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Experimental realization of multipartite entanglement via quantum Fisher information
in a uniform antiferromagnetic quantum spin chain
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Quantum entanglement is a quantum-mechanical phenomenon where the quantum state of a many-body
system with many degrees of freedom cannot be described independently of the state of each body with a
given degree of freedom, no matter how far apart in space each body is. Entanglement is not only considered a
resource in quantum information but is also believed to affect complex condensed-matter systems. Detecting
and quantifying multiparticle entanglement in a many-body system is thus of fundamental significance for
both quantum information science and condensed-matter physics. Here, we detect and quantify multipartite
entanglement in a spin- 1

2 Heisenberg antiferromagnetic chain in a bulk solid. Multipartite entanglement was
detected by using quantum Fisher information which was obtained using dynamic susceptibility measured via
inelastic neutron scattering. The scaling behavior of quantum Fisher information was found to identify the spin- 1

2
Heisenberg antiferromagnetic chain to belong to a class of strongly entangled quantum phase transitions with
divergent multipartite entanglement.

DOI: 10.1103/PhysRevResearch.2.043329

I. INTRODUCTION

Quantum information processing (QIP), namely, the appli-
cation of the laws of quantum mechanics for performing com-
putations, is heralding the information revolution, wherein
intense theoretical and experimental investigations are under-
way to build quantum computers that can outsmart classical
computers by using algorithms that can do computations
much faster than a corresponding classical computer [1,2]. In
particular, entanglement [3–11], exemplified as a superposi-
tion of two spin- 1

2 states, (1/
√

2)(|↑↓〉 − |↓↑〉), is used as a
resource [1,2] in the QIP task of quantum computation. How-
ever, it is also known that, if a given quantum system is not
highly entangled, then it can be efficiently simulated on a clas-
sical computer itself [12,13]. So, multipartite entanglement
between qubits is of paramount importance for the function-
ing of a real quantum computer. In fact, the fragile quantum
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states produced during the task of quantum computation are
protected from error by distributing a quantum state among
many quantum bits using quantum entanglement [14,15]. En-
gineering a quantum system to perform computations in a
large Hilbert space but with low error rates is the ultimate
aim of real quantum computing platforms that are being devel-
oped by companies like Google, IBM, Righetti, etc. [16,17].
This requires cooling down the quantum processing system
to very low temperatures (a few mK) to protect the delicate
quantum state from decoherence. Many measures to quantify
bipartite entanglement, namely, entanglement between two
subsystems of a given system, exist in the literature [3–11,18–
23]. Using such measures, bipartite entanglement has been
reported in low-dimensional spin systems via specific heat
and magnetization measurements [11,24–26]. However, mul-
tipartite entanglement, where a pure state of a many-body
system is not separable in any bipartite splitting [7,8,27–
32], is extremely difficult to obtain in a many-body system.
Experimentally, many examples of multipartite entanglement
generation in few-body systems have been reported, for ex-
ample, multipartite entanglement in six or eight trapped ions
[33]. The measurement of multipartite entanglement in such
systems is done via protocols based on preparing many
copies of the quantum system. So, measurement of multi-
partite entanglement in quantum many-body systems seems
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a virtually impossible task with an exponential scaling of
resources.

A direct measurement of multipartite entanglement for
many-body systems has been proposed by Hauke et al. [27]
in the form of quantum Fisher information (QFI) FQ, a con-
cept that originated in quantum metrology [29,34], where FQ

defines the maximum precision with which a phase could
be estimated given a quantum state. By relating QFI to the
Kubo response function, Hauke et al. proposed an experi-
mental witness of multipartite entanglement in the form of
QFI FQ [27–30]—a witness of multipartite entanglement, via
dynamic susceptibility [27]. To our knowledge, such a direct
measurement of multipartite entanglement via QFI, has not
yet been done on any many-body condensed-matter system.
Multipartite entanglement is now believed to play an essen-
tial role in many complicated condensed-matter phenomenon
such as high-temperature superconductivity [35], the frac-
tional quantum Hall effect [6], and quantum phase transitions
(QPTs), which are phase transitions that happen at absolute
zero of temperature when a nonthermal control parameter like
magnetic field is tuned to a critical value called as a quantum
critical point (QCP) [5,18,19,36].

