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Voltage drop across Josephson junctions for Lévy noise detection
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We propose to characterize Lévy-distributed stochastic fluctuations through the measurement of the average
voltage drop across a current-biased Josephson junction. We show that the noise induced switching process in the
Josephson washboard potential can be exploited to reveal and characterize Lévy fluctuations, also if embedded
in a thermal noisy background. The measurement of the average voltage drop as a function of the noise intensity
allows to infer the value of the stability index that characterizes Lévy-distributed fluctuations. An analytical
estimate of the average velocity in the case of a Lévy-driven escape process from a metastable state well agrees
with the numerical calculation of the average voltage drop across the junction. The best performances are reached
at small bias currents and low temperatures, i.e., when both thermally activated and quantum tunneling switching
processes can be neglected. The effects discussed in this work pave the way toward an effective and reliable
method to characterize Lévy components eventually present in an unknown noisy signal.

DOLI: 10.1103/PhysRevResearch.2.043332

I. INTRODUCTION

In the past two decades, the seminal cue of Refs. [1-3]
has prompted several experimental setups of noise detectors
based on Josephson devices [4—19]. More generally, Joseph-
son devices are nowadays often employed for sensing and
detection applications [20-26]. Indeed, a Josephson junction
(JJ) is a natural threshold detector for current fluctuations,
being essentially a metastable system working on an activa-
tion mechanism [27,28]. In a common set-up, the bias current
is linearly ramped until the JJ switches to the finite voltage
state. When the voltage appears, one measures the current,
or the time, at which the passage to the resistive state has
occurred. Alternatively, the JJ can be biased to a fixed current,
and the time it takes to leave the superconducting state is

*Corresponding author: cguarcello@unisa.it
Tfilatrella@unisannio.it

*bernardo.spagnolo @unipa.it
Spierro@unisannio.it

Idavide.valenti @unipa.it

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2020/2(4)/043332(11) 043332-1

measured. The two methods have advantages and drawbacks,
e.g., see Ref. [29]. When a JJ is used for noise detection, to
mention just a few examples along this line, the interesting
information content is obtained from the highest moments of
electrical noise to investigate the Poissonian nature of cur-
rent fluctuations [1]. This work explores also the Poissonian
charge injection through the study of the third-order moment
of electric noise, while Ref. [2] proposes a study of the
fourth-order moment of the noise. In Ref. [3], a Josephson
array has been used to estimate the full counting statistics
through the analysis of rare jumps induced by current fluc-
tuations. Finally, in Refs. [30,31], the non-Gaussian nature
of an external noise is investigated through the sensitivity
of the conductance of a junction in the Coulomb blockade
regime. However, the discrepancies possibly observed with
respect to a typical Gaussian response are rather small and
an experimental measurement of higher moments, beyond the
variance, is indeed demanding.

Alternatively, the characterization of non-Gaussian fluctu-
ations can be addressed by analyzing the switching currents
distributions [32,33]. In particular, a specific kind of non-
Gaussian fluctuations, namely, the a-stable Lévy noise, can
be characterized by the inspection of the switches from the
superconducting to the resistive state of a JJ. In this case,
the interesting information content can be effectively retrieved
from the cumulative distribution functions of the switching
currents [33].

Published by the American Physical Society
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In this work, we shall deal with the characterization
of the Lévy noise sources, which correspond to stochastic
processes that exhibit very long distance in a single displace-
ment, namely, a flight. Results on the dynamics of systems
driven by Lévy flights have been reviewed in Refs. [34,35].
Lévy noise, a generalization [36] of the Gaussian noise source
[37-40], can be invoked to describe transport phenomena
in different natural phenomena [41,42], interdisciplinary ap-
plications [43,44], various condensed matter systems and
practical applications. For instance, in graphene, the presence
of Lévy distributed fluctuations has been recently discussed
[45—-47]. In Ref. [32], it has been speculated that the anoma-
lous premature switches affecting the switching currents in
graphene-based JJs, that are likely to be unrelated to thermal
fluctuations [48], could be ascribed to Lévy distributed phe-
nomena. Lévy processes emerge in the electron transport [49]
and optical properties [50,51] of semiconducting nanocrystals
quantum dots, and also in photoluminescence experiments in
moderately doped n-InP samples [52,53]. The Lévy statistics
was also invoked to model interstellar scintillations [54-57]
and the quasiballistic heat conduction in semiconductor al-
loys [58-60]. On a more applicative and engineering side,
Lévy noise often appears in telecommunications and networks
[61-63] and has been also used to describe vibration data
in industrial bearings [64—66] and in wind turbines rotation
parts [67]. In addition, Lévy processes find applications in
the mathematical modeling of random search processes as
well as computer algorithms [68]. Therefore a reliable device
capable of detecting fluctuations distributed according to Lévy
statistics, of a signal that can be trasduced in a bias current
feeded to the JJ, may be suitable in different frameworks.

