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Effective temperature of a superfluid flowing in a random potential
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The spatial fluctuations of a superfluid flowing in a weak random potential are investigated. We employ
classical field theory to demonstrate that the disorder-averaged nonequilibrium second-order correlation of
the order parameter at zero temperature is identical to the thermally averaged equilibrium counterpart of a
uniform superfluid at an effective temperature. The physics behind this equivalence is that scattering of a moving
condensate by disorder has the same effect on the correlation function as equilibrium thermal excitations. The
correlation function exhibits an exponential decay in one dimension and a power-law decay in two dimensions.
We show that the effective temperature can be measured in an interference experiment of ultracold atomic gases.
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I. INTRODUCTION

The universality of thermodynamics and statistical me-
chanics is attributed to the fact that macroscopic states of
equilibrium systems can be described by a few key parame-
ters such as temperature and pressure. It is the lack of such
phenomenological parameters in nonequilibrium states that
makes it so challenging to establish a general framework
of nonequilibrium statistical mechanics. However, for some
classes of nonequilibrium systems the notion of effective
temperature is known to allow an approximate thermody-
namic description of nonequilibrium states [1,2], and it has
successfully been applied to a wide variety of driven sys-
tems including granular matter [3,4], structural glasses [5–8],
coarsening systems [9,10], turbulence [11], and driven dissi-
pative exciton-polariton systems [12,13].

With remarkable experimental progress in ultracold atomic
gases, the nonequilibrium dynamics of Bose-Einstein con-
densates has attracted considerable attention [14–17]. A
superfluid exhibits dissipationless and stationary flow of mat-
ter as long as the flow velocity is below a certain critical value.
The absence of dissipation distinguishes a superfluid state
with a nonzero current from typical nonequilibrium steady
states maintained by the balance between external driving and
energy dissipation. It is therefore of fundamental interest to
investigate whether the notion of an effective temperature is
viable in nonequilibrium superfluid systems.

In this paper, we consider a superflow in a weak random
potential. The effect of disorder on superfluidity has been a
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long-standing problem in condensed matter physics [18–26].
In the ground state, weak disorder does not affect the global
phase coherence except for a small depletion of the conden-
sate fraction [19,21]. The stability of a superflow in a random
potential has also been investigated theoretically [27–30] and
experimentally [31–35]. In this paper, we focus on the spa-
tial phase fluctuations of the superfluid order parameter in a
stationary flow. Within classical field theory, we demonstrate
that the disorder-averaged nonequilibrium second-order cor-
relation of the order parameter at zero temperature is identical
to the thermally averaged equilibrium counterpart of a uni-
form superfluid at an effective temperature. In particular, the
disorder-averaged correlation exhibits an exponential decay
in one dimension and a power-law decay in two dimensions.
We argue that scattering of a moving condensate by disorder
has the same effect as thermal excitations, and the superfluid
flowing in a random potential can be identified with a uniform
system at thermal equilibrium with an effective temperature.
The effective temperature is shown to be proportional to the
square of disorder strength and that of the flow velocity in a
weak disorder and small velocity regime, and diverges as the
flow velocity approaches the sound velocity of the condensate.

The decay behavior of the disorder-averaged correla-
tion in one and two dimensions is reminiscent of the
Hohenberg-Mermin-Wagner theorem for a system with con-
tinuous symmetry, which states that the thermally averaged
correlation of the order parameter decays in one and two
dimensions [36–38]. It is of fundamental importance in
nonequilibrium statistical physics to understand how and
when nonequilibrium driving destroys an ordered phase that
is stable in equilibrium [39]. Our paper offers a general
mechanism responsible for the breakdown of off-diagonal
long-range order of a superfluid due to the interplay between
nonequilibrium current and disorder.

This paper is organized as follows. In Sec. II, we introduce
a generic model for disordered Bose systems. We employ
the classical field approximation, in which the dynamics of
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a bosonic field is described by a c-number field obeying a
nonlinear Schrödinger equation. In Sec. III, we calculate the
correlation function of the superfluid order parameter in the
presence of a flow at zero temperature and show that it is iden-
tical to that of a thermal-equilibrium uniform superfluid at an
effective temperature. We discuss the underlying mechanism
for the emergence of such thermal behavior. In Sec. IV, we
derive an explicit expression of the correlation function of a
Bose gas flowing in a random potential to the leading order in
the disorder strength. We estimate the effective temperature
by using typical parameters for ultracold atomic gases. In
Sec. V, we numerically calculate the disorder-averaged cor-
relation function to confirm the perturbative results obtained
in Sec. IV. We find that our qualitative predictions for the
correlation function still hold for a moderately strong disorder.
In Sec. VI, we propose an interference experiment to measure
the disorder-averaged correlation for a Bose gas flowing in a
random potential. Finally, Sec. VII is devoted to conclusions
and outlook for future study.