Antiferromagnetic chains with global SU(2) invariance
have rotational symmetry making them ideal candidates to
test various features of multipartite entanglement [6,37]. So,
our model spin system that is used to detect multipartite
entanglement is a spin- 1

2 antiferromagnetic Heisenberg chain
(AfHc) which is the seminal and one of the simplest quan-
tum many-body systems [38–52] whose exact ground state
is a macroscopic singlet entangling all spins in the chain
[39,40,42,45,47,50]. A spin- 1

2 AfHc is also inherently quan-
tum critical at T = 0 K and zero applied magnetic field, and
has a line of critical points with respect to an applied magnetic
field [38–51]. Even though the QPT’s happen at absolute zero
of temperature, the effect of the QCP is observed at low but
finite temperatures. Vojta et al. [36] argue that the limit of
applicability of the T = 0 QCP is governed by the micro-
scopic energy scale of the problem. Using a spin- 1

2 uniform
AfHc, we detect and quantify multipartite entanglement in the
chain through quantum Fisher information obtained using the
dynamical spin susceptibility measured via inelastic neutron
scattering. This is thus an experiment involving a many-body
spin system to unambiguously demonstrate multipartite entan-
glement. We find that the multipartite entanglement not only
exists at a very low temperature of 40 mK but also survives up
to a very high temperature of 6.7 K (≈2.2J/kB), thus demon-
strating the robustness of the spin- 1

2 antiferromagnetic chain
as a very efficient many-body system that can sustain itself
against decoherence. Simultaneously, it is also demonstrated
that the many-body system belongs to the class of strongly
entangled phase transitions with divergent entanglement and
is a multipartite entanglement, rather than exchange energy,
that governs the temperatures to which the effect of T = 0
QCP is felt.

II. EXPERIMENTAL DETAILS

Single crystals of [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n

were grown by a slow diffusion technique [53]. Single-crystal
x-ray diffraction measurements were performed on a

Bruker Kappa APEX II CCD diffractometer by the ω scan
technique using graphite monochromatized Mo Kα radiation
(λ = 0.71073 Å) at room temperature (293 K). A few single
crystals of total mass 1.5 mg were aligned along the length of
the needle for magnetization measurements. Magnetization
measurements in the temperature range of 1.8 to 300 K
were done on a vibrating sample magnetometer attached
to Quantum Design’s Physical Property Measurement
System (Models 14 T PPMS-VSM and Evercool-II).
Lower-temperature measurements in the range of 0.49–2 K
were done on a Helium 3 insert attached to Quantum Design’s
SQUID magnetometer (Model iHelium3). The inelastic
neutron-scattering data were collected with an indirect
geometry IRIS time-of-flight spectrometer using a PG002
analyzer with an elastic resolution of 17.5 μeV at ISIS,
Rutherford Appleton Laboratory, United Kingdom Data at 40
and 500 mK temperatures were measured by using a dilution
refrigerator while that at 3 K and 6.7 K measured using a He-4
Orange cryostat. Since the mosaic spread of the large number
of single crystals aligned for INS measurement was greater
than 20◦, they were crushed into powder form in order to
enhance the signal to noise of the inelastic neutron-scattering
experiment. The obtained powder was put within an annular
copper can with 20 mm diameter with He-exchange gas
and connected to the above-mentioned cryostats for data
acquisition. The data at each temperature were collected for
about a day. Prior to the measurement, the single crystals
of [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n were deuterated
by deuterating each of the reagents 4-aminopyridine and
K2[Cu(ox)2]2H20 resulting in deuterated 4-aminopyridine
(D4-Apy) and K2[Cu(ox)2]2D20 and then synthesizing the
crystals using the slow diffusion technique described above.

III. RESULTS

A. The model system and substance

The spin- 1
2 AfHc is modeled by the Heisenberg Hamil-

tonian describing nearest-neighbor interaction of localized
quantum spins:

H = J
∑

i

Si · Si+1, (1)

where J is the exchange coupling constant and Si is the spin
operator of the site i.

The behavior of bipartite entanglement in a spin-
1
2 AfHc has been investigated in quite a few studies
[3–6,8,20,26,31,37]. For instance, Connor et al. [3] calculated
the pair-wise entanglement within a system of N particles
arranged in a ring and found that each nearest-neighbor pair
tries to maximize the singlet state (1/

√
2)(|↑↓〉 − |↓↑〉) si-

multaneously. However, due to monogamy of entanglement,
none of the pair reaches the maximum value of 1 [3]. On the
other hand, Wieśniak et al. [11] demonstrated magnetic sus-
ceptibility to be a macroscopic witness of spin entanglement.
For a spin- 1

2 AfHc, the entanglement criterion was found to
be

χ expt (T ) = χ x(T ) + χ y(T ) + χ z(T )

