
PHYSICAL REVIEW RESEARCH 2, 043338 (2020)

Mechanical oscillator thermometry in the nonlinear optomechanical regime
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Optomechanical systems are promising platforms for controlled light-matter interactions. They are capable
of providing several fundamental and practical novel features when the mechanical oscillator is cooled down to
nearly reach its ground state. In this framework, measuring the effective temperature of the oscillator is perhaps
the most relevant step in the characterization of those systems. In conventional schemes, the cavity is driven
strongly, and the overall system is well-described by a linear (Gaussian preserving) Hamiltonian. Here, we
depart from this regime by considering an undriven optomechanical system via non-Gaussian radiation-pressure
interaction. To measure the temperature of the mechanical oscillator, initially in a thermal state, we use light
as a probe to coherently interact with it and create an entangled state. We show that the optical probe gets
a nonlinear phase, resulting from the non-Gaussian interaction, and undergoes an incoherent phase diffusion
process. To efficiently infer the temperature from the entangled light-matter state, we propose using a nonlinear
Kerr medium before a homodyne detector. Remarkably, placing the Kerr medium enhances the precision to
nearly saturate the ultimate quantum bound given by the quantum Fisher information. Furthermore, it also
simplifies the thermometry procedure as it makes the choice of the homodyne local phase independent of the
temperature.
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I. INTRODUCTION

Optomechanical systems have emerged as a formidable
platform for the control and manipulation of light-matter
interactions in quantum technologies [1,2]. From a funda-
mental perspective, they allow for preparing a superposition
of quantum states of a macroscopic object [3,4], production
of nonclassical states for the light [5,6] and the mechanics
[7], and may even lead to the detection of the quantum na-
ture of gravity [8,9]. Practically, optomechanical systems can
render hybrid architectures for quantum networking schemes
[10], the possibility of quantum state transfer [11] and quan-
tum distillation [12], and serve as a sensor for detecting
small forces [13], displacements [14], masses [15], and ac-
celerations [16,17] with unprecedented precision. A crucial
necessity for most of the above schemes is to possess the
mechanical oscillator near its ground state [1,18]. Typically,
the mechanical part operates at frequencies ranging from
1 MHz to 1 GHz [1]. This means that sophisticated cooling
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techniques are inevitable for reaching the mechanical ground
state [19–22]. To certify the success of any cooling procedure,
it is of paramount importance to measure the temperature of
the system precisely.

Thermodynamical quantities (including temperature) are
challenging to define, measure, and manipulate at quantum
level [23], which may even lead to reformulating the laws of
thermodynamics [24–28]. Concerning temperature, two main
approaches may be identified for thermometry in the quantum
domain: (i) the search for the optimal observable to be mea-
sured on the sample to extract information about temperature
and (ii) the design and optimization of a probing technique,
where the sample is allowed to interact with an external probe,
which is then measured to extract information about the tem-
perature of the sample. The first approach [29–32] is the most
natural procedure for estimating temperature and the optimal
observable turns out to be the energy, as happens in classical
physics. However, this approach may be very demanding, as
it requires access to the entire system, measuring its energy
and having full knowledge of the spectrum. In the second
approach, a small quantum probe interacts with the system
without causing much disturbance and is then measured. Here
we may distinguish two main strategies: one may consider a
probe that interacts with the system for a long time to reach
equilibrium. Measuring the probe will provide information
about the temperature of the system [33–35]. However, sat-
isfying these conditions for fragile quantum systems may not
be an easy task in practice. Alternatively, one may consider
a quantum probe interacting with the system for a limited
time [36–42] and the temperature becomes encoded in the
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entangled nonequilibrium system-probe quantum state. Even
tracing out the system degrees of freedom, temperature infor-
mation remains mapped onto the state of the probe and may be
extracted using a suitable set of measurements. Interestingly,
this nonequilibrium scenario may yield enhanced precision
compared to the equilibrated probes [43,44]. Indeed, for sys-
tems that are prone to decoherence, such as optomechanical
systems, interrogating the probe on a short timescale seems
to be the most suitable strategy for thermometry. Notice that
for probes at equilibrium, the measured quantity is the ther-
modynamical temperature of the sample and the probe, while
for out-of-equilibrium probes one just estimates a parameter
of the probe density matrix, which turns out to be determined
by the initial temperature of the sample.

Currently, the dominant scheme for thermometry in op-
tomechanical systems is based on the measurement of the
so-called motional sidebands asymmetry ratio, i.e., n̄/(n̄ +
1) (with n̄ being the mean phonon number) [45–48]. Since
this technique involves a cavity being strongly driven, the
optomechanical system is typically linearized and thus the
intrinsic nonlinear nature of the radiation-pressure optome-
chanical interaction cannot be addressed. In addition, even
though heavily used in experiments, the motional sideband
asymmetry technique may not provide the ultimate precision
for thermometry. Therefore, developing new techniques for
measuring the temperature of a mechanical object at the quan-
tum precision limit in the nonlinear regime, as quantified by
the quantum Fisher information, is highly desirable.

