is given by the local number operator in the momentum
space Iq = c†

qcq.
The Lindblad operators corresponding to the equilibrium

heat bath satisfy [Lm, H0] = ζmLm with ζm = εk − εl , m =
(k, l ) ∈ {−π,−π + 2π/N, ..., π − 2π/N} to ensure the de-
tailed balance condition L†

kl = Llke−β(εk−εl )/2 [5,98,99] in such
a way that, without nonequilibrium driving, the system goes to
the Gibbs state ρcan = e−βH0/tr(e−βH0 ) irrespective of the ini-
tial state [see Figs. 2 and 3(a)]. For the sake of simplicity, we
here employ the following Lindblad operator corresponding
to the equilibrium heat bath:

Leq
lk =

√
J

L
c†

l ckeβ(εk−εl )/4. (8)

To realize current rectification in NESSs, we consider
a nonreciprocal Lindblad operator corresponding to the
nonequilibrium bath and assume that it is translationally in-
variant and conserves the particle number of the system. In
this case, the Lindblad operator can in general be labeled by a

wave number with coefficients �kq as

Lneq
q =

√
J

L

∑
−π�k<π

�kqc†
k−qck . (9)

Using Eq. (5) and Lindblad operators Eqs. (8) and (9), we
obtain the rate equation that governs the dynamics of the
system (see Appendix B for detailed derivations),

λ̇q = −εJ

L

1 + e−λq

e−λq

(
γeqF eq

q + γneqF neq
q

)
, (10)

where

F eq
q =

∑
−π�k<π

eβ(εk−εq )/2−λk − eβ(εq−εk )/2−λq

1 + e−λk
, (11)

F neq
q =

∑
−π�k<π

|�k,k−q|2e−λk − |�q,q−k|2e−λq

1 + e−λk
. (12)

We numerically solve the rate equation (10) to obtain the
dynamics of Lagrange parameters and their steady-state val-
ues. We first verify that Lagrange parameters go to the Gibbs
state in NESSs if there is no nonequilibrium driving. Figure 2
shows the relaxation dynamics of Lagrange parameters, which
obey Eq. (10) with γeq = 1 satisfying the detailed balance
condition Eq. (8). We see that the system goes to the Gibbs
state (grey dashed lines) after sufficiently long-time evolution.
Then, we calculate steady-state values of Lagrange parame-
ters following the rate equation (10). We see that Lagrange
parameters depart from the Gibbs state when the system is
driven out of equilibrium as the nonequilibrium dissipation
rate γneq is increased [see Fig. 3(a)].

We now derive a general condition to realize a nonzero
nonreciprocal current in NESSs. The current I generally
consists of two terms including Hamiltonian current and dis-
sipative current of order ε. For such a small ε that justifies
the tGGE approach, the dissipative current can be ignored,
which is consistent with a general description of the current
in open quantum systems [100,101]. We obtain the current
from the continuity equation for the density matrix as I =
2/L

∑
j Im〈c†

j c j−1(H0) j, j−1〉GGE [102,103], where (H0) j, j−1

denotes the coefficient of c†
j c j−1 in H0. In the present model,

the current, which is the order of ε0, is given by

I = iJ

L

L−1∑
j=0

〈c†
j+1c j − H.c.〉GGE

= 2J

L

∑
−π�q<π

sin(q)
e−λq

1 + e−λq
. (13)

Thus, to obtain a nonreciprocal current, the Lagrange parame-
ter λq must not be an even function of q. More specifically,
as inferred from Eq. (12), this condition requires a set of
(k, q) ∈ [−π, π ) to satisfy (at least) one of the following
conditions:

|�q,k+q| �= |�−q,k−q|, |�k,k−q| �= |�k,k+q|. (14)

We note that the time-reversal symmetry of the internal
Hamiltonian is not broken, and an even function λq prohibits
the rectification of the current even when the dissipative cur-
rent of order ε is included because it leads to a parity-even
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distribution of particles in real space and thus the current (that
is parity-odd) cannot exist.