3
<

(gμB)2NS

3kBT
, (2)
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FIG. 1. (a) Crystal structure of [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n. Chains of Cu2+ ions (shown in blue) parallel to c axis formed
by bridging Cu2+ ions with oxalate C2O4 molecules that coordinate to the Cu2+ ions only through two of the oxygen atoms of the C2O4 unit,
leaving the other two free. (b) Crystal structure in the a-c plane showing a distorted square-pyramidal coordination of Cu2+ ion (shown by blue
lines) formed by two oxygen atoms of the oxalate molecule and two nitrogen atoms of the pyridine ring. Panels (c) and (d) show schematic
representations of the crystal structure, wherein spins carried out by the Cu2+ ions are shown as red arrows. The magnetic interaction happens
in the chain direction (c axis) owing to the S = 1

2 spin carried by each Cu2+ ion governed by the exchange coupling constant, J/kB. Magnetic
exchange in the other two directions, represented by J⊥, is very small due to the presence of water molecules in the b direction resulting in
weak hydrogen bonds of the type O–H–· · · –O formed by the O–H of the H2O molecule and two free O atoms of the oxalate molecule [see
panel (a)], and the presence of pyridine rings in the a direction resulting in a large separation of ≈16.6 Å between the Cu-carrying linear chain.
(e) Three-dimensional spin representation on the linear Cu chain where the spins are shown to align antiferromagnetically and modulate on a
surface according to Hamiltonian (1). The entanglement between spins 1

2 is represented by green colored contours with the nearest-neighbor
entanglement shown by the darkest shade of green. Next-nearest and next-to-next-neighbor entanglement is shown by progressively lighter
shades of green. Such interactions exist between all atoms and are sketched for a few atoms for brevity.

where χ expt (T ) is the average of magnetic susceptibility mea-
sured along the three orthogonal directions, g is the Landé
g factor, μB is the Bohr magneton, and N is the number of
spin-S particles. Using Eq. (2), a macroscopic witness of spin
entanglement MWSE (T ) is defined as [26]

MWSE (T ) = 3kBT χ expt (T )

(gμB)2NS
− 1. (3)

So, negative EW (T ) values detect macroscopic spin entangle-
ment in the spin- 1

2 AfHc chain.
The experimental realization of such a spin- 1

2 AfHc
is a blue colored Cu2+ containing coordination poly-
mer [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n (abbreviated to
CuP henceforth) [53], that crystallizes from an aqueous solu-
tion as chains of Cu2+ ions carrying spin 1

2 in the c direction
and interacting via an exchange coupling constant J/kB and
a much weaker exchange in the a and b directions [see
Figs. 1(a)–1(d)]. At T = 0, the ground state consists of spins
1
2 entangling into a macroscopic singlet Stotal = ∑

n Sn = 0
[39,40,42,45,47,50], such that each spin entangles with every
other spin in such a way that multipartite entanglement as

measured by global entanglement is maximum at 1 [31]. The
spin-spin correlation function decays algebraically, 〈Sα

0 Sα
r 〉 ∝

(−1)r

r , α = x, y, z, indicating that the spin- 1
2 AfHc is inherently

quantum critical due to long-ranged quantum fluctuations
[39,40,42,45,47,50] affecting the multipartite entanglement
[5]. So, the spin- 1

2 AfHc is, in essence, similar to Anderson’s
resonating valence bonds (RVB), wherein, the spin singlet
state is approximated by all possible RVB combinations each
with a specified weight [7,9], the difference being that each
given bond “tries” to be in the singlet state (1/

√
2)(|↑↓〉 −

|↓↑〉) but does not achieve it due to monogamy of entangle-
ment [3,20] unlike the RVB state where each bond is actually
a singlet. RVB states have, in fact, been proposed to carry gen-
uine multipartite entanglement over the entire lattice [32]. So,
a RVB-like state in a spin- 1

2 AfHc is expected to carry genuine
multipartite entanglement. A snapshot of such multipartite en-
tanglement is shown in Fig. 1(e), where the spin entanglement
is schematically represented by green contours such that the
strength of entanglement goes down as the distance from a
given spin increases [39,42].

To check that C12H14CuN4O5 (CuP) is an excellent rep-
resentation of a spin- 1

2 antiferromagnetic Heisenberg chain
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FIG. 2. (a) Black solid circles represent magnetic susceptibil-
ity χ (T ) = M(T )/H , measured at an applied field μ0H = 1 T in
the temperature range 0.49–300 K. Red solid curve is a fit to the
Bonner-Fisher model. (b) Expanded view of the data in panel (a) to
zoom on the low temperature peak at T max = 1.95 K ± 0.05 K, ob-
tained as the temperature where dχ/dT = 0. (c) Filled blue squares
correspond to the temperature variation of entanglement witness
MWSE (T ). Black solid line is a guide to the eye. TSE marks the
temperature above which MWSE (T ) becomes positive.