Effects induced by non-Gaussian, i.e., Lévy, distributed
fluctuations have already been studied thoroughly in both
short [69,70] and long [71-75] JJs. Notably, in the long
junction case, the interplay between Lévy and thermal noise
and the generation of solitons [76,77] was also investigated
[72,75,78]. The aforementioned works calculate the mean
first-passage time and the nonlinear relaxation time in short
and long JJs, respectively, to deal with the “premature”
switches, driven by Lévy flights, from the superconducting
metastable state. Also the escape of a particle from a trapping
potential has been addressed [79], as well as the average
velocity of a particle in a washboard potential subject to noise
has been discussed, for the diffusion problem [80,81] for
tempered, i.e., truncated, Lévy distributions [82], in a tilted
potential [83].

At variance with the analysis of the currents at which
an underdamped junction switches to the finite voltage, the
proposed noise detector is based on the measurement of the
average voltage drop across an overdamped JJ biased by a
constant electric current. The rationale is that the voltage is
thus proportional to the average speed, or mobility, of the bi-
ased JJ, that amounts to the speed of a particle in a tilted wash-
board potential under the effect of noise. The relation between
the average velocity of a particle in these conditions and the
features of the Lévy noise is of the power-law type [79,83]. It
is therefore tempting to exploit the relation between the noise
intensity and the voltage to infer the noise characteristics. We
demonstrate that the proposed detection method for Lévy-
distributed fluctuations conveniently works at small bias cur-

rents and low temperatures, where switching processes due to
thermal fluctuations as well as quantum tunneling [84,85] can
be neglected. Indeed, our proposal paves the way to the direct
experimental investigation of an a-stable Lévy noise signal.

In this work, the characterization of the statistical fluctu-
ations of the voltage in the JJs is proposed to discriminate
the features of the noise affecting the device. In the proposed
set-up, it is assumed the presence of a Lévy noise source,
together with an intrinsic Gaussian thermal noise. Indeed,
this detection (or discrimination) scheme is different from the
classic acceptation in the statistical detection theory, where
one usually supposes that the quantity to be revealed is inex-
tricably mixed with noise. The proposed device proves useful
in the case of very weak signals at very high frequency, i.e., it
is an alternative method to the standard electronics when the
latter does not allow efficient and low noise sampling.

The paper is organized as follows. In Sec. II, we discuss
the operating principles of a Josephson-based noise detec-
tor: Sec. IT A lays the theoretical groundwork for the phase
evolution of a short JJ and Sec. II B describes the statistical
properties of the Lévy noise and the method employed for
the stochastic simulations. In Sec. III, the results are shown
and analyzed. In Sec. IIl A, we compare the average voltage
drop obtained numerically with the analytical estimate of the
average velocity of the phase particle, in the case of an escape
process driven by Lévy flights from a washboard-potential
well. We also investigate in Sec. IV the effects of the temper-
ature at which the junction operates as a detector. In Sec. V,
conclusions are drawn.

II. NOISE DETECTOR OPERATING PRINCIPLES
AND MODEL

A setup for a Josephson based noise readout [4,6,13,33]
consists of a JJ fed by two electric currents, I, and Iy. Specifi-
cally, I, is the bias current drawn from a parallel source and Iy
is the stochastic noise current, whose characteristics we wish
to unveil. To this purpose we discuss a detection scheme based
on the measurement of the average voltage drop across the
junction. In our approach, the injected bias current is fixed
at a value lower than the critical current, to steady keep the
system in the superconducting metastable state until the noise
eventually pushes out it, thus inducing a passage from the
zero-voltage state to the finite voltage “running” state. In fact,
the voltage in a JJ is proportional to the time derivative of the
phase difference ¢ between the wave functions describing the
superconducting condensate in the two electrodes according
to the a.c. Josephson relation V = (®g/2m)de/dt [86,87],
where ®y = h/2e >~ 2.067 x 10~1% Vs is the magnetic flux
quantum. We seek for an analysis of the average voltage
drop which allows to catch some features of the noise source
affecting the phase dynamics.

In the experiments, we can reasonably expect that the
amplitude of the current noise fluctuations is not precisely
known. Since this noisy external signal is sent to the junction
through an electric current, the amplitude of the fluctuations
can be varied through an attenuator. This allows to experimen-
tally measure the average voltage drop in correspondence of
few different noise intensities. In this way, we demonstrate
that it is possible to effectively evaluate the parameter «,
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which characterizes the noise signal that perturbs the system,
directly from the analysis of the average voltage across the
junction.