In this paper, we consider an optomechanical system where
no driving field is present and operating in the nonlinear
regime. Initially, the mechanical oscillator is at thermal equi-
librium at an unknown temperature. By switching on the
interaction between the mechanical oscillator and the prob-
ing light, temperature information may be mapped to the
quantum state of light and may be extracted through optical
measurements, see Fig. 1. We have three main results: (i) the
temperature parameter is shown to be imprinted solely as a
phase diffusion process in the optical state; (ii) the quantum
precision limit, set by the quantum Fisher information, is
nearly saturated by placing a nonlinear Kerr medium before
a homodyne detector; and (iii) by properly choosing the Kerr
nonlinearity, the measurement basis becomes independent of
temperature. Our protocol is distinct from previous proposals
as it neither relies on Gaussian interactions nor needs adjust-
ments of detunings [49–53].

The rest of the paper is organized as follows: In Sec. II, we
briefly introduce the theory of quantum parameter estimation,
for which we stressed the main equations to be used in the
single parameter estimation case. In Sec. III, we derive the
reduced density matrix of the light probe. Section IV accounts
for the study of the quantum Fisher information. In Sec. V, we
present the measurement strategy to be employed to achieve
the ultimate quantum bound. Finally, we present the conclu-
sions of our results in Sec. VII.

II. ELEMENTS OF PARAMETER ESTIMATION

Quantum parameter estimation aims to determine one or
multiple quantities of interest by performing appropriate mea-
surements and exploiting and estimator algorithm. In this

FIG. 1. (a) Schematic diagram of optomechanical system.
(b) General procedure for the estimation of the oscillator’s temper-
ature T . The mechanical object (sample) of mass m, temperature
T , and frequency � is probed by a coherent signal, interacting
nonlinearly with the oscillator. To infer T , we suggest a feasible
measurement scheme based on homodyne detection, which delivers
nearly optimal thermometry performances.

paper, we focus on single parameter estimation, where the
only quantity to estimate is the temperature T of a mechanical
oscillator whereas the rest of the parameters are assumed to
be known and fully controlled. The estimation procedure will
ultimately infer the quantity of interest using two essential
steps: (i) gathering data through performing a specific type
of measurement and (ii) feed the gathered data into an esti-
mator to infer the value of the parameter. For any choice of a
measurement basis, the precision of the estimation obeys the
classical Cramér-Rao inequality [54]

Var[T ] � 1

MFC (T )
, (1)

where M is the total number of measurements, Var[T ] is the
variance of the estimated quantity, and FC (T ) is the so-called
classical Fisher information obtained as [54,55]

FC (T ) =
∫

dx
1

p(x|T )
[∂T p(x|T )]2. (2)

In the above expression, ∂T := ∂/∂T , and p(x|T ) is the
conditional probability for a measurement outcome x given
temperature T . The equality in Eq. (1) can be achieved when
the estimator is optimal. In the asymptotical regime, where
the data set is large, it is proven that the Bayesian algorithm
provides the best estimator [55,56]. One can further gener-
alize the above classical inequality by optimizing upon all
the possible positive-operator valued measure (POVM) {�x}
operators, where

∫
dx�x = I. This extra optimization tight-

ens the above bound and leads to the quantum Cramér-Rao
inequality [55],

Var[T ] � 1

MFQ(T )
, (3)
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where

FQ(T ) := Tr[(∂T ρT )LT ] = Tr
[
ρT L2

T

]
� FC (4)

is the quantum Fisher information FQ(T ), ρT is the density
matrix parametrized on the oscillator’s temperature T , and LT

is the so-called symmetric logarithmic derivative (SLD). By
expressing the density matrix ρT in spectral decomposition,
one can provide an explicit form of the SLD as follows [55]:

LT = 2
∑
n,m

〈ψm|∂T ρT |ψn〉
�m + �n

|ψm〉〈ψn|, (5)

where ρT = ∑
n �n|ψn〉〈ψn|, and �m + �n �= 0. With the

above definition in Eqs. (4) and (5), it is straighforward to
finally reach the quantum Fisher information on this particular
basis:

FQ = 2
∑
n,m

|〈ψm|∂T ρT |ψn〉|2
�m + �n

. (6)

This is the definition which is employed throughout our nu-
merical simulations.

III. THE MODEL

The standard nonlinear optomechanical Hamiltonian in the
absence of external driving is (h̄ = 1)

Ĥ = �b̂†b̂ − g0â†â(b̂† + b̂), (7)

where we have switched to an appropriate frame rotating at the
frequency of the optical mode â. The mechanical oscillator
of frequency � and mode b̂ couples to the light field with
strength g0 (see Ref. [17] for a brief review on some explicit
expressions for g0 as different physical setups are considered).
Under this specific type of interaction, the mechanical oscilla-
tor’s potential shifts its equilibrium position conditioned upon
the eigenenergies n of the number operator â†â [1,5,6].

The mechanical oscillator is assumed to be initially in a
mixed thermal state at temperature T , the parameter to be
estimated. It is convenient to represent the oscillator state in
coherent basis

ρM(0) = 1

π n̄

∫
|β〉〈β|e− |β|2

n̄ d2β, (8)

where

n̄ =
(

exp

[
�

kBT

]
− 1

)−1

(9)

is the phonon occupancy number and kB is the Boltzmann
constant. Since n̄ is an injective function of T , we will refer to
the oscillator’s temperature estimation either using n̄(T ) := n̄
or T indistinctibly.