(AfHc), magnetization measurements were done on a few
aligned crystals, as shown in Figs. 2(a) and 2(b) that show the
clear presence of a low-temperature peak characteristic of a
spin- 1

2 AfHc. The fitting to the experimental data was done by
using the expression χ (T ) = C0 + C1 + χBF (T ), where C0 is
a small positive constant to account for a small (0.4%–1%)
of uncoupled spin- 1

2 impurities, and C1 is the diamagnetic
contribution from the closed atomic shells of CuP, estimated
as −16.7 × 10−5 emu/mol by using tabulated values for Pas-
cal’s constants [54]. χBF (T ) is the susceptibility given by
the Bonner-Fisher model [38]. The fit yielded a value of the
exchange coupling constant J/kB as 3.1 K and a g value
of 2.1. From a rigorous high-temperature series expansion
calculation [47], T max was obtained as 0.640 851J/kB. Using
the experimentally obtained value of T max = 1.95 K, a J/kB

of 3.05 K was obtained, in excellent agreement with that
obtained from the Bonner-Fisher fit (3.1 K).

To witness macroscopic spin entanglement on CuP using
the entanglement witness MWSE (T ) given by Eq. (3), it is
necessary to ensure that the minimal Hamiltonian [Eq. (1)]
having isotropic Heisenberg exchange interactions (without
any anisotropy) is able to capture the significant physics of
the system. Our inelastic neutron-scattering study shows no
signature of long-range magnetic ordering down to 40 mK
(see the next section). We also find no gap in the spin exci-
tation spectrum, ruling out the possibility of any significant
anisotropy. This implies that the value of anisotropy, if any, is
less than the resolution of the instrument (≈17.5 μeV), which
is much smaller than the value of the nearest-neighbor inter-
action J ≈ 0.27 meV). We observed a multispinon continuum
in the excitation spectra, which confirms that our system is an
excellent representation of a spin- 1

2 AfHc.
Figure 2(c) shows macroscopic spin entanglement

MWSE (T ) obtained from the temperature dependence

of magnetic susceptibility [Figs. 2(a) and 2(b)]. It can
be seen that MWSE (T ) attains negative values until TSE

implying that spin entanglement exists up to TSE . However,
positive MWSE (T ) values above TSE do not necessarily
imply separable states and bipartite entanglement between
non-neighboring sites or multipartite entanglement may occur
between spins even at temperatures above TSE [11,26]. So,
“macroscopic witness of spin entanglement” using magnetic
susceptibility has its limitations, in that it may underestimate
the temperature up to which spin entanglement may be
present in a system and a genuine measure for multiparticle
entanglement is multipartite entanglement.

B. Inelastic neutron-scattering data
and quantum Fisher information

It is known that multipartite entanglement, where entan-
glement exists between more than two particles [7,8,27–32],
offers many advantages in quantum tasks like noise metrol-
ogy, quantum communication protocols, etc. [7,8,29,31,34].
However, we seek a direct detection of multipartite entangle-
ment in a many-body condensed-matter system. So, in order to
check if multipartite entanglement could contribute to positive
MWSE (T ) values above TSE in Fig. 2(c), we decided to try
to detect multipartite entanglement between the spins in the
AfHc. In this regard, Hauke et al. [27] proposed quantum
Fisher information [28–30] FQ(T ) as a witness of multipar-
ticle entanglement in systems with large degrees of freedom,
using dynamic susceptibility as follows:

FQ(T ) = 4

π

∫ ∞

0
dωtanh

(
ω

2T

)
χ ′′(ω, T ), (4)

where χ ′′(ω, T ) is the imaginary part of the dynamic suscepti-
bility, Q the wave-vector, and ω the frequency. Since quantum
fluctuations affect multipartite entanglement, it is natural that
a correlation between FQ(T ) and dynamical susceptibility—a
quantity that measures fluctuations—exists [27]. To obtain
χ ′′(ω, T ), we resorted to inelastic neutron scattering (INS)—a
powerful technique that can provide direct information about
the space and time Fourier transformation of the spin-spin
correlation as a function of energy and momentum transfer
vector mapping over the entire Brillouin zone [41,48,51,55]
via the measured cross section that yields the dynamical struc-
ture factor S(Q, ω). INS measurements were carried out at
the time-of-flight (ToF) inverted-geometry crystal analyzer
spectrometer IRIS at ISIS, UK, with fixed final energy of
neutrons 1.845 meV. The instrument was operated with an
energy resolution (FWHM) of 17.5 μeV, which allowed us
to determine the possible presence of agap. Figures 3(a)–3(d)
show INS spectrum of deuterated CuP powdered sample mea-
sured at 40 mK, 500 mK, 3 K, and 6.7 K, respectively. At 40
and 500 mK, the spectrum shows no sign of gap opening at
the antiferromagnetic (AFM) zone center, Q = 0.59 Å−1, as
expected for an ideal spin- 1

