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Mapping the XY Hamiltonian onto a network of coupled lasers
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In recent years there has been a growing interest in the physical implementation of classical spin models
through networks of optical oscillators. However, a key missing step in this mapping is to formally prove that the
dynamics of such a nonlinear dynamical system is toward minimizing a global cost function which is equivalent
with the spin model Hamiltonian. Here we introduce a minimal dynamical model for a network of dissipatively
coupled optical oscillators and prove that the dynamics of such a system is governed by a Lyapunov function that
serves as a cost function for the system. This cost function is in general a function of both phases and intensities
of the oscillators and depends strongly on the pump parameter. In the case of bipartite network topologies,
the amplitudes of the oscillators become identical in the steady state and the cost function reduces to the XY
Hamiltonian. In the general case for nontrivial network topologies, however, the cost function approaches the
XY Hamiltonian only in the strong pump limit. We show that by adiabatically tuning the pump parameter,
the network can largely avoid trapping into the local minima of the governing cost function and stabilize into
the ground state of the associated XY Hamiltonian. These results show the great potential of laser networks for
unconventional computing.
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I. INTRODUCTION

Classical spin models are widely utilized in statistical me-
chanics and condensed matter physics for exploring critical
phenomena and phase transitions in magnetic materials [1,2].
Beyond their original realm, these models have also been
applied to investigate a wide range of complex phenomena,
such as the collective behavior of neural networks [3] and
protein folding [4]. In addition, they have inspired efficient
heuristics in combinatorial optimization, which makes them
an attractive alternative to conventional methods for solv-
ing computationally hard problems [5,6]. Consequently, the
possibility of realizing an analog spin lattice model is of
great interest. Recently, there has been a growing interest in
emulating spin models with nonlinear driven-damped optical
systems [7–19]. In particular, networks of coherently coupled
degenerate optical parametric oscillators were used for im-
plementing a binary spin system in analogy with the Ising
model and utilized for solving NP-hard problems [8,9]. In
addition, the phase pattern of large arrays of dissipatively
coupled solid-state lasers was shown to be analogous to the
arrangement of spins governed by the XY Hamiltonian [10].
Similar behavior was also observed in the polarization states
of nanolaser arrays [16].
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In these contexts, a network of interacting optical os-
cillators are brought into a phase-locked state, where the
intensities tend to be uniform across the network, while the
phases reveal striking patterns [9,10]. In the case of coupled
lasers, assuming that the intensities of all lasers are equal, the
phases are shown to be governed by an energy landscape func-
tion which turns out to be identical to an antiferromagnetic
XY Hamiltonian [10]. However, it remains to analytically
investigate the assumption of uniform equilibrium intensity
which is critical to a faithful mapping of the XY Hamiltonian
onto a network of lasers. Consequently, it is of great interest
to derive an exact cost function for the laser network which
in general involves both the intensity and phase degrees of
freedom. In addition, there is no formal proof of the evolution
of the above-mentioned machines toward a state with globally
minimum modal loss, as suggested in previous works [8,9].
Finally, it is critical to investigate the stability of such highly
nonlinear systems in order to ensure their proper operation in
the presence of inevitable imperfections.

In this article, we systematically explore the problem of
mapping of the classical XY model onto networks of optical
oscillators with amplitude and phase degrees of freedom. We
introduce an integrable nonlinear dynamical model by con-
sidering dissipative coupling among the oscillators. We derive
a Lyapunov function for this model which serves as a cost
function involving both the intensity and phase degrees of
freedom. The cost function reduces to the modal loss of the
system for bipartite graph topologies. In such trivial networks,
all oscillators stabilize to a state with globally uniform in-
tensity. In contrast, highly nontrivial behavior emerges in the
scenario of nonbipartite graphs. In this scenario, the pump
parameter plays a major role and phenomena such as selective
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FIG. 1. Schematic illustration of the mapping of the XY model
onto lasers. (a) Single laser. (b) Temporal evolution of the complex
modal field amplitude of a laser. (c) Steady state of the complex
field amplitude shown by a vector in the 2D plane; its magnitude
and angle represent the oscillation intensity and phase, respectively.
(d) Arrangement of two lasers interacting through dissipation into
a scattering channel. (e) Splitting of the linear eigenfrequencies of
the system along the imaginary axis as a result of their dissipative
coupling. (f) Oscillation of the coupled lasers into a preferred phase-
locked state with π phase contrast resembles the ground state of
antiferromagnetic system.

death of oscillators and formation of edge states occur. We
derive a general condition for the formation of the equal
intensity state, while we show that in the strong pump limit
the systems approaches such a state.

