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Design principles for biochemical oscillations with limited energy resources
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As biochemical systems may frequently suffer from limited energy resources, so that internal molecular
fluctuation has to be utilized to induce random rhythm, it is still a great theoretical challenge to understand
the elementary principles for biochemical systems with limited energy resources to maintain phase accuracy
and phase sensitivity. Here, we address the issue by deriving the energy-accuracy and the sensitivity-accuracy
trade-off relations for a general biochemical model, analytically and numerically. We find that biochemical
systems have a much lower energy cost by using noise-induced oscillations to keep almost equal efficiency
to maintain precise processes compared with the energy cost using normal oscillations, clearly elucidating a
survival mechanism when energy resources are limited. Moreover, an optimal system size is predicted where
both the highest sensitivity and highest accuracy can be reached at the same time, providing a new strategy for
the design of biological networks with limited energy sources.
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For a living system to survive and grow, it needs to meet
certain regulatory functions and sensory adaptations with
energy constantly injected and dissipated. In particular, for
biochemical oscillations which are crucial in controlling the
timing of life processes, such as the cell cycle, circadian
clocks, and glycolysis, both accurate determination of the pe-
riod and sensitive response to external signals are expected to
be ensured [1–5]. Recently, several findings have implied that
there may be some underlying trade-off relations preventing
them from been reached simultaneously [6–10]. For instance,
Lan et al. proposed a general relation between energy dissipa-
tion rate, adaptation speed, and maximum adaptation accuracy
to study cost-performance trade-offs [6]. Understanding such
relations is then of great importance to uncover design princi-
ples for biochemical oscillations to maintain enhanced phase
accuracy of the internal period and phase sensitivity to exter-
nal signals. So far, it has been revealed that for a biochemical
oscillation system with sufficient energy supplies, additional
energy exceeding a critical value can be used to enhance
the system’s phase accuracy and phase sensitivity [11–14].
However, biochemical oscillation systems in the real world
may frequently suffer from limited energy resources [15–17],
so that the critical energy to maintain the oscillatory behavior
may even be lacking and internal molecular fluctuation has to
be utilized to induce random rhythm. It is then still a great
theoretical challenge to understand the elementary principles
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for biochemical systems with limited energy resources to
maintain phase accuracy and phase sensitivity.

Here, we address the issue by studying the trade-off rela-
tions for a general biochemical model theoretically, starting
from which both normal oscillations for sufficient energy
sources and noise-induced oscillations for limited energy sup-
plies can be described well in a unified theoretical framework.
By applying the concepts of stochastic thermodynamics as
well as the phase reduction method, the energy-accuracy
and the sensitivity-accuracy trade-off relations are finally
derived, which provide general design principles for bio-
chemical oscillations. Application of these principles shows
that biochemical systems can keep almost equal efficiency
to maintain precise processes at much lower energy cost by
using noise-induced oscillations for limited energy resources
compared with the efficiency achieved by using normal oscil-
lations for sufficient energy supplies. Moreover, an optimal
system size is found where both high sensitivity and high
accuracy can be reached at the same time, predicting a new
design strategy for biological networks with limited energy
sources.

For a general biochemical system of size V including N
well-stirred species and M reactions (R1, . . . , RM ), its dy-
namics can be described by the chemical Langevin equation
(CLE), which is expected to be satisfied for biochemical reac-
tion systems with mesoscopic system size which ensures the
existence of a “macro-infinitesimal time scale” [18] as

ẋ j =
M∑

ρ=1

v j
ρwρ (x)+ 1√

V

M∑
ρ=1

v j
ρ

√
wρ (x)ξρ (t ), j = 1, . . . , N.

(1)

where x = (x1, . . . , xN )T is the concentration vector, v
j
ρ

is the stoichiometric coefficient of x j in reaction Rρ ,
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wρ (x) is the transition probability, and ξ(t ) is independent
Gaussian white noises with zero mean and time correlation
〈ξρ (t )ξρ ′ (s)〉 = δρρ ′δ(t − s). The corresponding chemical
Fokker-Planck equation (CFPE) [19] is then ∂t p(x, τ ) =
− ∑

i ∂xi [ fi(x)p(x, τ )] + (1/2)
∑

i, j V ∂xi∂x j [Gi j (x)p(x, τ )],
where p(x, τ ) is the time-varying probability density func-
tion, Gi j (x) = ∑M

ρ=1 vi
ρv

j
ρwρ (x), and the drift f j (x) =∑M

ρ=1 v
j
ρwρ (x) is the macroscopic rate under the thermo-

dynamic limit V � 1. If there is a Hopf bifurcation for
the systems as some control parameters change, biochemi-
cal oscillation will occur. Above the bifurcation, a normal
oscillation will be observed; however, near but below the
bifurcation, stochastic oscillation can emerge due to the inter-
nal noise. A general theoretical description of the oscillation
dynamics including both normal oscillation and noise-induced
oscillation (NIO) [20,21] can be achieved by the stochastic
normal form theory we established before [18,22,23]; that is,
the time evolution of oscillation amplitude r and phase θ is

