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Dipole-coupled emitters as deterministic entangled photon-pair sources
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Scalable quantum systems require deterministic entangled photon pair sources. Here, we demonstrate a
scheme that uses a dipole-coupled emitter pair to deterministically emit polarization-entangled photon pairs.
Based on this scheme, we predict spectroscopic signatures and quantify the entanglement with realistic material
parameters. In addition, we describe how the Bell state fidelity and efficiency can be optimized by precisely
tuning transition frequencies. Finally, we discuss how defect emitters are natural candidates for the proposed
scheme, offering numerous advantages including flexible on-chip photonic integration and tunable emission
properties via external fields, electromagnetic environments, and defect selection.
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I. INTRODUCTION

Nonclassical states of light are important resources for
quantum technologies, such as quantum information pro-
cessing, networking, and metrology [1]. Entangled photon
pairs, in particular, have applications in solid-state quantum
repeaters, a crucial component of long-distance quantum net-
working that overcomes transmission loss by leveraging the
effects of entanglement swapping and quantum teleportation
[2–7]. Despite the diverse applications for such nonclassical
states of light, methods for generating them deterministically
remain limited. Currently, successful approaches are based
on spontaneous parametric down-conversion [8–10] or spon-
taneous four-wave mixing [11,12] with high performance
[13–15]. A major drawback of such methods is that the num-
ber of photon pairs generated follows a Poissonian distribution
[16], rendering the pair generation efficiency too low for
scalable quantum systems [3]. Semiconductor quantum dots
can deterministically emit entangled photon pairs via biexci-
ton decay cascade [2,17–24] with high fidelity and emission
efficiency. This mechanism, however, requires careful engi-
neering of quantum dots and pumping schemes that poses a
technological challenge, motivating the search for alternative
pathways to the generation pairs.

In this article, we provide the theoretical basis for a
deterministic entangled photon pair source from a pair of
dipole-coupled [25] three-level quantum emitters. Each emit-
ter consists of a ground state and two optically active
electronic excited states with mutually orthogonal transi-
tion dipole moments. The emergent electronic structure of
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the composite system then allows for the implementation
of a radiative decay cascade from a symmetric doubly ex-
cited state of the pair, which results in the emission of two
entangled photons of orthogonal polarization. We analyze
the resulting emission spectra to note qualitative signa-
tures of entanglement, especially in the cross-correlation
spectrum.

To better quantify the entanglement of the emitted photon
pairs in continuous frequency space, we calculate their en-
tanglement entropy S and Bell state fidelity F . Importantly,
Bell state fidelity F can be optimized at the expense of the
entanglement entropy S by tuning the defect transition dipole
moments and concentrating the probability density within
the states of interest, or the ideal Bell state. In addition,
we find that the entanglement measures of the emitted pho-
tons are robust to relative differences in frequency between
the intermediate states, while the fidelity in the presence of
phonon-based dephasing is limited when the dephasing rate is
on the order of the radiative rate or higher. We also present a
method of initializing the system with orthogonally polarized
continuous wave lasers that involves two-photon absorption to
enable Rabi oscillations between the ground and symmetric
doubly excited state of the pair.

This scheme has the advantage of requiring only emitters
with well understood singly-excited states that can be realized
by a variety of physical systems, whereas accurate determi-
nation of the energetics of multiply excited states from first
principles remains a challenge. We specifically discuss the
applicability of defect emitters, given their fixed geometries
enabling stable dipole coupling, diverse symmetries that allow
nondegenerate transitions with orthogonal transition dipole
moments, and emission properties that can be tailored via
external fields. In addition, the chemical selection space of
defect systems is vast. The present scheme is, however, likely
amenable to dipole-coupled quantum dots or molecules as
well, although they may lack certain advantages of dipole-
coupled defect centers. The ability to generate entangled
photon pairs from defects would enable on-chip integration
[12] with quantum memories and emitters, minimizing the
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FIG. 1. Energy level diagrams and dipole-allowed transitions,
where allowed x- and y-polarized transitions are in red and blue,
respectively. (a) A single three-level emitter. (b) Two distantly sep-
arated three-level emitters such that dipole coupling is negligible.
(c) Two dipole-coupled, three-level emitters. Bolded states and tran-
sitions (with transition frequencies ωX,1, ωX,2, ωY,1, and ωY,2) are
accessible when the system is prepared in |xyS〉.

need to transduce photons from source to storage to emission
in quantum technologies.