A natural issue in this procedure concerns how to change
(attenuate) the amplitude of Lévy current contribution. To re-
duce the current in a controlled way it might be convenient to
use a cryogenic delay line (transmission line) in the small loss
regime, under the Heaviside condition. With such a delay line,
the signal output of the attenuator can be suitably weakened
by varying the transmission line length. The Heaviside condi-
tion should be valid in all the frequency-band of Lévy noise, to
ensure that the signal is less distorted while propagating in the
transmission line. In practice, some cutoffs due to the physics
of the problem reduce the band of interest. In the present
setup, the voltage device is measured within some time in-
terval, i.e., Tyax, thus one can assume that the spectrum is
negligible below f = 1/tm.x. Moreover, JJs do not respond to
frequencies that are much larger than the resonant frequency
wy, and surely below the frequency at which the Cooper pairs
are broken, that is if < A, where A is the superconductor
gap. So, it suffices that the transmission line does not distort
the input noise in the bandwidth 1/7tx < f < A/

A. The model

A tunnel Josephson junction is a quantum device formed
by sandwiching a thin insulating layer between two supercon-
ducting electrodes. In the following, we consider a short JJ,
in which the physical length of the junction is lower than the
characteristic length scale of the system, that is the Josephson

) 1
271;010 tad, [27] Here’ Ig = )\L,l +

AL +d is the effective magnetic thickness, with Ay ; and d
being the London penetration depth of the ith electrodes and
the insulating layer thickness, respectively, w¢ is the vacuum
permeability, and J. is the critical current area density. To give
a realistic estimate of this length scale, let us consider, for in-
stance, a Nb/AlO/Nb junction with a normal-state resistance
per area R, ~ 50 Q um?, a low-temperatures critical current
area density equal to J, = % %f:’*n ~ 40 nA/pum? [27], and
the effective magnetic thickness z; & 160 nm, assuming 7, =
9.2 K and A? ~ 80 nm for Nb. With these parameter values,
the Josephson penetration depth reads A, ~ 6 um. A short
Josephson tunnel junction is a junction in which both lateral
dimensions £ and WV are lower than the Josephson penetration
depth, A,. The dynamics of the Josephson phase ¢ for a
dissipative current-biased short JJ can be studied, within the
resistively and capacitively shunted junction (RCSJ) model
[27,88,89] according to the following equation

D \? _d%p Do\’ 1dy d @,
— | C— — | ——+—U=—)In.
<2n> dr2+ 2 Rdt+d¢7 o7 )N M
The coefficients R and C are the normal-state resistance and

the capacitance of the JJ, respectively, and U is the washboard
potential along which the phase evolves

U(p, ip) = Ej,[1 — cos(¢) — ], 2

where Ej;, = (®o/2m)I. and i, is the bias current normalized
to the critical current I.. The resulting activation energy bar-
rier, AU (i), confines the phase ¢ in a metastable potential

penetration length, A, =

ﬁﬁ' I, V7,00 Lo1

FIG. 1. (a) Phase particle in a potential minimum of the wash-
board potential U, in the case of a nonzero bias current that tilts the
potential. The phase can overcome a potential barrier, rolling down
along the potential, for the effect of the noise current, Iy(¢), which
is the sum of thermal and Lévy noisy contributions. (b) Simplified
equivalent circuit diagram for the resistively and capacitively shunted
junction model. The bias current /, and the noise currents, /() and
Iy (2), are included in the diagram.

minimum and can be calculated as the difference between the
maximum and minimum value of U (g, i;). In units of Ej,,
AU (ip) can be expressed as

AU = % =2[y/1 — i —iparcsin(ip)].  (3)

Jo

In the phase particle picture, the term i, represents the tilting
of the potential profile, see Fig. 1; with increasing i) the slope
of the washboard increases and the height Al (i) of the right
potential barrier reduces, until it vanishes when i, = 1, that is
when the bias current coincides with the critical value.

If one normalizes the time to the inverse of the character-
istic frequency, that is t = tw, with o, = (2e/h)I.R, Eq. (1)
can be cast in the dimensionless form

2
% + % +sin[p@)] = iv(@) +ip,  (4)
where B. = w.RC is the Stewart-McCumber parameter. A
highly damped (or overdamped) junction has f. < 1, that
is a small capacitance and/or a small resistance. In contrast,
a junction with 8. > 1 has large capacitance and/or large
resistance, and is weakly damped (or underdamped).

Be

B. The statistical model

Equation (4) balances the three Josephson contributions on
the left side, i.e., the capacitive term, the dissipative contri-
bution, and the Josephson supercurrent, with the two terms
on the right side, i.e., the external bias current i, = I,,/I. and
the current noise iy(¢) = Iy(¢)/I.. In this work, the random
current is modeled as a mixture of a standard Gaussian white
noise, associated to the JJ resistance, and a stochastic Lévy
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process. This current is modeled with the approximated finite
independent increments [90]. If we consider both Gaussian
and Lévy-distributed fluctuations, with amplitudes y,, and y,,
respectively, the stochastic independent increment reads

Aiy = 2y,At N(0, 1) + (v, A)"/*S,(1,0,0).  (5)

Here, the symbol N(0, 1) indicates a random function Gaus-
sianly distributed with zero mean and unit standard deviation,
while S, (1,0, 0) denotes a standard o-stable random Lévy
variable. For the sake of clarity, we briefly review the concept
of a-stable Lévy distributions [91-96]. A random nondegen-
erate variable X is stable if

n
VneN,3an. b)) eRT xR: X+b,=a,y X;. (6)
j=1
where the X; terms are independent copies of X. Besides,
X is strictly stable if, and only if, b, = 0 Vn. The Gaussian
distribution belongs to this class. The definition of charac-
teristic function for a random variable X with an associated
distribution function F (x) is