ṙ = αr + Crr3 + ε2

2V r
+ ε√

V
ηr (t ), (2)

θ̇ = ω + Cir
2 + ε

r
√

V
ηθ (t ), (3)

where Cr < 0 and Ci are constants, ε2 is the averaged noise in-
tensity, ηr (t ) and ηθ (t ) are the averaged independent Gaussian
white noises with unit variances (see details in Appendix A).
Specially, α can be related to the energy resources [16] which
determine the oscillatory behaviors of the systems. For large
enough V , normal oscillations with amplitude r2

m = − α
Cr

+
ε2

2α
V −1 + o(V −2) can be observed when α > 0. When α < 0,

the energy resources are not enough to support normal oscil-
lations. However, there is still a nonzero-amplitude solution
r2

m = − ε2

2α
V −1 + o(V −2), indicating that the internal noise

could be utilized to induce stochastic rhythms to maintain
the system’s function [17,24] in such a situation. Biochemical
systems need to maintain highly accurate oscillations, which
is crucial in controlling the timing of life processes [11].
The energy-accuracy trade-off relation describes the con-
straint as to how accurate a biochemical oscillator can be
with given energy sources. As the time translation symme-
try of the bi. \end{equation}ochemical system is inherently
broken, the phase of the oscillation exhibits a diffusive be-
havior. The coefficient of phase diffusion Dθ can be used
to measure the accuracy of the oscillators. From Eqs. (2)
and (3), one can derive that the steady-state probability dis-
tribution reads ps(r) = C0r exp [(αr2 + 1

2Crr4)/(ε2/V )], with
C0 being a normalization constant. Notice that there is
an attractor of limit cycle and the system will fluctuate
aroundaround it due to internal noise. Then, one can calcu-
late the mean and variance of θ , i.e., 〈θ (t )〉 � (ω + Cir2

m)t ≡
ωst and 〈θ (t )2〉 − 〈θ (t )〉2 � ε2t/(V r2

m), where ωs = ω + Cir2
m

is the effective phase angular velocity of the attractor. In
fact, here we use the approximations that 〈r2〉 � r2

m and
〈r−1〉 � r−1

m which hold near the Hopf bifurcation. Thus
the diffusion constant of the phase fluctuation is given by

Dθ = ε2
/(

V r2
m

)
. (4)

Besides, the energy dissipation critical for living systems
to realize special functions (such as correcting errors in
biomolecular recognition or improving robustness in cell de-
velopment [6]) can be directly related to the violation of
detailed balance in nonequilibrium systems and determined
by computing the entropy production in the underlying reac-
tion network. The explicit expression for energy dissipation
in one cycle of the oscillation is �W = ṠtotTcyc, with Ṡtot

being the total entropy production rate and Tcyc = 2π/ωs

being the period of the oscillation. At last, by applying the
concepts of stochastic thermodynamics [25], the total entropy
production rate is found to be Ṡtot = (kb + kaV r2

m)/(2π ),
where ka, kb are system-size-dependent parameters (see
Appendix B for details). Now, we arrive at the first
main result of this paper, namely, the energy-accuracy
trade-off relation. (Under the condition of the selected
parameters, the period hardly changes with the param-
eter value, especially in the noise-induced oscillation
region. So we did not consider the accuracy dimen-
sionless to the period; see Appendix B for details.)

Dθ =
⎧⎨
⎩

kaε
2

ω

(
�W + kbCr

Ciα−Crω

)−1 + Ds
θ,−, α < 0

kaε
2

ω

(
�W − kb

ωV

)−1 + Ds
θ,+, α > 0.

(5)

Here, Eq. (5) provides a general design princi-
ple to quantitatively describe the balance between
energy cost and phase accuracy for not only nor-
mal oscillations (α > 0) but also NIOs (α < 0).

Several conclusions can be obtained. Firstly, Eq. (5) can
recover the reported phase diffusion for normal oscilla-
tions [11] Dθ = W0/(�W − Wc) with W0 = kaε

2/ω, Wc =
−kbCr/(Ciα − Crω) and an additional Ds

θ [for α > 0, Ds
θ,− =

−Ciε
2/(ωV ); for α < 0, Ds

θ,+ = −2α]. Secondly, Eq. (5)
shows that phase diffusion can be suppressed by increasing
thermodynamic cost �W , while there is always a minimal
phase diffusion constant Ds

θ that cannot be completely elimi-
nated even for infinite cost.