II. MODEL

The system consists of two three-level systems denoted
by i ∈ {α, β}. Each three-level system consists of a ground
state |gi〉, an excited state |xi〉 with energy h̄ωx and transition
dipole moment dxi = 〈xi|er|gi〉 = dxi x̂, and an excited state
|yi〉 with energy h̄ωy and transition dipole moment dyi =
〈yi|er|gi〉 = dyi ŷ, where r is the position operator and e is
the electron charge. The energy level diagram and dipole-
allowed transitions are plotted in Fig. 1(a). The Hamiltonian
Hi of each isolated three-level system can be written as Hi =
h̄ωx|xi〉〈xi| + h̄ωy|yi〉〈yi|.

When emitters α and β at positions rα and rβ , respectively,
are brought close and couple via electric dipole interactions,
the total electronic Hamiltonian Hel can be written in the
product space of the two three-level systems as

Hel = Hαβ + Hdip, (1)

where Hαβ = Hα + Hβ , and the dipole-coupling Hamiltonian
Hdip, in the rotating wave approximation (RWA) where we
have dropped double (de)excitations, is given by

Hdip =
∑

pq∈{x,y}
Jpq(|gp〉〈qg| + |qg〉〈gp|), (2)

where |rs〉 ≡ |rα〉|sβ〉 with r, s ∈ {g, x, y}, and transition
dipole moments are real. Although we assume the emit-
ter states do not have permanent dipole moments, we can

TABLE I. Eigenstates and eigenenergies of Hel.

Eigenstate Eigenenergy

1 |g〉 ≡ |gg〉 h̄ωg = 0

2 |yA〉 ≡ 1√
2
(|gy〉 − |yg〉) h̄ωyA = h̄ωy − Jyy

3 |yS〉 ≡ 1√
2
(|gy〉 + |yg〉) h̄ωyS = h̄ωy + Jyy

4 |xS〉 ≡ 1√
2
(|gx〉 + |xg〉) h̄ωxS = h̄ωx − Jxx

5 |xA〉 ≡ 1√
2
(|gx〉 − |xg〉 h̄ωxA = h̄ωx + Jxx

6 |yy〉 h̄ωyy = 2h̄ωy

7 |xyS〉 ≡ 1√
2
(|xy〉 + |yx〉) h̄ωxyS = h̄(ωx + ωy )

8 |xyA〉 ≡ 1√
2
(|xy〉 − |yx〉) h̄ωxyA = h̄ωxyS

9 |xx〉 h̄ωxx = 2h̄ωx

include the interactions of static dipoles as diagonal terms
in the single-emitter subspace. We also assume the orbitals
of neighboring emitters do not hybridize in the interdefect
ranges considered to be a few to tens of nanometers because,
for defects specifically, orbitals can be localized within a few
angstroms [26–30]. The dipole interaction energy Jpq is [25]

Jpq =
∣∣d pα

∣∣|dqβ

∣∣
4πε0εr |rα − rβ |3

[
epα

· eqβ
− 3

(
epα

· n
)(

eqβ
· n

)]
, (3)

where εr is the relative permittivity of the host material, esi

is the unit vector of the dipole moment dsi , and n is the unit
vector of rα − rβ . The coupling rates Jpq can be calculated
from the ab initio transition charge densities of the respective
electronic transitions or can be obtained directly from the ab
initio calculations of the excited states of the coupled emitter
pair. Since transition dipole moments can be on the order of
∼1 eÅ in small- to medium-sized molecules [31] on the same
size scale as defect emitters, we estimate that emitters spaced
a few nm apart can have dipole interaction energies on the
order of tens of μeV.

Assuming for the sake of simplicity that n lies on the x
axis, and that the dipole moments of the same polarizations
of emitters α and β are identical (dx ≡ dxα

= dxβ
and dy ≡

dyα
= dyβ

), Hel can be diagonalized to produce nine eigen-
states with eigenenergies listed in Table I. The subscripts “A”
and “S” stand for “antisymmetric” and “symmetric” combi-
nations, respectively. The energy diagram of the eigenstates
of Hαβ and Hel and their dipole-allowed transitions, derived
from the dipole operator d listed in Table II in Appendix A,
are plotted in Figs. 1(b) and 1(c). Notably, direct transitions
between symmetric and antisymmetric states are dipole for-
bidden. From the energy diagram corresponding to Hel, we
see that a polarization-entangled photon pair can be emitted
when the system is prepared in |xyS〉 and irreversibly decays.