Assuming full control of the light probe, we consider an
initial pure state spanned in Fock basis with known coeffi-
cients ck ∈ C as

ρL(0) =
∞∑

n,m=0

cnc∗
m|n〉〈m|. (10)

Therefore, the initial state of the system becomes

ρ(0) = ρL(0) ⊗ ρM(0). (11)

The system undergoes a time evolution as

ρ(t ) = Û (t )ρ(0)Û †(t ), (12)

where the time evolution operator Û (τ ) = exp(−iĤτ ) has
been found to be [5,6]

Û (τ ) = ei(gâ†â)2(τ−sin τ )egâ†â(ηb̂†−η∗b̂)eiτ b̂†b̂. (13)

In the formula above, we rescaled the relevant Hamiltonian
shown in Eq. (7) by the mechanical frequency �, and, conse-
quently, we have defined g := g0/�, η := 1 − e−iτ and τ :=
�t . Notice that the second exponential in the time evolution
operator is a displacement operator acting on the mechanical
subsystem conditioned upon the observable â†â, whereas the
first and third exponentials are a nonlinear function of the
photon number operator â†â and a phase shift operating solely
on the optical and the mechanical modes, respectively. One
can find the bipartite density matrix as

ρ(τ ) =
∞∑

n,m=0

cnc∗
meig2(n2−m2 )(τ−sin τ )|n〉〈m|

⊗ 1

π n̄

∫
d2βe− |β|2

n̄ e
g(n−m)

2 [β∗(eiτ −1)−β(e−iτ −1)]|φn〉〈φm|,
(14)

with coherent mechanical amplitude

|φn〉 := |βe−iτ + gnη〉. (15)

Finally, by performing the trace over the oscillator’s degrees
of freedom in Eq. (16), one can obtain the following reduced
density matrix for the light field:

ρL(τ ) =
∞∑

n = 0
m = 0

cnc∗
mCn,m|n〉〈m|, (16)

where

Cn,m = eig2(n2−m2 )(τ−sin τ )eg2(m−n)2(1+2n̄)(cos τ−1). (17)

The expressions in Eqs. (16) and (17) are the main results of
this section. As is evident, there are two different components
in Cn,m. The first exponential term is a coherent phase arising
from the non-Gaussian interaction and does not depend on the
temperature. The second term, however, is a phase diffusion
which depends on temperature. We will provide more discus-
sions about the quantum state of the light probe in the next
section.

Features of the light probe

It is worth noting that the parameter to be estimated,
namely, n̄, only arises in one of the exponentials in the reduced
density matrix of the light probe, given in Eq. (16). In turn,
this exponential resembles the detrimental effect of phase
diffusion. The diffusion process may, of course, be described
using Lindblad formalism [57], but it can also be expressed
as resulting from the application of a random phase shift
Ûθ := e−iθ â†â, with θ being a random number sampled from a
Gaussian distribution with zero mean and standard deviation
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� [58,59]:

ρD = 1√
4π�2

∫
R

dθe− θ2

4�2 Ûθ ρ Û †
θ

=
∞∑

n,m=0

cnc∗
me−2(n−m)2�2 |n〉〈m|. (18)

This process results in a degrading of the off-diagonal terms
in the eigenbasis of â†â, yet conserving the energy. No-
tably, it also mimics the more complex process arising
from the full bipartite dynamics shown in Eq. (16), where
the precise amount g2(n − m)2(1 + 2n̄)(cos τ − 1) emerges
as a consequence of the mechanical coherent overlapping
〈φm|φn〉 and the relative phase from the displacement operator
eg(n−m)[β∗(eiτ −1)−β(e−iτ −1)]/2.

IV. QUANTUM FISHER INFORMATION

The quantum Fisher information FQ in general is a func-
tion of the tunable parameters of the system. To achieve the
best precision for temperature estimation, one has to (i) maxi-
mize FQ with respect to such tunable parameters and (ii) find
the optimal measurement basis to achieve the bound given by
FQ. Since the eigenvalue problem for the reduced quantum
state in Eq. (16) is analytically intractable, we rely on numer-
ical methods for computing the quantum Fisher information.
Moreover, even though a general photon distribution cn was
considered for the derivation of the light probe, throughout
this paper we focus on a readily accessible input light, namely,
a coherent state with amplitude α ∈ R, which results in

cn = e− α2

2
αn

√
n!

. (19)

In Fig. 2(a), we show the quantum Fisher information
FQ(g, τ |n̄) as functions of the optomechanical coupling g
and interaction time τ given a temperature n̄. Without loss
of generality, we have fixed the coherent amplitude α = 2,
as well as the phonon occupancy number to be n̄ = 1. As
evident from the figure, there is a vast domain where the
set of controlled parameters {g, τ } can always be adjusted
such that the quantum Fisher information is maximal. This
could be understood in terms of the effective phase diffusion
exponential in the reduced density matrix in Eq. (16). To see
this, let us first consider the limit of τ 
 1, under this limit
the quantum state can be approximated as

ρL(τ )
τ
1≈

∞∑
n = 0
m = 0

e−α2 αn+m

√
n!m!

e− (gτ )2

2 (m−n)2(1+2n̄)|n〉〈m|, (20)

where the optomechanical coherent phase, arising from the
non-Gaussian interaction, no longer plays a role and only the
diffussion process is present. In this limit, as the dependence
on {g, τ } is through their multiplication gτ by choosing a short
interaction time τ a large g is required for maximizing FQ.
This is evident in the area in the g-τ plane for which the
quantum Fisher information is maximal as shown in Fig. 2(a).
On the other hand, as τ increases the relationship between
g and τ delivering maximal quantum Fisher information be-
comes more complex, this is because of the phase diffusion