Let us apply the condition Eqs. (14) for obtaining the
nonreciprocal current to a specific example. We introduce a
phenomenological dissipator which is proposed in ultracold
atoms in an optical lattice illuminated by Raman laser [1,2],

Lneq
j =

√
J (c†

j + δc†
j+1)(c j − δ′c j+1), (15)

where the subscript j denotes the lattice site. This type of
Lindblad operator causes the enhancement or suppression of
the atomic phases in two adjacent lattice sites and it is not
obvious how such type of superposition of the atomic phases
leads to the transport of atoms. We rewrite Eq. (15) as

Lneq
q =

√
J

L

∑
k

(1 + δe−i(k−q) )(1 − δ′eik )c†
k−qck, (16)

where we set the lattice constant a = 1. From Eqs. (14), the
Lindblad operator Eq. (16) should give rise to a nonreciprocal
current when either δ or δ′ has the imaginary part. This is
demonstrated in Fig. 3(b), where the current in NESSs is
plotted as a function of γneq for δ = 1 + i, δ′ = 1 + 0.5i. We
see that a large current is built up on a timescale of 1/ε as
it is driven out of equilibrium though it exactly vanishes in
equilibrium (γneq = 0).

B. Rectification by reciprocal dissipator

We next discuss how to realize a nonzero nonreciprocal
current by a reciprocal Lindblad operator at the expense of
the broken inversion and time-reversal symmetries of the in-
ternal Hamiltonian. To be concrete, we include the Rashba
spin-orbit coupling and the Zeeman magnetic field into the
one-dimensional tight-binding model [93],

H0 = − J
∑

jσ

(c†
j+1σ c jσ + H.c.) + h

L−1∑
j=0

(n j↑ − n j↓)

− αz

∑
jσσ ′

(c†
j+1σ (iσy)σσ ′c jσ ′ + H.c.)

+ αy

∑
jσσ ′

(c†
j+1σ (iσz )σσ ′c jσ ′ + H.c.)

=
∑

−π�k<π

∑
ν=±

εkνη
†
kν

ηkν, (17)

where h denotes the Zeeman splitting, σy,z are the Pauli ma-
trices, αy,z denote the Rashba hopping with spin flips, σ =↑↓
and ν = ± label spin and band indices, respectively, and the
system is subject to periodic boundary conditions and periodic
dissipation of length L. The Rashba spin-orbit coupling and
the Zeeman magnetic field break the inversion symmetry and
the time-reversal symmetry of the Hamiltonian, respectively
(see Fig. 4). The Hamiltonian is diagonalized with eigen-
values εk± = −2J cos(k) ±

√
(2αy sin(k) + h)2 + 4α2

z sin2(k)
and quasiparticle operators ηk±, which are given by a unitary
transformation as ckσ = ∑

ν uσν (k)ηkν and obey the anticom-
mutation relation {ηkμ, η

†
k′ν} = δkk′δμν (see Appendix C for

details). In this case, local conservation laws of few-body ob-

FIG. 4. Schematic illustration of the energy spectrum of the
tight-binding Hamiltonian with Rashba spin-orbit coupling Eq. (17).
The time-reversal symmetry (TR) of the Hamiltonian is broken when
the Zeeman magnetic field is applied to the system.

servables are given by the number operators of quasiparticles
Iqν = η†

qνηqν [cf. Eq. (4)].
To identify the Lindblad operators Leq

m that satisfy the de-
tailed balance condition, we consider μ(ν) dependence for the
energy bands of quasiparticles in addition to Eq. (8):

Leq
lμ,kν

=
√

J

L
η

†
lμηkνeβ(εkν−εlμ )/4. (18)

The relaxation dynamics of Lagrange parameters, which fol-
low the detailed balance condition Eq. (18), is qualitatively
the same as that in Fig. 2 except the fact that the degrees
of freedom are doubled. As the reciprocal Lindblad operator
of the nonequilibrium bath, we consider the spin-dependent
dephasing given by

Lneq
jσ =

√
Jγσ c†

jσ c jσ , (19)

where j labels the lattice site and the dissipation rates of
up and down spins satisfy γ↑ + γ↓ = 1. We calculate the
rate equation for the Lagrange parameters Eq. (5) with Lind-
blad operators Eqs. (18) and (19), which is given by (see
Appendix B for detailed calculations)

λ̇qν = −εJ

L

1 + e−λqν

e−λqν

(
γeqF eq

qν + γneqF neq
qν

)
, (20)

with the force

F eq
qν =

∑
kμ

eβ(εkμ−εqν )/2−λkμ − eβ(εqν−εkμ )/2−λqν

1 + e−λkμ
, (21)

F neq
qν =

∑
kμσ

γσ |uσν (q)|2|uσμ(k)|2 e−λkμ − e−λqν

1 + e−λkμ
. (22)

We see from Eq. (22) that the system goes to the infinite
temperature state, i.e., λq = 0 for all q, without equilibrium
heat bath. Nevertheless, the current can rectify if the system
couples to both equilibrium and nonequilibrium baths.