2 Heisenberg spin chain system.
A dispersive magnetic signal originating from AFM zone
center at Q = 0.59 Å−1, is clearly visible. The INS magnetic
signal survives up to ≈1 meV, however, its spectral weight
decreases with increasing energy transfer. Efforts to capture
the observed feature in the INS spectra by using the pow-
dered average dispersion from linear spin-wave theory by
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FIG. 3. (a)–(d) False color representation of the inelastic neutron
scattering (INS) spectra S(Q, E ), measured on a powder of crushed
deuterated CuP single crystals of C12D14CuN4O5 at (a) 40 mK,
(b) 500 mK, (c) 3 K, and (d) 6.7 K. ToF intensity is shown on the
vertical scale bar.

considering J/kB = 3.1 K obtained from magnetic suscepti-
bility measurements (see Fig. 2 above) were not successful.
The linear spin-wave theory gives a magnon bandwidth of
0.55 meV, however, we observed magnetic signal up to 1 meV.
The observed features in the excitation spectrum indicate
the presence of spinon-like quasiparticles, having two-spinon
continuum, which could exist up to πJ , which is the upper
bound of the two-spinon continuum (see Appendix), as ex-
pected for spin- 1

2 one-dimensional Heisenberg AFMs. The
spinon spectrum calculated for the INS data collected at
40 mK is described in Appendix. So, our inelastic neutron-
scattering study shows no signature of long-range magnetic
ordering down to 40 mK as well as no gap in the spin ex-
citation spectrum ruling out the possibility of any significant
anisotropy. This implies that the value of anisotropy, if any, is
less than the resolution of the instrument (≈17.5 μeV), which
is much smaller than the value of nearest neighbor interaction
(J ≈ 0.27 meV), confirming that our system is an excellent
representation of a spin- 1

2 AfHc.
It was shown [10,56] that the dynamics of a single spin

chain can sustain the generation of two pairs of Bell states, so
it is expected that the dynamics of many such spin chains in
a spin- 1

2 AfHc can together result in the generation of a large
number of Bell states. Such a dynamics manifested in the low-
lying excitations of a spin- 1

2 AfHc, and is known as spinons,
define the dynamical structure factor. The dynamics of a spin-
1
2 AfHc recently calculated using conformal field theory and
“stochastic series expansion” quantum Monte Carlo technique
at low and intermediate temperatures in the form of dynamical
structure factor [43,44,52] is given as

S(Q, ω) = 1

1 − e−h̄ω/kBT

AStarykh

πT
22�−3/2 sin(2π�)

(
ln

T0

T

) 1
2

×�2(1 − 2�)Im

(
�2

(
� − i ω

4πT

)
�2

(
1 − � − i ω

4πT

)
)

, (5)

FIG. 4. Black filled circles in panels (a)–(d) represent the en-
ergy (E = h̄ω) variation of imaginary part of dynamic susceptibility
χ ′′(ω) obtained from measured INS spectra at temperatures of
40 mK, 500 mK, 3 K, and 6.7 K, respectively, after integration
over momentum-transfer Q from 0.4 to 1.1 Å−1 and elastic line
subtraction (see Fig. S4 of Supplemental Materials). Error bars in
panels (a) and (b) are smaller than the size of the symbols. Red
solid line in each panel is a fit to theoretical dynamical suscepti-
bility calculated using Eq. (A5), having AStarykh and T0 as the fit
parameters and employing the fluctuation-dissipation theorem. The
obtained best-temperature independent fit parameters are AStarykh =
0.000 65 and T0 = πJ/8. Blue solid curves in panels (a)–(d) repre-
sent tanh(ω/2T )χ ′′(ω, T ). The cyan shaded area under the blue solid
curve is FQ(T ) = (4/π )

∫ ∞
0 dωtanh(ω/2T )χ ′′(ω, T ).