II. MODEL

In the classical field theory, bosonic field operators in a
quantum Hamiltonian are replaced by a classical field �.
We consider a single-component superfluid described by the
following Hamiltonian in spatial dimension D subject to the
periodic boundary conditions with period L in all directions:

H[�] =
∫

dDr
[

1

2
Z (n; λ)|∇�|2 + U (n; κ )

]
, (1)

where Z (n; λ) (>0) and U (n; κ ) are analytic functions of
the density n := |�|2 and randomness parameters λ and κ .
Explicit forms of these functions are not needed for the gen-
eral discussion in the next section. The time-independent and
spatially fluctuating parameters λ(r) and κ (r) characterize
spatially irregular structures of the system, such as porous
media for superfluid helium [40] and optical speckle patterns
for ultracold atomic gases [31–34]. We assume that λ(r) =
κ (r) = 0, where the overline denotes the disorder average,
and that the spatial correlations of λ(r) and κ (r) decay ex-
ponentially with the distance. The time evolution of � is
described by

ih̄
∂�

∂t
= δH[�]

δ�∗ . (2)

The classical field theory is valid when the quantum
depletion due to interactions is negligible and almost all
bosons occupy a single-particle state. However, for a quasi-
one-dimensional case, in which a weakly interacting Bose
gas is tightly confined in a cylindrical trap, special care is
needed because quantum fluctuations lead to an algebraic
decay of phase coherence. We define a phase coherence
length Rϕ characterizing the length scale of phase fluctua-
tions due to quantum effects. In terms of the healing length
ξh, the three-dimensional scattering length a, the transverse
confinement length l0, and the density n per unit longitu-
dinal length, the phase coherence length is given by Rϕ ∼
ξh exp(π l0

√
n/2a) [29,41]. Thus, when (a/l0)2 � na, Rϕ is

exponentially larger than ξh. The classical field theory is jus-
tified when the system size L is much smaller than Rϕ . Since

a/l0 is of the order of 10−3 in typical experiments of ultracold
atomic gases, there exists a sufficiently broad range of L in
which quantum fluctuations are negligible [42].

A typical example of systems described by Eq. (1) is a
weakly interacting Bose gas in a weak random potential, for
which the Hamiltonian is given by

H[�] =
∫

dDr
[

h̄2

2m
|∇�(r)|2 + V (r)n(r) + g

2
n(r)2

]
, (3)

where m is the mass of an atom and g (>0) is the strength of
a repulsive interaction. A zero-mean random potential V (r)
satisfies

V (r)V (r′) = CR(r − r′), (4)

where CR(r) is short-ranged with a characteristic length
scale ξR; for example, CR(r) = V 2

0 exp(−|r|2/2ξ 2
R) [43]. We

assume that the amplitude of the random potential V0 :=
CR(0)1/2 is much smaller than the interaction energy gn.
Equations (2) and (3) lead to the time-dependent Gross-
Pitaevskii (GP) equation:

ih̄
∂�(r)

∂t
= − h̄2

2m
∇2�(r) + [V (r) + gn(r)]�(r). (5)

III. EFFECTIVE TEMPERATURE

We investigate the spatial fluctuations of the order parame-
ter � described by the general Hamiltonian (1) in the presence
of a flow. From Eqs. (1) and (2), the continuity equation for
the particle density reads

∂t n = −∇ · j, (6)

where the current density j is given by

j = − i

2
Z (n; λ)(�∗∇� − �∇�∗). (7)

We focus on a stationary state: ih̄∂t� = μ�, where μ is the
chemical potential. If the flow velocity is smaller than the
critical velocity, a stable stationary solution of Eq. (2) exists.
We denote such a solution as

�(r) =
√

n(r)eiK·r+iϕ(r), (8)

where K is the average momentum and ϕ(r) describes phase
fluctuations. We assume that ϕ(r) = 0 and typical variations
of ϕ are small for sufficiently small |λ| and |κ|. From the
continuity Eq. (6), we have

∇ · [Z (n; λ)n(∇ϕ + K)] = 0. (9)

For a given realization of disorder, n and Z can be
split into their spatial averages and the deviations therefrom:
n(r) = n̄ + δn(r) and Z (n(r); λ(r)) = Z̄ + δZ (r), where n̄ :=
L−D

