
PHYSICAL REVIEW RESEARCH 2, 043310 (2020)

Quantum Jackiw-Teitelboim gravity, Selberg trace formula, and random matrix theory
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We show that the partition function of quantum Jackiw-Teitelboim (JT) gravity, including topological fluctu-
ations, is equivalent to the partition function of a Maass-Laplace operator of large (imaginary) weight acting on
noncompact, infinite-area, hyperbolic Riemann surfaces of arbitrary genus. The resulting spectrum of this open
quantum system for a fixed genus is semiclassically exact and given by a regularized Selberg trace formula;
namely, it is expressed as a sum over the lengths of primitive periodic orbits of these hyperbolic surfaces. By
using semiclassical techniques, we compute analytically the spectral form factor and the variance of the Wigner
time delay in the diagonal approximation. We find agreement with the random matrix theory prediction for open
quantum chaotic systems. Our results show that full quantum ergodicity is a distinct feature of quantum JT
gravity.
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I. INTRODUCTION

The study of quantum features of classically chaotic sys-
tems, usually termed quantum chaos, reveals a surprising
degree of universality in the quantum dynamics. Universal
features are observed specially at two time scales: the Ehren-
fest time and the Heisenberg time. The former is a short
time scale related to the buildup of quantum corrections to
the classical motion. It is characterized by the exponential
growth of certain correlation functions, related to the square
of commutators that measure the uncertainty of an observ-
able. Interestingly, this exponential growth is controlled by
the classical Lyapunov exponent [1,2]. The Heisenberg time
is a long time scale, the inverse of the mean level spac-
ing, related to the time for a system to experience that the
spectrum is discrete. In quantum chaotic systems, spectral
correlations of neighboring eigenvalues are given by random
matrix theory (RMT) [3–7]. Physically, this means that for
sufficiently long times, the quantum dynamics is fully er-
godic and only depends on the global symmetries of the
system. Not surprisingly, quantum chaos ideas and techniques
have been employed in many physical contexts. In nuclear
physics, where they were originally introduced [3,8], it was
shown that the spectral correlations of highly excited states
are well described by RMT [3]. For a single particle in
a random potential, and assuming that Anderson localiza-
tion effects are not important, it was found analytically that
the momentum uncertainty [1] grows exponentially for short
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times and that spectral correlations are given by RMT [9]
for long times. For noninteracting chaotic systems with non-
random deterministic motion, it was conjectured [10], and
later demonstrated [11,12] in the semiclassical limit, that level
correlations are also given by RMT. Similarly, in the limit of
zero-dimensional QCD, the spectrum of the Dirac operator
is also correlated according to the RMT prediction [13] for
systems with chiral symmetry.

More recently, the proposal [14] of a universal bound in
the Lyapunov exponent—one that controls the exponential
growth mentioned above and its saturation in field theories
with a gravity dual—has reinvigorated interest in quantum
chaos. This saturation has been explicitly confirmed in the
Sachdev-Ye-Kitaev (SYK) model [15–17] consisting of N
Majorana fermions with infinite-range random interactions
in zero spatial dimensions (see Refs. [8,18–22] for similar
models with Dirac fermions). Interestingly, the infrared de-
scription of the SYK model is controlled by the Schwarzian
action, which is also the effective description of the boundary
dynamics of Jackiw-Teitelboim (JT) gravity [23–25]. It has
also been found [26,27] that spectral correlations of the SYK
model are given by RMT even for energies close to the ground
state [28] where the model may have a gravity dual.

This observation of RMT spectral correlations in the SYK
model together with the expected holographic duality with
JT gravity, though encouraging, is not a demonstration that
the latter has similar spectral correlations. It is far from clear
whether the holographic duality survives up to time scales of
the order of the Heisenberg time. More importantly, the very
quantization of JT gravity, leading to a discrete spectrum, is
still an open problem. Recently, a random matrix model for
JT gravity has been proposed [29] (see also Refs. [30–32]) as
a possible ultraviolet completion of the theory (see Ref. [33]
for a generalization of this idea when fermions are included).
More specifically, the approach of Ref. [29] shows that a pos-
sible boundary theory of JT gravity is a double scaling limit
of a certain ensemble of random matrices. The connected part
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of n-point correlation functions of this random matrix model
is written as a genus expansion of a JT gravity partition func-
tion with n boundaries. The latter can be evaluated explicitly
by using Mirzakhani’s recursion relation for Weil-Petersson
volumes [34,35] and the fact that [36] this is equivalent to
a topological recursion relation for correlation functions of
the boundary ensemble of random matrices. This nice identity
between random matrices and quantum JT gravity requires an
ensemble average whose physical meaning on the gravity side
is not straightforward.

Another quantization of JT gravity has recently been intro-
duced in Refs. [37,38] by noticing that bulk JT gravity maps
to the dynamics of a quantum particle on a genus-zero hy-
perbolic space in the presence of an imaginary magnetic field.
The resulting spectrum is still continuous [39], which prevents
the study of quantum chaotic features by the analysis of spec-
tral correlations of neighboring eigenvalues. Ultimately, this is
due to the fact that the background geometry is still classical;
namely, it is fixed by Einstein’s equation of motion.