When the dynamics is determined from the rate equa-
tion (20), the current which is the order of ε0 can be obtained
from the continuity equation for the density matrix as

I =
∑
σ=↑↓

Iσ , (23)
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where the spin-resolved current Iσ , is given by (see
Appendix C for details)

Iσ = − i

L

[
− J

∑
j

〈c†
j+1σ c jσ − H.c.〉GGE

−αz

∑
jσ ′

〈c†
j+1σ (iσy)σσ ′c jσ ′ − H.c.〉GGE

+αy

∑
jσ ′

〈c†
j+1σ (iσz )σσ ′c jσ ′ − H.c.〉GGE

]
. (24)

We have confirmed that, by numerical calculations using
Eq. (23), the current I is nonzero only when both the Zee-
man magnetic field and the Rashba spin-orbit coupling exist.
This can be understood as follows. Since dissipation by an
equilibrium bath does not rectify the current, one must resort
to a nonequilibrium bath for obtaining a nonzero nonrecip-
rocal current. From Eq. (22), we see that nonreciprocity of
the distribution of Lagrange parameters is determined from
the property of the unitary transformation of quasiparticles,
namely, the symmetry of the internal Hamiltonian H0. In
fact, due to the structure of the matrix component uσν (k)
(see Appendix C), dephasing by the nonequilibrium bath
in Eq. (22) contributes to the Lagrange parameters as an
even function with respect to q if either one of the Zeeman
magnetic field or the Rashba spin-orbit coupling is absent.
As inversion-symmetric Lagrange parameters give the parity-
even distribution of particles in real space, the current does
not rectify even if dissipative correction of the order of ε is
included.

Figures 5(a) and 5(b) show the currents in NESSs in the
presence of the Rashba spin-orbit coupling and the Zeeman
magnetic field. As shown in Fig. 5(a), the dephasing applied
to up spins leads to a large nonreciprocal current I in NESSs
after a time evolution set by 1/ε, and it becomes larger as
the system is driven out of equilibrium. We recall that the
system goes to the Gibbs state for γneq = 0 and the infinite
temperature state for γneq = 1, both of which do not rectify
the total current I . When the dephasing is applied to both
up and down spins with equal rates [see Fig. 5(b)], the total
current I vanishes irrespective of the dissipation rate γneq,
as up spins and down spins contribute to the current in the
opposite directions and cancel out (see Appendix D). Here, we
note that the sharp peak of the current in Fig. 5(a) comes from
the sudden heating up to the infinite temperature due to the
nonequilibrium bath and the peak position can be controlled
by the system parameters, e.g., the Zeeman magnetic field h.

Physically, rectification of the current in NESSs can be
understood from the change of spin distribution near the Fermi
surface. As shown in the left panel of Fig. 5(c), the spin
distribution forms an effective Fermi surface in the steady
state (see also the right panel in Fig. 4), reflecting the half-
filled initial state. When dephasing is applied to up spins [see
the right panel in Fig. 5(c)], they heat up and spins near the
Fermi surface are most likely to move to the other eigenstates.
As a result, the number of particles near the Fermi surface
where up spins exist decreases, thereby contributing to the
current in the positive direction [see also Eqs. (C5) and (C6) in
Appendix C]. However, as shown in Fig. 4, the main con-
tribution to the current originates from down spins where

FIG. 5. (a), (b) NESS current and its spin dependence as a func-
tion of γneq in the presence of the Zeeman magnetic field and the
Rashba spin-orbit coupling. Dephasing is applied to up spins in
(a) and to both up and down spins with equal rates in (b). (c) Distri-
bution of the upper band (blue) and the lower band (red) in NESS for
the equilibrium Gibbs state (left) and the nonequilibrium state where
dephasing is applied to up spins (right). Population changes are
enhanced near the Fermi surface due to dephasing (marked by grey
dotted circles). The parameters are set to β = 2/J , ε = 0.05, αy =
1.1J , αz = 0.9J , and h = J . The initial state is at infinite temperature.

dephasing is not applied, because up spins heated up by de-
phasing move to cancel out the contribution to the current.