FIG. 2. (a) Quantum Fisher information FQ(g, τ |n̄) as functions
of g and τ for a given n̄. As the figure shows, one can always adjust
the set of parameters g and τ in such a way that delivers maximal
quantum Fisher information. In (b), we show the quantum Fisher
information as function of g for some interaction times τ . As seen
from the figure, an election of τ = π gives the lowest g needed to
reach maximal quantum Fisher information. Panels (c) and (d) show
the Wigner function in phase space {ql , pl} for the optical quantum
state with the same maximal quantum Fisher information for times
τ = π and τ = π/10, respectively. An evident nonlinear phase as
well as an incoherent phase diffusion is observed for τ = π , whereas
as the time decreases, say τ = π/10, the nonlinear phase vanishes.
Other values are α = 2 and n̄ = 1.

term exp[g2(m − n)2(1 + 2n̄)(cos τ − 1)]. It follows that, for
very small values of g, this term goes to one and depen-
dence of n̄ is lost. On the contrary, if g is large, then the
exponential term becomes vanishingly small, again losing its
dependence on n̄. Only for some intermediate values of g the
quantum Fisher information is maximal which is evident in
Fig. 2(a). Interestingly, for an interaction time of τ = π , one
can maximize the quantum Fisher information by tuning the
optomechanical strength g to its lower value. This election
of the controlled parameters {g, τ } is of singular interest, as
optomechanical systems in the nonlinear regime currently
operates under weak radiation-pressure interaction coupling.
Without loss of generality, from now on we will fix τ = π ,
and g = gmax will correspond to the optomechanical coupling
that brings the quantum Fisher information to its maximal
value. To support the above, in Fig. 2(b), we show the quantum
Fisher information FQ as a function of g for different times τ .
As shown in the figure, different values of g and τ lead to the
same maximum value of the quantum Fisher information, for
which τ = π , as stated before, is the one delivering the lowest
optomechanical coupling strength g.

To illustrate the differences between optical states with
the same quantum Fisher information, yet tuned with differ-
ent choices of g and τ , we plot in Figs. 2(c) and 2(d) the
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FIG. 3. (a) Quantum Fisher information as function of the oscil-
lator’s temperature n̄ for different values of α. The theoretical limit
α � 1, optimized for {g = gmax, τ = π}, represents the maximum
value at which the quantum Fisher information can reach for a given
n̄. Panel (b) shows the optomechanical coupling such that maximizes
the quantum Fisher information gmax as function of n̄.

quasiprobability Wigner function W (ql , pl ) in the phase space
{ql , pl} with associated quadratures of the light field. The
Wigner function is numerically evaluated according to [60,61]

W (ql , pl ) = 1

π

∫ ∞

−∞
〈ql + x|ρL(τ )|ql − x〉e−2ipl xdx,

=
∞∑

n,m=0

e−α2
αn+m

n!m!
√

2n+mπ3
e−q2

l Cn,m

∫ ∞

−∞
e−(2ipl x+x2 )

×Hm(ql − x)Hn(ql + x)dx, (21)

where we have used

〈n|x〉 = e− x2

2 Hn(x)√
2nn!π1/4

, (22)

with Hn(x) being the Hermite polynomials of order n.
In Fig. 2(c), we show the Wigner function of the light state

when the interaction time is τ = π and g ≈ 0.3. The nonlinear
features arising from the non-Gaussian optomechanical inter-
action are apparent. The moderate-to-strong value of g make
this case practically relevant, e.g., see Refs. [21,62–66] for
experimental values. However, in this case, the non-Gaussian
features may be challenging to detect by accessible measure-
ment shemes, such as homodyne detection [67,68]. On the
other hand, as shown in Fig. 2(d), by considering τ = π/10
and g ≈ 1.87, the light state exhibits only phase diffusion
features which may be more easily detected via homodyne
detection. However, this comes at the cost of larger values
of g which may be experimentally unfeasible. Therefore, it
is highly desirable to find a measurement strategy which
operates at the small g and yet is able to deliver excellent
estimation performance.

In Fig. 2, we kept n̄ and α fixed. Now we investigate their
impact on the quantum Fisher information. In Fig. 3(a), we
show the quantum Fisher information as a function of the
oscillator’s temperature n̄ for different values of the coher-
ent amplitude α. As Fig. 3(a) shows, the quantum Fisher
information peaks at n̄ = 0 for any α, while rapidly de-
creasing as the oscillator’s temperature n̄ grows. This can

be intuitively understood as in the limit of high oscillator’s
temperature, i.e., n̄ � 1, the phase diffusion term exp[g2(m −
n)2(1 + 2n̄)(cos τ − 1)], given in Eq. (17), goes to zero and
weakly depends on the exact value n̄, for all values of α. In the
opposite regime, i.e., n̄ 
 1, the probe changes substantially
as n̄ varies. In other words, the variation of phonon excitations
lead to a completely different optical phase diffusion term, and
thus, one would expect better estimation and lower uncertain-
ties for this quantity.

Furthermore, as Fig. 3(a) shows, increasing the initial co-
herent amplitude α always benefits the precision in estimating
the temperature of the oscillator, however, it quickly saturates
for an initial number of photons above α2 > 9. In the limit
of large α, one can linearize the optomechanical Hamiltonian
and the corresponding QFI can be analytically evaluated via
the Gaussian formalism (see the Appendix for more details
about the derivation). By taking τ = π , one gets

FQ
α�1= 2

(1 + 2n̄)2
. (23)

Remarkably, as seen from the figure, even for α2 > 9 one can
almost achieve this limit.