∫
dDrn(r) and Z̄ := L−D

∫
dDrZ (n(r); λ(r)). To the

leading order, Eq. (9) gives

n̄∇2ϕ(r) + K · ∇δñ(r) = 0, (10)

where δñ(r) := δn(r) + n̄δZ (r)/Z̄ . By introducing the
Fourier transform of ϕ(r),

ϕq = L−D/2
∫

dDrϕ(r)e−iq·r, (11)
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where q = 2πn/L, (n ∈ ZD), we have

|ϕq|2 = (K · q)2

|q|4 n̄−2|δñq|2, (q �= 0). (12)

Next, we consider the correlation function of density
fluctuations,

gn(r − r′) := δñ(r)δñ(r′), (13)

the Fourier transform of which gives

|δñq|2 =
∫

dDrgn(r)e−iq·r. (14)

We assume that gn(r) consists of an exponentially decaying
part and a negative offset, the latter of which is inversely
proportional to the volume:

gn(r) 	 σ 2
n e−|r|/ξn − κL−D, (15)

where σ 2
n = δñ(0)2 + κL−D is the amplitude of the density

fluctuations and ξn is the correlation length. The constant κ >

0 is determined from the condition∫
dDrgn(r) = 0, (16)

which follows from the definition of δñ(r). Because ξn can
depend on the relative angle between r and K, it is convenient
to define ξ̃n as ∫

dDr(gn(r) + κL−D) = σ 2
n ξ̃D

n . (17)

Then, |δñq|2 converges to σ 2
n ξ̃D

n as q vanishes, giving

|ϕq|2 ∼ (K · q)2

|q|4 n̄−2σ 2
n ξ̃D

n (18)

for small q. Remarkably, |ϕq|2 diverges in the long-
wavelength limit as ∝|q|−2, which implies that the amplitude
of phase fluctuations behaves as

σ 2
ϕ := L−D

∫
dDrϕ(r)2 ∼

{
L, (D = 1);

ln L, (D = 2).
(19)

We define the disorder-averaged correlation function of the
order parameter by

C(r − r′) := e−iK·(r−r′ )�(r)�∗(r′), (20)

where �(r) is a stationary solution of Eq. (2). The phase factor
in Eq. (20) has been introduced to compensate the mean flow
K in Eq. (8). Because gn(r) decays exponentially, Eq. (20) is
approximated as

C(r) 	 n̄ei[ϕ(r)−ϕ(0)], (21)

for |r| � ξ̃n. In terms of the mean-square relative displace-
ment of the U(1) phase

B(r) := [ϕ(r) − ϕ(0)]2, (22)

the correlation function is rewritten as

C(r) 	 n̄ exp
[ − 1

2 B(r)
]
, (23)

where we have retained only the second cumulant of the phase
fluctuations. From Eqs. (12) and (18), the asymptotic behavior

of the mean-square relative displacement of the U(1) phase for
long distance |r| � ξ̃n can be calculated as

B(r) ∼
{

K2n̄−2σ 2
n ξ̃n|r|, (D = 1);

(2π )−1K2n̄−2σ 2
n ξ̃ 2

n ln(|r|/ξ̃n), (D = 2),
(24)

where details of the calculation are presented in the Appendix.
Thus, we have

C(r) ∼
{

e−|r|/lc , (D = 1);

(|r|/ξ̃n)−η, (D = 2),
(25)

where the inverse correlation length l−1
c and the exponent η

are given by

l−1
c = K2σ 2

n ξ̃n

2n̄2
, (26)

η = K2σ 2
n ξ̃ 2

n

4π n̄2
. (27)

In two dimensions, although C(r) is anisotropic, the exponent
η is independent of the direction of r.

The long-distance behavior of the correlation function in
Eq. (25) is the same as that of a uniform Bose gas at thermal
equilibrium with temperature T . In such a case, the inverse
correlation length in one dimension and the exponent in two
dimensions are given by

l−1
c,eq = mkBT

n̄h̄2 , (28)

ηeq = mkBT

2π n̄h̄2 . (29)

Comparing Eqs. (26) and (27) with Eqs. (28) and (29), we are
led to introduce an effective temperature:

kBTeff = h̄2K2σ 2
n ξ̃D

n

2mn̄
. (30)

