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From tunnels to towers: Quantum scars from Lie algebras and q-deformed Lie algebras
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We present a general symmetry-based framework for obtaining many-body Hamiltonians with scarred
eigenstates that do not obey the eigenstate thermalization hypothesis. Our models are derived from parent
Hamiltonians with a non-Abelian (or q-deformed) symmetry, whose eigenspectra are organized as degenerate
multiplets that transform as irreducible representations of the symmetry (“tunnels”). We show that large classes
of perturbations break the symmetry, but in a manner that preserves a particular low-entanglement multiplet of
states, thereby giving generic, thermal spectra with a shadow of the broken symmetry in the form of scars. The
generators of the Lie algebra furnish operators with “spectrum-generating algebras” that can be used to lift the
degeneracy of the scar states and promote them to equally spaced “towers.” Our framework applies to several
known models with scars, but we also introduce models with scars that transform as irreducible representations
of symmetries such as SU(3) and q-deformed SU(2), significantly generalizing the types of systems known
to harbor this phenomenon. Additionally, we present examples of generalized Affleck-Kennedy-Lieb-Tasaki
(AKLT) models with scar states that do not transform in an irreducible representation of the relevant symmetry.
These are derived from parent Hamiltonians with enhanced symmetries, and bring AKLT-type models into our
framework.
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I. INTRODUCTION AND GENERAL FRAMEWORK

A central question in nonequilibrium quantum dynamics
is whether reversible unitary dynamics in a closed quantum
system can establish local thermal equilibrium. Much insight
into quantum thermalization follows from the eigenstate ther-
malization hypothesis (ETH) [1–5], a strong version of which
posits that every finite-temperature eigenstate of a thermaliz-
ing system reproduces thermal expectation values locally [6].
In contrast, there are classes of interacting, typically disor-
dered, “many-body localized” (MBL) systems that violate the
ETH and never thermalize [7–9].

More recently, attention has focused on weak ETH vi-
olating systems with so-called “many-body quantum scars”
[10–13]. Scars are nonthermal eigenstates embedded within
an otherwise thermal eigenspectrum. These typically have
subthermal entanglement entropy [∼O( log(|A|)) or ∼O(|∂A|)
for a subsystem A] and coexist at the same energy density as
thermal volume-law entangled eigenstates. Scars constitute a
vanishing fraction of the eigenspectrum, and hence these sys-
tems still obey a weak version of the ETH [14]; nonetheless,
their presence can lead to measurable nonthermal dynami-
cal signatures in quenches from atypical but experimentally
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amenable initial states [12,15]. Indeed, the recent literature on
scars followed from an interesting experimental observation
of nonthermal (oscillatory) quench dynamics in a Rydberg
atom chain that realizes a constrained “PXP” spin Hamilto-
nian [12].

The mechanism leading to scars in the PXP model is still a
largely open question, and most of the scarred eigenstates rel-
evant to the quench dynamics are only approximately known
[13,16–26]. In contrast, by now, there are many lattice models
with exactly known scar states, ranging from the celebrated
Affleck-Kennedy-Lieb-Tasaki (AKLT) model to a spin-1 XY
model to deformed topological models [10,11,20,21,27–37].
Many such examples with exact scar states can be understood
via one (or both) of two complementary approaches: the first
due to Shiraishi and Mori (SM) [10] relies on local projectors,
and the second due to Refs. [32,34] relies on the existence of a
spectrum-generating algebra (SGA) on the scarred subspace.

The SM prescription [10] relies on two ingredients: (1) a
set of local projectors {Pi} centered around site i, that gener-
ically do not commute with one other, and (2) one or more
states |ψs〉 that are simultaneously annihilated by all the Pi

and span a subspace S . The |ψs〉 are then scarred eigenstates,
annihilated by Hamiltonians of the form

HSM
A =

∑
i

PihiPi, (1)

where the hi are generic local operators of finite range. The
hi operators ensure that the rest of the spectrum is thermal-
izing and nonintegrable. If, additionally, there exist special
Hamiltonians H ′ that commute with all the {Pi}, then these
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can be added to HSM
A to impart different energies to the states

in S . Note that H = HSM
A + H ′ does not have explicit sym-

metries, but the Hilbert space nevertheless dynamically splits
into disconnected “Krylov sectors”: the subspaces S and its
complement do not mix because S is annihilated by HSM

A .
Separately, Refs. [32,34] furnished a complementary

framework that unified the existence of “towers” of scar states
in three different models: the AKLT spin chain, a spin-1
XY model, and a domain-wall conserving model [11,21,28].
In these models, scars {|ψn〉} were generated by repeatedly
acting with a particular operator Q+ on a particular low-
entanglement eigenstate |ψ0〉 of H so that |ψn〉 = (Q+)n|ψ0〉.
It was shown that, in all these cases, Q+ acts as a spectrum-
generating “ladder” operator when restricted to the scarred
subspace [32,34]:

([H, Q+] − ωQ+)|ψn〉 = 0, (2)

which implies that the |ψn〉 are equally spaced energy eigen-
states of H with En = ωn + E0. Furthermore, the particular
form of the Q+ operator is such that the states |ψn〉 have
low entanglement. Reference [32] discussed various exam-
ple Hamiltonians obeying Eq. (2) which had the form H =
HSG + HA, such that HSG has a “spectrum-generating” algebra
(SGA):

[HSG, Q+] = ωQ+, (3)

and HA annihilates the scars HA|ψn〉 = 0. Similar to SM, these
contain a piece that annihilates the scars and one that gives
them energy.

While such constructions have been very useful for explic-
itly deriving and unifying the presence of scars in specific
“one-off” models, qualitative pictures of when and how scars
may arise more generally are still largely missing. For exam-
ple, it is still largely unclear where in the general space of
operators and states we may expect to find a set {H, Q+, |ψ0〉}
such that the conditions in Eq. (2) leading to (weak) ETH
violations are met. In contrast, we have many phenomenolog-
ical notions for how (strong) ETH violation arises in MBL
systems: this generally requires strong disorder and weak
short-ranged interactions, and MBL systems are understood as
having an extensive set of emergent local integrals of motion
[38,39].