Pu) = (") = /

—00

+00

"X dF (x). 7

Accordingly, a random variable X is said to be stable if, and
only if,

Aa,0,B8, 1) € (0,2l x R x [, 1]xR: X L6Z4pu,
(8)

with Z being a random variable with characteristic function

exp{ — |u|“[1 — if tan %(signu)]} a#1

exp {—|ul[1 +iB2(signu)In |u|]} o =1 ©)

¢u) = {
in which signu = 0 for u = 0 and signu =+ 1 for u 2 0. These
distributions are symmetric around zero when 8§ = O and u =
0. In Eq. (9) for the @ = 1 case, 0 - log 0 is always interpreted
as lim,_, g xInx = 0, giving ¢(0) = 1.

In general, the notation S, (o, 8, A) is used for indicating
Lévy distributions [71-75], where « € (0, 2] is the stability
index, B € [—1, 1] is the asymmetry parameter, and o > 0
and X are the scale and location parameters, respectively. The
stability index characterizes the asymptotic long-tail power
law for the distribution, which for « < 2 is of the |x|~!*®
type. The case o = 2 is the Gaussian distribution. In fact, the
probability density function of a normal distribution N(A, o)
is that of the stable distribution S;(c / V2, B, 1). In this work,
we consider symmetric (i.e., 8 = 0), bell-shaped, standard
(i.e., with ¢ = 1 and A = 0), stable distributions S, (1, 0, 0),
with o € [0.1, 2]. A physical interpretation of Lévy fluctua-
tions can be inferred from the understanding of the structure
of the paths of Lévy processes. Indeed, a linear combination of
a finite number of independent Lévy processes is again a Lévy
process. It turns out that one may consider any Lévy process
as an independent sum of a Brownian motion with drift and
a countable number of independent Poisson processes with
different jump rates, jump distributions, and drifts. This is
the Lévy-Itd decomposition theorem, see Ref. [97] and refer-
ences therein. To simulate the Lévy noise sources it has been
used the algorithm proposed by Weron [98] to implement the

Chambers method [99]. The stochastic integration of Eq. (4)
is performed with a finite-difference explicit method, using a
time integration step At = 1072,

It might be useful to give some physical considerations on
the parameter y, in Eq. (5). In the pure Gaussian noise case,
ie., y, = 0 so that Iy = I, the statistical properties of the
current fluctuations, in physical units, are given by

Ellin(7)] = 0,

- kgT _ _
Elln(D)In(r + )] = 275(7), (10)

where E[-] is the expectation operator. In our normalized units,
the same equations become

E[in ()] =0,
Elinn ()i (t +1)] = 4y6(T)3(7), an

where the amplitude of the normalized correlator is connected
to the physical temperature through the relation

kBT We kBT

T)=—— = . 12

It is worth stressing that, with the time normalization used
in this work, the noise intensity y,, can be expressed as the
ratio between the thermal energy and the Josephson coupling
energy Ej,. As usual for numerical simulations in normalized
units, the reported quantities, as the Gaussian noise amplitude,
should be related to physical quantities through the system
physical parameters, e.g., the critical current, the normal resis-
tance, the capacitance, and the temperature of the device. For
instance, for a junction with a critical current I, = 1 uA ata
temperature 7 = 0.5 K the dimensionless noise amplitude is
Y, ~ 1072,

The detection method proposed in this work is based on the
measurement of the average voltage drop across the junction.
Here the average is intended as a double averaging, that is
ensemble and time averages. In the ith numerical realization,
the time average of the voltage difference across the JJ can be
obtained as follows:

(Vi) = dt

1 frm“ P doi(t)
0

Tmax 2n dt

_ Dow, @;(tmax) — arcsin(ip) ’ (13)
27 max

©(0) = arcsin(ip) being the initial phase and fm,x = @, Tmax
the normalized measurement time. The average voltage drop
across the junction is finally obtained by averaging over the
total number of independent numerical repetitions Neyp. In
units of ®yw,, it reads

~ V) 1 (Vi)
V)= = . 14
W Dow, Nexp ; Dpw, (14
In the following, the value of (V) is estimated averaging over
a normalized time #,,,, = 10* and a number of independent
numerical repetitions Neyp = 10*.
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FIG. 2. Normalized average voltage drop (\7) as a function of the
Lévy noise intensity y, , for different values of the parameter « and at
different bias currents i, = {0.2, 0.5, and 0.8}, see (a), (b), and (c),
respectively. The red short-dashed line indicates the noise amplitude
that equals the activation energy barrier y, = AU(i), see Eq. (3),
while the black long-dashed line indicates the noise amplitude yL‘h at
which the inverse Kramers rate, see Eq. (15), equals the measurement
time fyex = 10*. The green dashed curve in all panels indicates the
average voltage drop versus the noise intensity, for thermal fluctua-
tions, analytically calculated in Refs. [27,100]. Lines in the figure are
guides for the eye. Legend in (c) refers to all panels.