We calculate emission spectra into free space by coupling
the emitter system initially prepared in |xyS〉 to an unexcited
continuum of photon modes and solving the time-dependent
Schrödinger equation under the Weisskopf-Wigner approxi-
mation [32], similar to the approach introduced in Ref. [33].
The total Hamiltonian H of the coupled emitter-photon
system is

H = Hel + Hph + Hel−ph. (4)
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FIG. 2. Spectra of emitted polarization-entangled photon pair.
(a) The single-photon spectra NX (ω j ) and NY (ωk ) corresponding
to x- and y-polarized photons, respectively, and (b) the cross-
correlation function NXY (ω j, ωk ). Based on experimentally observed
ranges of parameters, we set ωyS = 2 eV, ωxS = ωyS + 10 μeV, dx =
dy = 1 eÅ, |rα − rβ | = 5 nm, εr = 2, and γg,yS = 0.2 μeV.

The photonic Hamiltonian Hph is Hph = ∑
jl h̄ω ja

†
jl a jl , where

a jl (a†
jl ) are annihilation (creation) operators of the jth mode

in the electromagnetic vacuum of free space with polariza-
tion l ∈ {X,Y } and energy h̄ω j . In Hph, we have dropped
the zero-point contribution with no loss of generality. The
electron-photon coupling Hamiltonian in the RWA and dipole
approximation is Hel−ph = −∑

op jl E jl · dop|o〉〈p|a†
jl + H.c.,

where E jl is the electric field with magnitude E in the l direc-
tion that we assume to be constant for all j, and dop = 〈o|er|p〉
with |o〉 and |p〉 being quantum states of the combined two-
emitter system.

The ansatz for a general electron-photon wave function,
noting that for a system prepared in |xyS〉 there can be a
maximum of two excitations distributed among the electronic
and photonic states, is

|�(t )〉 =
∑

jk

cg
jk|g〉a†

jX a†
kY |vac〉 +

∑
j

cxS
j |xS〉a†

jY |vac〉

+
∑

j

cyS
j |yS〉a†

jX |vac〉 + cxyS |xyS〉|vac〉, (5)

where j and k are indices for the continuum of photon modes
and |vac〉 is the photon vacuum state, and cg

jk , cxS
j , cyS

j , and
cxyS are time-dependent amplitudes. We have dropped all an-
tisymmetric, |yy〉, and |xx〉 terms because the emitter system
is initially prepared in |xyS〉.

We solve the time-dependent Schrödinger equation under
the Weisskopf-Wigner approximation to find the final state
of the electron-photon system under irreversible spontaneous
decay [33]:

|�(∞)〉 =
∑

jk

cg
jk (∞)|g〉a†

jX a†
kY |vac〉, (6)

where

cg
jk (∞) =

−	g,xS 	xS,xyS
iωxS −iω j+γg,xS

+ −	g,yS 	yS ,xyS
iωyS −iωk+γg,yS

i
(
ωxyS − ω j − ωk

) + γxS,xyS + γyS,xyS

, (7)

	op = −E |dop|/h̄, γop = E2|dop|2/
, and 
 is the fre-
quency spacing. Further details on obtaining Eq. (7) are in
Appendix B.

III. ENTANGLED PHOTON PAIRS

We explore the physical parameters that result in photon
pair entanglement. First, we calculate spectra for a photon
pair emitted by a dipole-coupled emitter pair and note spec-
tral signatures of entanglement. We optimize the Bell state
fidelity by tuning transition frequencies. These changes can
be implemented by appropriate selection of an emitter system
or applying external fields.

The emission cascade caused by the radiative decay of the
optically excitable |xyS〉 state of the composite emitter-emitter
system results in the emission of x- and y-polarized photons
whose number spectra are generally distinct, as we show in
Fig. 2(a) for the parameters given in the figure caption. We
calculate the number spectra, or the probability of finding
an x-polarized (y-polarized) photon with frequency ω j [ωk],
as NX (ω j ) = ∑

k |cg
jk|2 [NY (ωk ) = ∑

j |cg
jk|2]. While the x-

polarized photon spectrum NX (ω j ) (blue curve) peaks around
the frequencies ωX,1 and ωX,2, the maxima of the y-polarized
spectrum are found at ωY,1 and ωY,2, corresponding to the
respective transitions in the two-photon cascade depicted in
Fig. 1(c) as blue and red lines.

The emitted x- and y-polarized photons of different fre-
quencies exhibit nontrivial correlations. We plot in Fig. 2(a)
the cross-correlation function NXY (ω j, ωk ) = |cg

jk|2, measur-
ing the probability to simultaneously detect an x-polarized
photon of frequency ω j and a y-polarized photon of frequency
ωk . The cross-correlation function features local maxima at
two points. When an x-polarized photon is detected with fre-
quency ωX,1, the y-polarized photon is most likely detected
with frequency ωY,2 [i.e., NXY (ωX,1, ωY,2) is a maximum], and
when an x-polarized photon is detected with frequency ωX,2,
the probability of simultaneously finding a y-polarized photon
peaks for frequency ωY,1. This correlated behavior for a pure
state is an intuitive signature of bipartite entanglement.