V. DISCUSSIONS

We demonstrate that arbitrarily weak translationally in-
variant system-bath coupling can induce large rectification
in homogeneous open quantum systems, which arises from
the interplay between nonequilibrium dissipator and inter-
nal Hamiltonian dynamics. This contrasts with conventional
setups in, e.g., solids, where there are a less variety of nonre-
ciprocal phenomena in linear response regimes than nonlinear
ones due to the need of breaking the time-reversal symmetry.
Our finding is distinct from most of the previous studies
in open quantum systems that focused on inhomogeneous
setups, where a system is coupled to different baths at its
boundaries, thus relying on temperature biases or boundary
driving. Our open-system formulation is not a response to
external electric fields but allows for featuring direct current
generation. In particular, this provides a different framework,
for instance, magnetochiral anisotropy, i.e., unidirectional
nonlinear resistivity under the magnetic field and electric field
for chiral conductors [104–106] or transmissions of an elec-
tron current in the presence of a potential barrier [93,107].
From an experimental perspective, our results can be tested
in ultracold atoms; the use of Raman-type spin-orbit coupling
is also promising to break the inversion symmetry. One can
also consider semiconductor quantum dots in GaAs as pos-
sible experimental candidates [94,108–110], where the spin
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relaxation time is very long; spin-resolved dephasing should
be realized by using the Zeeman shift.

To summarize, we have proposed minimal setups to real-
ize a nonreciprocal current in open many-body systems. In
contrast to conventional approaches in open quantum systems,
our finding provides a unique avenue for rectification, namely,
the current is neither generated by temperature gradients nor
boundary driving but via the translationally invariant cou-
plings to nonequilibrium baths. We have demonstrated that
a nonreciprocal Lindblad operator, in general, rectifies the
current in NESSs. We have also revealed that a reciprocal
Lindblad operator can be used to rectify the current when the
inversion symmetry and the time-reversal symmetry of the
internal Hamiltonian are broken. The present analysis opens
up various avenues of possible future research such as current
rectification in higher dimensions or changes on transport
properties by strong integrability breaking.
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APPENDIX A: DETAILED DERIVATION OF LAGRANGE
PARAMETERS FROM THE TIME-DEPENDENT

GENERALIZED GIBBS ENSEMBLE

We explain how the dynamics of the system that is weakly
driven by Markovian baths is determined based on the meth-
ods considered in Refs. [92,96,97]. We consider a situation
that the integrable system described by a Hamiltonian H0 with
conservation laws Ii (i = 0, 1, . . . , N ) is weakly perturbed
by Markovian baths, thus breaking the integrability. Such a
system is described by the Lindblad master equation by using
a small dimensionless parameter ε as

∂tρ = L0ρ + L1ρ, (A1)

L0ρ = −i[H0, ρ], L1ρ = εD(ρ), (A2)

where the dissipator D(ρ) is given by

D(ρ) =
∑

m

(
LmρL†

m − 1

2
{L†

mLm, ρ}
)

. (A3)

Below, we take a perturbative approach to the NESS. If there
is no perturbation by the environments, it is extensively shown

that steady states of the integrable models approach that de-
scribed by a generalized Gibbs ensemble:

ρ0 = e− ∑
i λi Ii

Tr[e− ∑
i λi Ii ]

. (A4)

Then, we track the changes of the Lagrange parameters by
weak driving of the baths. We split the density operator
ρ(t ) into zeroth-order approximation ρGGE(t ) and corrections
δρ(t ) as

ρ(t ) = ρGGE(t ) + δρ(t ), (A5)

where ρGGE(t ) is the tGGE,

ρGGE(t ) = e− ∑
i λi (t )Ii

Tr[e− ∑
i λi (t )Ii ]

, (A6)

and δρ should be small in the limit ε → 0. As L0ρGGE(t ) = 0
by definition, the condition of NESS Lρ = 0 ensures that the
correction δρ of order of ε (and larger) is given by

δρ = −L−1L1ρGGE. (A7)

To obtain the dynamics of Lagrange parameters λi(t ) that
determines ρGGE of order of ε0, it is convenient to introduce
the superoperator P ,

PX ≡ −
∑

i j

∂ρGGE

∂λi
(χ−1)i j tr[I jX ], (A8)