Motivated by these recent developments, we revisit the
problem of quantization of JT gravity in a way reminiscent
of Polyakov’s approach to string theory [40]. In JT gravity, the
two-dimensional space is rigid, of constant negative curvature,
in the sense that it is just the solution of the classical equations
of motion. The dynamics comes from the position of the
boundary which acts as the physical boundary of the system.
We relax the rigidness condition of the surface by allowing
topological fluctuations of the geometry. This leads to a genus
expansion, with genus h � 1, of noncompact Riemann sur-
faces of infinite area. We show that the JT gravity partition
function can be written as a sum over genus of the partition
function associated with the Maass-Laplace operator on the
above surfaces in the limit of large (imaginary) weight of
the holomorphic form. The area of the Riemann surfaces is
infinite, therefore it is possible the existence of complex reso-
nances in the spectrum, which arise as poles of the resolvent.
We found that the spectrum or resonances can be computed
exactly as a sum over classical primitive periodic orbits by
using the Selberg zeta function and the generalized Selberg
trace formula. The resulting spectrum or resonances only de-
pend on classical information such as the primitive periodic
orbits and the classical escape rate. We then compute, using
semiclassical techniques, the spectral form factor and the vari-
ance of the Wigner time delay analytically without performing
an ensemble average. We find that the result for both spectral
correlators agrees with the RMT prediction. This indicates
that for sufficiently long times, JT quantum gravity—in the
above-mentioned limit—is fully ergodic. It also suggests that
quantum chaos may be one of its features at all time scales.

II. QUANTIZATION OF JT GRAVITY

The classical Euclidean action for JT gravity is

I (g, φ) = −2πφ0 χ−
[

1

2

∫
M

√
gφ(R+ 2)+

∫
∂M

φb(K− 1)

]
,

(1)

where φ stands for the deviation of the dilaton field from
its value at zero temperature, φ0, and χ is the Euler
characteristic of the surface. The classical equation for

the dilaton sets R = −2, which implies thatM is a portion of
rigid two-dimensional anti–de Sitter (AdS2; Euclidean)
space, which we will represent using the hyperbolic
half-plane model H = {z = x + iy | y > 0} with line element
ds2 = dx2 + dy2/y2. With the remaining term in the action,
the classical solution for the dilaton can also be easily
found [37]. The nontrivial dynamics of the model comes
from the position of the physical boundary in the rigid
H space. Boundary conditions for the metric and dilaton
along the physical boundary are given by ds|bdy = du φr

ε
and

φ|bdy = φr

ε
, respectively, where u is the boundary theory time

and ε parametrizes the distance to the H boundary. In the
ε → 0 limit, where the physical boundary approaches the
rigid space boundary, the action in Eq. (1) becomes

I = −
∫

Sch

(
tan

ϕ(u)

2
, u

)
du, (2)

where Sch stands for the Schwarzian and ϕ(u) expresses
the bulk time as a function of the boundary time [23].
Throughout the paper we will refer to the ε → 0 limit as the
Schwarzian limit. This action results from the spontaneous
and explicit breaking of conformal symmetry, down to
SL(2,R) symmetry, due to quantum and finite temperature
effects. Different techniques and tools, from combinatorial
analysis [28,41] based on the shared symmetry with the SYK
model to an explicit evaluation of the path integral [42] and
a mapping to a charged particle on H in the presence of
an imaginary magnetic field [37,38], have been employed
to compute spectral and thermodynamic properties of
JT gravity. Here, we will focus on this latter approach,
which can be summarized as follows (see Refs. [37,38] for
details). After integrating over the dilaton field and using
the Gauss-Bonnet theorem, the remaining term containing
the extrinsic curvature in the action of Eq. (1) can be
rewritten as

∫
(K − 1) = (2π + A[x] − L), where A[x] is

the area surrounded by the closed boundary curve of fixed
length, L = β

φr

ε
. The area term can be interpreted as the

flux of a uniform electric field on H of strength q = φr

ε
, or

equivalently a uniform imaginary magnetic field b = iq. It is
worth noticing that the analogy of JT gravity to the charged
particle is strictly valid at the classical level since quantum
mechanically the path integrals seemingly have different
properties, as explained in detail in Ref. [38]. This ambiguity
is eliminated whenever we consider the Schwarzian limit,
which in the present context involves considering large b. In
the following, we will consider the case of finite b and take
the limit at the end in the expressions whenever necessary.