We consider two metrics to rigorously quantify the en-
tanglement of emitted photon pairs. The first metric is the
entanglement entropy S [34–36]:

S = −
∑

n

|λn|2log2|λn|2. (8)

We find the singular values λn by Schmidt decomposition of
the photonic portion |�ph〉 of the final state in Eq. (6):

|�ph〉 =
∑

n

λnb†
nX c†

nY |vac〉, (9)

where the creation operators b†
nX = ∑

j ψn ja
†
jX and

c†
nY = ∑

k φnka†
kY in the Schmidt basis, λn represent wave

function coefficients in decreasing order with n starting at 0
and incrementing by 1, and ψn j and φnk are the eigenfunctions
of cg

jk . The entanglement entropy is zero if the state is
factorizable and greater than zero for an entangled state.

In protocols based on entanglement, it is often convenient
to work directly with Bell states, so the second and third
metrics we consider are the Bell state efficiency η and fidelity
F , where the Bell state |�+〉 = 1√

2
(|10〉 + |01〉) in the log-

ical basis. To write |�ph〉 in the logical basis, we assign the
Schmidt states defined by the two pairs of b†

nX and c†
nY with
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FIG. 3. Entanglement optimization. (a) Entanglement entropy S, Bell state efficiency η, and Bell state fidelity F for varying ωY,2 − ωY,1 =
ωX,2 − ωX,1, effected by changing dx . The pink line (i) corresponds to the conditions in Fig. 2. (b) Magnified near ωY,2 − ωY,1 = 0. Both
S and F are minimized at (ii), and both η and F > 0.90 at (iii). (c) Singular values (wave function coefficients) of entangled photon pairs
corresponding to conditions marked by (i), (ii), and (iii) in Figs. 3(a) and 3(b).

the highest λn to |10〉 and |01〉, respectively:

|�ph〉 = λ0|10〉 + λ1|01〉 +
∑
n�2

λnb†
nX c†

nY |vac〉. (10)

We trace out all states where n � 2 to write the reduced
density matrix ρR as

ρR = (
λ2

0 + λ2
1

)|ψ〉〈ψ | +
∑
n�2

λ2
n|00〉〈00|, (11)

where |ψ〉 = 1/

√
λ2

0 + λ2
1(λ0|10〉 + λ1|01〉). The efficiency η

of collecting |10〉 and |01〉 is

η = λ2
0 + λ2

1, (12)

and the Bell state fidelity F = |〈�+|ψ〉|2 is

F = 1

2

(λ0 + λ1)2

λ2
0 + λ2

1

. (13)

In Fig. 3 we show how the entanglement can be opti-
mized by tuning emitter parameters. In Fig. 3(a), we sweep
dx while holding all other physical parameters described in
Fig. 2 constant. As a result, ωY,2 [ωX,2] shifts relative to
ωY,1 [ωX,1], modulating the distance between peaks of the
single-photon spectrum of a given polarization. Notably, for
the exact conditions plotted in Fig. 2, dx = dy, F is nearly 1
while η = 0.69. In Fig. 3(b), we zoom into the region around
ωY,2 = ωY,1, corresponding to dx = 1√

2
dy. Here we observe a

minimum in S and F and a maximum in η. The entanglement
entropy drops here because the frequency of a photon with
a given polarization emitted by one of the two decay paths
is the same as the photon with a given polarization emitted
via the other decay path, so photon pairs emitted by either
of the two decay paths are identical. The finite linewidth of
the emissions, however, permits entanglement among photon
modes within this peak, so the entanglement entropy does not
bottom out at 0.

F and η of the Bell pair change in opposite directions sur-
rounding the minimum of F and S. To understand the origin
of this observation, in Fig. 3(c) we plot the first few Schmidt
coefficients λn when: (i) dx = dy, corresponding to the state
analyzed in Fig. 2, (ii) S and F are minimized, and (iii) both
η and F > 0.90. In (i), we see that λn come in pairs, mean-

ing that this state is a superposition of many high-fidelity,
polarization-entangled Bell states. In (ii), where S and F are
minimized, λn decays more quickly than in (i). Nearly all of
the population is concentrated in the first state, so there are
fewer entangled states, lowering S. A balance is achieved in
(iii) where probability density is concentrated within the first
two pairs of entangled states, but λ0 	= λ1. Thus, by tuning the
transition frequencies, we can optimize for F or η. The entan-
glement measures are robust to changes in ωX,1 − ωY,1, and F
and S are relatively unaffected by up to an order of magnitude
increase in γg,yS , as shown in Appendix C. We also show that
the fidelity in the presence of dephasing is limited by the
radiative linewidth ∼γg,yS in Appendix D, suggesting optimal
operation under dilution fridge conditions. Finally, we note
that the emitted photon pairs can undergo entanglement distil-
lation to further enhance the Bell state fidelity [34,37–40].