As stated before, each point of the quantum Fisher infor-
mation in Fig. 3(a) has been maximized using τ = π and
g = gmax. In Fig. 3(b), we depict the dependence of gmax as
function of the temperature n̄ for different coherent ampli-
tudes α. As the figure shows, comparable strong-to-moderate
strength of g is observed for any chosen α. The large values
of g when n̄ 
 1 can be intuitively explained as one requires
stronger correlations between the light field and the oscillator
in order to extract some information related to the mechanics.

It is relevant to point out the dependence between the
parameter to be estimated, n̄, and the optimal optomechanical
coupling g needed to achieve maximal temperature estimation
accuracy [see Fig. 3(b)]. This situation is indeed the case for a
very general scenario in quantum metrology, where the opti-
mal estimation comes at the price of knowing the (unknown)
parameter to be estimated. To overcome this obstacle, one
can follow two directions: (i) a parameter estimation based
on adaptive methods or (ii) assuming a value which will work
sufficiently well under some domain of the unknown parame-
ter. In our case, for instance, assuming a value of g ∼ 0.3 will
be optimal for n̄ ∼ 1, while suboptimal outside this domain.
In what follows, we assume n̄ as given for some parameter
estimation method, thus determining a single optomechanical
coupling g.

V. CLASSICAL FISHER INFORMATION

The bound given by FQ sets the ultimate precision limit
allowed by quantum mechanics. Nonetheless, the quantum
Cramèr-Rao theorem does not explicitly provide the optimal
measurement. To saturate the bound, one needs to implement
the optimal POVM, which is made by the set of projectors
over the eigenstates of the SLD operator, i.e. LT , in com-
bination with optimal estimators. It is known that for large
data sets a Bayesian estimator provides optimal estimation
[55,56]. One of the complex problems in quantum metrology
is that the optimal measurement basis, computed from the
eigenvetors of the SLD operator LT , depend on the unknown
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FIG. 4. (a) Wigner function of the light field for α = 3, n̄ =
0.25, τ = π, gmax ≈ 0.38. Significant negative values characterizes
the nonclassical nature of the light field. (b) The optical state is led
to interact with a Kerr medium of nonlinear strength χ . By a proper
choice of χ = 2πg2

max, one can fully suppress the intrinsic coher-
ent nonlinear phase arising from the non-Gaussian optomechanical
interaction.

parameter, here n̄. The typical recipe for this problem is to
follow complex adaptive approaches [69–74] to update the
measurement basis iteratively by extracting information about
the exact value of the unknown parameter. In practice, to avoid
such complexity, it is of significant importance if one can
determine a fixed measurement basis which is independent of
the unknown parameter and maximizes the quantum Fisher
information. Therefore, in what follows we focus on deter-
mining an undemanding measurement which leads closely to
the bound.

Determining a feasible measurement

As depicted in Fig. 3(a), the estimation of the oscillator’s
temperature delivers larger quantum Fisher information par-
ticularly for low phonon quanta excitations, say 0 � n̄ � 1.
Within this domain, the optical state may exhibit strong non-
classical features conditioned upon the coherent amplitude
α and the strength of the optomechanical coupling g. For
instance, in Fig. 4(a), we numerically evaluate the Wigner
function of the light field for α = 3 [near saturation of the
quantum Fisher information shown in Eq. (23)] and the
achieved experimental mechanical oscillator ground state n̄ =
0.25 [19,20]. As the figure shows, the light field presents
distinct nonclassical features, as evidenced by the ample neg-
ativity arising from the Wigner function. For this scenario, it
is difficult to provide a true optimal measurement basis as
the SLD may result in very complex measurement setups.
Motivated by this, let us apply the following unitary operator
on the quantum state of our probe:

ÛK = exp
[
− iχ

2
(â†â)2

]
, (24)

where χ is a Kerr nonlinear tunable parameter. The reason
behind the application of this nonlinear Kerr unitary opera-
tion is to modulate the temperature-independent phase in the
quantum state of the probe, given in Eq. (17), to compensate
the non-Gaussian effect of the Hamiltonian. The transformed

state reads

ρ̃L(τ = π ) = ÛKρL(τ = π )Û †
K

= e−α2
∞∑

n = 0
m = 0

αn+m

√
n!m!

ei(n2−m2 )(πg2
max− χ

2 )

× e−2g2
max(m−n)2(1+2n̄)|n〉〈m|. (25)

The Wigner function of ρ̃L(τ = π ) is depicted in Fig. 4(b)
when χ is set to χ = 2πg2

max. Interestingly, by this choice the
non-Gaussian phase is fully canceled, resulting in an entirely
positive Wigner function. Indeed, it is the Wigner function of
an initially Gaussian state subject to phase diffusion.

To quantify the performance of this procedure, one has to
evaluate the classical Fisher information FC using homodyne
detection preceded by a nonlinear Kerr medium, and compare
it with the ultimate precision bound given by FQ. To evaluate
the classical Fisher information FC shown in Eq. (2), it is
straightforward to obtain the conditional probability p(x�LO |n̄)
as

p(x�LO |n̄) = Tr
[|x�LO〉〈x�LO |ρ̃L(τ = π )

]
,

=
∞∑

n = 0
m = 0

αn+m

√
n!m!

ei(n2−m2 )(πg2
max− χ

2 )e−2g2
max(m−n)2(1+2n̄)

× e−α2
e−x2

�LO
Hm

(
x�LO

)
Hn

(
x�LO

)
ei�LO(m−n)

√
π2(m+n)m!n!