II. MODEL

As a building block of our model, we consider a single-
mode laser as depicted schematically in Fig. 1(a). In a
semiclassical treatment and by adiabatic elimination of the
atomic variables, the laser field is described with a nonlin-
ear oscillator model [20,21]. The evolution equation of such
an oscillator is ȧ(t ) = (−iω0 + g0 − gth − gs|a|2)a, where a
represents the complex field amplitude, ω0 is the oscillation
frequency, gth is the total laser losses, g0 is the linear gain,
and gs is the gain saturation coefficient. This equation ad-
mits the solution a = √

I (t ) exp(−iω0t + φ̄), where φ̄ is an
arbitrary phase and I−1(t ) = Ī−1 + (I−1

0 − Ī−1) exp[−2(g0 −
gth )t], with Ī = (g0 − gth )/gs the steady-state intensity and
I0 the initial intensity. According to this relation for g0 −
gth > 0, the field builds up to a steady-state amplitude |ā| =√

(g0 − gth )/gs, while it exhibits an arbitrary phase 0 < φ̄ <

2π [Fig. 1(b)]. As depicted in Fig. 1(c), the steady-state
complex field can be described with a vector in the two-
dimensional (2D) plane such that its magnitude and angle
represent |ā| and φ̄, respectively.

Although the steady-state phase of a single oscillator may
not be of particular interest, it finds meaning when two such
oscillators are coherently coupled. In this case, the two oscilla-
tors come to a phase locking even in the presence of tolerable
initial frequency detunings [22]. The synchronization process
becomes particularly appealing when the two oscillators are
coupled dissipatively as illustrated in Fig. 1(d) [23]. The inter-
esting property of such a dissipative interaction is the coherent
superposition of the radiative fields from the two resonators

which creates a contrast in the level of radiation losses for the
two eigenmodes of the system [Fig. 1(e)]. Therefore, when
the gain is turned on, the system tends to evolve toward the
eigenmode with minimum leakage. Quite interestingly, in the
steady state, the two oscillators reach the same intensity, while
the phase contrast is close to π [23] [Fig. 1(e)].

This process can be viewed as a search toward an optimal
state in the phase space of the system. Assuming that the
two oscillators are arranged such that they equally radiate in
the leakage channel, the rate of energy dissipation is Pdiss ∝
κ12||a1|eiφ1 + |a2|eiφ2 |2, where κ12 represents the dissipative
coupling rate. This relation is of course minimized for the triv-
ial choice of zero oscillator amplitudes. However, one should
consider the constraint imposed on the amplitude of each
oscillator through the pump. Assuming that the two oscillators
reach the same steady-state intensity |a1,2| = |ā|, the dis-
sipated power simplifies to Pdiss ∝ κ12|ā|[1 + cos(φ1 − φ2)],
which is identical to the classical XY Hamiltonian for a lattice
with two spins. However, this mathematical analogy is built on
assuming equal steady-state intensities for the two oscillators.

Considering a network of N dissipatively coupled identical
oscillators, by using a gauge transformation am → ame−iω0t ,
the time evolution equation governing the complex modal
amplitude of the mth oscillator can be written as

ȧm = (g0 − gth − gs|am|2)am −
∑
n �=m

κmn(am + an). (1)

Here κmn is the coupling coefficients between the mth and
nth lasers. The diagonal element appearing in the summation
represents the external losses due to dissipative coupling; thus,
the total loss of the mth resonator is the sum of its intrinsic
and external losses: gth + ∑

n �=m κmn. In writing Eq. (1), we
assume that the dissipative coupling occurs only pairwise
and through decaying into a common dissipation channel.
Furthermore, the coupling coefficients are assumed to be non-
negative κmn � 0, which is equivalent to considering only
in-phase addition of the decaying fields from the two res-
onators. In addition, the coupling coefficients are assumed to
be symmetric, i.e., κmn = κnm. Finally, it should be noted that
here we ignore the noise of the oscillators as well as the noise
due to dissipation channels, thus dealing with a completely
deterministic model.