In this work, we attempt to bridge this gap by presenting
a very general symmetry-based framework for obtaining scar
towers. We start with parent Hamiltonians Hsym, with a con-
tinuous non-Abelian symmetry G (or a q-deformed version
thereof, Gq). The generators of the symmetry furnish a natural
set of spectrum-generating “raising” operators Q+, that con-
nect multiplets of degenerate eigenstates in Hsym. We show
that there are general ways to perturb Hsym that break the
symmetry in a manner that preserves a shadow of the sym-
metry in the form of scars. For example, eigenstates of Hsym

in superselection sectors with at most O(poly(L)) basis states
will have at most O( log(L)) entanglement in a system of size
L. Families of perturbations can be chosen that preserve cer-
tain such low-entanglement subspaces of Hsym, but generically
mix between all other sectors, thereby leading to the em-

bedding of scarred eigenstates in otherwise thermal spectra.1

Our perspective is reminiscent of Kolmogorov-Arnold-Moser
(KAM) theorems that concern the fate of integrable models
with extensively many symmetries to the addition of small
perturbations, and specifically whether remnants of the inte-
grability can be preserved under the action of the perturbation.

Our framework makes extensive use of the generators
of the Lie algebra of the symmetry group G, which fur-
nish a natural set of spectrum-generating operators (SGOs)
with “raising/lowering action.” [For example, operators
{Q+, Q−, Qz} associated with an SU(2) symmetry have the
SGA: [Qz, Q±] = ±Q±.] We obtain scarred models via a
three-step process:

(i) First, Hsym contains multiplets of degenerate eigen-
states, tunnels, that transform as irreducible representations
(irreps) of the symmetry G. Each multiplet is labeled by
its eigenvalues under the Casimir operators of G, and states
within the multiplet are distinguished by their eigenvalues
under the generators of G in the Cartan subalgebra. Raising
operators connect between the states in a multiplet. As an
example, an eigenstate |ψ0〉 of an SU(2)-symmetric Hsym is
labeled also by its eigenvalues under the Casimir Q2, and the
Cartan generator Qz. Then, |ψn〉 = (Q+)n|ψ0〉 will be a degen-
erate eigenstate with the same Q2 but different Qz eigenvalue
since [Hsym, Q+] = [Q2, Q+] = 0, and [Qz, Q+] = Q+.

(ii) Next, tunnels in Hsym can be promoted to equally
spaced “towers” of nondegenerate eigenstates in the Hamil-
tonian Hs = Hsym + HSG. Here, HSG is typically chosen to be
a linear combination of the generators in the Cartan subalge-
bra, which commute with and share the eigenstates of Hsym,
but have a SGA with the raising operators. For example, if
G = SU(2), choosing HSG = ωQz gives the states |ψn〉 energy
En = E0 + nω because [HSG, Q+] = ωQ+.

We emphasize that, even though the addition of HSG breaks
the symmetry G, the eigenstates of Hs and Hsym are still
the same and only their energy eigenvalues are different: in
particular, degenerate tunnels of states become nondegenerate
towers.2

We will also discuss models where the scar tower does not
transform as an irrep of the symmetry group G and/or where
HSG is not a generator of the symmetry but still has a SGA
with the raising operators. This is possible when Hsym has an
expanded symmetry, which allows Hsym to be simultaneously
diagonalized with HSG and have tunnels of degenerate eigen-
states that do not transform as an irrep.

(iii) Finally, to make Hs a scarred model, we introduce
symmetry-breaking perturbations HA that annihilate a partic-
ular low-entanglement tunnel of states {|ψn〉} built upon a
particular low-entanglement “base state” |ψ0〉. HA can typi-
cally be chosen to be generic enough to mix states across the

1We note that Hsym by itself is not considered to be scarred because
features such as the presence of low-entanglement eigenstates result
from symmetries of Hsym; indeed thermalization (and ETH) is al-
ways discussed with reference to symmetry appropriate equilibrium
ensembles.

2More generally, we will also consider larger non-Abelian symme-
tries [such as SU(3)] where the eigenspectra of the multiplets may
have more complex “pyramidal” relations.
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FIG. 1. Schematic sketch of the tunnels-to-towers framework for
obtaining scars. For simplicity, we consider the case of symmetric
scars obtained by perturbing an SU(2)-symmetric model Hsym. The
generators of the symmetry furnish operators {Q+, Q−, Qz} associ-
ated with the SU(2) algebra. (a) Hsym has “tunnels” of degenerate
eigenstates with the same eigenvalue for the Casimir Q2 but different
eigenvalues for Qz. Each tunnel is denoted by a different color. One
can move between states in a tunnel using Q±. (b) Adding HSG ∝ Qz

preserves the eigenstates, but breaks the degeneracy of the tunnels.
Instead, states in each tunnel get promoted to “towers” and acquire
an evenly spaced harmonic spectrum because of the SGA [Qz, Q±] =
±Q±. (c) An HA can be chosen to annihilate a specific tower of states
(highlighted) but generically break all symmetries and mix between
the other states so as to make the rest of the spectrum thermal. The
chosen tower of states are scars in H = Hsym + HSG + HA.

various symmetry sectors of Hsym so as to make the rest of the
spectrum generic and thermal. In all,

H = Hsym + HSG + HA (4)

obeys the condition in Eq. (2), and has towers (or pyramids) of
scar states generated by raising operators of the non-Abelian
symmetry G acting on a low-entanglement base state |ψ0〉
which is an eigenstate of each of the three terms in H .

This three-step process is schematically illustrated in
Fig. 1. Several scarred models in the literature can be
understood as special cases of our general framework
[28,34,35,40,41]. Importantly, our work also furnishes a nat-
ural way to get many new scarred Hamiltonians derived from
various non-Abelian and q-deformed non-Abelian symme-
tries. In what follows, we flesh out the ingredients for our
framework in more detail in Sec. II. We then discuss two
qualitatively distinct families of scars. In the first, discussed
in Sec. III, the scarred eigenstates inherit the parent symmetry
and transform as a single irreducible representation of G (or
Gq). These represent generalizations of perturbed η-pairing
models that have been discussed in the literature [34,35]. The
second, discussed in Sec. IV, is a generalization of various
AKLT-type models where the scars do not inherit the symme-
try G. However, as we discuss, these can be viewed as arising
from parent Hamiltonians with an enhanced symmetry group
larger than G. We conclude in Sec. V, and present various
technical details in a series of appendices.

II. INGREDIENTS OF THE FRAMEWORK

We now discuss in more detail our framework for con-
structing families of Hamiltonians with towers of scarred
states. For specificity, we will always consider a one-

dimensional chain with L sites, with a spin-S degree of
freedom [i.e., a (2S + 1)-state Hilbert space] on each site.3

We denote the physical spin operators on site j as S±
j , Sz

j , with

S± =
∑

j

S±
j , Sz =

∑
j

Sz
j, (5)

where S±
j are the usual spin-raising and -lowering operators

on site j and Sz
j measures the z polarization of the spin. We

refer to the resulting SU(2) algebra as the spin-SU(2) algebra,
and to any associated symmetry in our model as a spin-SU(2)
symmetry.