At the quantum level, the path-integral quantization of JT
gravity—using the analogy to the charged particle—is carried
out including the constraint of trajectories of fixed proper
length, which is related to the temperature. By considering an
appropriate regularization prescription, it was found [37,38]
that the partition function of JT gravity is equivalent to that
of a charged particle on H in the presence of an imaginary
magnetic field. The final form of the partition function is

ZH(b, τ ) = e2π (q+φ0 )eτ/2(1/4−b2 )
∫
Dx

× exp

[
−

∫ τ

0
dτ ′

(
1

2

ẋ2 + ẏ2

y2
− b

ẋ

y

)]
, (3)
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where the gauge Ax = −b/y was used. The quantum prop-
erties of this system are then governed by the Schrödinger
equation Hψ = Eψ where the Hamiltonian 2H = −Dm + b2

is the Maass-Laplace operator

Dm = y2(∂2
x + ∂2

y

) − imy∂x (4)

on H for automorphic forms of weight m = 2b. The dynamics
of the particle is influenced by the nonzero magnetic field
such that for sufficiently large magnetic field, in addition
to the monotonous continuous spectrum, we have a discrete
spectrum associated with the Landau levels on H [39]. For
an imaginary magnetic field, the spectrum of the Hamiltonian
is always continuous [37,39] with energy E = (1/4 + k2 −
q2)/2. In the Schwarzian limit, the spectral density for the
Schwarzian action is recovered [37,38].

The above Hamiltonian is the starting point of our analysis.
We note that the quantum gravity problem defined on a rigid
half hyperbolic plane H with a dynamical physical bound-
ary has been traded for the study of the spectral properties
of the Maass-Laplace operator on H, which resulted from
the solution of the classical equations of motion. Typically,
a distinctive feature of quantum systems is a discrete spec-
trum. However, the spectrum related to the system above is
absolutely continuous. We also note that the quantization of
gravity cannot be complete because the geometry is still given
by the solution of the classical equations of motion. In the
following, we consider quantization of JT gravity that will
potentially lead to a discrete spectrum of the above model
and to spectral correlations given by RMT which confirm the
quantum chaotic nature of JT gravity even for long times of
the order of the Heisenberg time.

A natural way to generalize the above arguments is by
considering contributions of surfaces with nontrivial topology.
This amounts to considering topological fluctuations in the
model which are not solutions of the classical equations of
motion. In the functional form of the JT gravity problem
[Eq. (1)], the metric is still constrained to be of constant nega-
tive curvature at any point, although the latter enters as a delta
function constraint [29]. It is then clear that the functional
integral will have contributions from hyperbolic Riemann
surfaces [29] with an asymptotic AdS2 boundary [43] and
arbitrary genus: �h, h � 1. To be more precise, it will have
contributions from bounded subregions of hyperbolic non-
compact Riemann surfaces of infinite area and fixed boundary
length where the boundary conditions of the JT gravity prob-
lem are met. Explicitly, we integrate the dilaton along an
appropriate contour to obtain

ZJT = e2πφ0χ

∫
Dgμν δ(R + 2)e−φb

∫
(K−1). (5)

The functional integral is reduced to the boundary term, which
according to the previous discussion—the genus-zero case—
is equivalently described by the path integral of a charged
particle in an imaginary magnetic field on H. For nonzero
genus, we use Riemann uniformization to argue that the full
path integral involves considering contributions of noncom-
pact Riemann surfaces of infinite area and arbitrary genus,
where a charged particle propagates. In addition, each of these
contributions is weighted by a term proportional to the Euler
characteristic χ = 1 − 2h. The final form of the functional

integral is

ZJT = ZH(b, τ ) + eτ/2(1/4+b2 )

×
∑
h�1

e2π (q+φ0 )χ
∫

moduli

∫
Dxe−Ih (x,b)

= ZH(b, τ )+ eτ/2(1/4+b2 )
∑
h�1

e2π (q+φ0 )χ
∫

moduli
Zh

�\H (b, τ ),

(6)

where ZH is the partition function associated with the
Poincaré half-plane [Eq. (3)] and Zh

�\H (b, τ ) is the analog for
the higher-genus hyperbolic Riemann surfaces, the remaining
integral accounting for their moduli with the metric given by
the Weil-Petersson metric [29]. At genus zero, the quantiza-
tion of this system has been studied in the literature [37,38].
However, the spectrum is continuous and monotonous, which
prevents the calculation of spectral correlations. By contrast,
for higher-genus surfaces, the resulting spectrum is amenable
to a level statistics analysis. We will use spectral theory tech-
niques concerning trace formulas in order to compute these
higher-genus partition functions, associated with the spectrum
of the Maass Laplacian (4) on the corresponding Riemann
surfaces.

We will see below, using the “equivalence” in Eq. (6), that
the spectral density associated with ZJT (basically its Laplace
transform) has a highly oscillating term which is expressed as
a Selberg trace formula, namely, as a sum over the classical
primitive periodic orbits of the surface. An explicit analytical
evaluation of density-density spectral correlations, such as the
spectral form factor, will reveal that the spectrum of JT gravity
is quantum chaotic and described by RMT.