By using an intensity and phase representation am(t ) =√
Im(t )eiφm (t ), Eq. (1) can be separated into two real equations

for the amplitudes (or intensities) and phases:

İm = 2(g0 − gth − gsIm)Im

− 2
∑
n �=m

κmn[Im + √
ImIn cos (φn − φm)],

φ̇m = −
∑

n

κmn

√
In√
Im

sin(φn − φm). (2)

Therefore, when assuming globally uniform intensities, the
phases are governed by a sinusoidal coupling. In this case,
one can define an energy landscape that is identical to the XY
Hamiltonian for an antiferromagnetic spin system. However,
this oversimplified picture neglects the dynamics of the inten-
sities and accordingly rules out important scenarios which go
beyond the XY model.
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III. MAPPING THE XY MODEL

The system of equations (1) can be described through a
cost function F (a1, a∗

1, . . . , aN , a∗
N ) such that ȧm = −∂F/∂a∗

m
and ȧ∗

m = −∂F/∂am. By direct integration of Eq. (1) and by
the addition of a suitable constant, F is found to be

F = gs

2

∑
m

(|am|2 − |ā|2)2 + 1

2

∑
m,n

κmn|am + an|2, (3)

where |ā|2 = (g0 − gth )/gs is the steady-state intensity of a
single oscillator.

It is obvious that F is locally positive semidefinite, while
its total time derivative along the trajectories of Eq. (1) is
dF/dt = −2

∑
m |ȧm|2, which is locally negative semidefi-

nite. These conditions ensure the evolution of the system from
a given point in the phase space toward a state of equilibrium
that minimizes F (locally or globally) [24]. The existence of
the functional F with the properties mentioned above, along
with the fact that it is radially unbounded, guarantees local
stability of the equilibrium states of the system.

By rewriting Eq. (3) using the intensity and phase rep-
resentation as F = gs

2

∑
m(Im − Ī )2 + 1

2

∑
m,n κmn[Im + In +

2
√

ImIn cos (φm − φn)], it becomes clear that the XY Hamilto-
nian is embedded in this cost function. In order to interpret the
cost function and to investigate its relation with modal losses,
first we cast the dynamical equations (1) in a matrix form as

ȧ = f (a) − Qa, (4)

where a = [a1, . . . , aN ]t , f (a) = [ f1(a1), . . . , fN (aN )]t , with
fm(am) = (g0 − gth − gs|am|2)am, and Q is a signless Lapla-
cian matrix with off-diagonal elements qmn = κmn and diago-
nal elements qmm = ∑

n �=m κmn.
In this representation, the dynamical equations can be

decomposed into a nonlinear diagonal term f (a) and an in-
teraction term −Qa. In order to find the modal losses of the
network of coupled oscillators, we consider a passive counter-
part of the system, i.e., g0 = gs = 0. In addition, given that all
oscillators are assumed to be identical, we ignore the intrinsic
loss gth which is a common factor for all oscillators and
instead focus only on the losses caused through coupling. The
eigenmodes of the interaction term Qvi = γivi, i = 1, . . . , N ,
represent the linear modal losses of the network. Given that
Q is a real symmetric matrix, its eigenvalues are real and
can be sorted as γ1 � γ2 � · · · � γN , while the eigenvectors
form a complete set of orthonormal vectors. By solving this
eigenvalue problem, one finds the linear eigenmodes of the
oscillator network which in general exhibit different levels of
modal losses. Alternatively, one can define a loss functional
in the form of a Rayleigh quotient

�[a, a∗] = a†Qa
a†a

(5)

whose minimum value is the smallest eigenvalue of the ma-
trix Q and that occurs at the corresponding eigenvector. This
allows for comparing the equilibrium state of the nonlinear
system with the eigenstates of its linear counterpart.