III. RESULTS AND DISCUSSIONS

In the overdamped (8¢ = 0.01) junction case here consid-
ered, we initially neglect Gaussian thermal fluctuations (y, =
0) to emphasize the influence of Lévy flights. The Gaussian
noise source will be taken into account at a later stage, to
explore the robustness of the detection through I-V analysis
in the presence of thermal noise.

In Fig. 2, we illustrate the behavior of the normalized
average voltage drop (V) as a function of the Lévy noise
intensity y,, for several values of the stability index o, and
three different bias current points, i, = {0.2, 0.5, and 0.8},
see panels (a), (b), and (c), respectively. In the top panel
of Fig. 2 obtained for i, = 0.2, interestingly, for y, values
below a ttheshold, marked with a red short-dashed vertical
line, the (V) vs y, curves look quite similar: in fact, chang-
ing the index o, the average voltage data are arranged in
well-distinct parallel lines (in a log-log scale) with a positive
slope. The aforementioned threshold is given by the activation
energy barrier, Al (i,). This means that, for noise amplitudes
lower than the activation energy barrier, y, < AU (i), the (V)

curves follow a power law behavior [79] of the V, x Y/ type
with an exponent p, >~ 1.

The curve for @ = 2 is an exception, since in this case the
Lévy distribution amounts to the Gaussian case; Lévy flights
are indeed missing and the (V) curve is several orders of
magnitude lower than the @ = 1.9. Anyway, also the curve
for « = 2 shows two distinct behaviors, respectively above
and below a certain threshold that is highlighted in Fig. 2
with a black vertical long-dashed line. This threshold can be
estimated as the noise intensity at which the inverse Kramers
rate [101] matches the measurement time, that is yLLh = ﬁya

so that r(ip, )/G)‘1 = Tmax» Where the coefficient V2 stems
from the different normalization of the noise amplitudes of
a Gaussian and a Lévy distribution with « = 2. According to
the Kramers theory, the escape rate from a confining barrier,
see Eq. (3), reads
. wy _ AUGp) W, 2 1 AUGy)
r(ip, =—¢ B =—(1—1i)%e % , 15

(b, ¥5) o o (1—4i) (15)

which is obtained assuming the strong damping limit for the

attempt jump frequency, ws = w (1 — il%)%, and a noise am-
plitude given by Eq. (12). Thus Fig. 2 demonstrates that at
low noise amplitudes the Gaussian distributed fluctuations are
not intense enough to induce escapes in the measurement time
fmax- TO put it in another way, for « = 2 at noise intensities
Y, < thh, the phase particle remains confined within the initial

~

state, and therefore the values of (V) are vanishingly small.
Conversely, for higher intensities, y, > yL‘h, noise-induced
switches can be triggered. In this case, the phase particle
can leave the initial metastable state rolling down along the
washboard potential. The speed of the phase particle therefore
increases and a non-negligible average voltage drop appears.
In this case, the curve obtained numerically, for y, > yL‘h,
perfectly matches the average voltage drop analytically cal-
culated for the case of a finite junction capacitance and in
the presence of thermal fluctuation, see the analytical expres-
sion derived in Refs. [27,100] and reported in Ref. [27],'
which is indicated by the green-dashed curve in Fig. 2. The
discrepancies shown in Fig. 2 for y, < yL‘h are ascribable to
the finite measurement time. For longer computational, i.e.,
measurement, time these discrepancies tend to disappear and
the matching with the analytical expression improves consid-
erably.

'Following the same mathematical procedure discussed in
Ref. [27], we can evaluate the current-voltage characteristic,
amended to include the first-order effects of a finite capacitance:

2 —1 T
vy = 2Ry, EPYe) — 1, (1 ¥ 92—2> (16)
4 exp(Tya) T

2w
_ n? _r
T, = /o doly (y sin 2) exp ( 2a(p> )

T = /Ozndw sin (%)Il (y sin %) exp (—ga(p), (18)

where Ip(x) and I; (x) are modified Bessel functions. Since we prefer
to write these equations in the same notation as Ref. [27], to help the
reader we show a comparison between the notation used in this work
and that of Ref. [27]: Q@ = /B¢, a = iy, and y = 1/y5.
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FIG. 3. (a) Fitting parameter ‘7; versus « at different i, values.
The parameter V, is obtained fitting the Vy vs y, curves shown
in Fig. 2 in the range y, ~ [107*, 1072] with the function (V) =
\7; x y, . (b) Sensitivity S(‘Z as a function of « at different i, values.
The dashed lines are guides for the eye. Legend in (a) refers to both

panels.

A further increase of the noise intensity bears little conse-
quences, once the fluctuations are intense enough to overcome
the potential barrier. This is why, for y, > AU(ip), the (V)
curves for different « values tend to a common plateau.