A. Lie algebras, raising operators, and HSG

To describe the possible Hamiltonians of the form in
Eq. (4), our first task is to characterize a suitable set of ladder
operators Q+ associated with the Lie algebra of a non-Abelian
symmetry G in Hsym. Note that Hsym will not generically have
spin-SU(2) symmetry and the Q operators will generally be
distinct from the physical spin operators in Eq. (5). Here,
we treat the case where G acts as a product of onsite sym-
metries. A different context in which operators with suitable
commutation relations emerge naturally is in q-deformed Lie
algebras. In that case, the commutation relation between the
q-deformed SU(2) [or SU(2)q] raising and lowering operators
requires an action that extends over all sites in the system; we
discuss this example in detail in Sec. III E.

We begin with the case G = SU(2). In this case, we define
a single raising, lowering, and Cartan operator, each of which
is a linear combination of the form

Q± =
∑

j

e±ikr j (Q±
j ), Qz =

∑
j

Qz
j . (6)

Here, k is a momentum index, and the operators {Q±
j , Qz

j}
are derived from the local SU(2) generators of the symme-
try acting on site j. To ensure that the scar tower contains
only O(poly(L)) states, we also require that (Q+

j )nmax = 0, and
hence on a chain with L sites, (Q†)nmaxL = 0.

More generally, if Hsym is invariant under a continuous
non-Abelian symmetry group G, we can find a family of
raising and lowering operators Qα± and HSG chosen from the
associated Lie algebra G, such that these satisfy commutation
relations corresponding to an SGA. To construct these, let
G be an N-dimensional semisimple Lie algebra on a given
site j [N = m2 − 1 for SU(m)]. We denote by Qz

μ, j with μ =
1, . . . , R a maximal linearly independent set of commuting
Hermitian generators that can be diagonalized simultaneously,
called the Cartan subalgebra (CSA). R is known as the rank of
the algebra.

On each site, the N − R generators that are not in the
CSA can be rearranged into pairs of raising and lowering
operators {Qα±, j} of different SU(2) subalgebras. They satisfy
the commutation relations[

Qz
μ, j, Qα, j

] = αμQα, j . (7)

3It is easy to see that the general philosophy of our constructions
apply mutatis mutandis to systems in higher dimensions.
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Here, α are R-component vectors, known as roots. We will
use the notation {α} = {α+} ∪ {α−} to collectively refer to all
roots, while α± denote positive and negative roots, such that
the corresponding operators Qα± can be viewed as raising and
lowering operators. A set of positive roots is a subset of all
roots that contains only one of α+ and α− ≡ −α+, such that
if α+ + β+ is a root, then α+ + β+ is also a positive root.
(Note that this allows for multiple choices of positive roots;
the specific choice will not matter for our formalism.4) We
also define simple roots α(S) as the set of positive roots that
cannot be written as a sum of other positive root vectors. Sim-
ple root vectors have the nice property that any positive root
vector can be written as a unique linear combination of simple
root vectors with positive integer coefficients. In addition, all
raising operators can be expressed as nested commutators of
the raising operators associated with simple roots. The raising
and lowering operators on each site obey the commutation
relations

[Qα, j, Qβ, j]

∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
μ

αμ

α·α Qz
μ, j if β = −α,

Qα+β, j if α + β is a root, and β �= −α,

0 otherwise.

(8)

In a chain with L sites, we can therefore define the global
raising and lowering operators as

Qα± =
∑

j

eir j kα± Qα±, j . (9)

Here, kα± can be chosen independently for each simple root.5

Next, choosing

HSG =
R∑

μ=1

hμ

∑
j

Qz
μ, j (10)

to be a linear combination of the generators in the CSA, all
the raising and lowering operators obey the desired SGA

[HSG, Qα] = ωαQα, (11)

where ωα = ∑
μ hμαμ. We thus find that for R > 1 there are

multiple linearly independent choices of the coefficients hμ,
which in general exhibit different spectra for the scar states.
For a given choice of HSG, the different raising operators
Qα also create multiple distinct branches of the scar tower,
associated with different fundamental frequencies ωα.

To summarize: A subset of the generators of a Lie algebra
can always be combined to furnish one or more pairs of
raising and lowering ladder operators Qα± , associated with
embedded SU(2) subalgebras. The remaining generators Qz

μ

form the Cartan subalgebra and have spectrum-generating
commutation relations with Qα [cf. Eq. (7)]. When HSG is

4We have in mind the specific choice that a root α is positive if the
first nonzero element of α is positive.

5If β = ∑
i niαi where αi are simple roots, then we require kβ =∑

i nikαi to ensure that the operators {Qα± ,
∑

j Qz
μ, j} satisfy the com-

mutation relations of G.

chosen to be as a linear combination of Qz
μ, as in Eq. (10), then

HSG can be simultaneously diagonalized with Hsym and the
Casimirs, and has spectrum-generating commutation relations
with Qα [cf. Eq. (11)]. This immediately implies that specific
multiplets of eigenstates of Hsym with the same eigenvalue for
the Casimirs but different eigenvalues of HSG are degenerate.
Each of these multiplets forms a “tunnel” in the spectrum of
Hsym that transforms as a single irreducible representation of
G, and acting with {Qα±} moves between different states in
a given tunnel [Fig. 1(a)]. When HSG is added to the Hamil-
tonian, the degeneracies are broken and the eigenstates in the
tunnels acquire energy spacings that are integer superpositions
of ωα [cf. Eq. (11)], thereby getting promoted to towers (or
pyramids) of states [Fig. 1(b)]. The final step, discussed in the
next two subsections, is to add a term HA to the Hamiltonian
that annihilates a particular tunnel of low-entanglement states
built upon a particular “base state”;6 HA generically breaks
all symmetries and mixes between all other states so as to
give a thermal spectrum with the chosen states embedded as
low-entanglement scars.

Interestingly, in our discussion of generalized AKLT mod-
els in Sec. IV, we will encounter examples where HSG cannot
be expressed in terms of the generators of the CSA, but nev-
ertheless has the desired “raising action” in its commutation
relations with Qα. For example, the total spin-z operator Sz

obeys the commutation [Sz, Q+] = 2SQ+ for the “raise by
2S” Q+ operators in Eq. (23), but Sz is linearly independent
from Qz. In these cases, the parent Hamiltonian Hsym generally
has a larger symmetry, so that its eigenstates can still be simul-
taneously diagonalized with HSG and the picture of tunnels to
towers still applies, however, the states in the tower of scars
need not have a definite eigenvalue under the Casimir Q2 and
are not contained within a single irreducible representation of
G = SU(2).