Thirdly, as Dθ = ε2/(V r2
m), the scaling law for the energy

cost �W of the system size V holds near the Hopf bifurcation
point as

�W = n + mV ν,

⎧⎪⎪⎨
⎪⎪⎩

ν = 0, n = 2kbα−kaε
2

2αω
, m = 0, α < 0

ν = 1
2 , n = 0, m = kaε

ω

√
− 2

Cr
, α = 0

ν = 1, n = 0, m = − αka
Crω

, α > 0;
(6)

that is, for normal oscillations, �W increases linearly as V in-
creases, while for NIOs �W is independent of the system size
V . Remarkably, biochemical systems may have to optimize
their ability to maintain accurate oscillations under a given
energy cost [26]. For instance, the molecular motor needs to
deliver the cargo at a high speed and in a punctual manner
with low energy dissipation [27]. Thus a transport efficiency
ηT [26] quantitatively describing such ability can be derived
from the energy-accuracy trade-off relation [Eq. (5)] via the
thermodynamic uncertainty relation (TUR; see Appendix B
for details) [28–30]

ηT = 〈θ̇〉2

Dθ Ṡtot
. (7)
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More importantly, according to Eqs. (6) and (7), it will
be found that biochemical systems have significantly lower
energy cost to maintain accuracy for NIOs than for normal
oscillations, which will be elucidated more clearly in the nu-
merical simulations.

As biochemical oscillations with high sensitivity are vul-
nerable to external perturbation and fluctuation, accuracy
and sensitivity can be treated as two trade-off proper-
ties [13,14,31,32]. Here, the sensitivity χ is characterized by
the ability of the biochemical circuits to respond to external
signals. It can be obtained by comparing the phase shift after
delivering a perturbation [33–35] and calculated from the
phase response curve (PRC) function [13] as follows. The
deterministic evolution equation of Eq. (1) can be expressed
as φ̇ = ∇xφ · f (x). In the presence of an external signal β(t ),
the deterministic term obeys f k (x) = f (x) + kβ(t ), where
k is the parameter to be perturbed. Then, the PRC func-
tion reads Zk (φ) = ∇xφ · β(t ), and the sensitivity χ can be
obtained as the normalized value of the signal-independent
factor ∇xφ [36,37] at r = rm (see Appendix C for details),

χm = χ (rm) = |Ci|r2
m√

(α2 − 2Crε2/V )
. (8)

Based on Eq. (8), we can derive the second main result of this
paper,

2log χ∗
m = C0 + log Dθ , (9)

with C0 = log {2πC2
i r4

m/[ε2ka(α2 − 2Crε
2/V )]} and χ∗

m =
χm/

√
Ṡtot . Equation (9) shows that an increase in phase ac-

curacy D−1
θ cannot be accompanied by an increase in the

normalized phase sensitivity χ∗
m, which can be treated as the

sensitivity-accuracy trade-off relation under fixed energy con-
ditions [see Appendix C for detailed analysis of Eq. (9)]. Such
a trade-off relationship always holds when system parameters
change, providing another design principle for biochemical
systems to measure the balance between the sensory adap-
tation to external signals and the regulation of the internal
oscillation. More interestingly, we can also obtain a scaling
law for phase sensitivity χm of the system size V as

χm ∼ V κ ,

{
κ = −1, α < 0
κ = 0, α � 0.

(10)

For a biochemical oscillation system, it is efficient to
maintain high regulation of the internal oscillation and, si-
multaneously, sensitive adaptation to external signals. Then,
a dynamic efficiency ηS can be properly defined as the ratio of
the sensitivity and phase fluctuation, i.e., χ2

m/Dθ , to quantita-
tively describe such ability as

ηS = C2
i V r6

m

ε2(α2 − 2Crε2/V )
. (11)

The obtained dynamic efficiency can further be related to
the information inequality v2

k,φ/Dθ � ḊPE , where vk,φ is the
change rate of the current difference 〈φ〉k − 〈φ〉 (here, 〈φ〉
is the mean of phase for the original dynamics, and 〈φ〉k
is the mean for the dynamics perturbed by the signal) and
DPE is the Pearson divergence between the original dynamics
and the perturbed dynamics, which show similar evolutionary
behavior to the total entropy production [14]. The quantity

vk,φ is proportional to the system sensitivity, and ḊPE deter-
mines the upper bound of the dynamic efficiency. Moreover,
as the total entropy production rate hardly changes with sys-
tem size in NIOs, we find that the dynamic efficiency can
approach its upper bound by adjusting the size parameter V
of biochemical oscillation systems. Therefore one can design
a biochemical system to enhance the sensitivity and reduce the
fluctuation simultaneously by changing its internal properties
to maximize ηS . Interestingly, an optimal system size Vopt ≈
− 3Crε

2

4α2 can be achieved by setting ∂ (ηS )/∂V = 0, where bio-
chemical systems with limited energy sources can reach their
best performance of both high sensitivity and high accu-
racy. Furthermore, the scaling law between Vopt and α reads
as Vopt ∼ α−2.