where � = 1
4 (1 − 1

2ln T0
T

) is a temperature-dependent scaling

dimension, AStarykh is a nonuniversal constant, T0 is a high-
energy cutoff, Im() is the imaginary part of the function inside
the braces, and � is the gamma function. The dynamical struc-
ture factor is converted, in the usual way, to the imaginary part
of dynamic susceptibility using the fluctuation-dissipation
theorem [41,55] (see Appendix). Since the calculations for
the dynamical structure factor in Eq. (A5) was done for low
as well as intermediate temperatures, it is expected to work
very well both at low temperatures (T < J/kB) as well as
high temperatures (T > J/kB) [43,44,52] as is exemplified
by the excellent fits of the theoretical curves (shown as red)
to the experimentally obtained dynamical structure factor in
Fig. 4. A small bump visible at ≈0.45 meV in the 40 and
500 mK data may be arising due to the integration over
the wave-vector Q from 0.4 to 1.1 Å−1, involving the con-
tribution from zone-boundary spinon as well as continuum
from two spinon [41,51] arising in a polycrystalline sample
of ours. In contrast, in the crossover region (T ≈ J/kB), the
fit of the theoretically obtained χ ′′ to the experimentally ob-
tained data is not that good, as expected. Quantum Fisher
information FQ(T ) is directly obtained from the area under
the curve of tanh(ω/2T )χ ′′(ω, T ), plotted as blue curves
in Figs. 4(a)–4(d). This constitutes experimental proof of
multipartite entanglement in a many-body system shown via
quantum Fisher information.
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IV. MULTIPARTITE ENTANGLEMENT
AND QUANTUM CRITICALITY

Figure 5(a) presents the temperature variation of FQ(T ) ob-
tained from Eqs. (4) and (A5) and the fluctuation-dissipation
theorem (see Appendix). At T = 0.04 K, the AfHc is in a
maximally entangled state. With an increase in the tempera-
ture, FQ(T ) starts to decrease due to the mixing of other states
with the maximally entangled state decohering it [4,10]. At
the highest measured temperature of 6.7 K, multipartite entan-
glement, FQ, is very small but still finite. It is expected to go
to zero at an entanglement temperature TE above, but close to
7 K, which is significantly higher than that obtained in a spin
dimer system Sr14Cu24O41 where TE was found to be 2.1 K
[25]. This is an extraordinary result in view of the expectation
that condensed-matter systems having very large degrees of
freedom would decohere easily due to interactions with the
environment, inducing a quantum-to-classical transition [1].
Since the spin- 1

2 AfHc has highly symmetric states having
SU(2) global invariance [9], it was expected that such states
would exhibit a high degree of entanglement at high temper-
atures [6]. The existence of multipartite entanglement at very
high temperatures of 6.7 K, then, confirms this expectation.
Additionally, the temperature variation of FQ(T ) is seen to
follow the scaling hypothesis [27,30] of Eq. (6) very well, as
shown by the red solid line in Fig. 5(a):

FQ ∼ T −�Q/z, (6)

where �Q is the scaling exponent of QFI and z is the dynamic
critical exponent. Hauke et al. [27] proposed that systems
exhibiting the scaling behavior of Eq. (6) can identify a class
of strongly entangled QPT, namely, those QPTs that have a
divergent QFI. These are those transitions that have �Q > 0.

Since �Q was found to have a value of 0.55, a spin- 1
2 AfHc

belongs to the class of strongly entangled phase transitions
with divergent multipartite entanglement.

In Refs. [5,18,57], the authors argued that QPTs are gen-
uinely quantum mechanical, in that, the property responsible
for long-range correlations is entanglement, such that the
system is strongly entangled at the critical point. It is clear
from the above discussions that quantum Fisher information
can be used as a tool to identify strongly entangled quantum
phase transitions. Such an identification has been done in
the schematic representation of Fig. 5(b) where multipartite
entanglement is shown to govern the quantum critical region
that extends to finite temperatures from T = 0. At T = 0 and
H = 0, FQ has a very large value that decreases as one moves
to finite temperatures [cf. Fig. 5(a)]. It is known that a spin- 1

2
AfHc exhibits a line of continuously tuned quantum critical
points in the H-T plane by the application of a magnetic
field that ends at the critical endpoint Hc [39,42,46,48,49]. So,
the multipartite entanglement is expected to decrease with an
increase in field, due to a decrease in the spin-spin correlations
with field application [23,39,42,46]. Similar to the reduction
of FQ at finite temperatures for the H = 0 case, FQ is also
expected to decrease at finite temperatures at finite fields as
well. Finally, Vojta et al. [36] proposed that the temperature
at which universal behavior associated with a critical point
ceases to happen is governed by the characteristic energy
scale of the problem, which is the exchange coupling constant
in our case. It should be noted that, in our spin- 1

2 AfHc,
multipartite entanglement governing quantum criticality ex-
ists at a temperature of 6.7 K which is more than double the
exchange coupling constant (J/kB = 3.1 K) of our system. So,
entanglement temperature TE , rather than exchange coupling,
marks the end of quantum criticality in a spin- 1