This effective temperature can be rewritten as

kBTeff =
(

h̄2K2

2m

)
× (

n̄ξ̃D
n

) ×
(

σ 2
n

n̄2

)
, (31)

where the first, second, and third terms represent the ki-
netic energy of the condensed atoms, the number of atoms
within the correlation length, and the amplitude of the density
fluctuations, respectively. The last term σ 2

n /n̄2 is interpreted
to be the scattering probability of the condensed atom by
the random medium. For example, suppose that a Bose gas
flows in a weak random potential V (r). Fermi’s “golden rule”
implies that the transition rate between plane-wave states
with momenta k and k′ is proportional to |〈k′|V (r)|k〉|2 =∫

dDrV (r)V (0)ei(k−k′ )·r. Because the amplitude of the density
fluctuations is proportional to that of the random potential,
σ 2

n /n̄2 is proportional to the number of atoms that are scat-
tered out of the condensate. Thus, Eq. (31) implies that the
scattering process due to the random potential is equivalent
to virtual thermal excitations. This process does not lead to
an actual heating of the system because neither injection nor
dissipation of energy is involved.
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IV. BOSE GAS FLOWING IN A RANDOM POTENTIAL

In this section, we explicitly calculate the correlation func-
tion C(r) for a weakly interacting Bose gas flowing in a weak
random potential. The dynamics is described by Eq. (5), and
thus the stationary state satisfies the time-independent GP
equation:

− h̄2

2m
∇2�(r) + [V (r) + gn(r)]�(r) = μ�(r). (32)

For a given mean density n̄, the chemical potential μ is deter-
mined from the condition

L−D
∫

drn(r) = n̄, (33)

where n(r) is the solution to Eq. (32). We consider a stationary
state given by Eq. (8). The density n(r), the phase ϕ(r), and
the chemical potential μ can be expanded with respect to the
disorder strength as

n(r) = n̄ + n(1)(r) + n(2)(r) + · · · ,

ϕ(r) = ϕ(1)(r) + ϕ(2)(r) + · · · , (34)

μ = μ(0) + μ(1) + μ(2) + · · · ,

where n(s)(r), ϕ(s)(r), and μ(s) (s = 1, 2, · · · ) are of the order
of O(V s). From Eqs. (32) and (33), we have

μ(0) = gn̄ + h̄2K2

2m
, μ(1) = 0. (35)

Substituting Eq. (8) into Eq. (32), we have

− h̄2

2m
[∇2

√
n(r) − 2

√
n(r)(K · ∇)ϕ(r) −

√
n(r)|∇ϕ(r)|2 − K2

√
n(r)] + [gn(r) + V (r) − μ]

√
n(r) = 0, (36)

∇ · {n(r)[∇ϕ(r) + K]} = 0, (37)

where the second equation is the equation of continuity. In-
serting Eq. (34) into (36) and (37) and keeping only the
leading-order terms, we have

h̄2

2m

[|q|2n(1)
q + 4n̄Kiqxϕ

(1)
q

] + 2gn̄n(1)
q + 2n̄Vq = 0, (38)

−n̄|q|2ϕ(1)
q + Kiqxn(1)

q = 0, (39)

where K is assumed to be parallel to the positive x direction,
i.e., K = Kex with K > 0. In terms of the flow velocity v =
h̄K/m, the sound velocity c = √

gn̄/m, and the healing length
ξh = h̄/

√
2mgn̄, n(1)(r) and ϕ(1)(r) are written as

n(1)
q = − n̄

∣∣q|2
mc2

[|q|2 − (v/c)2q2
x + ξ 2

h

∣∣q|4/2
]Vq, (40)

ϕ(1)
q = − ivqx

h̄c2
[|q|2 − (v/c)2q2

x + ξ 2
h |q|4/2

]Vq. (41)

In a similar manner as in Sec. III and the Appendix, the inverse
correlation length l−1

c in one dimension and the exponent η in
two dimensions can be calculated as

l−1
c = v2C̃R(0)

2h̄2(c2 − v2)2
, (42)

η = v2C̃R(0)

4π h̄2c(c2 − v2)3/2
, (43)

where C̃R(q) = ∫
dDr CR(r)e−iq·r. It should be noted that the

corresponding effective temperature diverges as the flow ve-
locity v approaches the sound velocity c.