Now, we apply the above analytical results to a well-known
biochemical oscillation system, the Brusselator model, involv-
ing two distinct biochemical species X1, X2 and four reaction
channels

A → X1, B + X1 → X2,

X1 → C, 2X1 + X2 → 3X1.

Here, w = (A, BX1, X1, X 2
1 X2) represent the corresponding

transition rates. In the thermodynamic limit where the internal
noise terms can be ignored, a supercritical Hopf bifurcation
occurs for α = (B − Bc)/2 with Bc = A2 + 1. We numerically
simulate Eq. (1) by Euler methods with a time step of 10−4.
After a long enough transition time, 105 trajectories are used

FIG. 1. Trade-off relations for biochemical oscillations with suf-
ficient (α > 0) or limited (α < 0) energy sources. (a) and (b) The
simulated energy-accuracy trade-off relation for α > 0 and α < 0
shows that the phase fluctuation constant Dθ decreases as the free-
energy cost �W increases, which agrees well with analytical curves
fitted according to Eq. (5). Besides, there is always a minimal
phase diffusion constant Ds

θ [the black dashed line for α > 0 in
(a) and the purple dashed line for α < 0 in (b)] that cannot be
completely eliminated even for infinite cost. (c) and (d) The sim-
ulated sensitivity-accuracy trade-off relation for α > 0 and α < 0
shows that phase sensitivity χm also increases as the phase diffusion
constant Dθ increases.
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FIG. 2. Biochemical systems with limited energy sources
(α < 0) need significantly less energy to maintain accuracy than
systems with sufficient sources (α > 0). (a) Scaling law between
energy cost per cycle �W and system size V . (b) Transport efficiency
ηT for different system sizes V . Error bars in (a) and (b) represent
standard deviations. For fixed V , ηT is robust against changes in α

and V , while �W is much smaller for α < 0 than for α > 0.

to calculate the energy cost �W . Other details of the model
and parameters can be found in Appendix D.

Both of the trade-off relations [Eqs. (5) and (9)] are shown
in Fig. 1. It can be observed that the phase diffusion constant
Dθ is inversely proportional to the energy cost �W , confirm-
ing that the accuracy-energy trade-off relation holds for both
NIOs and normal oscillations [Figs. 1(a) and 1(b)]. Similarly,
the normalized sensitivity χ∗

m also increases as Dθ increases,
which verifies the sensitivity-accuracy trade-off relation for
both normal oscillations and NIOs [Figs. 1(c) and 1(d)].

Dependence of the energy cost �W and the transport effi-
ciency ηT on the system size V is shown in Figs. 2(a) and 2(b),
respectively. Simulated �W increases proportionally as V
increases for normal oscillations and is nearly unchanged for
NIOs, which is in good consistence with the scaling law (6)
[Fig. 2(a)]. The scaling law when α = 0 and �W ∼ V 1/2

has also been verified. Details are presented in Appendix B.
Additionally, as ηT is almost equal for different types of
oscillations [Fig. 2(b)] and �W for NIOs is always smaller
than that for normal oscillations for fixed V , it thus leads to
the quite interesting conclusion that, for NIOs, the system can
keep almost the same efficiency to maintain precise processes
at much lower energy cost, elucidating clearly the advantage
of noise-induced oscillations in limited energy supplies.

FIG. 3. A new strategy for the design of biological networks in
limited energy resources to achieve both high accuracy and high
sensitivity. (a) Scaling law between the sensitivity χm and the system
size V for sufficient (α > 0) or limited (α < 0) energy sources.
(b) Dependence of the dynamic efficiency ηS on the system size
V . The dynamic efficiency ηS for limited energy resources shows
a maximum for an optimal system size Vopt where χm still changes
little. Inset: Explicit dependence and scaling law between Vopt and α.

As shown in Fig. 3(a), the phase sensitivity χm changes
little with increasing system size V for normal oscillations
and is inversely proportional to V for NIOs, agreeing with the
scaling law [Eq. (10)] very well. Remarkably, the dynamic
efficiency ηS for NIOs in Fig. 3(b) shows a maximum for an
optimal system size Vopt where χm still changes little. Surely,
the system size cannot be adjusted freely. However, biochem-
ical systems are continuously evolving, possibly by adjusting
other parameters to make the oscillation systems work at the
optimal system size. We need to emphasize that there are
many reported findings in the literature indicating that some
naturally occurring systems do employ a strategy similar to
the one we predict. For instance, it has been reported that ion-
channel clusters of an optimal size were the most favorable
for intracellular calcium signaling [38–41], and we have also
found that the well-known signal-to-noise ratio of the NIO
has been found to be maximum in many naturally occurring
systems studied in our previous work, such as mammalian
circadian oscillation [20] and surface catalytic reactions [17],
when the system size is varied. Based on such evidence, we
propose that this finding predicts a new strategy for the design
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FIG. 4. Further validation of the derived design principle of bi-
ological networks in the circadian clock model. (a) Scaling law
between the phase sensitivity χm and system size V . (b) The dynamic
efficiency ηS shows a maximum for an optimal system size Vopt.

of biological networks in limited energy resources to achieve
both high accuracy and high sensitivity simultaneously, which
is absent for systems with sufficient energy supplies.