2 AfHc.

FIG. 5. (a) Black filled circles denote the temperature variation of quantum Fisher information FQ(T ), calculated as described in the main
text. Red solid curve is a fit according to Eq. (6), where �Q, a fit parameter, was obtained as 0.55 and the dynamic critical exponent z governing
the magnetic field regime away from the critical endpoint Hc was taken as 1 [40,45]. (b) Schematic phase diagram of a spin- 1

2 antiferromagnetic
Heisenberg chain that has a line of quantum critical points at T = 0 (shown as a thick red line), where the horizontal axis denotes an applied
magnetic field, H , and the vertical axis is the temperature T . For a one-dimensional spin- 1

2 Heisenberg antiferromagnet, the quantum critical
state at H = 0 is that of an antiferromagnet that is continuously tuned with the application of a magnetic field and ends in a fully polarized state
at a critical endpoint Hc [39,42,46,48,49]. Due to the existence of a line of critical points at T = 0, a quantum critical region analogous to that
of a cone for a single critical point fans out to finite temperatures. Color plots represent variations of quantum Fisher information FQ inside the
quantum critical region with blue representing minimum values and yellow denoting maximum values. Since the antiferromagnetic correlations
decrease with an increase with magnetic field [39,42,46], a decrease of entanglement is expected for a spin- 1

2 AfHc with magnetic field [23].
J/kB has also been marked to show that FQ is small but still finite at J/kB. TE marks the entanglement temperature at which temperature
quantum Fisher information goes to zero and above which the system behaves classically.
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V. SUMMARY AND OUTLOOK

It has been shown that a spin- 1
2 antiferromagnetic Heisen-

berg chain, the seminal model of a quantum many-body
system, can detect multipartite entanglement via quantum
Fisher information. Multipartite entanglement was detected
using inelastic neutron scattering via dynamic susceptibil-
ity, which constitutes an experimental report of quantum
Fisher information in a quantum many-body system. The
multipartite entanglement was detected not only at the low-
est measured temperature of 40 mK but was also found
to survive to a very high temperature of 6.7 K, much
higher than the exchange energy of this system. The ob-
tained quantum Fisher information was also found to follow
the scaling behavior of systems corresponding to strongly
entangled quantum phase transition. Since the AfHc has a
high entanglement temperature, it is expected that the spin- 1

2
antiferromagnetic Heisenberg chain will have a high entan-
glement teleportation fidelity at high temperatures [1,10], to
enable our model spin- 1

2 antiferromagnetic Heisenberg chain
to be used as a bus to transmit quantum information at rel-
atively high temperatures enhancing its technological scope
manifolds.

This study has revealed the synergy between quantum in-
formation science and condensed-matter physics, wherein the
results of one area has been used to analyze and understand the
details of the other and vice versa. The complex ground-state
properties of a spin- 1

2 uniform Heisenberg antiferromagnetic
chain that contains all kinds of correlations were found to
be of paramount importance in detecting and quantifying
multipartite entanglement in it with possibilities of the antifer-
romagnet being used as a bus in a quantum computer which is
a many-body system. It is hoped that similar studies will lead
to deeper understanding of not only complicated condensed-
matter systems like high-temperature superconductivity [35]
but also areas of quantum information like quantum metrology
[29,34].
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APPENDIX: DEUTERATION OF SINGLE CRYSTALS,
SPINON SPECTRUM EXTRACTION, AND
FLUCTUATION-DISSIPATION THEOREM

1. Deuteration of single crystals

It is a very-well-known fact that hydrogen has a very high
incoherent-scattering cross section with neutrons [58,59],
leading to high background and bad signal-to-noise ratios
in inelastic neutron-scattering experiments. To avoid this,
crystals of [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n, molec-
ular formula C12H14CuN4O5 and molecular weight 357.8118
mol/g, were deuterated to [Cu(μ-C2O4)(D4-aminopyridine)2

(D2O)]n, molecular formula C12D14CuN4O5 and molec-
ular weight 371.9238 mol/g, by first deuterating the
starting reagents, namely, aminopyridine, to deuterated 4-
aminopyridine and K2[Cu(ox)2]2H2O to K2[Cu(ox)2]2D2O.
Details will be published elsewhere [60]. To confirm that the
deuteration took place, we did liquid chromatography high-
resolution mass spectroscopy (LC-HRMS) on a single crystal
of C12D14CuN4O5 as shown in Fig. 6(a). The main peak at
371.3155 corresponding to a fragment with m/z = 371.3155
can be clearly seen in the LC-HRMS spectra, indicating that
H/D exchange at the H site of C12H14CuN4O5 has taken
place.