Let us briefly clarify the notation we have used. Formally,
noncompact hyperbolic Riemann surfaces of infinite area are
obtained using Riemann uniformization. Namely, the Rie-
mann surface �h is represented "as" the right coset of the
Poincaré upper half-plane model H by a Fuchsian group �

of the second kind [44]. The latter is a discrete subgroup of
PSL(2,R) with proper discontinuous action. To be more spe-
cific, we consider a fundamental domain F ⊂ H, the geodesic
boundaries of which are paired by elements γ of � generating
a surface X = � \ H homeomorphic to �h. In addition to
the infinite-area condition, the surfaces we will be consider-
ing are connected, orientable, and geometrically finite (finite
Euler characteristic). Moreover, the above Riemann surfaces
are characterized by their hyperbolic ends. In the absence of
cusps, geometric finiteness constrains the end space to be a
funnel (infinite-area elementary surface). It is then clear that
every noncompact hyperbolic Riemann surface of infinite area
can be decomposed into separate pieces involving a bordered
Riemann surface (compact core) and a funnel (see Fig. 1).
Explicitly, the decomposition is written as X = F ∪ Kh, where
F and Kh denote the funnel and compact core subregions,
respectively.

Moreover, a quantity that will come very useful in the
forthcoming analysis is the exponent of convergence of a
Fuchsian group �, which is defined by

δ(�) := inf

{
s � 0 :

∑
γ∈�

e−s d (z,γ z′ ) < ∞
}

, (7)
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FIG. 1. Sketch of the leading topological corrections to the classical (leftmost) geometry of JT gravity.

where d (z, z′) is the distance on H. For a Fuchsian group �

of the second kind and geometrically finite we have that the
above exponent satisfies δ(�) ∈ (0, 1) and equals the Haus-
dorff dimension of the limit set of �. For infinite-area surfaces,
the Hausdorff dimension of the limit set is associated with
the dynamics of geodesics, which either flow around in the
compact core or escape to infinity.

Role of moduli space

Notice that the equivalence between the partition function
of JT gravity and Zh

�\H (in the Schwarzian limit) is valid up
to the integral over the moduli, as seen from Eq. (6). For a
genus-h Riemann surface, there is a continuous (but finite)
number of parameters characterizing (inequivalent) Riemann
surfaces with the same underlying topology. The integral in
Eq. (6) accounts for all these contributions to the JT partition
function. As we will see below, the partition function Zh

�\H re-
ceives contributions from continuous as well as discrete parts
of the spectrum. Throughout this paper we will focus on the
discrete part of the spectrum. The explicit computation of the
moduli integral even in this case is not straightforward since
it involves performing the integration on functions depending
on primitive periodic orbits of the surface [45]. We will not
attempt to address this problem here, since the aim of this
work is not the detailed knowledge of the spectrum but rather
the study of the dynamics of the primitive periodic orbit flow
which is, in a sense, independent of Riemann surface defor-
mations, which will enable us to study the quantum chaotic
features of the spectrum of JT gravity. More specifically, the
(discrete) spectrum associated with the Riemann surfaces of
genus h is characterized by δ > 0 defined above and the length
spectrum, namely, the set of primitive periodic orbits. In all
cases, it has been demonstrated that there is an exponential
proliferation of long primitive geodesics [46,47], which is a
signature of classical chaos and also a key feature [48] to es-
tablish the quantum chaotic nature of the spectrum. It is worth
emphasizing that a proper understanding of other quantum
features of JT gravity will necessarily involve the integration
over the moduli space. Another feature that requires additional
comment is the role of the moduli space in the computation
of two-level and higher-order spectral correlation functions.
Here, in principle, one should have to consider not only the
correlation of eigenvalues for a given genus-h surface but also
correlations of eigenvalues among the entire set of surfaces
in the moduli space. However, at least to leading order, this
interference effect is likely to be negligible. The reason being
that, as we shall see below, the length spectrum of each surface
is unique. According to the Selberg trace formula, the spectral

correlations are expressed as products of highly oscillating
sums representing different surfaces. The leading term will
be given by autocorrelations, called the diagonal approxima-
tion, namely, correlations between primitive periodic orbits
of a given genus-h surface. Even at next-to-leading order we
expect that it will be dominated by correlations between dif-
ferent periodic orbits of the same surface. It is unclear whether
correlations among geodesics of different genus-h surfaces
could play a role in these subleading contributions, but in any
case it would not affect our results.

We can summarize the discussion above by saying that,
even though for other observables one must necessarily ac-
count for the contributions of the entire set of Riemann
surfaces of given genus in the moduli space, this is not very
relevant with respect to level statistics since all of them have
similar features. In this vein, we can then argue that the
calculation of the path integral over geometries accepts a
saddle-point solution that effectively picks a Riemann sur-
face for each topological class, defined by a certain δ and
its length spectrum. Based on the above, we will be able to
show that JT gravity is quantum chaotic. Our main aim is
therefore to compute Zh

�\H . Fortunately, this problem has been
intensively investigated in both the mathematics and physics
literature [49–55].

III. EVALUATION OF THE JT PARTITION FUNCTION BY
THE SELBERG TRACE FORMULA

In this section we compute the partition function Zh
�\H

associated with the Maass Laplacian [Eq. (4)] on the infinite-
area hyperbolic Riemann surfaces of genus h. Although the
spectral properties of the above surfaces are not the naive
sum of the funnel and compact core contributions, we find
it to be pedagogical, and useful in order to set notation and
conventions, to briefly discuss separately the spectral features
of the above subregions.