To further demonstrate the broad application of our design
principles, we have also applied them to another important
biochemical oscillation, i.e., the circadian clock model, de-
scribing how living organisms keep an internal sense of time
and adapt their behavior [1]. As shown in Fig. 4, we find that
our main results, such as the scaling law [Eq. (10)] and the
optimal system size [obtained from Eq. (11)], still hold in
the circadian clock model. The phase sensitivity χm is nearly
independent of the system size V for normal oscillations and
is inversely proportional to V for NIOs, also agreeing with the
scaling law [Eq. (10)] very well. Furthermore, a maximum of
the dynamic efficiency ηS for NIOs with an optimal system
size Vopt has also been found in Fig. 4(b), where χm is kept
unchanged. Other details of the model and parameters can be
found in Appendix D. Notice that other parameters besides the
system size have also been included in our approach by Ci, Cr ,
ε, etc.; thus the proposed design principles are still applicable
when other parameters matter.

In conclusion, energy-accuracy and sensitivity-accuracy
trade-off relations have been revealed for a general bio-
chemical system by applying the framework of stochastic
thermodynamics as well as the phase reduction method. Ac-
cording to these relations, it was found that biochemical
systems may maintain their necessary regulatory function
via noise-induced oscillation to reduce the energy cost when
energy resources are limited. More interestingly, an optimal
system size for systems to achieve both high accuracy and
high sensitivity has also been derived from the trade-off re-
lations, predicting a new strategy for the design of biological
networks with limited energy sources. For oscillations asso-
ciated with other types of bifurcations, such as relaxation
oscillations, the stochastic normal form could be different.
Nevertheless, a similar idea and strategy to those of the present
work may also be applied [42], which deserves further study.
As our findings are of important relevance to many rhythmic
processes in biochemical systems and can be extended to
other realistic systems straightforwardly, it is our hope that
the reported principles will enhance our ability to design new
biochemical systems for practical applications.
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APPENDIX A: STOCHASTIC NORMAL FORM THEORY

We follow the standard procedure to get the normal form.
Setting Z = reiθ ,

dZ

dt
= (α + iω)Z + (Cr + iCi )|Z|2Z

+ 1√
V

∑
ρ

(v′
1ρ + iv′

2 jρ )
√

wρξρ, (A1)

where v′
jρ = (T −1v) jρ ; equivalently,

dr

dt
= (αr + Crr3) + 1√

V

∑
ρ

χrρ ◦ ξρ (A2)

and

dθ

dt
= (ω + Cir

2) + 1√
V

∑
ρ

χθρ ◦ ξρ, (A3)

where

χrρ = (v′
1ρ cos θ + v′

2 jρ sin θ )
√

wρ,

χθρ = 1

r
(−v′

1ρ sin θ + v′
2 jρ cos θ )

√
wρ. (A4)

Using the stochastic averaging procedure [43], as a long-time
Markov approximation, one can get the following equations:

dr

dt
= αr + Crr3 + K (r)

V
+ εr√

V
ξr (A5)

and

dθ

dt
= ω + Cir

2 + K (θ )

V
+ εθ

r
√

V
ξθ , (A6)

where

K (r) = 1

2π

∑
ρ

∫ 2π

0
dθ (χrρ∂rχrρ + χθρ∂θχrρ ), K (θ )

= 1

2π

∑
ρ

∫ 2π

0
dθ (χrρ∂rχθρ + χθρ∂θχθρ ). (A7)

Here,

ε2
r = 1

2π

∑
ρ

∫ 2π

0
dθχ2

rρ, ε2
θ = 1

2π

∑
ρ

∫ 2π

0
dθχ2

θρ (A8)

are the averaged noise intensities. Moreover, one can expand
the reaction rates as

wρ =
n∑

i+ j=0

wi j
ρ (r cos θ )i(r sin θ ) j . (A9)
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As r is small for the situation when the control parameter
is near the Hopf bifurcation point, one can get that K (θ ) is
zero [22] and

ε2
r = ε2

θ = 1

2

∑
ρ

[(v′
1ρ )2 + (v′

2ρ )2]w00
ρ . (A10)

Neglecting the i + j � 2 terms, one can derive the stochastic
normal form equations

ṙ = αr + Crr3 + ε2

2V r
+ ε√

V
ηr (t ), (A11)

θ̇ = ω + Cir
2 + ε

r
√

V
ηθ (t ), (A12)

where for α > 0, the amplitude r2
m =

−(
√
α2 − 2Crε

2/V +α)/(2Cr ) (when V → ∞, r2
m → − α

Cr
)

can be observed. For α < 0, the energy resources
are not enough to support normal oscillation. How-
ever, there is still a nonzero-amplitude solution r2

m =
−(

√
α2 − 2Crε

2/V +α)/(2Cr ) (when V → ∞, r2
m → − ε2

2αV ).