χi j (t ) = 〈IiI j〉GGE − 〈Ii〉GGE〈I j〉GGE, (A9)

which projects the density matrix onto the space tangential to
the GGE manifold spanned by ∂ρGGE(t )/∂λi. Here, we note
that PρGGE �= ρGGE because P is not a projector onto the
space of GGE matrix. By using

P ρ̇ = ρ̇GGE + Pδρ̇ (A10)

and demanding that Pδρ̇ ∼ O(ε2), we obtain

P ρ̇ 
 ρ̇GGE =
∑

i

∂ρGGE

∂λi

∂λi

∂t
. (A11)

Since 〈Ii〉 is calculated as

〈İi〉 = tr[IiLρ]

= tr[IiL1ρGGE] + tr[IiL1δρ]


 tr[IiL1ρGGE] (A12)

(we have used tr[IiL0δρ] = 0 because L†
0Ii = i[H0, Ii] = 0,

where the adjoint of the Liouvillian is defined by tr[ALρ] =
tr[(L†A)ρ]), we finally obtain the dynamics of the Lagrange
parameters up to the order of ε from Eqs. (A8) and (A11) as

λ̇i = −
∑

j

(χ (t )−1)i j tr[I jL1ρGGE(t )]. (A13)

For higher order corrections of the perturbation theory and
numerical evidence of the validity of tGGE, see Refs. [92,97].

APPENDIX B: DETAILED CALCULATIONS OF RATE EQUATIONS FOR LAGRANGE PARAMETERS

We here explain the detailed calculations to obtain the rate equations for Lagrange parameters. For the first model discussed
in the main text, the local conservation laws of few-body observables are given by Iq = c†

qcq. Thus, χqp in Eq. (6) in the main
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text is nonzero only for the diagonal components, given by

χqq(t ) = 〈c†
qcqc†

qcq〉 − 〈c†
qcq〉2 = 〈c†

qcq〉〈cqc†
q〉 = e−λq

(1 + e−λq )2
, (B1)

where we have omitted the subscript 〈· · · 〉GGE and the same applies hereafter. Then, we calculate 〈İq〉 = tr[IqL1ρGGE] on the
right-hand side of the rate equation (5) for the Lindblad operator Eq. (8) as

〈İq〉eq = εγeq

L
tr

[
Iq

∑
kl

(
Leq

kl ρGGELeq†
kl − 1

2

{
Leq†

kl Leq
kl , ρGGE

})]

= εγeqJ

L
tr

[∑
kl

eβ(εl −εk )/2c†
qcq

(
c†

kclρGGEc†
l ck − 1

2
{c†

l ckc†
kcl , ρGGE}

)]

= εγeqJ

L

∑
kl

eβ(εl −εk )/2

〈
c†

l ckc†
qcqc†

kcl − 1

2
(c†

qcqc†
l ckc†

kcl + c†
l ckc†

kcl c
†
qcq)

〉

= εγeqJ

L

∑
k �=q

[
eβ(εk−εq )/2(〈c†

kck〉〈cqc†
q〉〈c†

qcq〉 + 〈c†
kck〉〈cqc†

q〉2)

− eβ(εq−εk )/2(〈c†
qcq〉2〈ckc†

k〉 + 〈c†
qcq〉〈cqc†

q〉〈ckc†
k〉)

]

= εγeqJ

L

∑
k

1

(1 + e−λk )(1 + e−λq )
(eβ(εk−εq )/2−λk − eβ(εq−εk )/2−λq ), (B2)

where we used Wick’s theorem. Here, we note that the terms that do not include q in
∑

kl become zero because such terms
correspond to flows k → l or l → k (k, l �= q) and do not contribute to the dynamics of Iq. In the same way, we calculate 〈İq〉
on the right-hand side of the rate equation (5) for the Lindblad operator Eq. (9) as

〈İq〉neq = εγneqJ

L

∑
q′kk′

�kq′�∗
k′q′

〈
c†

k′ck′−q′c†
qcqc†

k−q′ck − 1

2
(c†

qcqc†
k′ck′−q′c†

k−q′ck + c†
k′ck′−q′c†

k−q′ckc†
qcq)

〉

= εγneqJ

L

∑
k

(−|�qk|2〈c†
qcq〉〈cq−kc†

q−k〉 + |�q+k,k|2〈c†
q+kcq+k〉〈cqc†

q〉)