A. Spectral features of the isolated compact core and funnel

Let us start with the spectral features of the funnel. In sim-
ple terms, Selberg trace formulas relate classical and quantum
properties of the system. They contain several contributions
depending on the characteristics of the Riemann surfaces and
the associated spectrum of the Laplacian. However, there is
a universal term given by the length spectrum LX of a given
hyperbolic Riemann surface X which corresponds to the set
of lengths �(γ ) of primitive periodic orbits γ , where on the
other hand the latter is an element of the conjugacy classes of
�. Since we are just interested in the chaotic features of the
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system, it will be enough to discuss this contribution to the
trace formula. In the case of the funnel, a regularized trace
formula for nonzero magnetic field can be easily obtained
following the results in Ref. [44]. This is given as the loga-
rithmic derivative of the Selberg zeta function ZF (s) involving
the product of the length spectrum labeled by the only closed
geodesic of the funnel, �F , together with unbounded multi-
plicities. Since the regularization of the resolvent kernel for
the funnel involves a subtraction of the one corresponding to
H, one can prove that the resulting expression is not directly
influenced by the nonzero magnetic field and takes the form

�F�
(s) = Z ′

F�

ZF�

(s), ZF�
= e−s�F /4

∏
k�0

(1 − e−(s+2k+1)�F )2,

(8)
where k denotes multiplicities. Even though the hyperbolic
ends determine many features of the spectrum, they are not
directly relevant in the study of quantum chaotic features of
the system as there is only one short geodesic which is in
general negligible to produce any substantial modification of
short-range spectral correlations.

For the compact core ZCC (a bordered Riemann surface) the
exact analytical expression of the heat kernel, equivalent to
the partition function, for nonzero magnetic field is given by
the Selberg trace formula [48–54],

ZCC ≡ Tr e−τH = e−τ/2(1/4+b2 ) Vh

2π

∫ ∞

0
dk

k e−k2τ/2 sinh 2πk

cos 2πb+ cosh 2πk

+
∞∑

m=1

∑
�∈L(γ )

A�,m g(m�(γ ))e−τ b2/2,

g(m�(γ )) = 1

4
√

πτ
e−τ/8−[m�(γ )]2/4τ ,

A�,m = �

2 sinh(m�/2)
, (9)

where H is the Maass Laplacian defined above, m corresponds
to the multiplicities of the primitive periodic orbits, and Vh =
−2πχ (in front of the induced continuous contribution to the
heat kernel) is the area of the surface. This last dependence
has to be removed regarding the interpretation of the partition
function as that of a gravitational system, as pointed out in
Ref. [38]. We notice that the explicit b dependence enters as
a simple shift of the case without magnetic field. In addition,
to simplify notation, we have not included explicitly the term
involving the geodesic related to the border of the surface;
see Ref. [51] for a full expression. From Eq. (9) we see
that the trace formula depends on the corresponding Fuchsian
group � associated with the quotient surface, which in turn
depends on the parameters associated with the moduli of the
hyperbolic Riemann surface. However, one of the strengths
of the trace formula is that even though we may expect—on
general grounds—a change in the length spectrum for dif-
ferent points in the moduli space, the partition function will
still be expressed in a very compact form [Eq. (9)]. As was
argued earlier, the detailed account of the moduli space is not
important for our purposes since the quantum chaotic nature
of the motion occurs for all Fuchsian groups associated with
a given hyperbolic surface of genus h.

More importantly, unlike the Gutzwiller trace formula [56],
broadly used to compute the spectral density of quantum bil-
liards in flat space, which is only valid in the semiclassical
limit, the Selberg trace formula is exact; namely, the exact
quantum spectrum of the system is encoded in the primitive
periodic orbits of the classical counterpart. Another remark-
able feature is that the dependence on the magnetic field is
just a prefactor, of not much physical relevance. This feature
will greatly simplify the calculation of spectral correlations
associated with Zh

�\H that we discuss now.

B. Spectral features associated with Zh
�\H

Having discussed the spectral properties of each separate
subregion of the hyperbolic Riemann surfaces, we now study
them as a whole. For the case of a vanishing magnetic field,
the spectrum of the total surface is relatively well under-
stood [44].

Since the surfaces are noncompact of infinite area, it
is more convenient to characterize the spectrum through
resonances s which are the poles of the (meromorphi-
cally continued) resolvent R(s) = Tr[H − s(1 − s)]−1. Even
in this more general situation, it is possible to show [57,58]
that the zeros of the Selberg zeta function, ZX (s) =∏
LX

∏∞
m=0 (1 − e−(s+m)�), Re(s) > 1, provide an exact de-

scription of the quantum spectrum or resonances [59].
More interestingly, for the purpose of the calculation of

spectral correlations, the partition function, and therefore the
spectral density, take the form of a regularized Selberg trace
formula [60] which is given by the length spectrum LX of
the surface where the contribution of each primitive periodic
orbit is still given by A�,m, as in the compact case [Eq. (11)].
However, we note that this length spectrum is in principle
completely different from the one corresponding to the com-
pact core. For instance, we expect that in this case some
geodesics originally in the compact core are now missing as
the surface is now of infinite area and therefore corresponding
to that of an open system, where it is possible for them to
escape outside the compact core. Regarding the dependence
on the magnetic field, we do not expect a qualitative de-
pendence because the Selberg trace formula above is largely
independent of it though no firm conclusion can be achieved
until a full analysis of this dependence is carried out.