B. Base state |ψ0〉
In order to construct our candidate scar tower, the next

ingredient we need is to select a specific multiplet of degen-
erate tunnel states in Hsym that will get promoted to form a
scar tower. In order for the scars to have low entanglement,
the tower should be built by acting with the raising operators
Qα+ on a particular low-entanglement “base” state |ψ0〉. As
discussed above, we will require |ψ0〉 to be an eigenstate of
Hsym and HSG. In general, the scar space consists of a discrete
set of states of the form∣∣ψn1,n2,...,nk

〉 = Qnk

α+
k
. . . Qn2

α+
2
Qn1

α+
1
|ψ0〉, (12)

where α+
j are positive roots and 0 � n j ∈ Z. Importantly, we

need the the number of states in the scar tower to grow at most
polynomially in L. This is possible because, as for SU(2),
Qnmax

α, j = 0 as an operator on each site: any state can be raised
or lowered by at most a fixed amount in any direction. Hence,
the n j can grow at most linearly with L. Additionally, we can
choose the {α j}, j = 1, 2, . . . , k, to be a redundant ordering

6Note that while the spectrum of Hsym has many tunnels of degen-
erate eigenstates, not all of these will have low entanglement.
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on the simple roots such that k is independent of the length of
the chain.7

The base states that we consider come in two types.
First, |ψ0〉 can be a low-entanglement eigenstate of Hsym, HSG

and the relevant Casimir operators. The resulting scar states,
which we refer to as symmetric scars, transform in a single ir-
reducible representation of the symmetry group G. Base states
of this form [with G = SU(2)] are relevant to the spin-1 XY
model [28,32,34,35], as well as the η-pairing states of the
Hubbard model and other electronic models after appropriate
mappings from spin lattices to electronic models [35]. Second,
we may choose |ψ0〉 to be an eigenstate of HSG, but not of
the relevant Casimirs. In this case the scar pyramid is not
contained within a single irreducible representation of G, and
the associated parent Hamiltonian Hsym must have additional
degeneracies not explained by the symmetry G. This scenario
arises in various AKLT-type model Hamiltonians exhibiting
exact quantum scars.

For symmetric scars, one simple choice of base state is
a maximally polarized state. For example, if G = SU(2),
we can take |ψ0〉 to be the maximally spin-polarized state,
which is the only state in the symmetry sector labeled by
(Q = Qmax, Qz = −Qmax). Acting with the raising operator
on this state n times generates unique state in the symmetry
sector labeled by (Q = Qmax, Qz = −Qmax + n).

For general G, the maximally polarized state is obtained
as follows. We will work in a basis {|w〉} of simultaneous
eigenstates of all Qz

μ. [This is analogous to working in the
basis of σ z eigenstates in the SU(2) case.] Here w, known as
the weight vector, describes the eigenvalues of the Qz

μ, via

Qz
μ|w〉 = wμ|w〉. (13)

The commutation relations (7) imply that

Qα±|w〉 ∝ |w ± α〉, (14)

i.e., acting with Qα± on a state |w〉 changes the eigenvalue
of Qz

μ by an amount ±αμ (which can be 0 for some choices
of α, μ), while preserving the value of the Casimirs. Note
that the coefficient of proportionality can be 0, in which case
|w ± α〉 is not a state in our Hilbert space. There is always a
unique “lowest-weight” state |wmin〉 such that Qα−|wmin〉 = 0.
The general maximally polarized base state is thus a product
of lowest-weight states on each site in our system: |ψ0〉 =∏

i |wmin,i〉. By definition, this is an eigenstate of the many-
body Casimirs and all Qz

μ. Acting with all nonvanishing
products of the form (12) will then generate all states in
the corresponding irrep of the Lie algebra G. We note that
for a system with L sites, the maximum number of states
in any such representation grows only polynomially with L,
guaranteeing that our scar subspace is subextensive.

We now argue that the states |ψn1,n2,...,nk 〉 are low-
entanglement eigenstates of (Hsym + HSG) and hence good

7We can find this choice for many cases, such as when (Qα)i

furnishes a fundamental representation of SU(N) on each site and
|ψ0〉 is the fully polarized state. We expect it to be generically true,
but we do not have a general proof.

candidate scar states once HA is added. First, they are eigen-
states since

(Hsym + HSG)
∣∣ψn1,...,nk

〉
= (Hsym + HSG)Qnk

αk
. . . Qn1

α1
|ψ0〉

= Qnk
αk

. . . Qn1
α1

(
Hsym +

k∑
i=1

niωαi + HSG

)
|ψ0〉

=
(

E0 +
k∑

i=1

niωαi

)
Qnk

αk
. . . Qn1

α1
|ψ0〉, (15)

where the third line follows from Eq. (11) and the fact that
[Hsym, Qαk ] = 0, and the last line follows from the fact that
we require |ψ0〉 to be an eigenstate of HSG and Hsym with
eigenvalue E0.

Second, the states |ψn1,...,nk 〉 all have entanglement that
grows at most logarithmically in the subsystem size, pro-
vided that |ψ0〉 has low entanglement. To see this, observe
that if |ψ0〉 has finite [or log(L)] entanglement, it can be
approximated (up to exponentially small corrections) by a
matrix product state with bond dimension d for some d that
is finite [or poly(L)]. In fact, the choices of |ψ0〉 that we
use here will all be exact matrix product states. Further, for
all choices of Q+ operators considered in this work (for Lie
algebras and q-deformed Lie algebras) the operator (Q+)n can
be expressed as a matrix-product operator (MPO) of bond di-
mension n + 1. We show this in Appendix A, by generalizing
an argument due to Mougdalya et al. in Ref. [27]. Thus, the
state Qnk

αk
. . . Qn2

α2
Qn1

α1
|ψ0〉 has entanglement entropy of at most

S ∼ log(d ) + ∑
k log(nk + 1). Since the maximum possible

value of ni grows polynomially with L, we see that states in
our scar tower have entanglement entropy that scales at most
logarithmically, rather than linearly, with L. This is a defining
characteristic of a quantum scar eigenstate.