= εγneqJ

L

∑
k

[
− |�q,q−k|2 e−λq

(1 + e−λk )(1 + e−λq )
+ |�k,k−q|2 e−λk

(1 + e−λk )(1 + e−λq )

]
. (B3)

By using Eqs. (B1)–(B3), we obtain the rate equation (10) for the first model in the main text.
For the second model (with the reciprocal dissipator), we can calculate the rate equation almost in the same way as discussed

above. As the local conservation law is given by Iqν = η†
qνηqν (ν = ±), χqν,pμ in Eq. (6) in the main text is zero for the off-

diagonal components and the diagonal component is calculated as

χqν,qν (t ) = 〈η†
qνηqνη

†
qνηqν〉 − [〈η†

qνηqν〉]2 = 〈η†
qνηqν〉〈ηqνη

†
qν〉 = e−λqν

(1 + e−λqν )2
. (B4)

We see from equation (B4) that the degrees of freedom in momentum space are doubled by upper and lower energy bands
compared to Eq. (B1). Then, 〈İqν〉 on the right-hand side of the rate equation (5) for the Lindblad operator Eq. (18) is calculated
by doubling the momentum space as [see also Eq. (B2)]

〈İqν〉eq = εγeqJ

L

∑
kl

∑
μ,κ=±

eβ(εlκ−εkμ )/2

〈
η

†
lκηkμη†

qνηqνη
†
kμ

ηlκ − 1

2
(η†

qνηqνη
†
lκηkμη

†
kμ

ηlκ + η
†
lκηkμη

†
kμ

ηlκη
†
qνηqν )

〉

= εγeqJ

L

∑
kμ

1

(1 + e−λkμ )(1 + e−λqν )
(eβ(εkμ−εqν )/2−λkμ − eβ(εqν−εkμ )/2−λqν ). (B5)

The contribution from the nonequilibrium bath, denoted as 〈İqν〉neq, can also be simplified by using the expression of the Lindblad
operator Eq. (19):

〈İqν〉neq = εγneqJ

L

∑
kk′q′,σ=↑↓

γσ

〈
c†

kσ
ck−q′,σ η†

qνηqνc†
k′−q′,σ ck′σ − 1

2
η†

qνηqνc†
kσ

ck−q′,σ c†
k′−q′,σ ck′σ − 1

2
c†

kσ
ck−q′,σ c†

k′−q′,σ ck′σ η†
qνηqν

〉
.

(B6)
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To use Wick’s theorem, we substitute the Bogoliubov transformation ckσ = uσν (k)ηkν in Eq. (B6) (for the detailed form of
uσν (k), see Appendix C). We note that, though we have to calculate 24 times as many terms as Eq. (B6) as a result of the
substitution, many of which become zero since the tGGE ensemble is defined by local conservation quantities. Then, we obtain

〈İqν〉neq = εγneqJ

L

∑
k

∑
μ=±

∑
σ=↑↓

γσ |uσν (q)|2|uσμ(k)|2 e−λkμ − e−λqν

(1 + e−λkμ )(1 + e−λqν )
. (B7)

Finally, Eq. (20) in the main text follows from Eqs. (B4)–(B7).

APPENDIX C: DETAILED DERIVATION OF THE QUASIPARTICLE OPERATORS

Here, we explain the detailed derivation of the quasiparticle operators for the second model in the main text. The tight-binding
Hamiltonian with the Rashba spin-orbit coupling and the Zeeman magnetic field [Eq. (17) in the main text] is diagonalized as

H0 = −J
∑

jσ

(c†
j+1σ c jσ + H.c.) + h

∑
j

(n j↑ − n j↓)

−αz

∑
jσσ ′

(c†
j+1σ (iσy)σσ ′c jσ ′ + H.c.) + αy

∑
jσσ ′

(c†
j+1σ (iσz )σσ ′c jσ ′ + H.c.)