IV. PUMPING SCHEME

We next describe a possible pumping scheme involving
two-photon absorption via continuous wave lasers to initialize
the composite emitter system in the doubly excited |xyS〉 state
from which the entangled photon pair is emitted after radiative
decay cascade, analogous to schemes proposed for the
Mølmer-Sørensen gate [41] and biexcitonic semiconducting
quantum dots [42]. We consider a general scenario where
the transition frequencies ωX,1 	= ωX,2 and ωY,1 	= ωY,2.
In this case each electronic transition of the system can
be selectively addressed by choosing the right polarization
and frequency of an external laser drive. In particular, the
following two-photon driving Hamiltonian H can be realized
if two lasers of polarizations and amplitudes Exx̂ and Eyŷ, and
respective frequencies ω̃X,1 = ωX,1 + δ and ω̃Y,2 = ωY,2 − δ,
are used to illuminate the system:

Hdrive

h̄
= |g〉〈xS|

√
2(Exe−iω̃X,1t + E∗

x eiω̃X,1t )

+ |xS〉〈xyS|(Eye−iω̃Y,2t + E∗
y eiω̃Y,2t )

+ |g〉〈yS|
√

2(Eye−iω̃Y,2t + E∗
y eiω̃Y,2t )

+ |yS〉〈xyS|(Exe−iω̃X,1t + E∗
x eiω̃X,1t )
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+ |xS〉〈xx|
√

2(Exe−iω̃X,1t + E∗
x eiω̃X,1t )

+ |yS〉〈yy|
√

2(Eye−iω̃Y,2t + E∗
y eiω̃Y,2t ) + H.c. (14)

If we further assume that δ < |ωX,1 − ωX,2|, |ωY,1 − ωY,2|,
the first two lines of Eq. (14) represent a drive that is nearly
resonant with the respective electronic transitions, whereas
the remaining lines are off resonant. Furthermore, we assume
that the sum of the drive frequencies is resonant with the
two-photon transition from the ground state |g〉 to the doubly
excited state |xyS〉 (ω̃X,1 + ω̃Y,2 = ωX,1 + ωY,2). In this case
it is possible to apply the rotating-wave approximation and
neglect the off-resonant terms:

Hdrive

h̄
≈ |g〉〈xS|

√
2E∗

x eiω̃X,1t + |xS〉〈xyS|E∗
y eiω̃Y,2t + H.c.

(15)

We derive the effective Hamiltonian of the driven system by
first considering the dynamics of a trial wave function:

|ψdrive〉 = ag|g〉 + axS |xS〉 + ayS |yS〉 + axyS |xyS〉, (16)

under the Hamiltonian in Eq. (15) expressed in the interaction
picture with respect to the Hamitonian of the bare system
(neglecting the small broadening due to spontaneous emission
for the purpose of this derivation):

Hsys

h̄
= ωX,1|xS〉〈xS| + ωY,1|yS〉〈yS| + ωxyS |xyS〉〈xyS|. (17)

The following differential equations can be obtained:

ȧg = − i
√

2E∗
x eiδt axS

− i
√

2E∗
y e−i(ωY,1−ω̃Y,2 )t ayS , (18)

ȧxS = − i
√

2Exei(ωX,1−ω̃X,1 )t ag

− iE∗
y e−i(ωY,2−ω̃Y,2 )t axyS , (19)

ȧyS = − i
√

2Eyei(ωY,1−ω̃Y,2 )t ag

− iE∗
x e−i(ωX,2−ω̃X,1 )t axyS , (20)

ȧxyS = − iExei(ωX,2−ω̃X,1 )t ayS

− iEyeiδt axS . (21)

Equations (19) and (20) can be used to eliminate axS and ayS

in the adiabatic approximation:

axS ≈
√

2Exag + E∗
y axyS

δ
e−iδt , (22)

ayS ≈
√

2Ey

ω̃Y,2 − ωY,1
e−i(ω̃Y,2−ωY,1 )t ag

+ E∗
x

ωX,2 − ω̃X,1
e−i(ωX,2−ω̃X,1 )t axyS . (23)

Eqs. (22) and (23) can be inserted into Eqs. (18) and (21).
Neglecting rotating terms and small energy shifts, the
effective dynamics are

ȧg = −igeff a
xyS , (24)