Let us estimate the typical values of lc, η, and Teff by
employing experimental parameters in Ref. [31]. We take the
correlation length and the amplitude of the random potential
as ξR = 10 μm and VR = 100 Hz × h, which is much smaller
than the chemical potential μ = gn = 1 kHz × h. The dis-
order correlator at zero wave number is given by C̃R(0) 	
V 2

0 ξR in one dimension and C̃R(0) 	 V 2
0 ξ 2

R in two dimen-
sions. The sound velocity is estimated as c = √

gn/m = 2.2 ×

10−3ms−1 for Rb atoms. For a flow velocity v = c/3, from
Eqs. (42) and (43) we obtain lc = 17 μm in one dimension
and η = 0.086 in two dimensions. We assume that the three-
dimensional particle density and the confinement length are
given by n3D = 1014 cm−3 and l0 = 3 μm, respectively. Then,
in one dimension the density per unit length reads n1D =
π (l0/2)2n3D = 7.1 × 106 cm−1, and in two dimensions the
density per unit area reads n2D = l0n3D = 3 × 1010 cm−2.
Thus, the effective temperature is estimated as

T (1D)
eff = n1Dh̄2l−1

c

mkB
	 240 nK (44)

in one dimension and

T (2D)
eff = 2πn2Dh̄2η

mkB
	 950 nK (45)

in two dimensions. To measure Teff , the thermodynamic tem-
perature of condensates has to be sufficiently lower than the
values of Eqs. (44) and (45). This requirement is well met
experimentally in ultracold atoms.

V. NUMERICAL SIMULATIONS

Let us calculate C(r) by numerically solving the GP
equation. We consider the Bose-Hubbard model in one- and
two-dimensional square lattices. If the number of atoms per
site is sufficiently large, the classical field theory is applica-
ble [44]. The discrete GP equation reads

−J
∑
k∈N j

�k + (Uj + gn j )� j = μ� j, (46)

where N j denotes the set of the nearest-neighbor sites of j and
n j = |� j |2 is the particle-number density at site j. The on-site
potential Uj is randomly chosen from a uniform distribution
over the interval [−W,W ].

We seek for the stationary solution of the form

� j = √
n je

iK·R j+iϕ j , (47)
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where R j = (Rx
j, Ry

j ) is the coordinate of site j, and K is
assumed to be parallel to the positive x direction. To obtain
such a solution numerically, we consider the following time-
dependent GP equation:

i
d� j

dt
= −J

∑
k∈N j

eiθ (t )(Rx
k−Rx

j )�k + (Uj + gn j )� j . (48)

At an initial time t = 0, we start from the ground state of
the Hamiltonian, which is obtained from the solution of the
imaginary-time GP equation. Then, the phase parameter θ (t )
is gradually increased up to a given value K during a time
interval τ : θ (t ) = Kt/τ . If K is smaller than the critical mo-
mentum Kc, one reaches a stationary solution at t = τ . The
time interval τ is chosen to be sufficiently long so that the so-
lution is well converged. Above Kc, there exists no stationary
solution that is continuously connected to the ground state of
the Hamiltonian. Equation (48) is numerically solved by the
Runge-Kutta method with a discretized time step dt = 0.1. In
the following, we set J = g = 1 and n̄ = L−D

∑
j |� j |2 = 1.

To compare numerical results for the lattice system with
the perturbative ones for the continuous system discussed in
Sec. IV, the following replacements need to be made:

h̄2|q|2/2m → 2J (2 − cos qx − cos qy),

mv/h̄ → K, (49)

h̄c → (2Jgn̄)1/2.

Figure 1(a) shows the spatial distribution of ϕ j for a
stationary state in two dimensions. Note that the phase
fluctuations are more strongly correlated for the direction
perpendicular to the flow velocity. Figures 1(b) and 1(c) show
σ 2

ϕ := L−D
∑

j ϕ
2
j as a function of the system size L for one

and two dimensions. The disorder strength is W = 0.1, which
is much smaller than gn̄ = 1. For the one-dimensional case
[Fig. 1(b)], the time interval τ is set to 104. The disorder
average is taken over 100, 50, 20, and 10 realizations of
the random potential for different system sizes L = 20–1000,
2000, 5000, and 10 000, respectively. For the two-dimensional
case [Fig. 1(c)], the time interval τ is set to 2 × 103. The
disorder average is taken over 100, 50, 20, and 10 realizations
of the random potential for different system sizes L = 10–50,
100, 200, and 500, respectively. We find that σ 2

ϕ ∝ L in one
dimension, and σ 2

ϕ ∝ ln L in two dimensions. The dashed
lines in Figs. 1(b) and 1(c) represent the perturbative results
obtained from Eq. (41). The agreement between the numerical
and analytical results is excellent.

Next, we consider the case of moderately strong disorder,
in which deviations from the perturbative results should be
significant. Figure 2(a) shows the correlation function C(r) in
one dimension for several different system sizes. The disorder
average is taken over 100 realizations of the random potential.
Although the finite-size effect is not small, C(r) exhibits an
exponential decay in the small-r region, the width of which
increases with the system size. Figure 2(c) shows the inverse
correlation length l−1

c obtained from C(r) for L = 500 plotted
against the flow momentum K up to the critical flow momen-
tum Kc, above which the stationary solution of Eq. (46) does
not exist. The dashed curves in Fig. 2(c) show the inverse
correlation length given by Eq. (42).