,

(26)

where |x�LO〉 is the eigenvector of the rotated quadrature oper-
ator x̂φ with local oscillator phase φ defined as

x̂�LO = âe−i�LO + â†ei�LO

√
2

. (27)

Notice that measuring the optical field will collapse the
mechanical state into a more complex non-Gaussian quantum
state, and hence, change the initial phonon number to be
estimated into a different value. Indeed, once the light field
is measured, one is required to repeat the experiment to gather
relevant statistics regarding the parameter to be estimated,
here n̄.

In Fig. 5(a), we compute the Fisher information ratio
FC/FQ as a function of the Kerr nonlinear strength χ and
the oscillator temperature n̄. Notice that the Kerr modula-
tion ranges between 0 � χ � 2πg2

max, i.e., from no Kerr
medium interaction to the value which cancels the phase
from non-Gaussian interaction completely. As it is evident
from the figure, the best performance is achieved when the
χ = 2πg2

max, for which FC/FQ reaches a near-optimal ratio
of ∼0.95.

Two relevant cases are pertinent to explore. On the one
hand, for low phonon quanta excitations n̄ ≈ 0, performing
the homodyne detection step without any Kerr modulation
χ = 0 leads to a low Fisher information ratio about ∼0.1—
while letting the system interact with a Kerr medium of
strength χ = 2πg2

max, one gains much information up to
a Fisher ratio of ∼0.95. This result can be understood as
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FIG. 5. (a) Fisher information ratio FC/FQ as functions of the
Kerr nonlinear strength 0 � χ � 2πg2

max and oscillator temperature
n̄. A proper tuning of χ and the known local oscillator phase �LO [see
panel (b)] can lead to a Fisher information ratio up to FC ≈ 0.95FQ.
(b) Local oscillator phase �LO as functions of the Kerr nonlinear
strength 0 � χ � 2πg2

max and oscillator temperature n̄. Notice that
tuning χ = 2g2

maxπ makes the measurement basis independent of the
unknown parameter. In (c), we show the Fisher ratio FC/FQ as a
function of �LO for different values of n̄ when the Kerr nonlinearity
is tuned to χ = 2g2

maxπ . As seen, the measurement basis becomes
independent of the unknown parameter n̄. Similarly, in panel (d),
when the Kerr medium is tuned to χ = 2g2

maxπ/4, the measurement
basis depends on n̄, as the peak of the Fisher ratio changes as the
temperature varies.

estimating such values of n̄ ≈ 0 demands stronger optome-
chanical couplings, which then enables major nonclassical
features arising from the non-Gaussian character of the
Hamiltonian [see Fig. 4(a)]. Thus, to obtain better perfor-
mances in the homodyne detection scheme, one requires to
cancel the non-Gaussian phase contribution, in Eq. (17), sig-
nificantly. On the other hand, for larger values of n̄, i.e., n̄ � 1,
even modest values of Kerr nonlinearity is enough to achieve
large FC/FQ ratio.

A crucial point in the above procedure for determining n̄ is
to fix �LO, which specifies the homodyne measurement. If the
optimized value of �LO depends on n̄, which is unknown, then
one has to resort in an adaptive approach. In such procedure,
one has to acquire some prior information about n̄ using non-
optimal measurements, i.e., taking any value for �LO, and
then use the estimated value of n̄ for updating the �LO for
a better estimation in the next iteration. By repeating this for
a few iterations, one can eventually tune �LO near its optimal
value. It is highly desirable to find an optimal measurement
independent of the parameter of interest, here n̄. To investigate
this, in Fig. 5(b), we plot the optimal �LO as a function of
n̄ and χ . In general, for any choice of χ , the optimal local
phase �LO varies as n̄ changes. Remarkably, by tuning χ =

2g2
maxπ , which fully cancels the effect of the non-Gaussian

optomechanical interaction, the optimal �LO becomes zero
for any value of n̄. This important observation shows that by
using a Kerr nonlinear medium with χ = 2g2

maxπ one single
measurement basis can detect n̄ over a wide range of values,
avoiding complex adaptive measurement methods. To show
this more concretely, in Fig. 5(c), we plot the Fisher ratio
FC/FQ as a function of �LO for different values of n̄ when
the Kerr nonlinearity is tuned to χ = 2g2

maxπ . As the figure
shows, the maximum efficiency is achieved for �LO = 0 or
�LO = π for all values of n̄. For the sake of completeness,
in Fig. 5(d), we plot the FC/FQ as a function of �LO when
χ is tuned to a non-optimal value χ = 2g2

maxπ/4 for various
values of n̄. As evident from the figure, for different values
of n̄ the peak of the curve varies, making an adaptive strategy
essential.

It is also interesting to briefly discuss what happens in
the limit of large α (i.e., for α � 1). As we explain in
the Appendix, if one considers the linearized optomechan-
ical Hamiltonian, the classical Fisher information FC for
any Gaussian (general-dyne) measurement [75,76], and thus
comprising the special case of homodyne detection, can be
analytically evaluated. Remarkably, one shows that FC goes
to zero in the limit α � 1 for any choice of the measurement.
Non-Gaussian measurements are thus going to be necessary
not only to attain the ultimate limit set by the QFI in Eq. (23)
but, in the limit of large α, also to obtain nonzero information
about the temperature.