The cost function of Eq. (3) is cast in the matrix form as

F [a, a∗] = gs

2
(I − Ī)†(I − Ī) + 1

2
a†Qa, (6)

where I = [|a1|2, . . . , |aN |2]t and Ī = |ā|2[1, . . . , 1]t . To ex-
plore the relation between the modal loss (5) and the cost
function (6), first we consider the scenario where both func-
tionals take their minimum possible value, i.e., zero. In the
case of the modal loss functional, this condition happens
when the smallest eigenvalue of the Q matrix is zero. In
the case of the cost function, it means that all steady-state
intensities are equal to that of a single oscillator Ī and si-
multaneously a†Qa = 0. Therefore, the question reduces to
identifying graph topologies with the smallest eigenvalue of
their associated signless Laplacian matrix being zero. This
condition is satisfied if and only if the graph of network con-
nectivity is bipartite [25]. A bipartite graph is a graph that its
nodes can be separated into two disjoint sets such that all links
are located between these two sets. In this case, assuming that
the two parts include N1 and N2 oscillators (N1 + N2 = N),
one can always write the coupling matrix in a block form

K =
(

0N1 K12

Kt
12 0N2

)
, (7)

where K12 is an N1 × N2 matrix describing the coupling
between the two parts of the bipartite graph and 0N1 and
0N2 represent N1 × N1 and N2 × N2 zero matrices, respec-
tively. It is straightforward to show that for the Q matrix
associated with such a graph the smallest eigenvalue is
zero, γ1 = 0, and the associated eigenvector takes values
of +1 and −1 on nodes located in the first and second
parts of the network, respectively. Therefore, the equilibrium
state of a bipartite network of coupled oscillators is a =
[+1, . . . ,+1,−1, . . . ,−1]t |ā| exp(iφ0), where φ0 is a com-
mon phase factor. This steady-state solution clearly resembles
the ground state of the antiferromagnetic spin lattice.

The conditions for reaching an equilibrium state with uni-
form intensity can be explored by directly enforcing the ansatz
of |am(t )| = |ass| for m = 1, . . . , N , in the dynamical equa-
tions (4), which results in the algebraic equation Qa = (g0 −
gth − gs|ass|2)a, under the constraint of |a1| = · · · = |aN |. In
the case of the bipartite graphs, the answer becomes trivial
since the network stabilizes to the eigenvector associated with
the smallest eigenvalue, thus g0 − gth − gs|ass|2 = 0. How-
ever, there is no simple answer to the question of the existence
of an eigenvector with uniform intensity for the Q matrix
associated with a general network, except for special cases
such as an all-to-all connected graph. Nonetheless, the cost
function provides insight into the equilibrium intensity pattern
of general networks, as we discuss in the following.

According to Eqs. (3) and (6), the cost function is the
sum of a self-oscillation term and an interaction term, where
both contributions are non-negative. Considering these two
terms individually, the first is minimized when all oscillators
reach the same steady-state intensity Ī as in a single oscil-
lator. The second term becomes zero for the trivial choice
of a = 0. On the other hand, minimizing the second term
subject to finite intensities requires an optimal configuration
of the phases. Therefore, the equilibrium state emerges as a
result of a balance between two competing contributions in
the cost function: the self-oscillation term that tends to adjust
the intensities to a fixed value and the interaction term that
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FIG. 2. Equilibrium state of a network of dissipatively coupled oscillators with (a)–(c) triangular and (d)–(f) rectangular lattice topologies
and for different levels of the linear gain parameter. In each panel, the eigenvalues of the Q matrix, γ1, . . . , γN , are sorted and shown with
markers as a ladder along the vertical axis, while the red bars show the level of the linear differential gain g0 − gth. The projection of the
equilibrium state on the eigenvectors of the Q matrix is color coded on the associated eigenvalue markers. In these simulations, the coupling
is assumed to be limited to nearest neighbors with uniform strength. The differential gain and the gain saturation coefficients are chosen such
that Ī is equal to (a) 0.98, (b) 0.96, (c) 0.91, (d) 0.98, (e) 0.97, and (f) 0.57.

tends to reduce the intensities and simultaneously organize the
phases.