C. Annihilation operators HA

Finally, our construction requires an operator HA that be-
haves like a generic, thermal Hamiltonian on the nonscarred
eigenstates, but with the special property that

HA

∣∣ψn1,...,nk

〉 = 0 (16)

for any {nμ}, i.e., it annihilates all states in the scar tower.
In general, we will consider two types of HA operators. The

first is of the Shiraishi and Mori form in Eq. (1) which requires
a set of local projectors {Pi} which annihilate all scar states:

Pi
(
Qnk

αk
. . . Qn2

α2
Qn1

α1

)|ψ0〉 = 0 (17)

for all i and any set of powers nμ. In general, we will re-
strict ourselves to translation invariant hi in Eq. (1), to ensure
that eigenstates of H (SM)

A are not many-body localized. By
choosing these hi operators sufficiently generically and with
sufficiently large (but finite) range r, quite generally we expect
that H (SM)

A can be chosen to be ergodic on those states that it
does not annihilate.

In many cases, appropriate projectors Pi can be deduced
from the properties of the group. For example, scars built
atop a polarized state for an SU(2) spin-symmetric system

043305-5



O’DEA, BURNELL, CHANDRAN, AND KHEMANI PHYSICAL REVIEW RESEARCH 2, 043305 (2020)

will have maximum possible total spin for any pair of neigh-
boring sites, so that bond-wise projectors onto states with
total spin less than this maximal value must annihilate the
scars. Letting �max

i,i+1 be the projector onto the maximal total
Q-spin state between sites i and i + 1, an appropriate set
of bond-wise projectors is Pi,i+1 = 1 − �max

i,i+1. Likewise, for
higher-rank Lie groups, bond-wise projectors can be obtained
by exploiting the symmetry of the state |wmin,i, wmin,i+1〉 under
interchanging indices i and i + 1. For example, if |wmin,i〉 is a
state in the fundamental representation of the group G, for
k = 0 the corresponding many-body state is in the completely
symmetric representation (a single row, in terms of Young
tableaux). We can therefore define the projector �i,i+1 onto
completely symmetric states along the bond (i, i + 1).

At this point, it is also worth commenting on the role of
the momentum k in defining SU(2) generators as in Eq. (6).
First, the commutation relations are invariant under locally
redefining

Q+
i → eiφi Q+

i , Q−
i → e−iφi Q−

i , (18)

and thus under changes in k. The scar models that we discuss
have particular values of k, for example, k = π for the spin-1
XY and AKLT models. This is because the states in the scar
tower, and hence the choices of annihilating projectors Pi,i+1,
will be k dependent. In general, for certain choices of the
momentum k, the Pi,i+1 may not have a simple, physical form
in terms of the underlying spin operators.

With a little more care, we can similarly locally redefine
the raising operators Qα+ for other Lie groups G. In this case,
we can locally and freely redefine the simple positive roots
with phases φα+(S)

i ; this then constrains the phase choice for
the other positive roots and the negative roots so that, similar
to the SU(2) case, the commutation relations do not depend
on k; rather, different k correspond to different scar towers,
annihilated by different bond-wise projectors Pi,i+1.

The second type of term that we include in HA are “as-a-
sum” annihilators. These are operators of the form

H�
A =

∑
i

βiOi, (19)

where Oi is a local operator centered at site i which does not
on its own annihilate the scar tower. In this case there is no
freedom to adjust the relative coefficients βi at different sites
since only specific superpositions annihilate all scar states.
Including such operators is sometimes necessary for under-
standing the structure of scars in a given model; for example,
Ref. [32] worked out a particular H�

A for the AKLT model. In
other cases, including such terms can lead to physical and po-
tentially experimentally realizable examples of Hamiltonian
with scars, such as the one in Eq. (22) presented in Ref. [35].
Additionally, in some cases Hamiltonians of the SM form (1)
annihilate not only the desired scar tower, but also some of the
states outside of the scar tower. Thus, in order to ensure that
the only nonergodic states in our spectrum are the scar states,
it is also useful to include “as-a-sum” annihilators in HA.

In order to identify the scarred models described here, we
have carried out an exhaustive search for the possible con-
tributions to HA. Specifically, we present a general algorithm
which, given a particular set of “target” states, constructs

Hamiltonians for which the target states are eigenstates. This
is a generalized version of the covariance-matrix algorithm
presented in Ref. [42], and we recapitulate some of the main
points of the algorithm for completeness. (This method can
also be useful for identifying HSG and Hsym.)

Consider any m-dimensional linear space of Hermitian op-
erators of interest H and construct a Hermitian basis {hα} for
this space. Then, given a target state |ψ〉, the null space of the
m by m matrix

C|ψ〉
αβ = 1

2 〈ψ |hαhβ + hβhα|ψ〉 − 〈ψ |hα|ψ〉〈ψ |hβ |ψ〉 (20)

corresponds to the space of Hermitian operators in H for
which the state |ψ〉 is an eigenstate. That is, from any vector
�c in the null space, we can construct a Hermitian operator∑

α cαhα with |ψ〉 as an eigenstate. Because the covariance
matrix has non-negative eigenvalues, the null space of a sum
of covariance matrices C|ψn〉

αβ for multiple states |ψn〉 corre-
sponds to the space of Hermitian operators in H that have all
the |ψn〉 as eigenstates. Finally, if one desires Hamiltonians
that annihilate the target states, such as HA, then dropping the
−〈ψ |hα|ψ〉〈ψ |hβ |ψ〉 piece of the covariance matrix suffices.

The dimension m of the covariance matrix depends on
the size of the space of interest H, but is often quite small.
For example, the space of translationally invariant sums of
at-most-range-2 operators is just (2S + 1)2[(2S + 1)2 − 1] di-
mensional, which is independent of L. Thus, the null space of
the covariance matrix can be computed very quickly. More
computational effort is required to calculate the elements of
the covariance matrix, and this calculation scales with the size
of the eigenstates |ψ〉. However, in the case of translationally
invariant (or periodic with fixed period) models and states,
calculations on a small size chain can capture the null space
of the infinite L covariance matrix. Further, when |ψn〉 has a
matrix product state (MPS) representation (as is the case for
all of the scar states we discuss), MPS techniques are useful
to calculate the elements of the covariance matrix.

A complementary algorithm for obtaining as-a-sum an-
nihilators was discussed in Ref. [35], which specialized to
scar towers and translationally invariant operators and re-
lied on matrix product methods. We emphasize that the
covariance-matrix algorithm above does not need such spe-
cializations, and hence can be used for a wider class of target
states and Hamiltonians where matrix product methods may
not be readily amenable. Relaxing the restriction on trans-
lation invariance allowed us to discover a wider class of
nearest-neighbor models with the spin-1 AKLT scar states
as eigenstates than had been reported previously in the lit-
erature; we discuss this example and its generalizations in
Appendix C. We note that this method can also be used to
directly search within different classes of operators that may
be of interest to different experimental setups. For example, hα

could be chosen to be a staggered field hα = ∑
i Sz

i (−1)i or a
particular kind of two- or three-body interaction. This method
is also general enough to find examples of Hamiltonians that
embed any specific set of target states of interest, that may or
may not be derived from symmetries, and hence can be used
to construct special “one-off” models with scars.