ȧxyS = −ig∗
effa

g, (25)

which correspond to the effective Hamiltonian

H eff
drive ≈ h̄geff |g〉〈xyS| + H.c., (26)

with

geff =
√

2E∗
x E∗

y

δ
. (27)

This Hamiltonian induces Rabi oscillations between |g〉 and
|xyS〉 with frequency 2|geff |. If the illumination is applied
for time τdrive = π/(2|geff |), the system is driven from
the ground state to the desired state |xyS〉. An analogous
pumping scheme exploiting the state |yS〉 with two lasers
of polarizations and amplitudes Exx̂ and Eyŷ, and respective
frequencies ω̃X,2 = ωX,2 − δ and ω̃Y,1 = ωY,1 + δ, could be
used to drive the system into the doubly excited state as well.
Lastly, we remark that optimizing pumping schemes for state
preparation of highly excited states, such as the |xyS〉 state that
account for phonon-based dephasing and phonon-assisted
transitions, is a complex and active area of research, as
evidenced in the field of semiconducting quantum dots for
deterministic generation of entangled photon pairs [43–52].

V. CONCLUSIONS

The present study provides the theoretical basis for a de-
terministic entangled photon-pair source from dipole-coupled
emitters. Specifically, we dipole couple two three-level emit-
ter systems, each with excited states with orthogonal transition
dipole moments, to form a composite emitter system. When
the composite emitter system is excited to a symmetric dou-
bly excited state and subsequently deexcites in a radiative
cascade, two entangled photons are emitted. We find that
the entanglement measures of the emitted photons are robust
to relative differences in frequency between the intermediate
states. Importantly, the Bell state fidelity F and efficiency η

can be optimized, for example, by tuning the defect transition
dipole moments.

The proposed scheme is especially amenable to defect
emitters, although quantum dots or fixed molecules may be
used to realize the scheme as well. Defects in both 2D and 3D
have wide applicability in quantum technologies, especially
as quantum memories because they combine the favorable
coherence and nonclassical emission properties of isolated
atoms [53,54] with the scalability and stability of solid-state
technologies [55–58]. A key breakthrough that highlights
their applicability is the experimental demonstration of
memory-enhanced quantum communication for quantum
repeaters [59].

Defects are natural candidates because of their fixed ge-
ometries enabling stable dipole coupling, diverse symmetries
that allow well defined and orthogonal transition dipole mo-
ments, and emission properties that can be tailored chemically
or externally and also integrated on-chip for a variety of quan-
tum technologies. In addition, the chemical selection space
of defect systems is vast, as the chemical identity of the
defect and surrounding matrix can be permuted to discover
the appropriate system for a specific application [60]. Because
accurately computing multiple excited states remains a signif-
icant challenge [61], the present scheme involving just singly
excited states is more amenable to computational searches
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TABLE II. The dipole operator d in the eigenbasis.

Initial Final d

|g〉 |xS〉
√

2dxx̂
|g〉 |yS〉

√
2dyŷ

|xS〉 |xyS〉 dyŷ
|yS〉 |xyS〉 dxx̂
|xS〉 |xx〉 √

2dxx̂
|yS〉 |yy〉 √

2dyŷ
|xA〉 |xyA〉 dyŷ
|yA〉 |xyA〉 dxx̂

of defect system candidates. A current challenge of realizing
defect-based quantum emitters, however, is the relatively low
phonon-limited quantum efficiency, the highest of which has
been observed to be 87% ± 7% for single-photon emitters in
hBN [62] as compared to theoretical predictions of >96%
phonon-limited quantum efficiency in semiconductor quan-
tum dots with realistic experimental parameters [63]. As is the
case in semiconductor quantum dots [33,49,64–66], system
imperfections of defect-based systems may be modulated by
coupling defects to external fields, including electric, mag-
netic, and strain, as well as to waveguides and sculpted elec-
tromagnetic environments of cavities to improve fidelity and
collection efficiency. Several of these effects have been stud-
ied extensively in defect systems [67–72], thereby enabling
near-term experimental observations of the present proposal.
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APPENDIX A: DIPOLE OPERATOR

We explicitly write the dipole operator in the eigenbasis of
the total electronic Hamiltonian Hel in Table II.

APPENDIX B: WEISSKOPF-WIGNER APPROXIMATION

Here we explicitly show how we obtain Eq. (7) in the main
text, the wave function coefficient of the steady state electron-
photon state. We reproduce the ansatz for a general electron-
photon wave function from Eq. (5) in the main text:

|�(t )〉 =
∑

jk

cg
jk|g〉a†

jX a†
kY |vac〉 +

∑
j

cxS
j |xS〉a†

jY |vac〉

+
∑

j

cyS
j |yS〉a†

jX |vac〉 + cxyS |xyS〉|vac〉. (B1)

The interaction Hamiltonian is:

Hint =
∑

j

	yS,xyS |yS, 1 jX , 0kY 〉〈xyS| + H.c.