The competition between the two terms of the cost function
can be evaluated through the relative strength of the drive
g0 − gth versus the set of coupling coefficients {κmn}, which
involves both the strength of the interactions and the network
topology. The set of coupling coefficients {κmn} can be repre-
sented with the smallest eigenvalue of the Q matrix γ1, which
is proven to be closely related to the nonbipartiteness of the
network [26]. Therefore, one can consider (g0 − gth )/γ1 as a
measure of the strength of the pump. Clearly, this parameter
should be larger than unity in order to guarantee the onset of
lasing in the system.

To explore the role of the pump parameter, we compare two
cases of a bipartite and a nonbipartite system with rectangular
and triangular lattice topologies. Figure 2 depicts the steady-
state pattern of the two lattices for three different levels of the
pump parameter. In this figure, the eigenvalues γ1, . . . , γN and
the differential gain level g0 − gth are shown with ladder of
markers and red bars along the vertical axes, respectively. In
each case, the equilibrium state is projected on the associated
eigenvectors of the coupling matrix Q and the magnitude
of the projection coefficients are color coded on eigenvalue
markers. As clearly indicated in Figs. 2(a)–2(c), the nonbi-
partite lattice behaves completely different under different
pump levels. In this case, for high gain levels the steady state
approaches a uniform intensity pattern. By decreasing the
gain, however, an intensity contrast appears between the bulk
oscillators and those located on the edge. In the case of the bi-
partite network, on the other hand, as shown in Figs. 2(d)–2(f),
for all values of the pump parameter, the network stabilizes
to the same pattern which is associated with the eigenstate
with the lowest modal loss. To further explore these results,
similar simulations were performed for all connected graph

topologies with six nodes, involving 112 cases. The results
are shown in the Supplemental Material, showing a consistent
trend in all cases [27]. These results indicate that in general
the presence of odd cycles spoils the uniform equilibrium
intensity pattern in the small gain limit.

The contrast in the steady-state intensity pattern of the
system in the weak and strong pump regimes can be explained
in terms of the cost function. In the small gain regime, Ī is
small; thus the system affords to enforce zero intensity for
some oscillators in favor of minimizing the second term of the
cost function. In contrast, in the large gain regime, the death
of an oscillator will significantly increase the self-oscillation
term. As a result, the steady state tends to approach a uniform
intensity pattern while the phase pattern is organized such that
the second term is minimized. Therefore, for the general case
of a nonbipartite graph the mapping of the XY Hamiltonian
onto the network of coupled oscillators becomes accurate
in the strong pump regime. It is worth noting that for the
triangular lattice discussed in Fig. 2, in the weak pump limit
the preferential death of oscillators happens for the bulk oscil-
lators since they are coupled to more elements and thus their
death leads to a greater reduction of the cost function. Here the
governing dynamical equations are in essence different from
a recently demonstrated topological insulator laser, which is
governed by the Haldane Hamiltonian [28,29].

IV. LOCAL MINIMA

It is important to note that the equilibrium patterns shown
in Fig. 2 are global minima of the associated networks for
the given gain levels. On the other hand, the cost function of
Eq. (3) guarantees stability in a local sense. Thus, the attractor
basin of an equilibrium point could be a finite region in the
2N-dimensional phase space and a perturbation can move
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FIG. 3. Time domain evolution of the amplitudes (left column)
and phases (middle column) and the steady-state pattern (right col-
umn) of (a)–(f) a rectangular and (g)–(l) a triangular network, with
parameters similar to Fig. 2. In (a)–(c) and (g)–(i) the networks
reached their global minimum with (c) F = 0 and (i) F = 7.76,
respectively. In (d)–(f) and (j)–(l) the networks were trapped into
local minima with (f) F = 0.71 and (l) F = 8.58, respectively.

the system from one equilibrium point to another. This is
illustrated in Fig. 3, which shows the time domain evolution
and the equilibrium states of lattices of Fig. 2 under differ-
ent initial conditions. Here the networks are pumped in the
large gain limit at g0 = 6(gth + γN ). According to this figure,
the global minimum of the rectangular lattice exhibits binary
phases [Figs. 3(a)–3(c)], while the local minimum resembles
a vortex state [Figs. 3(d)–3(f)]. Similarly, for the triangular
lattice the global minimum is close to the frustrated lattice
with ternary phase states [Figs. 3(g)–3(i)], while the depicted
local minimum state exhibits a complex intensity and phase
pattern [Figs. 3(j)–3(l)].