At this point, we have discussed all the ingredients that
enter our framework for constructing scars from symmetries,
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specifically, (i) Hsym with a non-Abelian symmetry G, (ii) the
ladder operators Q± derived from embedded SU(2) subalge-
bras of the Lie algebra, (iii) choices for HSG that may or may
not be built from the CSA of the Lie algebra, (iv) choices for
the base state |ψ0〉 that may or may not be an eigenstate of the
Casimirs of G, and (v) choices for HA that annihilate the tower
of scar states. We note that once a particular tower of states
has been identified by the action of Q± on |ψ0〉, then HA is
the most important piece since it ensures that the Hamiltonian
acts nongenerically only on the scarred manifold but is well
thermalizing on the rest of the spectrum. Indeed, in many
cases, the simplest choice of Hsym = 0 works. Likewise, while
HSG is used to give different energies to the scar states, this is
not required, and models with degenerate low entanglement
are still scarred. In the next two sections, we present several
examples of existing and new scarred Hamiltonians that lie
within our framework.

III. SYMMETRIC SCARS

In this section, we discuss symmetric scars, in which the
scarred subspace transforms as an irreducible representation
of G (or a q-deformed version thereof), even though the
Hamiltonian as a whole is not invariant under the symmetry.
In all such models, the scar tower is obtained by acting with
raising operators on a low-entanglement base state that has
a definite eigenvalue under all the Casimir operators of G.
Section III A presents various examples, several of which have
been presented in the literature previously, where the scars
are derived from an SU(2) or “η-pairing SU(2)” symmetry. In
Sec. III B, we review known examples [40,41] where integra-
bility is the source of the underlying symmetry. In Sec. III C,
we review a known example of scars [21,32] for which the
raising operators do not have a direct connection to root
systems. Section III D generalizes to higher-rank Lie groups,
while Sec. III E considers q-deformed SU(2) symmetry. For
most of our examples, the base state will be a state with max-
imum eigenvalue under the Casimir, such as a spin-polarized
state for SU(2) or its analog for general G, but we also
present examples of scar towers built on nonpolarized states in
Sec. III A 3.

A. Symmetric scars from SU(2) symmetry

1. Spin-SU(2) symmetry

We start with a particularly simple example where the sym-
metry group G is the spin-SU(2) symmetry. Here Q± = S±,
the only generator in the Cartan subalgebra is Qz = Sz, and
the Casimir is Q2 = S2 = 1

2 (S+S− + S−S+) + (Sz )2. The cor-
responding parent Hamiltonian Hsym is spin-SU(2) symmetric,
and states in the scar tower share a common value of S2. Any
Hamiltonian Hsym with spin-SU(2) symmetry has a tunnel of
(L + 1) degenerate states built upon a polarized base state.
For example, when S = 1

2 , we can build a tunnel by acting
with S+ on |ψ0〉 = | ↓↓↓ . . . ↓〉. Each of these has maximal
S2 eigenvalue but different Sz eigenvalues, and take the form

|ψn〉 = (Q+)n|ψ0〉 ∝
∣∣∣∣Q2 = L

2

(
L

2
+ 1

)
, Qz = −L

2
+ n

〉
.

Each |ψn〉 is the unique eigenstate in a particular symmetry
sector characterized by (Q2 = Qmax(Qmax + 1), Qz ) eigenval-
ues. As discussed above, the form of Q+ ensures that that
these states have at most logarithmic entanglement.

The degeneracy of these states can be lifted by adding a
term HSG = Sz to Hsym, which promotes the tunnels to tow-
ers. Finally, we can consider a Shiraishi-Mori type HA, as in
Eq. (1), with projectors onto two-site singlets on neighboring
sites Pi,i+1 = (1/4 − �Si · �Si+1). Because the |ψn〉 have maxi-
mal total spin, they are annihilated by each of these singlet
projectors. Indeed, Ref. [18] constructed a model of “perfect
scars” of exactly this form:

H = 
∑

i

Sz
i +

∑
i

Vi−1,i+2Pi,i+1, (21)

where Vi, j = ∑
μ,ν Jμ,ν

i, j Sμ
i Sν

j is an arbitrary operator that is
used to break the spin-SU(2) symmetry. In this “perfect
scar” model, Q+ = S+, Hsym = 0, HSG = Sz, and HA =∑

i Vi−1,i+2Pi,i+1. Note that even though Hsym = 0, the action
of HA makes the model well thermalizing outside the scarred
subspace, and the scarred states still inherit the SU(2) algebra.

A different example with the same maximal spin scar states
is given in Ref. [35]:

H =
∑

i

J1 �Si · �Si+1 + J2 �Si · �Si+2 + Dẑ · (�Si × �Si+1). (22)

Unlike the previous model, Eq. (21), this model has a nontriv-
ial Hsym = J1 �Si · �Si+1 + J2 �Si · �Si+2 with spin-SU(2) symmetry,
but has HSG = 0 so that all the scars are degenerate (one could,
of course, equally well add a term of the form HSG = Sz).
The final term HA = D

∑
i ẑ · (�Si × �Si+1) breaks the SU(2)

symmetry and annihilates the scars, but it is not of the SM
form since it only annihilates the scar states as a complete
sum, whereas previously each local projector individually an-
nihilated the scar states.

2. Q-SU(2) symmetry

Next, we consider a model where the operators {Q±, Qz}
satisfy SU(2) commutation relations, but are distinct from the
spin-SU(2) operators. In particular, we can choose Q±, Qz

according to

Q± = 1

(2S)!

∑
i

eikri (S±
i )2S, Qz = 1

2
[Q+, Q−]. (23)

This choice with spin S = 1 and k = π produces the SGO
of two well-known scar models in the literature: the spin-
1 AKLT model [11,27,32,33] and the spin-1 XY model
[28,29,32,33]. Here, Q±

i = (S±
i )2S raises (lowers) the spin −S

(spin S) state to a spin S (spin −S) state, and annihilates all
other states. Thus, the (2S + 1) states on each site are divided
into the Q-spin- 1

2 doublet {| − S〉, |S〉}, and 2S − 1 Q-spin sin-
glets.8 Correspondingly, the operators Q+, Q−, and Qz obeys

8This is an example of an embedded SU(2) subalgebra of
SU(2S+1) on each site. For S = 1, there are three independent SU(2)
subalgebras in SU(3), and the Gell-Mann matrices provide a natural
basis for these embedded subalgebras of which the choice described
in Eq. (23) represents one.
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the Lie algebra SU(2), but the resulting Q-SU(2) symmetry is
distinct from the spin-SU(2) symmetry.