Even though the spectrum of the Maass-Laplace operator
can in principle be computed from information of the length
spectrumLX , explicit calculations of the latter for infinite-area
surfaces are scarce; see Ref. [61] for a surface with h = 1.
However, our main aim is not a detailed knowledge of the
spectrum but rather to clarify whether the Maass-Laplace
spectrum, or correspondingly the JT spectrum, is quantum
chaotic with spectral correlations described by RMT.

An important quantity which helps in answering this ques-
tion is the the Hausdorff dimension δ of the classical attractor
(trapped set) [44,62–64] introduced in Eq. (7). This dimension
is directly related to the escape rate υ = 1 − δ, the rate at
which trajectories close to the trapped set escape to infinity
in units of the inverse of the Heisenberg time TH .

Crucial for the forthcoming spectral analysis is the fact
that for all hyperbolic Riemann surfaces of infinite area, δ >

0 [44,62]. Its specific value will be highly dependent on other
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parameters defining the surface, such as the genus number, but
it is always positive.

The finiteness of δ is directly related to other relevant
results:

(i) For δ > 0, the number of closed geodesics of length
less than t , for t sufficiently large, grows exponentially,
∼eδt/δt [46,47]. This is a generalized version for hyper-
bolic Riemann surfaces of infinite area of the so-called prime
geodesic theorem.

(ii) The eigenvalues with the largest real part are δ, and
there are no other resonances in the line Re(s) = δ [64,65].

(iii) The topological entropy ST of the geodesic flow of the
trapped set is positive, ST = δ [66,67].

The finite topological entropy is a distinctive feature of
classical chaos, while the exponential growth of long peri-
odic orbits plays a key role in the demonstration of quantum
chaotic features in the spectrum.

In summary, taking into account that the partition function
is still given by just the length spectrum LX [59], with ampli-
tudes A�,m similar to the compact case [Eq. (11)], and that the
classical dynamics is chaotic, we broadly expect that quan-
tum JT gravity is also quantum chaotic, namely, its spectral
correlations are well described by RMT. In the next section
we provide evidence that this is the case.

IV. SPECTRAL CORRELATIONS OF JT GRAVITY:
SPECTRAL FORM FACTOR AND WIGNER TIME DELAY

FLUCTUATIONS

Having investigated the features of the partition function of
JT gravity, we now move to the calculation of spectral corre-
lations in order to confirm agreement with the predictions of
RMT. For that purpose, the first step is to relate the JT parti-
tion function to the spectral density: ρ(E ) = ∑

i δ(E − Ei ) =
ρ̄ + ρosc, where the first term stands for the monotonous part,
whereas the second term stands for the oscillating part. We
note that the spectrum is in general complex, so the spec-
tral density is smoothed out with respect to a Dirac delta
function. In general, only the latter enters into observables rel-
evant to establish the quantum chaotic nature of the spectrum.
Fortunately, the spectral density is nothing but the Laplace
transform of the partition function ρ(E ) ∼ ∫

C
dτ Z (τ ) eEτ ,

with C being a vertical path in the complex plane. Taking
into account that the JT partition function—given by the trace
formula—is also naturally split into a monotonous and an
oscillating part, the spectral density can be expressed in terms
of the length � of periodic orbits

ρosc ∼
∑
LX

A�eik�, (10)

where E ∼ k2 and

A� ∼ �

2 sinh(�/2)
, (11)

where for convenience we have not included multiplicities
m as they lead to subleading corrections in the correlations.
We note that different length spectra lead to different attractor
dimensions δ > 0. We recall also that the length spectrum for
the whole surface is not in principle related to that of the com-
pact core [Eq. (9)]. Importantly, we will define the spectral

correlators not in terms of the partition function defined in
the previous section but by the spectral density above. We do
that for convenience as we shall use results from the quan-
tum chaos literature where spectral correlations are defined
through the density. We do not expect any major difference
with an approach based from the beginning on the correlation
of partition functions as in Ref. [29]. Likewise, the graphical
depiction of these correlations as multiboundary spaces with
correlations should be applicable in our case, though we do
not further pursue this identification as it is evident that the in-
formation contained in the correlations of partition functions
should be equivalent to that computed in this section.

In order to characterize the nature of the quantum dynamics
we will investigate the spectral form factor and the Wigner
time delay fluctuations. The latter is an observable employed
to characterize the spectrum of open quantum chaotic systems.
It is relevant in our case since 0 < δ < 1 and therefore the
escape rate υ > 0.