=
∑

k

(c†
k↑ c†

k↓)

(−2J cos k + 2αy sin k + h 2iαz sin k
−2iαz sin k −2J cos k − 2αy sin k − h

)(
ck↑
ck↓

)

=
∑

k,ν=±
εkνη

†
kν

ηkν, (C1)

with eigenvalues

εk± = −2J cos(k) ±
√

(2αy sin(k) + h)2 + 4α2
z sin2(k), (C2)

and quasiparticles, which are given by the unitary transformation,(
ck↑
ck↓

)
= U (k)

(
ηk+
ηk−

)
, (C3)

U (k) =
(

u↑+(k) u↑−(k)
u↓+(k) u↓−(k)

)
= 1√

2

⎛
⎜⎜⎝

−i
√

2αy sin k+h√
(2αy sin k+h)2+4α2

z sin2 k
+ 1 −i

√
−2αy sin k−h√

(2αy sin k+h)2+4α2
z sin2 k

+ 1

− sin(k)
| sin(k)|

√
−2αy sin k−h√

(2αy sin k+h)2+4α2
z sin2 k

+ 1 sin(k)
| sin(k)|

√
2αy sin k+h√

(2αy sin k+h)2+4α2
z sin2 k

+ 1

⎞
⎟⎟⎠. (C4)

We see from Eq. (22) in the main text and Eq. (C4) that the contribution to Lagrange parameters from the nonequilibrium bath
is inversion symmetric with respect to q if either one of the Zeeman magnetic field or the Rashba spin-orbit coupling is absent,
which does not rectify the current. As a result, we need to break both the inversion symmetry and the time-reversal symmetry
of the Hamiltonian to obtain the nonreciprocal current in NESS. We can also calculate the current Eq. (24) in the main text by
using these quasiparticle operators as

I↑ = 2J

L

∑
q

sin(q)〈c†
q↑cq↑〉 + 2αy

L

∑
q

cos(q)〈c†
q↑cq↑〉 + 2iαz

L

∑
q

cos(q)〈c†
q↑cq↓〉

= 1

L

∑
q

(J sin(q) + αy cos(q))

〈⎛
⎝ 2αy sin(q) + h√

(2αy sin q + h)2 + 4α2
z sin2 q

+ 1

⎞
⎠η

†
q+ηq+

+
⎛
⎝ −2αy sin(q) − h√

(2αy sin q + h)2 + 4α2
z sin2 q

+ 1

⎞
⎠η

†
q−ηq−

〉

+2α2
z

L

∑
q

cos(q) sin(q)

〈
η

†
q+ηq+ − η

†
q−ηq−√

(2αy sin q + h)2 + 4α2
z sin2 q

〉
, (C5)
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FIG. 6. (a) Current in NESS and its spin dependence as a function of γneq in the presence of the Zeeman magnetic field and the Rashba
spin-orbit coupling (model 2 in the main text), where dephasing is applied to down spins. (b) Distribution of the upper band (blue) and the lower
band (red) in NESS for the equilibrium Gibbs state (left) and the nonequilibrium state (right) corresponding to (a). Change of population near
the Fermi surface where dephasing is applied becomes large (marked by grey dotted circles). The parameters are set to β = 2/J , αy = 1.1J ,
αz = 0.9J , and h = J for the initial state at infinite temperature.

I↓ = 2J

L

∑
q

sin(q)〈c†
q↓cq↓〉 − 2αy

L

∑
q

cos(q)〈c†
q↓cq↓〉 − 2iαz

L

∑
q

cos(q)〈c†
q↓cq↑〉

= 1

L

∑
q

(J sin(q) − αy cos(q))

〈⎛
⎝ −2αy sin(q) − h√

(2αy sin q + h)2 + 4α2
z sin2 q

+ 1

⎞
⎠η

†
q+ηq+

+
⎛
⎝ 2αy sin(q) + h√

(2αy sin q + h)2 + 4α2
z sin2 q

+ 1

⎞
⎠η

†
q−ηq−

〉

+ 2α2
z

L

∑
q

cos(q) sin(q)

〈
η

†
q+ηq+ − η

†
q−ηq−√

(2αy sin q + h)2 + 4α2
z sin2 q

〉
. (C6)

APPENDIX D: RESULTS OF THE NONRECIPROCAL CURRENT IN NESSS WITH DOWN-SPIN DEPHASING

We here give the numerical results of the current in NESSs when dephasing is applied to down spins in the second model
discussed in the main text. From Fig. 6(a), we see that the current rectifies in the opposite direction and the total current I has
the reversed value of that in Fig. 5(a) in the main text. As shown in Fig. 6(b), the change of population near the Fermi surface
where dephasing is applied becomes large (grey dotted circles) compared to the Gibbs state, which contributes to the current in
the negative direction [see Eqs. (C5) and (C6)].
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