VI. DECOHERENCE

Quantum systems are inevitably prone to decoherence,
which makes them especially fragile when they are in contact
with thermal reservoirs at nonzero temperature. As the result
of the interaction with an environment, the evolution of the
system is no longer unitary. Therefore, an open quantum sys-
tem dynamics is needed to explain the evolution of the system.
We consider the standard optomechanical master equation,
given in the Lindbladian form of

d ρ̂

dt
= − i[Ĥ, ρ̂] + κ

2
D[â]ρ̂

+ γ

2
(1 + nth )D[b̂]ρ̂ + γ

2
nthD[b̂†]ρ̂, (28)

where nth is the average occupation number for the thermal
reservoir, κ = κ/� is the scaled photon decay rate, γ = γ /�

is the scaled phonon damping rate, and the Lindbladian su-
peroperator term is denoted by D[Ô] = 2Ôρ̂Ô† − ρ̂Ô†Ô −
Ô†Ôρ̂. It is worth emphasizing that generally the temperature
of the mechanical oscillator is lower than the thermal reser-
voir, i.e., n < nth, due to the use of extra cooling techniques.
Moreover, in this formalism, we assume that the projective
measurements are ideal, namely, they are performed instantly
and thus there is no decoherence during the measurement.

In optomechanical systems, it is generally conceded that
intracavity photon leaking rate, quantified by κ in Eq. (28),
from the optomechanical cavity is the main source of decoher-
ence. Thanks to recent fabrication achievements, mechanical
oscillators with quality factor up to 106, i.e., γ = 10−6, have
been achieved [1,77]. Moreover, the commercially available
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FIG. 6. (a) Ratio between the classical Fisher information FL
C ,

in the presence of losses, with the ultimate precision limit given
by FQ, in the absence of losses as a function of the photon decay
rate κ . (b) Ratio between the quantum Fisher information FL

Q, in
the presence of losses, and FQ as a function of κ . Other values are:
α = 2, τ = π, g = gmax, and n̄ = 0.5.

dilution fridges can provide temperatures corresponding to
nth ≈ 102 for mechanical oscillators [19,21,78,79].

It is important to compare the precision of our protocol
given by the classical Fisher information FL

C , in the presence
of losses, with the ultimate precision limit given by FQ, in
the absence of losses. In Fig. 6(a), we plot the ratio between
FL

C /FQ as a function of κ . As the figure shows, even in the
presence of experimentally photon decay rate of κ ∼ 10−2,
the Fisher ratio shows a saturation up to 90%. For decay rates
larger than κ > 10−2, the ratio drops faster, although even for
extreme loss of κ ∼ 10−1 the Fisher ratio still reaches values
up to ∼65%.

One might be interested to see how the ultimate precision
limit itself, quantified by the quantum Fisher information,
is affected by the presence of decoherence. To investigate
this in Fig. 6(b), we illustrate the ratio between the quan-
tum Fisher information in the presence of losses, FL

Q, and
the lossless quantum Fisher information, FQ. As is evident
from the figure, the quantum Fisher information is attenuated
in the presence of photon losses, however, for values up to
κ ∼ 10−2, one can still recover 90% of its lossless value.
Remarkably, the above simulations show that the temperature
estimation of the mechanical oscillator can still be performed
even in the case when losses are considered in the model.

VII. CONCLUDING REMARKS

In this paper, we have suggested a scheme for measur-
ing the temperature of a mechanical oscillator, initially in
a thermal state, using coherent light as a probe when the
optomechanical system operates in the nonlinear regime.
Remarkably, our scheme reaches precision, which almost
saturates the quantum bound quantified by quantum Fisher
information. To support our results, we analytically derive
the temporal evolution of the reduced density matrix of the
light probe, in which we find two different contributions: (i) a
coherent phase due to the intrinsic non-Gaussian interaction
term and (ii) an incoherent diffusion process. Remarkably,
the phase diffusion contribution is the only one encoding the

mechanical oscillator’s temperature. This suggests that the
estimation performs better at low phonon quanta excitations,
i.e., low temperatures, as increasing the mean phonon number
leads to a complete loss of information regarding the optical
phase. The key part of our protocol to achieve quantum-
limited precision is to place a nonlinear Kerr medium before
the homodyne detector. The introduction of this medium sig-
nificantly increases the precision as it helps to cancel the
temperature-independent coherent phase of the light probe.
Hence, the measurement outcomes are solely determined by
the incoherent diffusion process which encodes the initial
temperature of the mechanical oscillator. Remarkably, by
choosing the Kerr nonlinearity to fully cancel the coherent
phase, the local phase of the homodyne detection becomes
independent of the temperature.
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APPENDIX: QFI FOR THE LINEARIZED
OPTOMECHANICAL HAMILTONIAN

In the case where the cavity field is prepared in a coherent
state with large amplitude α � 1, the optomechanical Hamil-
tonian in Eq. (7) can be linearized, i.e., it can be written as
[2]

Ĥlin = �b̂†b̂ − g0α( ˆ̃a + ˆ̃a†)(b̂ + b̂†) , (A1)

where we have introduced the fluctuation of the cavity field
operator around its mean value ˆ̃a = â − α (with α ∈ R) and
we have neglected the nonlinear terms that in fact are not mul-
tiplied by α. By introducing the quadrature operators for the
cavity field, X̂ = ( ˆ̃a + ˆ̃a†)/