A. Spectral form factor

The simple form corresponding to the oscillating part of
the spectral density—given in terms of a sum over primitive
periodic orbits—makes possible the analytical calculation of
spectral correlations by using semiclassical techniques. Our
aim is to show explicitly that level statistics agree with the
RMT prediction which is a signature of quantum chaos. If the
escape rate υ is negligible, namely, many closed geodesics
stay in the compact core, then the lowest part of the spectrum
is discrete, and the system is effectively closed. In that case,
the spectral form factor K (τ ), the Fourier transform of the
two-level correlation function, is a good indicator of quantum
chaos. Despite the (imaginary) magnetic field, which breaks
time-reversal invariance, spectral correlations seem to fall
within the Gaussian orthogonal ensemble (GOE) universality
class typical of systems with time-reversal invariance though
we shall see that further research may be needed to confirm
the universality class. What is beyond any reasonable doubt is
that time-reversal symmetry is broken in our model.

The argument supporting GOE correlations despite the
breaking of symmetry is well known [52]. In systems with
time-reversal symmetry there are always two degenerate pe-
riodic orbits for a given length corresponding to a given orbit
and the same orbit after time reversal. The particularity of our
system is that the action of the periodic orbit in the presence
of a magnetic field only differs from the action without a
magnetic field by a constant shift. This means that despite the
fact that the lengths of a given periodic orbit and the same
periodic orbit after time reversal are different, the actions
are the same (up to a constant shift), so level statistics are
GOE, not Gaussian unitary ensemble (GUE). Therefore spec-
tral correlators depend on the magnetic field as an irrelevant
prefactor. For more details we refer the reader to Ref. [52].

Having said that, a word of caution is in order. As we said,
the Selberg trace formula depends on the magnetic field as
an irrelevant prefactor that is a function B2, so it should not
matter whether B is real or imaginary. However, without a
full derivation from scratch of the Selberg trace formula for
the case of an imaginary magnetic field, which is beyond
the scope of this paper, we could not be sure that the only
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difference is the mentioned change in an irrelevant prefactor.
In any case, the dynamics will be quantum chaotic in any
circumstance with K (τ ) = Aτ for τ � 1 with A = 1 for GUE
and A = 2 for GOE. We show next that the spectral form
factor for JT gravity agrees with the RMT prediction in this
limit and derive the extension of this result in the case of open
systems with a finite escape ratio υ.

The spectral form factor is explicitly given by

K (τ ) =
〈∫ ∞

−∞

dη

ρ̃(E )
ρosc(E + η/2)ρosc(E − η/2)e2π i ηρ̄(E ) τ

〉
E

.

(12)

where the average is over an energy interval �E , around E
of typical width larger than the mean level spacing but much
smaller than other dynamical scales of the problem. Inserting
the analytical expression for the density [Eqs. (10) and (11)]
results in [11]

K (τ ) = 1

TH

〈 ∑
�,�′∈LX

A�A�′ei(S�−S′
� )/h̄δ

(
T − � + �′

2

)〉
E

,

(13)

where S� ∼ k� is the classical action related to the geodesic
� and momentum k and TH = 2π h̄ρ̃(E ) is the Heisenberg
time, the time scale related to the mean level spacing. Off-
diagonal terms � �= �′ are suppressed due to both the sum
over quasirandom phases and the averaging procedure, so
we only consider primitive periodic orbits without repetition.
With these simplifications, the spectral form factor is given by

K (τ ) ∼ 1

TH

∑
�∈LX

A2
�δ(T − �). (14)

In the semiclassical limit of interest, the integral is dominated
by long periodic orbits, so, using Eq. (11), A� ≈ �/e�/2. The
sum is then replaced by an integral where the density of
periodic orbits is the derivative of the number of periodic
orbits of length less than L′, which according to the prime
geodesic theorem [46,47] is ∼eδL′

/L′. Therefore the integral
simplifies to

K (τ ) ∼ 1

TH

∫ ∞

−∞
dL′L′e−(1−δ)L′

δ(T − L′)

∼ T

TH
e−(1−δ)T ∼ τe−υτ , (15)

where T/TH = τ is the time measured in units of the Heisen-
berg time and υ = (1 − δ)TH is the rate escape, which agrees
with the random matrix result in the limit δ → 1 correspond-
ing to a closed quantum chaotic system. For δ �= 1, it also
agrees with the prediction for an open quantum chaotic sys-
tem in the semiclassical limit [68–70] or a random scattering
matrix [71]. We note that since δ is the lowest eigenvalue or
resonance, TH ∼ f (δ) with TH → ∞ for δ → 0 close to the
ground state.

The calculation of higher-order terms in the τ expansion
is feasible though rather cumbersome. In the limit δ → 1, it
has been carried out in Ref. [48], and it agrees with the RMT
prediction. We expect that for δ �= 1, it would also agree with

previous results from RMT and semiclassical open quantum
chaotic systems [70].

The variable τ is measured in units of the Heisenberg time,
so even though it is an expansion in small τ , it describes the
time evolution of the system for long times of the order of, but
smaller than, the Heisenberg time.

In summary, up to the moduli space problem [72], the spec-
tral form factor of JT gravity agrees with the random matrix
theory prediction that indicates that it is quantum chaotic for
sufficiently long times.