It is natural to also consider other onsite raising operators
of the form Q+

i = (S+
i )n for 1 � n � 2S. However, for n <

2S − 1 and S > 3
2 , these operators do not describe an SU(2)

algebra but rather form higher-rank Lie group symmetries, as
discussed in detail in Sec. III D.

As before, we use the operators Q+ to construct scar states
built upon a base state that is an eigenstate of both Qz and Q2

so that all of the scars share the same eigenvalue of Q2, but
are distinguished by their eigenvalues under Qz. A particular
example of this kind in furnished in the spin-1 XY model
[28,32,34,35]:

H =
∑

i

J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + J3
(
Sx

i Sx
i+3 + Sy

i Sy
i+3

)

+ hSz
i + D

(
Sz

i

)2
. (24)

The scars are built by the action of Q+ on the fully polarized
down state |ψ0〉 = | − − − · · · −〉. Note that the first term ∝ J
breaks Q-SU(2) symmetry and annihilates the scars, the term
hSz acts as HSG and gives energy to the scars, while the term
∝ D commutes with Qz and Q+. The third-neighbor term is
added to break a nonlocal SU(2) symmetry for which the scar
states are the only states in their symmetry sector. Specifi-
cally, the raising operator associated with this nonlocal SU(2)
symmetry is obtained by replacing (−1)i → eiπ

∑
j=1iSz

j in the
expression (23) for Q+. The resulting ladder operator acting
on our fully polarized base state generates the same scar tower.
Thus, this nonlocal SU(2) symmetry and its corresponding
Casimir must broken in order for our scar tower to violate
ETH.

Similar physics is also at play in the η-pairing states of
the Hubbard model on bipartite lattices [43]. The Hubbard
model has both a spin-SU(2) symmetry and an independent
“η-pairing” SU(2) symmetry [which plays the role of the
Q-SU(2) symmetry]. The η-pairing states have low entangle-
ment [44], and are the unique states in the symmetry sector
of maximal “η-pairing” total spin (i.e., states with maximal
eigenvalues under Q2). Analogous to the examples above, the
Hubbard model can be perturbed by a suitable HA to break
the η-pairing SU(2) symmetry while preserving the η-pairing
states as scarred eigenstates in the perturbed model [34,35];
the Hirsch model furnishes a notable example [35]. Strikingly,
there exists a simple mapping from spin-1 models above to
electronic models that allows for translation between the scar
states of the spin-1 XY model and the η-pairing scars of the
Hirsch model and some related electronic models [35].

3. Scar towers from base states of nonmaximal spin

The above examples, drawn from previous literature, con-
tain scar towers generated from a fully polarized state for
the base state. In each case, this meant that the scar tower
transformed in an irreducible representation of Q-SU(2) with
maximal spin. We emphasize, however, that maximal spin (or,
more generally, extremal Casimir eigenvalues) are not neces-
sary for scar states, though they are useful for enumerating the
bond-wise annihilators.

FIG. 2. Entanglement entropy vs energy density in the k = 0
momentum sector of the periodic chain of length L = 10 with Hamil-
tonian (25) and parameters h = 2, D = B1 = B2 = Jz = 1, J1 = − 3

4 ,
and J2 = 1

2 . The circled states are a scar tower that transforms in an
irrep of Q-SU(2) with less than maximal spin.

To demonstrate this, we offer a simple example. Consider
a spin-1 chain described by the Hamiltonian H = Hsym +
HSG + HA with

Hsym = D
(
Sz

i

)2
,

HSG = hSz
i ,

HA =
∑

i

J1(�Si · �Si+1)2 + J2[(�Si · �Si+2)2 + �Si · �Si+2]

+ B1
[(

Sz
i

)2(
Sx

i+1 + Sy
i+1

) − (
Sx

i+1 + Sy
i+1

)(
Sz

i+2

)2]
+ JzS

z
i Sz

i+1 + B2
[
Sz

i

(
Sz

i+1

)2 − (
Sz

i+1

)2
Sz

i

]
. (25)

This model has a scar tower, generated by acting with Q+ =∑
i

1
2 (S+

i )2, which is of the form in Eq. (23) with k = 0 and
S = 1 on the base state |ψ0〉 = 1√

2
|0 − 0 − · · · 0−〉 + 1√

2
| −

0 − 0 · · · − 0〉. As promised, |ψ0〉 is an eigenstate of the
Casimir Q2 with eigenvalue L/4(L/4 + 1) which is less than
the maximal Casimir L/2(L/2 + 1).

To see that the terms act as labeled, observe that the terms
with proportionality constants B1, B2, and Jz all annihilate all
states in this scar tower bond wise because every state in the
scar tower has |0〉 on every other site. Similarly, J1 is equal to
the identity plus three times the projector onto the singlet state
and is hence also a bond-wise annihilator on subtracting out
the identity. J2 is another bond-wise annihilator up to a factor
of the identity, as it is equal to a linear combination of the
identity and a projector onto the antisymmetric spin-1 states.

We emphasize that the J2 term is sensitive to the mo-
mentum of Q+; further, without this term, any states of the
form |a10a20a30 . . . 〉 where ai = ±1 would be eigenstates.
Finally, the terms B1 and B2 help us to break symmetries and
make the model thermal. Collectively, the terms in HA are
sufficient to render all but a few of the states outside the scar
space thermal, as seen in Fig. 2; the fully polarized up and
down states remain as eigenstates despite Sz being broken,
so those states are also scars. We also note that Eq. (25)
contains only a subset of the operators that could be added
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to HA to make the model thermal; others can be found using
the covariance-matrix algorithm.

More generally, base states with other eigenvalues under
Q2 and Qz, such as those with eigenvalue (Qmax − p)(Qmax −
p + 1) under Q2, and (−Qmax + p) under Qz for some finite
p, will also have low entanglement and can be used to build
scar tunnels.

B. Scars from integrability

It is also possible to write scarred models that fit into
our general framework [Eq. (4)] using commutation relations
derived from algebraic structures following from integrability.
Reference [40] furnished such an example using integrable
clock models [45]. In this case, Hsym is an integrable model
with extensively many conserved quantities associated with
an infinite-dimensional Onsager algebra. The conserved quan-
tities take the form of sums of local operators; some of
the conserved quantities raise the total z magnetization by
fixed amounts, and can be chosen as the analog of our Q+.
Then, picking HSG = Sz, Ref. [40] derived a scarred model
by adding an HA that broke integrability and annihilated scars
built on a polarized down state. In a similar spirit, Ref. [41]
used the fact that quasilocal conserved operators in certain
parameter regimes of a spin- 1

2 XXZ model obey a SGA
with Sz [46] to derive the presence of persistent oscillations
in these integrable models. However, the perturbations to
integrability considered in Ref. [41] were general and not
aimed at preserving a scar tower. In general, the quasilocal-
ity may make finding a choice of HA more challenging in
this case.