The overall scenario described so far essentially persists
with increasing i, see panels (b) and (c) of Fig. 2 for i, = 0.5
and i, = 0.8, respectively. However, some differences come
to light in agreement with Eq. (15). In fact, at large bias
current, the potential is increasingly tilted and the activation
energy barrier decreases; this is the reason why the thresh-
olds marked by vertical dashed lines move leftwards, the (V')
curves shift towards lower y, values, and the linear trend (in
a log-log scale) appears at lower y, values. Moreover, the
spacing between these curves reduces while increasing ip. Fi-
nally, the value approached by (V') at noise amplitudes beyond
the barrier energy threshold, i.e., for y, > AU (i), increases
with ip,. N

The linear portion of the (V') versus y, curves essentially
embodies the detection features we are interested in. In this
region, all curves of Fig. 2 can be fitted with the function
Vo x yHe, V, being the fitting parameter and p, >~ 1 for the
Lévy noise escapes [79]. Thus, by ranging the noise amplitude
in a suitable interval, from an estimate of the fitting parameter
Ve we can infer the value of the stability index a. We note
that the increasing fluctuations shown by the curves of (V)
versus y, for o < 1 are due to the finite value chosen for the
measurement time. Indeed, the average behavior of all these
curves shows a power-law trend, with well-distinct parallel
lines in a log-log scale, and these fluctuations tend to be
smoothed out by increasing the measurement time. -

Figure 3(a) shows the behavior of the fitting parameter V,,
as a function of the parameter «, at different bias currents i, =
{0.2, 0.5, and 0.8}, extracted from the Fig. 2 in the range of
noise amplitude y, ~ [1074, 1072].

First, we observe that the fitting parameter V., monoton-
ically reduces by increasing «. This behavior confirms that,
at a given bias current, an experimental measurement of V,
returns the stability index «. However, from Fig. 3(a), it is also
clear that, at a given variation of «, the fitting parameter V,,
changes more at a lower bias i,. This means that a small bias
current is favorable for the detection strategy. This feature is
quantified by the relevant figure of merit of the detector, that is
the voltage sensitivity, S¥ . This is defined as the ratio between
the percentage variation of the voltage fitting parameter V,
and the percentage variation of the system parameter «. Since
we are considering « variations equal to Ax = 0.1, we can
calculate the sensitivity as

~

= 10a<v~_1 - 1). (19)

o

AV,
Ao

V=2

o v,

The capability of the device to discern the presence of a Lévy
component by measuring the average voltage drop is higher
when the sensitivity increases. In Fig. 3(b), we show the be-
havior of SX as a function of the parameter «, at different bias
currents. The sensitivity behaves nonmonotonically, showing
aminimum at « = 1.5. Markedly, SZ is larger at a lower iy, as
expected. Interestingly, the fact that for « = 2 the sensitivity is
orders of magnitude larger than that for « = 1.9 suggests that
the detection method is quite effective to recognize the pres-
ence of any Lévy noise component with respect to the pure
Gaussian noise case. This can be qualitatively understood,
because the effects of Gaussian noise become exponentially
small when the noise intensity is below the energy barrier.

Average speed in the presence of Lévy flights

In this section, we demonstrate the connection between
the linear behavior of the average voltage drop that emerges
at intensities y, < AlU(ip), that is where the relation (V) =
Vo x y/« holds, and the features of Lévy driven escape pro-
cesses from a metastable state of the washboard potential. In
particular, we observe that the fitting parameter V,, can be
estimated recalling that the phase particle can undergo 27
jumps along the washboard potential and that the mean escape
time for the Lévy statistics follows a power-law asymptotic
behavior [33,34,79,102]

g) Ce (20)

T (a,y,) = < .
L L 2 )/Llf-a
The scaling exponent (1, ~ 1 and the coefficient C, are sup-
posed to have a universal behavior for overdamped systems.
The previous equation shows that, unlike the Kramers rate, in
the case of Lévy flights the mean escape time is independent
on the barrier height AU, but only depends upon the distance
Ax between a minimum and a maximum of the washboard

potential.

We observe that the normalized average voltage drop in
Eq. (19) represents essentially the average speed in the case
of escape processes from a metastable state

1 @i(tmax) - arCSin(ib) _ -/\[jump
Tmax 2 Tmax '

(v;) =

2y
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FIG. 4. Behavior of \Zalc (o, ip, /\/jump), see Eq. (22), as a function
of « at different values of Njymp and i, = 0.2 (solid lines). For
comparison, the numerical estimations of ‘7; as a function of « at
i, = 0.2 is also shown with gray circles.

where Njump indicates the number of 27 slips that the phase
particle makes to reach, in the time #,,,,x, the position ¢;(fmnax),
starting from the initial state ¢ (0) = arcsin(ip).

Let us assume that the phase particle takes a time 7, to
sweep N potential minima with a single jump; in this case,
the average velocity can be estimated according to (v,,) =

N N 2\« ;
o= (2, (&) 1% 7. Furthermore, the particle can leave the

metastable well in which it resides moving to the left or to
the right. Thus the distances covered by a rightward (Ax;) or
a leftward (Ax,) jump across AN minima can be calculated
as Ax,(ip, N') = QN + 1)mr F 2arcsin(i,). Finally, consid-
ering all possible jumps up to Njump, the average velocity can
be estimated as (v) = \Zalc x y,, where

Veare (o, ip, Afjump)

Mump ./\/ 2 a 2 o
-2 (ellmam] -lsaw]l) @
= (Ca Ax, (ip, N) Ax(ip, N)

We note that the series in the previous equation, for Njump —
+o00, converges only for « > 1, even if from a physical point
of view the number of jumps can be quite large, but always
finite, within a fixed observation time. In the following, for
simplicity we assume for the coefficients C, the behavior
given in Ref. [102], namely, C, = I'(1 — &) cos(sr e /2), for an
overdamped escape dynamics across a fixed height barrier of
acubic potential.