B. Wigner time delay fluctuations

Since our system is open and we do not know the precise
value of δ in our case, it is in principle not clear to what extent
it is possible to demonstrate the existence of quantum chaos
from the spectral fluctuations for sufficiently small δ where
it may not be possible to distinguish single eigenvalues. We
note, however, that there are observables that signal quantum
chaotic features in open chaotic systems. One of the most pop-
ular is the Wigner time delay τW [73,74], defined as the extra
time a scattering process takes with respect to free motion. Al-
ternatively, it can also be defined as the difference between the
spectral density of the open scattering system, which includes
resonances (poles of the resolvent), and a free system. Using
the expression for the spectral density [Eq. (10)], it is given by

τW ∼ τ̄W + 1

υTH

Re
∑
m=0

∑
�∈LX

A�,me
i
h̄ mS� , (16)

where τ̄W is the smooth part of the time delay that does not
enter into the calculation of fluctuations, A�,m was defined in
Eq. (11), S� ∝ � is the classical action related to the prim-
itive geodesic of length �, and υ is the escape rate defined
above. A RMT prediction, based on the modeling of the
scattering matrix as a random matrix, for the variance and,
among others, energy fluctuations of τW is available [71,75].
Assuming that the time scale related to the shortest periodic
orbit is the smallest length scale in the problem, it agrees with
that of deterministic quantum chaotic systems by using the
trace formula [69,70,76,77]. Interestingly, the same results are
obtained by using only the periodic orbits inside the scattering
region or including the full orbits that eventually escape from
it (see Ref. [78] and references therein).

A useful indicator of quantum chaos is the Wigner time
delay variance var(τW ), given by [70,76,78]

var(τW ) ∼ 1

T 2
H

Re

〈 ∑
�,�′∈LX

A�A∗
�′ei(S�−S�′ )/h̄

〉
, (17)

where only m = 1 terms, neglecting repetitions, are con-
sidered because higher-m contributions are exponentially
smaller.

As in the calculation of the spectral form factor, the leading
term in the semiclassical approximation corresponds to the
diagonal approximation � = �′. The resulting single sum can
be efficiently evaluated by using the prime geodesic theo-
rem [46,47] and the expression for A� [Eq. (11)] in the limit
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of large �. That results in

var(τW ) ∼ 1

T 2
H
υ2

+ · · ·. (18)

This in agreement with the RMT prediction. Indeed, assum-
ing time-reversal invariance, agreement has been found up to
eighth order in the expansion parameter 1/TH υ [70]. We note
that this expansion parameter is a sensible choice because
if υTH � 1, the spectrum could at all effects be considered
discrete, as in a closed system, where observables such as the
spectral form factor are more suitable to describe the quantum
motion.

Agreement with RMT predictions is also found for other
observables such as energy correlation of the time delay or
other correlations involving the scattering matrix [78,79].

The main goal of the paper was to show that the result of a
quantization of JT gravity, whenever topological fluctuations
are allowed, is that the dynamics is quantum chaotic. Namely,
spectral correlations are given by RMT for long time scales
of the order of the Heisenberg time. The results of this sec-
tion strongly suggest that this is the case. We stress that the
key feature of this finding is that for any δ > 0 there is an
asymptotic exponential growth [46,47] of primitive periodic
orbits leading to a finite topological entropy. This property
guarantees the analytical calculation of level statistics by us-
ing semiclassical techniques. We therefore expect that the
obtained random matrix correlations are a robust feature of
the spectrum of the Maass Laplacian on any of the hyperbolic
Riemann surfaces of infinite area in the moduli space of the
theory because in all of them δ > 0.

V. DISCUSSION AND CONCLUSION

In this exploratory study, we have studied the quanti-
zation of JT gravity whenever topological fluctuations are
allowed. We have shown that the quantum gravity problem
is mapped onto the calculation of the spectrum of a certain

Maass-Laplace differential operator on noncompact Riemann
surfaces of infinite area and genus h � 1. Remarkably, the
spectrum of this open chaotic system is semiclassically exact.
The spectrum and resonances of this operator are written
explicitly by a Selberg trace formula, namely, a sum over
geodesics of the classical counterpart. Resonances, corre-
sponding to classical trajectories escaping to infinity, are zeros
of the associated Selberg theta function. The spectral form fac-
tor as well as the variance of the Wigner time delay agree with
the RMT prediction. This is an indication that full quantum
ergodicity is a distinctive feature of quantum JT gravity. We
stress that a requirement to observe quantum chaos is that the
time scale related to the shortest closed geodesic, a sort of
Thouless time, must be much shorter than the inverse of the
classical escape rate γ = 1 − δ with δ > 0. These quantities
will depend among others things on the dilaton boundary
value, which is proportional to the magnetic field, and the
genus h � 1 of the surface. It would be interesting to carry out
an explicit calculation of δ and γ to fully confirm the quantum
chaotic nature of quantum JT gravity. Moreover, the analogy
between quantum JT gravity and the charged particle picture
is only fully justified [37,38] in the Schwarzian limit corre-
sponding to a large and imaginary magnetic field. Therefore
this is another condition for our results to hold.

Other topics that deserve further attention are the gen-
eralization to higher spatial dimensions, the calculation of
nonuniversal corrections to random matrix results for suffi-
ciently short times, and, following the ideas of Ref. [33], the
generalization of the results presented here to the supersym-
metric case.
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