APPENDIX B: ENERGY-ACCURACY
TRADE-OFF RELATION

1. Change rate of generalized flux

The calculation of entropy production is based on the
concepts of stochastic thermodynamics [25]. Firstly, one
can define the entropy production of the system: s(τ ) =
− ln p(x, τ ), along a stochastic trajectory χ (t ) = {x(τ )|t0}
during a time interval [0, t]. Here, the path probabil-
ity density p(x, τ ), which measures the probability of
traversing a given path with initial conditions, is the so-
lution of the Fokker-Planck equation evaluated along the
trajectory at time τ . The change rate of the trajectory-
dependent total entropy production ṡtot (τ ) can be decom-
posed into two contributions: ṡtot (τ ) = ṡ(τ ) + ṡm(τ ). We
note that the probability current Ji(x, τ ) = 1

2

∑
j Gi j (Hj −

1
V ∂x j )p(x, τ ), with Hj = 2

∑
k � jk f ′

k (G� = I) and f ′
k =

fk − 1/(2V )
∑

j (∂Gk j )/(∂x j ). The latter term of the to-
tal entropy production ṡm(τ ) = V

∑
i Hiẋi is related to

the change rate of the heat dissipation in the envi-
ronment with q̇(τ ) = T ṡm(τ ). Averaging ṡtot (τ ) over the
path ensemble, one can obtain that Ṡtot (τ ) = 〈ṡtot (τ )〉 =
2V

∫
dx[(

∑
i, j �i jJiJj )/p(x, τ )]. Observing the numerator of

the integral term, it can be treated as a quadratic form. More-
over, the matrix � is positive definite, which makes the above
quadratic form greater than 0. Actually, one can turn it into
a canonical form as

∑
i, j �i jJiJj = JT(C · CT)−1J � 0. Here,

C(x) satisfies C(x)C(x)T = G(x) [44]. We take a commonly
used choice following the seminal paper by Gillespie [45],
namely, Cjρ (x) = v

j
ρ

√
wρ (x). In the steady state, the entropy

production rate of the system vanishes. Thus the total en-
tropy production rate equals the entropy flux rate. Based on
the stochastic normal form theory, one can get the change
rate of any generalized flux [26]: �[χ ] = V

∫
�(x)T ◦ ẋdt,

where �(x) is a projection operator with a projection ma-
trix Q such that � = Q · f . We assume that the system has
equilibrium points xs satisfying fi(xs) = 0 for ∀i = 1, . . . , N
and a Hopf bifurcation value μc (denotes the control parame-

ter) [46]. The Jacobian matrix �, with �i j = (∂x j fi )|x=xs , has
two conjugate eigenvalues λ± = α(μ) ± iω, with α(μc) = 0.
The other N − 2 eigenvalues of � all have strictly negative
real parts with absolute values considerably larger than 0.
By variable transformation u = T−1(x − xs), the linear part
can be transformed to Jordan form, which reads u̇ = �HBu +
O(u2) + 1√

V
η(t ). Here, η(t ) = T−1ζ(xs, t ) is the noisy term

with ζ j (t ) = ∑
ρ v

j
ρ

√
wρ (x)ξρ (t ). The variances of η(t ) sat-

isfy 〈ηi(t )η j (s)〉 = 2Di jδ(t − s), where D = T−1G(T−1)
T
.

The change rate of currents near the Hopf bifurcation can be
calculated by both spatial and temporal average:

〈�̇〉 = lim
t→∞

〈�〉
t

= V 〈�Tẋ〉s

= V 〈 f TQTẋ〉s = 2V
∑
i, j

Ri j〈uiu̇ j〉s, (B1)

where RT = T T�TQTT , hi j = 〈uiu̇ j〉s, and we have used
f (x) = f (xs) + �(x − xs) + o(|u|2) � �Tu. Note that in the
stationary state, hi j = −h ji and hii = 0.

h12 � 1
2ω〈r2〉s, (B2)

h1 j � 0, h2 j � 0 ( j � 3). (B3)

For i, j � 3,

hk j = (λk − λ j )Dk j

(λk + λ j )V
. (B4)

Thus

〈�̇〉 = 2V
∑
i, j

Ri j〈uiu̇ j〉s

= V (R12 − R21)ω〈r2〉s + 2
∑
j,k�3

Rk jDk j
λk − λ j

λk + λ j
. (B5)

We approximate 〈r2〉s � r2
m, and when r = rm, the probability

distribution function becomes maximum; thus

〈�̇〉 � (R12 − R21)ω

2
V r2

m + const. (B6)

In particular, Eq. (B6) can be used to calculate the change rate
of entropy flux by choosing �i = Hi.