L

10-4

10-3

10-2

10-1

100 1000 10000

0.5×10-4

1×10-4

1.5×10-4

2×10-4

0
10 50 100 500

L

D2D1

0 50 100 150 200
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x
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K = 0.2

K = 0.1
K = 0.2
K = 0.3

(c)

FIG. 1. (a) Phase fluctuation ϕ(x, y) of a stationary state in two
dimensions with disorder strength W = 0.1, flow momentum K =
0.4, and system size L = 200. (b, c) Variance of phase fluctuations,
σ 2

ϕ , as a function of the system size L for different values of K with
W = 0.1 in (b) one dimension and (c) two dimensions. The error bars
show one standard deviation for different realizations of the random
potential. Figures (b) and (c) are presented in double-log and semi-
log plots, respectively. The dashed lines show the perturbative results
calculated from Eq. (41).

Figure 2(b) shows the correlation function C(r) in two
dimensions for the direction parallel to the flow momentum.
The disorder average is taken over ten realizations of the
random potential. We have confirmed that, in contrast to the
one-dimensional case, the finite-size effect is rather small in
two dimensions. In addition, the power-law decay of C(r)
can be observed for r > 5. Figure 2(d) shows the exponent
η obtained from C(r) for L = 100. The dashed curves in
Fig. 2(d) show the exponent given by Eq. (43). For both one-
and two-dimensional cases, the deviations between the numer-
ical and analytical values of l−1

c and η increase as the flow
momentum K approaches the critical momentum Kc. From
Fig. 2, we conclude that Eq. (25) holds even for a moderately
strong disorder, while the inverse correlation length l−1

c in one
dimension and the exponent η in two dimensions can deviate
from Eqs. (42) and (43).

VI. INTERFERENCE AND CORRELATION

We discuss an experimental setup to test our predic-
tions. The correlation function C(r) can be estimated from
the interference pattern between two independent conden-
sates [45–47]. Here, we consider a situation in which two
quasi-one-dimensional atomic clouds are placed in parallel at
a distance d . Upon these condensates, we impose a random
potential moving with velocity v as schematically illustrated

043316-5
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FIG. 2. (a) Correlation function C(r) in one dimension with dis-
order strength W = 0.5 and flow momentum K = 0.2 for system
size L = 200, 400, 600, 800, and 1000 from top to bottom. The
abscissa and ordinate are shown in linear and log scales, respectively.
(b) Correlation function C(r) in two dimensions for the direction
parallel to the flow momentum with disorder strength W = 1 and sys-
tem size L = 500 for flow momentum K = 0.1, 0.125, 0.15, 0.175,
0.2, 0.225, and 0.25 from top to bottom. The abscissa and ordinate
are shown in log scales. (c) Inverse correlation length l−1

c in one
dimension for disorder strength W = 0.2, 0.3, and 0.5. The dashed
curves show the analytical results given by Eq. (42). (d) Exponent
η in two dimensions for disorder strength W = 0.5, 1, and 2. The
dashed curves indicate the analytical results given by Eq. (43).

in Fig. 3(a). This setting is equivalent to an atomic cloud
flowing with velocity −v in a random potential at rest. The
random optical potential can be created by a laser beam
passing through a diffusive plate [31–34], superposition of in-
commensurate optical lattices [35], and holographic imaging
with a digital micromirror device [48,49]. Let z be the axial
coordinate of the condensates and x be the coordinate along
a transverse direction [see Fig. 3(a)]. At the initial time, the
trapping potential and the random potential are turned off, and
the condensates are allowed to expand freely in the transverse
direction. At time t , an interference pattern is recorded on a
CCD camera through absorption of an imaging beam directed
along the axis of the condensates [see Fig. 3(b)]. The longitu-
dinal length L of an imaging area is determined from the focal
length of the imaging beam.

FIG. 3. Setup of the interference experiment. (a) Two parallel
quasi-one-dimensional condensates placed at distance d and sub-
jected to a random potential moving with velocity v. (b) After
free expansion in the transverse direction, an interference pattern is
recorded through absorption of an imaging beam.