The behavior of V (e, i;,,/\/jump) as a function of « at
different values of ./\fjump and i, = 0.2 is shown in Fig. 4.
For a prompt comparison with the numerical results shown
in Fig. 3(a), we include also the behavior of the fitting pa-
rameter V,, as a function of o at i, = 0.2. It is evident that
the simple analytical estimate given in Eq. (22) closely agrees
with the numerical results for « 2 1, especially at a low i,
value. However, we note that for « < 1 we get a qualitative
agreement between analytical and numerical behaviors, which
can be improved by increasing the measurement time.

To close this section, we would like to underline the broad
feasibility of our achievements. In fact, with few simple as-
sumptions we are able to accurately estimate the average
velocity of a particle escaping from a metastable state of a
cosine potential with friction, in the presence of a driving
force and Lévy distributed fluctuations.
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FIG. 5. Normalized average voltage drop as a function of the
amplitude y, of the Lévy noise source in the short-junction case,
at « = 1 and i, = 0.2, in the presence of a Gaussian noise source
with amplitudes y,, = {0.01, 0.1, 0.15, 0.2, 0.3, 0.5}. The lines in the
figure are guides for the eye.

IV. FINITE TEMPERATURE EFFECTS

In this section, we demonstrate that our detection method
remains quite compelling also if the Lévy component is
embedded in a thermal noise background. In the proposed
scheme the temperature of the system is a disturbance, for
the contemporary presence of both the Lévy and the Gaussian
noise source with a non-negligible amplitude (y, # 0) entails
a deviation from the expected linear behavior of the voltage as
a function of the Lévy noise amplitude. The (V) versus y, data
shown in Fig. 5, obtained at a fixed Lévy noise index o = 1
and a bias current i, = 0.2, changing the Gaussian noise am-
plitude y,,, demonstrate how the (V') response depends on the
additional Gaussian contribution. For y, < 0.1, Lhermal noise
has no effects on the average voltage drop and (V') follows the
linear behavior already discussed in Fig. 2. Conversely, a (V)
plateau, whose value increases with y,, develops for thermal
noise y, > 0.1. In other words, at low y, values the phase
dynamics is dominated by the Gaussian contribution and it is
therefore independent of the y, value.

The deviations from the pure-Lévy noise case at noise am-
plitude y, > 0.1 can be estimated from Kramers rate. In fact,
for a bias current i, = 0.2 and a measurement time #,,x = 10%,

the condition r(ip, yéh) = 1,1, where r denotes the Kramers

escape rate of Eq. (15), gives a noise amplitude yG‘h ~ 0.096.
Therefore it is reasonable to expect that a noise amplitude
v, S 0.1 does not affect the voltage response within the
measurement time #,,c. In this case, the main contribution
arises from the Lévy noise term, and the detection method
proves to be robust against thermal disturbances. However, the
level of Gaussian noise that leaves the system dominated by
Lévy noise depends on the time taken to perform the voltage
measurement. In fact, within the time f,,x during which the
voltage is measured, the JJ is exposed to thermal noise. The
longer this exposure, the lower the temperature at which a
significant number of thermal escapes occurs, escapes that
disturb the switching processes induced by Lévy noise that
we wish to characterize.

These ideas together with the Kramers prediction allow,
for a given measurement time t#;,,x and bias current i, to
estimate the threshold Gaussian noise amplitude, yg‘h, which
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FIG. 6. Normalized threshold temperature T /T, as a function of
the normalized measurement time f,,,x. The normalized bias current
is i,(0) = 0.2, and the normal-state resistance R = 1 k2. The inset
displays T"/T, vs R at a fixed ty,x = 10%.

has no effects on the detection procedure. This estimation of
the threshold value y;h is possible also for a range of measure-
ment times which is prohibitive for numerical simulations. In
detail, through Eq. (12) one can also evaluate the maximum
working temperature for an effective detection. This limit can
be defined as the highest temperature that does not affect the
voltage, that is the temperature at which the Gaussian noise
amplitude implies that the inverse Kramers rate equals the
measurement time.