2. Entropy production

The change rate of entropy production of the system is
given by

ṡ(τ ) = −∂τ p(x, τ ) − 1

p(x, τ )

∑
i

∂xi p(x, τ )ẋi

=
[
−∂τ p(x, τ ) + 2V

p(x, τ )

∑
i, j

�i jJ j |x(τ )ẋi

]

−V
∑

i

Hiẋi. (B7)
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The ensemble-averaged total entropy production rate can be
calculated as

Ṡtot (τ ) = 〈ṡtot (τ )〉

=
〈

2V

p(x, τ )

∑
i, j

�i jJ j |x(τ )ẋi

〉

= 2V
∫

dx

[∑
i, j �i jJiJj

]
p(x, τ )

. (B8)

We set F = C−1, and JF = FJ with ith component JF
i =∑

j JiFji. Then,

∑
i, j

�i jJiJj = JT�J

= JTG−1J

= JT(C · CT)−1J

= (C−1J)T · (C−1J)

= (FJ)T · (FJ)

=
∑

i

(∑
j

JiFji

)2

=
∑

i

(
JF

i

)2 � 0. (B9)

Thus the second law is obtained,

Ṡtot (τ ) � 0, (B10)

which is a defining feature of the system.

3. Scaling law and TUR

When V is large enough, different scaling laws can be
readily seen in the following equations:

Dθ =

⎧⎪⎪⎨
⎪⎪⎩

−2α, α < 0√
−Crε2

2V , α = 0

− ε2Cr
V α

, α > 0

(B11)

and

�W =

⎧⎪⎪⎨
⎪⎪⎩

2kbα−kaε
2

2αω
, α < 0

kaε
ω

√
− 2V

Cr
, α = 0

−αkaV
Crω

, α > 0.

(B12)

The thermodynamic uncertainty relation for θ reads (when
t → ∞)

Var[θ ] · Stot

〈θ〉2 � ε2(L12 − L21)ω

ω2
s

. (B13)

Here, we need to emphasize that Eq. (B13) holds for both
α > 0 and α < 0. In addition, we plot the scaling law for the
energy cost per cycle �W ∼ V 1/2 when α = 0 in Fig. 5. The
simulation results show great agreement with our theoretical
predictions.

FIG. 5. Scaling law for the energy dissipation per cycle �W
when α = 0. The scaling law between energy cost per cycle and
system size has been plotted. The simulation results verify our theo-
retical predictions, �W ∼ V 1/2.

APPENDIX C: SENSITIVITY-ACCURACY
TRADE-OFF RELATION

1. Phase response curve

The deterministic evolution equation of the chemical
Langevin equation can be expressed as

φ̇ = � = ∇xφ · f (x). (C1)

In the presence of an external signal, the dynamics obey the
following equation:

fk (x) = f (x) + kβ(t ), (C2)

where β(t ) = {β1(t ), . . . , βN (t )}T is used to describe external
signals and k is the parameter to be perturbed. After perturba-
tion, the phase evolution equation becomes [37]

φ̇ = ∇xφ · [ f (x) + kβ(t )]

= � + kZk (φ), (C3)

where

Zk (φ) = ∇xφ · β(t ), (C4)

known as the phase response curve (PRC) function. The PRC
function is obtained by comparing the phase shift after deliv-
ering a perturbation at a given duration of time.

2. Isochron of the limit cycle

To get the sensitivity-accuracy trade-off relation, we first
use the stochastic normal form theory to analyze the isochron
structure of the limit cycle [13]. Considering the radial evo-
lution of the orbit outside the deterministic limit cycle with
initial starting point (r0, θ0), we have [here, we set αc =√

α2 − 2ε2Cr/V and y1 = (
√

α2 − 2Crε2/V − α)/2Cr]

r(t )2 = y1 − αc/Cr

1 + C1e−2μt
, (C5)

where C1 is a constant determined by the initial condition

− αc/Cr

r2
0 − y1

= 1 + C1. (C6)
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FIG. 6. (a) and (b) Trade-off relation between phase sensitivity
and accuracy for NIOs. Both theoretical and simulation results show
that in all oscillation regions, phase sensitivity χm decreases as the
accuracy Dθ increases.