We show that the amplitude of the interference fringes is
given by a spatial integral of the correlation function C(r).
Let ψ̂1(z) and ψ̂2(z) be the field operators of condensates 1
and 2 at the initial time. After a time of flight of duration t , the
field operator is given by

ψ̂ (x, z; t ) = ψ̂1(z)eik1x + ψ̂2(z)eik2x, (50)

where h̄k1,2 = m(x ± d/2)/t are the momenta of atoms be-
longing to condensates 1 or 2 at the initial time and detected
at position x at time t . The absorption image is given by the
density profile integrated along the axial direction:

ρ̂(x) =
∫ L

0
dzψ̂†(x, z; t )ψ̂ (x, z; t ). (51)

From Eq. (50), the density profile reads

ρ̂(x) = ρ0 + Âe−ikx + Â†eikx, (52)

where ρ0 is a constant background and k = md/h̄t . The am-
plitude of the interference fringes is given by

Â =
∫ L

0
dzψ̂†

1 (z)ψ̂2(z). (53)

Since the phase of Â fluctuates randomly for each experimen-
tal run, the expectation value of Â vanishes. The mean-square
modulus of Â is calculated as

〈|Â|2〉ex = L
∫ L

0
dz〈ψ̂†(z)ψ̂ (0)〉2

ex, (54)

where 〈...〉ex denotes the average over the experimental runs
and we have omitted the indices 1 and 2 in the field operator.

In the classical field theory, the field operator ψ̂ in Eq. (54)
is replaced by the classical field �. Furthermore, the average
over the experimental runs 〈...〉ex can be interpreted as the
disorder average if the random potential is generated indepen-
dently from shot to shot. Thus, Eq. (54) is rewritten as

〈|Â|2〉ex = L
∫ L

0
dzC(z)2. (55)

From Eq. (25), we have

Ā := 〈|Â|2〉1/2
ex ∝

√
lcL. (56)

For the quasi-two-dimensional case, it is convenient to con-
sider the density profile integrated along the additional axis:

ρ̂2D(x) =
∫ Ly

0
dy

∫ Lz

0
dzψ̂†(x, y, z; t )ψ̂ (x, y, z; t ). (57)

Then, we obtain an expression similar to Eq. (55) with the
integral along the y direction. From Eq. (25), for a fixed Lz

(� Ly), we have

Ā2D ∝ L1−η
y . (58)

Thus, by observing how the amplitude of the interference
fringes depends on the size of the imaging area, one can
estimate lc, η, and Teff . In Ref. [47], this scheme was applied
to a two-dimensional trapped Bose gas at thermal equilibrium
and a power-law decay of the correlation was observed.
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VII. CONCLUDING REMARKS

We have demonstrated that the nonequilibrium correlation
of the U(1) order parameter of a superflow in a random
medium has a one-to-one correspondence to the equilibrium
correlation of a clean system at an effective temperature.
What is remarkable about our result is that, whereas there
is no inelastic scattering that leads to thermalization, the
concept of effective temperature is well defined. In partic-
ular, the disorder-averaged correlation function is found to
exhibit an exponential decay in one dimension and a power-
law decay in two dimensions. We have also proposed an
interference experiment of ultracold atomic gases to test
our predictions. It should be noted that the decay of the
disorder-averaged correlation function in one and two dimen-
sions can be considered as a nonequilibrium generalization
of the Hohenberg-Mermin-Wagner theorem, which predicts
the decay of the thermally averaged correlation function for
one- and two-dimensional uniform Bose gases at thermal
equilibrium.

The decay of the disorder-averaged correlation does not
necessarily imply the breakdown of superflow. For a fixed
realization of a random potential and a given flow velocity
below the critical velocity, Eq. (2) has a unique solution,
except for an arbitrary global phase. The uniqueness of the
solution implies that the difference between the phases at any
two points has a definite value. Thus, the phase coherence of
the condensate wave function is not lost, although phases at
distant points can have significantly different values. Since
the phase coherence ensures the stability of supercurrent, the
decay of the disorder-averaged correlation does not contradict
the existence of superfluidity. However, it has yet to be un-
derstood whether the critical velocity remains nonvanishing
in the thermodynamic limit.