In order to better investigate this aspect, we explored the
equilibrium state statistics of the networks of Fig. 2 at differ-
ent gain levels and for large ensembles of initial conditions.
The results are shown in Figs. 4(a) and 4(b) for two extreme
cases of small and large gains, while additional cases are
shown in the Supplemental Material [27]. The results suggest
that the nonbipartite network involves a more complex cost
function with a larger number of local minima states. In addi-
tion, in both cases of bipartite and nonbipartite networks, the
chances of trapping into the local minima increase for higher
gain levels. The trapping of the network to local minima can
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FIG. 4. Distribution of the equilibrium state cost function F
associated with (a)–(c) the amplitude-and-phase model (APM) of
Eq. (1) and (d) the cost function H of the phase model (PM) of Eq. (8)
for the triangular (top) and rectangular (bottom) lattices of Fig. 2.
For the triangular lattice, the gain is such that (a) Ī = 0.8960 and
(b) Ī = 0.9979, while for the rectangular lattice, this parameter is
(a) 0.0099 and (b) 0.9965. In (c) the gain is linearly tuned such that Ī
adiabatically increases from 0 to 0.9979 for the triangular lattice and
from 0 to 0.9965 for the rectangular lattice. Each figure is obtained
by 10 000 simulations with a random ensemble of initial conditions;
in (a)–(c) the initial amplitudes |am(0)| are randomly selected from
the range [0.01, 0.05] and in (a)–(d) the initial phases φm(0) are
randomly selected from [−π, π ] with uniform probability.

be circumvented by gradually increasing the gain level as
shown in Fig. 4(c). In this manner, the cost function gradually
deforms to the XY Hamiltonian, while its global minimum
state adiabatically transforms into the ground state of the XY
model.

According to the above discussion, by simulating the dy-
namical model of Eq. (1), one can find the ground state of
the associated XY Hamiltonian H = ∑

m,n κmn[1 + cos(φm −
φn)], which may generally involve many local minima. In or-
der to show the performance of the dynamical model of Eq. (1)
as an optimizer of the XY Hamiltonian, we compare it with
a direct gradient-based optimization of the XY Hamiltonian,
according to the dynamical model φ̇m = −∂H/∂φm,

φ̇m = −
∑

n

κmn sin(φn − φm). (8)

This is the well-known Kuramoto model on a graph with
weights −κmn [10,30]. Figure 4(d) depicts the distribution of
the XY energy for the triangular and rectangular lattices of
Fig. 2 by simulating Eq. (8) for a large ensemble of initial
conditions. The astonishing similarity of Figs. 4(b) and 4(d)
again indicates the equivalence of the cost function of the
oscillator network in the large gain limit with the XY Hamil-
tonian. However, a comparison between Figs. 4(c) and 4(d)
reveals the superior performance of the dynamical model of
Eq. (1) over that of Eq. (8) for globally minimizing the XY
Hamiltonian. In this case, for 100% of the simulation incidents
both networks stabilized into their global minima, while for
the phase model the success rate is around 30% and 90%
for the triangular and rectangular networks, respectively. This
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is owing to the additional amplitude degree of freedom in
Eq. (1), which allows for adiabatically deforming the associ-
ated cost function toward the XY Hamiltonian while avoiding
the local minima. These results clearly indicate the potential
of laser networks for unconventional computing applications.

V. CONCLUSION

In summary, by introducing an integrable model, we stud-
ied the dynamics of a network of dissipatively coupled lasers
and its operation as a classical XY simulator. The governing
cost function involves both amplitude and phase degrees of
freedom and depends strongly on the gain parameter. For

nontrivial network topologies, the mapping to the XY Hamil-
tonian becomes accurate only in the strong pump regime.
In addition, we showed that adiabatic tuning of the pump
parameter can greatly assist the network to avoid trapping into
the local minima of the governing cost function to stabilize
into the ground state of the associated XY Hamiltonian. These
findings can serve as a key step in optical realization of spin
lattices for unconventional computing.
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