FIG. 6. (a) High-resolution mass spectra obtained on a single crystal of C12D14CuN4O5, taken in the range of 150 to 2000 m/z using
Thermo Fischer Scientific’s Q Exactive TM Bench top LC-HRMS spectrometer. (b) Red curves correspond to neutron-diffraction data
measured on many co-aligned crystals totaling a mass of 0.5 g on the GEM time-of-flight neutron diffractometer at ISIS, Rutherford Appleton
Laboratory, United Kingdom The spectra shown are representative spectra measured on bank 3. Similar spectra were obtained from banks 1
and 2.
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FIG. 7. Single-crystal-like data, S(1D)
sx (Q1D, E ), showing the

spinon spectrum of our spin- 1
2 AfHc, obtained by applying the con-

version method using Eqs. (A1) and (A2) to the INS data at 40 mK.
Red and black solid lines represent the lower and upper bounds of
the spinon continuum. Colors indicate the neutron-scattering cross
section, S(Q, E ).

To further confirm that the crystals were deuterated, they
were subjected to neutron diffraction. The obtained neutron-
diffraction spectra are shown in Fig. 6(b) where the peaks
are indexed according to the crystal structure obtained for
C12H14CuN4O5 since single-crystal x-ray diffraction cannot
differentiate between H and D atoms. However, the flat back-
ground obtained in the neutron-diffraction data of Fig. 6(b) is
a clear indication that H/D exchange has taken place since H
atoms scatter neutrons incoherently, resulting in background
scattering and, consequently, an extremely noisy background
[58,59].

2. Spinon spectrum

To get information about the spin dispersion of our sys-
tem, the polycrystalline INS data presented in Fig. 3(a) were
converted to a single-crystal-like data, as shown in Fig. 7, by
using the conversion method suggested by Tomiyasu et al.
[61,62], applicable for one-dimensional systems. Accord-
ing to this method, the powder average scattering function
Spwd (Q, E ) (where Q = |Q|, E ) is related to the single crystal
scattering function Ssx(Q, E ) as

Spwd (Q, E ) =
∫

Q=Q
d	Ssx (Q, E )/(4π ), (A1)

where 	 is the solid angle over which the integral is done. For
one dimension, Ssx(Q, E ) reduces to S(1D)

sx (Q1D, E ), where

S(1D)
sx (Q1D, E ) = [∂QSpwd (Q, E )/∂Q]Q=Q1D

. (A2)

Using the extraction method, the obtained excitation spec-
trum Q-E for deuterated CuP is displayed in Fig. 7. It is to be
noted that, in an inelastic neutron-scattering experiment, only
a pair of spinons can be observed because of the selection rule
associated with a change in neutron spin by 1 in magnetic INS.
Our experimental data clearly show a continuum between

FIG. 8. Raw inelastic neutron-scattering data measured at ISIS,
Rutherford Appleton Laboratory, United Kingdom. Blue, wine, or-
ange and olive colored symbols denote the data points measured at
temperatures of 40 mK, 500 mK, 3 K, and 6.7 K, respectively. Red
solid curve is the resolution and background contribution obtained
using the FWHM of a standard vanadium sample.

the lower and upper spinon two-spinon boundaries given by
equations (A3) and (A4), respectively:

El (Q1D) = πJ

2
| sin (Q1Dc)|, (A3)

Eu(Q1D) = πJ

∣∣∣∣ sin
(Q1Dc

2

)∣∣∣∣, (A4)

where c is the lattice parameter along the chain direction. The
value of the exchange coupling constant J/kB was obtained
from magnetic susceptibility measurements (see Fig. 2). So, it
is very satisfying to observe that the spinon boundary obtained
using the exchange coupling constant from magnetization
measurements fit our INS data very well.

To capture the essential feature of the spinon spectrum,
especially intensity modulation and gap, the INS data (40 mK,
500 mK, 3 K, and 6.7 K) have been integrated over momentum
transfer Q from 0.4 to 1.1 Å−1 and plotted in Fig. 8 as a
function of energy. The elastic line background, shown as
solid red line in Fig. 8, was subtracted to obtain χ ′′(ω, T ).

3. Fluctuation-dissipation theorem

The dynamical structure factor, S(Q, ω), for a spin- 1
2 AfHc

was obtained as [43,44,52]

S(Q, ω) = 1

1 − e−h̄ω/kBT

AStarykh

πT
22�−3/2 sin(2π�)

(
ln

T0

T

) 1
2

×�2(1 − 2�)Im

(
�2

(
� − i ω

4πT

)
�2

(
1 − � − i ω

4πT

)
)

. (A5)

To convert S(Q, ω) to imaginary part of dynamic suscepti-
bility, χ ′′(Q, ω), we used the fluctuation dissipation theorem
[41,55]:

S(Q, ω) = (
1 − e− h̄ω

kBT
)−1

χ ′′(Q, ω). (A6)
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