It is of fundamental importance to investigate the corre-
spondence between the breakdown of superflow at the critical
velocity and the equilibrium phase transition to the normal
fluid at the critical temperature. When the flow velocity ex-
ceeds the critical velocity, the superflow becomes unstable,
and the system undergoes a transition to a turbulent state,
which is manifested by the proliferation of vortices. Here,

we recall that the two-dimensional Bose gases exhibit the
Berezinskii-Kosterlitz-Thouless (BKT) transition, which is
driven by the unbinding of the vortex-antivortex pairs [47,50–
52]. Since the effect of the disorder and flow can be taken
into account by an effective temperature, we speculate that
the vortex dissociation picture in the BKT transition is also
responsible for the breakdown of superflow in a random
potential. Unfortunately, our perturbative approach cannot de-
scribe the formation of vortices because we have implicitly
assumed that the phase configuration varies slowly in space,
and its fluctuations can be described by a quadratic Hamil-
tonian with respect to the spatial gradient of the phase. The
notion of the effective temperature introduced here may help
establish a renormalization-group theory for a nonequilibrium
BKT transition from coherent to turbulent superflow.
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APPENDIX: CALCULATION OF THE
MEAN-SQUARE RELATIVE DISPLACEMENT

OF THE U(1) PHASE

We calculate the mean-square relative displacement of the
U(1) phase, B(r) = [ϕ(r) − ϕ(0)]2. In terms of the Fourier
transform of ϕ(r), B(r) is written as

B(r) = 2
∫

dDq
(2π )D

|ϕq|2(1 − cos q · r). (A1)

Here, we have assumed the translation invariance of the
disorder-averaged correlation function of ϕ(r) and used the
fact that ϕ(r) is real. In two dimensions, B(r) is not isotropic
in the presence of a flow. We recall that |ϕq|2 is related to
|δñq|2 through Eq. (12).

In one dimension, B(r) is calculated as

B(r) = 2K2n̄−2
∫ ∞

−∞

dq

2π
|δñq|2 1 − cos q|r|

q2
	 4K2n̄−2σ 2

n ξ̃n

∫ ξ̃−1
n

0

dq

2π

1 − cos q|r|
q2

, (A2)

where we have used the fact that |δñq|2 reduces to σ 2
n ξ̃n in the long-wavelength limit |q| → 0 and rapidly vanishes for |q| > ξ̃−1

n .
For |r| � ξ̃n, we have

B(r) 	 4K2n̄−2σ 2
n ξ̃n|r|

∫ |r|/ξ̃n

0

dq′

2π

1 − cos q′

q′2 	 4K2n̄−2σ 2
n ξ̃n|r|

∫ ∞

0

dq′

2π

1 − cos q′

q′2 = K2n̄−2σ 2
n |r|, (A3)

where we have changed the integration variable to q′ = q|r|.
In two dimensions, B(r) is rewritten as

B(r) 	 2π−2K2n̄−2σ 2
n ξ̃ 2

n

∫ ξ̃−1
n

0
dqx

∫ ξ̃−1
n

0
dqy

q2
x (1 − cos q · r)(

q2
x + q2

y

)2 , (A4)
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where K is assumed to be parallel to the positive x direction. First, let us consider the case in which r is parallel to K. Then, B(r)
is calculated as

B(r) 	 2π−2K2n̄−2σ 2
n ξ̃ 2

n

∫ ξ̃−1
n

0
dqx

∫ ξ̃−1
n

0
dqy

q2
x (1 − cos qx|r|)(

q2
x + q2

y

)2

= π−2K2n̄−2σ 2
n ξ̃ 2

n

∫ ξ̃−1
n

0
dqx

1 − cos qx|r|
qx

[
tan−1 (

ξ̃−1
n q−1

x

) + ξ̃nqx

1 + (ξ̃nqx )2

]
. (A5)

For |r| � ξ̃n, the dominant contribution to the qx integral is made from qx 	 |r|−1 � ξ̃−1
n . Thus, the quantity in the square

brackets in Eq. (A5) becomes π/2 and we have

B(r) 	 (2π )−1K2n̄−2σ 2
n ξ̃ 2

n

∫ ξ̃−1
n

0
dqx

1 − cos qx|r|
qx

	 (2π )−1K2n̄−2σ 2
n ξ̃ 2

n ln(|r|/ξ̃n). (A6)

In a similar manner, if r is perpendicular to K, B(r) is calculated as

B(r) 	 2π−2K2n̄−2σ 2
n ξ̃ 2

n

∫ ξ̃−1
n

0
dqx

∫ ξ̃−1
n

0
dqy

q2
x (1 − cos qy|r|)(

q2
x + q2

y

)2

= π−2K2n̄−2σ 2
n ξ̃ 2

n

∫ ξ̃−1
n

0
dqy

1 − cos qy|r|
qy

[
tan−1

(
ξ̃−1

n q−1
y

) − ξ̃nqy

1 + (ξ̃nqy)2

]

	 (2π )−1K2n̄−2σ 2
n ξ̃ 2

n ln(|r|/ξ̃n). (A7)

Thus, the long-distance behavior of B(r) is isotropic.
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