To compute this threshold working temperature 7™ one
should take into account a temperature-dependent criti-
cal current I.(T), for instance following the well-known
Ambegaokar-Baratoff relation [103]. At a fixed physical
bias current [, the normalization deserves some attention,
inasmuch the critical current, and therefore also the normal-
ized bias current, depends on the temperature, i.e., i,(T) =
I,/I.(T) = i,(0)I.(0)/I.(T). The estimated threshold temper-
ature 7™, in units of critical temperature T, as a function
of the measurement time #,,x is shown in Fig. 6. Here, we
have chosen the values of the low temperature bias current,
i.e., i,(0) = 0.2, and the normal-state resistance R = 1 k2. In
this plot the gray shaded region denotes the temperature range
T < T™ where the detector can work “safely”, i.e., without
significant thermal disturbances. Instead, the yellow shaded
region in Fig. 6 for T > T'" indicates the parameter region
for which thermally-induced changes in the voltage response
could hinder the accurate estimation of the characteristics of
the Lévy component.

To give figures, if the voltage measurement is performed
in a normalized time fya = 10° (in physical units, this is
a time of the order of milliseconds if w. ~ 1 THz), accord-
ing to Fig. 6, the working temperature can be set to values
T < 0.2 T, with negligible temperature-induced disturbances
on the detection.

The range of suitable temperatures can be also adjusted
assuming a junction with a different normal-state resistance R,
that also affects the critical current which in turn determines
the height of the potential barrier AU. The inset of Fig. 6
illustrates the behavior of 7"/7, as a function of R at a
fixed fyax = 10* and i,(0) = 0.2. It is evident that the working
temperature reduces monotonically with a larger normal-state
resistance of the junction.

V. CONCLUSIONS

We propose to characterize the features of a Lévy noise
conveyed to a Josephson junction. We have shown that in
these circumstances the average voltage drop across a short
tunnel JJ is sensitive to the presence of such a Lévy noise
source, characterized by a fat-tail distribution, i.e., by a finite
probability of a fluctuation with infinitely large intensity. The
average voltage drop exhibits a peculiar behavior as a function
of the noise amplitude, which is markedly different from
the Gaussian noise case, because of the Lévy flights, that is
scale-free jumps. Specifically, the voltage grows linearly as
a function of the Lévy noise amplitude and exponentially in
the Gaussian case. Therefore, if the noise source feeding the
JJ can be attenuated, it would be possible to observe a linear
behavior, markedly different from the expected response to a
Gaussian noise. Moreover, we show that the slope of the linear
behavior depends on the Lévy index «, and it is therefore
possible to discriminate a feature of the noise source from
the analysis of the junction voltage. The proposed method
proves to be particularly effective for & 2 1, while remaining
valid for @ < 1 and can be considered a generalization of
the approach previously proposed in Ref. [33]. This scheme
is based on the study of switching current distributions, that
instead was demonstrated to be especially valuable in the
region o < 1.

To optimize the detection we have analyzed the tunable
parameters. In particular, the influence of the constant bias
current on the detection scheme has been examined, and we
have observed that the method is most effective at a low
bias current. Moreover, thermal effects can be made marginal
if the device temperature is kept below a certain threshold.
This limit temperature at which the Gaussian noise becomes
negligible has been estimated, and it is in nice agreement
with simulations. Therefore the proposed method can be made
quite robust in recognizing the Lévy component also in a
noisy, e.g., thermal, background, especially at small bias cur-
rents.

Finally, we also give an analytical expression of the av-
erage velocity (v) of a particle in a metastable washboard
potential under the influence of Lévy-distributed fluctuations,
with (v) corresponding to the voltage in the Josephson frame-
work. The estimate well matches our numerical results, thus
allowing for the application to overdamped diffusion in a tilted
potential [80,83].

A further comparison between the setup of Ref. [33] and
that discussed in this work is useful. The two methods require
different setups: ac the former [33] and dc that discussed in
this work. In particular, in Ref. [33], the JJ is assumed to be bi-
ased by an increasing current, whose profile plays a role in the
construction of the switching current distributions (SCDs). In-
stead, in the present work we propose to bias the junction with
a constant current below the critical value. Therefore, in this
case, an accurate and stable dc input current is required. More-
over, in Ref. [33], in order to correctly construct a SCD with a
large enough number of events, each single sweep of the bias
current has to be sufficiently slow. The speed at which the
bias current is swept is limited by the electronics and by the
occurrence of unwanted (i.e., not induced by noise) premature
switching. A further complication is introduced by the “reset”
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that has to be performed to drive the bias current down to zero
after each switching. Instead, the present proposal does not
present such a difficulty, being based on the stationary velocity
(which corresponds to a steady average voltage value) of a
phase particle moving in a tilted washboard potential. In this
case, the tilting has to be stable, so it calls for the different
requirement that the dc current is steady enough. Finally, the
proposal [33] needs the construction of a SCD through many
independent repetitions. Instead, the present proposal works
in practice with a single, long enough stochastic time series;
indeed, performing many independent numerical repetitions
is a computational expedient that allows also for an extensive
parallelization. In a concrete experiment, this could be not the
case and it may suffice to study a single noise signal.

By way of conclusion, it is conceivable that the analysis
of the voltage response of a JJ paves the way to the con-
crete application of Josephson devices for characterizing Lévy
noise sources. We speculate that the issue of concrete exper-
imental estimates of the characteristic Lévy parameters is a
further, not yet fully explored, extension of the potentialities
of Josephson-based noise detectors.
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