√
2, Ŷ = i( ˆ̃a† − ˆ̃a)/

√
2 and for the

mechanical oscillator Q̂ = (b̂ + b̂†)/
√

2, P̂ = i(b̂† − b̂)/
√

2,
and by defining the vector of operators r̂ = (X̂ , Ŷ , Q̂, P̂)T, one
can rewrite the linearized Hamiltonian as

Ĥlin = �

2
(Q̂2 + P̂2) − 2g0αQ̂X̂ , (A2)

= 1

2
r̂THlinr̂ , (A3)

where we have introduced the matrix

Hlin =

⎛
⎜⎝

0 0 −2g0α 0
0 0 0 0

−2g0α 0 −� 0
0 0 0 �

⎞
⎟⎠ . (A4)

As the Hamiltonian is quadratic in the bosonic operators, we
can exploit the Gaussian formalism [75,76]: Given that the
initial state is a Gaussian state, one can describe the whole
dynamics via the first moment vector and covariance matrix
of the quantum state ρ, defined as

r̄ = Tr[ρr̂] , (A5)

σ = Tr[ρ{r̂ − r̄, (r̂ − r̄)T}] . (A6)
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In our problem, the initial state of the system is indeed Gaus-
sian, being ρ(0) = |α〉〈α| ⊗ ρM (0), corresponding to a zero
first moment vector and a covariance matrix:

σ(0) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 2n̄ + 1 0
0 0 0 2n̄ + 1

⎞
⎟⎠. (A7)

In the Gaussian formalism, the unitary dynamics is described
by a symplectic matrix that can be obtained via the formula
S(t ) = exp{ωHlint}, where ω = ⊕2

j=1 iσy denotes the sym-
plectic form. In particular, the covariance matrix (that encodes
all the information about the temperature n̄) evolves as σ(t ) =
S(t )σ(0)S(t )T. Performing the partial trace over the mechan-
ical oscillator degrees of freedom in the Gaussian formalism
simply corresponds to take the 2 × 2 submatrix corresponding
to the cavity field operator, that is,

σL(τ ) =
(

1 f (g, α, τ )
f (g, α, τ ) 1 + h(n̄, g, α, τ ) + f (g, α, τ )2

)
,

where we have introduced the functions

f (g, α, τ ) = 4g2α2(τ − sin τ ), (A8)

h(n̄, g, α, τ ) = 8g2α2(1 − cos τ )(2n̄ + 1) , (A9)

and we are considering the rescaled values τ = �t and g =
g0/�. As mentioned above, all the information about the
temperature is encoded in the covariance matrix. As a con-
sequence, one can evaluate the corresponding QFI via the
formula [80]

FQ = 1

2(1 + μL )
Tr

[
σ−1

L (∂n̄σL )σ−1
L (∂n̄σL )

] + 2
(∂n̄μL )2

1 − μ4
L

,

(A10)

where we have dropped the dependence on the evolution
time τ and we have introduced the purity of the state μL =
Tr[ρL(τ )2] = 1/

√
DetσL. By exploiting the formula for σL,

one obtains the analytical result

FQ = 8g2α2(cos τ − 1)

(2n̄ + 1)[4g2α2(2n̄ + 1)(cos τ − 1) − 1]
, (A11)

that, by fixing the evolution time τ = π , reads

FQ(τ = π ) = 16g2α2

(2n̄ + 1)(1 + 8g2α2(2n̄ + 1))
,

α�1= 2

(1 + 2n̄)2
. (A12)

It is also possible to evaluate the classical Fisher infor-
mation FC corresponding to any Gaussian (general-dyne)
measurement performed on the cavity field. In fact any pro-
jective Gaussian measurement can be described itself by a
(covariance) matrix [75,76]

σM = R(θ )

(
z 0
0 1/z

)
R(θ )T , (A13)

where

R(θ ) =
(

cos θ sin θ

− sin θ cos θ

)
(A14)

denotes a two-dimensional rotation matrix of angle θ . In
particular, heterodyne detection, that is, projection on coher-
ent states, is obtained for z = 1, while homodyne detection
that is, projection on the eigenstates of the quadrature X̂θ =
cos θ X̂ + sin θ Ŷ is obtained by considering the limit z → 0.
The measurement outcome is in general represented by a
two-dimensional vector rm, and only in the limit of homodyne
detection (that is, for z → 0) corresponds effectively to a
single-valued outcome. Its conditional probability distribution
p(rm|n̄) is a Gaussian multivariate probability distribution
centered in the light first-moment vector rL = Tr[ρ(X̂ , Ŷ )T]
and with covariance matrix � = (σL + σM )/2. As previously,
only the covariance matrix depends on the parameter n̄ and the
corresponding classical Fisher information can be evaluated
via the formula

FC = 1

2
Tr[�−1(∂n̄�)�−1(∂n̄�)] . (A15)

Since the most general formula is too cumbersome, we report
here only the result obtained by setting τ = π and by con-
sidering a generic homodyne detection of the quadrature X̂θ ,
yielding

FC = 2(4gα sin θ )4

[cos2 θ − 4πg2α2 sin(2θ ) + (1 + 16g2α2(1 + 2n̄) + 16π2g4α4) sin2 θ ]2
. (A16)

Both the above formula and the most general one go to zero
in the limit α � 1. This clearly shows how in this regime any
Gaussian measurement, including homodyne detection, will

bring no information on the temperature, and thus one has to
resort to non-Gaussian measurements such as the one based
on a Kerr interaction, suggested in the main text.
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