+
∑

j

	xS,xyS |xS, 0kX , 1 jY 〉〈xyS| + H.c.

+
∑

jk

	g,yS |g, 1 jX , 1kY 〉〈yS, 1 jX , 0kY | + H.c.

+
∑

jk

	g,xS |g, 1 jX , 1kY 〉〈xS, 0 jX , 1kY | + H.c. (B2)

We now plug this state vector into the Schrödinger equation
to derive the differential equations for the coefficients:

d

dt
cxyS = −iωxyS cxyS − i

∑
j

	yS,xyS cyS
j − i

∑
j

	xS,xyS cxS
j ,

(B3)
d

dt
cxS

j = −i(ωxS + ω j )c
xS
j − i	xS,xyS cxyS − i

∑
k

	g,xS cg
jk,

(B4)
d

dt
cyS

j = −i(ωyS + ω j )c
yS
j − i	yS,xyS cxyS − i

∑
k

	g,yS cg
jk,

(B5)
d

dt
cg

jk = −i(ω j + ωk )cg
jk − i	g,yS cyS

j − i	g,xS cxS
j , (B6)

where we assume 	op is real. We now solve the differential
equations in the Weisskopf-Wigner approximation. We first
take Eq. (B4) and formally integrate it:

cxS
j = cxS

j (0)e−i(ωxS +ωk )t − i	xS,xyS

∫ t

0
e−i(ωxS +ωk )(t−τ )cxyS (τ )dτ

− i	g,xS

∫ t

0
e−i(ωxS +ωk )(t−τ )cg

jk (τ )dτ. (B7)

We get an analogous equation for cyS
j and insert both into

Eq. (B3):

d

dt
cxyS = −iωxyS cxyS − i

∑
j

	yS,xyS

(
− i	yS,xyS

∫ t

0
e−i(ωyS +ωk )(t−τ )cxyS (τ )dτ − i	g,yS

∫ t

0
e−i(ωyS +ωk )(t−τ )cg

jk (τ )dτ

)

− i
∑

j

	x,xyS

(
− i	xS,xyS

∫ t

0
e−i(ωxS +ωk )(t−τ )cxyS (τ )dτ − i	g,xS

∫ t

0
e−i(ωxS +ωk )(t−τ )cg

jk (τ )dτ

)
, (B8)
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In the Weisskopf-Wigner approximation it is commonly as-
sumed that the time integrals can be extended to infinity
and that the τ dependent coefficients can be extracted from
the integral by setting τ = t . Since we are operating in the
Schrödinger picture, we have to perform this procedure with
caution and define the slowly-varying amplitudes of a coeffi-
cient cA(τ ) = e−iωAτ c̃A(τ ). We then set c̃A(τ ) ≈ c̃A(t ), which
is equivalent to performing the Markov approximation in the
interaction picture. In this approximation we get:

−
∑

j

|	yS,xyS |2
∫ t

0
e−i(ωyS +ωk )(t−τ )e−iωxyS τ c̃xyS (τ )dτ

≈ −
∑

j

|	yS,xyS |2c̃xyS (t )
∫ t

0
e−i(ωyS +ωk )(t−τ )e−iωxyS τ dτ.

(B9)

The integral in the last line can be further decomposed and the
lower integration limit can be extended to −∞:

e−i(ωyS +ωk )t
∫ t

−∞
e−i(ωxyS −ωyS −ω j )τ dτ

≈ e−iωxyS t

(
πδ(ωxyS − ωyS − ω j ) + iP

{
1

ωxyS − ωyS − ω j

})
.

(B10)

We further neglect the imaginary part of the parenthesis, the
principal part (P{}) that generally leads to a spectral shift, and
we retain only the delta function. We note that, in the discrete
case, δ(ωk − ω j ) → δ jk/
 (which is a discrete representation
of the delta function). Notice also that e−iωxyS t c̃xyS (t ) = cxyS (t ).
We therefore get the result:

−
∑

j

|	yS,xyS |2
∫ t

0
e−i(ωyS +ωk )(t−τ )cxyS (τ )dτ

≈ −π |	yS,xyS |2



cxyS (t ) ≡ −γyS,xyS cxyS (t ). (B11)

We get a similar result for the first term in the second paren-
thesis of Eq. (B8):

≈ −γxS,xyS cxyS (t ). (B12)

The remaining terms in Eq. (B8) yield after applying the same
procedure:

−π
∑

j

[
	yS,xyS	g,yS cg

jk (t )δ(ωk − ωyS )

+	xS,xyS	g,xS cg
k j (t )δ(ωk − ωxS )

]
. (B13)

This term is neglected in the calculations because of the fre-
quency restriction imposed by the delta function, although in
principle this term is of the same order as the terms leading to
decay. We therefore obtain:

d

dt
cxyS = −iωxyS cxyS − (γxS,xyS + γyS,xyS )cxyS . (B14)

Similarly, we can derive the remaining differential equa-
tions:

d

dt
cxS

j = −i(ωxS + ω j )c
xS
j − γg,xS cxS

j − i	xS,xyS cxyS , (B15)

FIG. 4. Entanglement entropy S, Bell state fidelity F , and Bell
state efficiency η are (a) unaffected by varying ωX,1 and (b) impacted
by increasing the emission line width. The pink line (i) corresponds
to the conditions in Fig. 2 of the main text.

d

dt
cyS

j = −i(ωyS + ω j )c
yS
j − γg,yS cyS

j − i	yS,xyS cxyS , (B16)

d

dt
cg

jk = −i(ω j + ωk )cg
jk − i	g,yS cyS

j − i	g,xS cxS
k . (B17)

This system of equations can be solved with the initial condi-
tions:

cxyS (0) = 1,

cxS
j (0) = cyS

j (0) = cg
jk (0) = 0,

with the following steady-state solution in the rotating frame:

c̃g
jk (∞) =

−	g,xS 	xS ,xyS
iωxS −iω j+γg,xS

+ −	g,yS 	yS,xyS
iωyS −iωk+γg,yS

i(ωxyS − ω j − ωk ) + γxS,xyS + γyS,xyS

, (B18)

which matches Eq. (7) in the main text.

APPENDIX C: ROBUST ENTANGLEMENT

In Fig. 4, we show that the entanglement of the emitted
photon pair is robust to changes in ωX,1 relative to ωY,1, while
F and S decrease as γg,yS increases.
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APPENDIX D: DEPHASING

We consider the impact of emitter imperfections, such as
phonon-based dephasing of defect emitters, that results in
fluctuations in the energies of the defect emitters. We imple-
ment the effect of dephasing by averaging the final states of
the emitted photons over an ensemble of quantum states gen-
erated using a probabilty distribution of emitter frequencies,
reflecting the broadening of the transition frequencies due to
dephasing effects [73]. The fidelity Fde in the presence of
dephasing can be estimated as

Fde =
∫∫∫ [

dω0
xS

dω0
yS

dω0
xyS

P
(
ω0

xS
, ω0

yS
, ω0

xyS
, σ

)
∣∣〈ψde

(
ω0

xS
, ω0

yS
, ω0

xyS

)∣∣�+〉∣∣2]
, (D1)

where |ψde(ωxS , ωyS , ωxyS )〉 is calculated just as |ψ〉 is in
Eq. (11), except that the central frequencies of the emitters
ωi are substituted by ω0

i in Eq. (7), where i ∈ {xS, yS, xyS}.
Explicitly, |ψ〉 = |ψde(ωxS , ωyS , ωxyS )〉, as in Eq. (11). We
assume that ω0

xS
, ω0

yS
, and ωxyS belong to a probability distribu-

tion P. While the exact probability distribution depends on the
microscopic physical mechanism underlying dephasing, we
choose to represent P as a 3D Gaussian [74]

∏
i Gi(
ωi, σ ),

physically representing independent fluctuations of the energy
levels of the relevant excited states following a Gaussian dis-
tribution. We plot the fidelity in the presence of phonon-based
dephasing in Fig. 5, where σi is the full width at half max-
imum, representing the dephasing rate and 
ωi = ω0

i − ωi.

FIG. 5. Fidelity Fde in the presence of Gaussian dephasing with
dephasing rate σ , normalized by the radiative rate γg,xS , for the
conditions corresponding to the pink lines in Figs. 3 and 4.

The fidelity in the presence of dephasing Fde is limited by the
radiative linewidth γg,xS , suggesting ideal operation in dilution
fridges for the rates described here. Lastly, we note that while
we have considered the effect of phonon-based dephasing
on the performance of the presently described scheme, we
have not considered phonon-assisted transitions between, for
instance, symmetric and antisymmetric states in the composite
energy diagram in Fig. 1. These effects are known to have
a major impact on the resulting collection efficiency of en-
tangled photon pairs from the biexciton decay cascade of
semiconducting quantum dots, as described in Sec. IV, and
warrant further investigation upon selection of a candidate
defect system.
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