Suppose the point eventually approaches the limit cycle and
converges with the point of the initial phase value. This leads
to the result

θ = θ0 + Ci

∫ ∞

0

(
r2 − r2

s

)
dt

= θ0 − Ci

2Cr
ln

(
r2

0 − y1
) + Ci

2Cr
ln

(
− μ

Cr

)
. (C7)

Thus, the isochron can be obtained as

φ(r, θ ) = θ − Ci

2Cr
ln(r2 − y1) + Ci

2Cr
ln

(
− μ

Cr

)
. (C8)

3. Scaling law and trade-off relation

When V is large enough, different scaling laws can be
readily seen in the following equations:

χm =
{− Ciε

2

2α2V , α < 0
Ci
Cr

, α � 0.
(C9)

Moreover, to get the trade-off relation, we can make the ap-
proximation by Taylor expansion, which reads, for α < 0,

r2
m � − 1

2α

(
ε2

V
+ Crε

4

2α2V 2

)
. (C10)

Then,

1

Dθ

= − 1

2α
− Crε

2

2α3V
. (C11)

Thus

χm = Ci

2Cr
+ αCi

Cr

1

Dθ

. (C12)

For α < 0, Ṡtot shows little difference for different system
sizes V due to the scaling law, and the sensitivity-accuracy
trade-off relation reads χm � Ci/(2Cr ) + αCi/(CrDθ ). Since
αCi/Cr < 0, phase sensitivity decreases monotonically as
phase accuracy decreases. For α > 0, the sensitivity-
accuracy trade-off relation reads χ∗

m � √
QsDθ , where Qs =

kaε
2C2

r /(2πC2
i ) is a constant independent of system size

V and resource supply α. Thus phase sensitivity decreases
monotonically as phase accuracy decreases under fixed energy
conditions (Fig. 6).

FIG. 7. Dynamic efficiency ηS in normal oscillation regions for
different system sizes V . In the normal oscillation region, the dy-
namic efficiency ηS increases as the system size V increases.

4. Dynamics efficiency

For α < 0 in the noise-induced oscillation region, based on
Eqs. (C11) and (C12), one can calculate where the maximum
value of ηS is located when Dθ � 6α. Thus

Vopt � −3Crε
2

4α2
. (C13)

For α > 0 in the normal oscillation region, the plotted
dynamic efficiency ηS (Fig. 7) increases as the system size V
increases, which means that the optimal system size is absent
for systems with sufficient energy supplies.

APPENDIX D: DETAILS OF THE MODELS

1. Brusselator

The Brusselator model is described in the main text. At the
macroscopic limit, the deterministic reaction rate for species
X and Y is given by

dx1

dt
= k1A − k2Bx1 − k3x1 + k4x2

1x2, (D1)

dx2

dt
= k2Bx1 − k4x2

1x2, (D2)

where x1 and x2 are the concentrations of X1 and X2,
respectively. The rate constants are represented by k =
{k1, k2, k3, k4}. Here, we set ki = 1,∀i without loss of gen-
erality. The unique steady state of the system is given by
(x1,s, x2,s) = (A, B/A), which loses stability when the control
parameter B exceeds the Hopf bifurcation point Bc = 1 + A2

where the limit cycle emerges. The behavior of the system
near Hopf bifurcation can be described by the stochastic
normal form equation on a two-dimensional center manifold
based on the bifurcation theory. The parameters in stochas-
tic normal form theory can be calculated by setting A = 1,
which reads Cr = −3/8, Ci = −1/24, ε2 � 4, ω = 1, and
α = (B − 1 − A2)/2.
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TABLE I. Description of the circadian clock model.

Reaction Transition rate Biochemical function

1 G → R + G w1 = vskn
I

(
kn

I + xn
3

)−1
transcription

2 R → w2 = vmxn
z (km + x1)−1 R degradation

3 R → R + PC w3 = ksx1 translation
4 PC → w4 = vd x2(kd + x2)−1 degradation of PC

5 PC → PR w5 = k1x2 transport of PC into the nucleus
6 PN → PC w6 = k2x3 transport of PN out of the nucleus

2. Circadian clock

The circadian clock model considered here (see Table I)
incorporates the transcription of the gene (G) involved in the
biochemical clock and transport of the mRNA (R) into the
cytosol, where it is translated into clock proteins (PC) and
degraded [47]. The protein can be degraded or transported into
the nucleus (PN ), where it exerts a negative regulation on the
expression of its gene. Here, we set x = (x1, x2, x3) to stand

for the concentrations of (R, PC, PN ). The transcription rate
of mRNA is chosen as the control parameter, represented by
vs. The parameters are kI = 2.0 nM, Hill coefficient n = 4,
vm = 0.3 nM/h, km = 0.2 nM, ks = 2.0 h−1, vd = 1.5 nM/h,
kd = 0.1 nM, and k1 = k2 = 0.2 h−1. Under such conditions,
the Hopf bifurcation point locates at vs � 0.257 25. In ad-
dition, parameter values used in the stochastic normal form
theory can be calculated as Cr � −0.3474, Ci � 0.5722, and
ε2 � 0.3556.
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