C. Raising operators without connections to root structures

Before we discuss higher-rank and q-deformed groups, we
emphasize that Eq. (4) does not require direct connections
to the root structures of named Lie algebras. It is enough to
have a dynamical symmetry indicated by the presence of an
SGA between the raising operator Q+ and HSG, along with
an HA that annihilates the scars and can make the rest of
the spectrum thermal. For example, Ref. [21] investigated an
exact set of scar states in the spin- 1

2 domain-wall-conserving
model with a raising operator lacking a clear connection to
roots. The scars were generated by Q+

DWC = ∑
i P−

i−1σ
+
i P−

i+1,
with projectors P− onto spin down, acting repeatedly on the
fully spin-down product state. As argued in Ref. [21], the
“lowering” operator to undo the action of Q+

DWC on the scar
states is necessarily nonlocal, meaning that the scar states do
not transform in a single representation of any symmetries
associated with Q+

DWC, similar to the AKLT and generalized
AKLT scars discussed below. However, unlike the AKLT
scars for which Q+

AKLT is a generator of SU(2), Q+
DWC is not

clearly related to the root structures of named Lie algebras:
the projectors spoil the SU(2) commutation relations with
Q+

DWC’s Hermitian conjugate, and the commutators of the
resulting operators do not close readily, obscuring the relation
to other Lie algebras. Nevertheless, the Hamiltonian and scar
states still follow Eq. (4) despite being generated by oper-
ators Q+ without direct connections to the root systems of
Lie algebras.

D. Higher-rank Lie group symmetric scars

Another class of examples that our symmetry-based per-
spective on scars makes natural is scar states associated with
continuous symmetry groups G other than SU(2). As dis-
cussed in Sec. II, these differ from the SU(2) case in a few
important ways. First, in general there are multiple choices
of raising operators. Second, there are multiple choices of
HSG, which in general satisfy commutation relations of the
form (11). Depending on the choice of HSG, we can therefore
engineer scar states with multiple distinct frequencies, or with
exact degeneracies in their spectra that reflect the more com-
plex Lie group symmetry.

The general idea of the construction closely parallels the
SU(2) case. Choosing |ψ0〉 = ∏

i |wmin,i〉 to be a product of
the lowest weight state at each site, we have Qα−,i|wmin,i〉 =
0. This is the analog of the polarized state, and has maximal
eigenvalue under the Casimir. The scar tower then consists of
all states of the form (12).

As a simple example, we consider a spin-1 chain. The
three states a given site can be viewed as transforming in
the three-dimensional fundamental representation of SU(3),
which has N = 8 generators and rank R = 2. The six gener-
ators that are not in the CSA furnish three raising and three
lowering operators. In the Sz

i basis |+i〉 = (1, 0, 0)T , |0i〉 =
(0, 1, 0)T , |−i〉 = (0, 0, 1)T , the three raising operators of
SU(3) are

Qα+
1 ,i =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦,

Qα+
2 ,i =

⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦, (26)

Qα+
3 ,i =

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦.

Using the following basis for the two generators of the Cartan
subalgebra on site i,

Qz
1,i =

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦, Qz

2,i = 1√
3

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦, (27)

the roots are

α+
1 = (−1,

√
3), α+

2 = (2, 0), α+
3 = (1,

√
3). (28)

Note that Qα+
3 ,i = [Qα+

2 ,i, Qα+
1 ,i] = Qα+

2 ,iQα+
1 ,i; hence, Qα+

1 ,i
and Qα+

2 ,i generate the complete set of states on site i from
the lowest weight state |−〉i.

We now consider the global raising operators Qα+
j

=∑L
i=1 Qα+

j ,i. With a base state |ψ0〉 = ∏
i |−i〉, the scar space

is spanned by the 1
2 (L + 1)(L + 2) states

Qm
α+

2
Qn

α+
1
|ψ0〉 for 0 � m � n � L, (29)

i.e., by all states in the [ 1
2 (L + 1)(L + 2)]-dimensional irre-

ducible representation of SU(3) containing the lowest weight
state |ψ0〉. These states will have at most log(m + 1) +
log(n + 1) entanglement entropy since both Qn

α+
1

and Qn
α+

2
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have MPO representations with bond dimension n + 1 (see
Appendix A).

There are two natural physical operators for HSG: Sz =∑
i Sz

i and
∑

i(S
z
i )2. These can be expressed as

Sz
i = 1

2
Qz

1,i +
√

3

2
Qz

2,i, (30)

(
Sz

i

)2 = 2

3
1 + 1

2
Qz

1,i −
√

3

6
Qz

2,i. (31)

Using Eqs. (10), (11), and (28), both Qα+
1

and Qα+
2

raise Sz
i by

one, while Qα+
1

(Qα−
2
) decreases (increases) the eigenvalue of

(Sz
i )2 by 1. Correspondingly, the eigenvalue of Sz on the state

in Eq. (29) is −L + m + n, while the eigenvalue of
∑

i(S
z
i )2 is

L − n + m.
We now turn to HA. At the two-site level, the

states in the tower will only contain the six symmetric
states | − −〉, | − 0〉 + |0−〉, |00〉, | + −〉 + | − +〉, | +
0〉 + |0+〉, and | + +〉. The three antisymmetric states
|1,−1〉 = 1√

2
(| − 0〉 − |0−〉), |1, 0〉 = 1√

2
(| + −〉 − | − +〉),

and |1, 1〉 = 1√
2
(| + 0〉 − |0+〉) do not appear, and so

we can use projectors onto these states as Shiraishi-Mori–type
projectors. Correspondingly, there are nine bond-wise
annihilators on a given pair of sites (i, i + 1) that we can use
in HA:

P1,i = |1,−1〉〈1,−1|, P2,i = |1, 0〉〈1, 0|,
P3,i = |1, 1〉〈1, 1|, P4,i = |1,−1〉〈1, 0| + H.c.,

P5,i = i|1,−1〉〈1, 0| + H.c., P6,i = |1,−1〉〈1, 1| + H.c.,

P7,i = i|1,−1〉〈1, 1| + H.c., P8,i = |1, 0〉〈1, 1| + H.c.,

P9,i = i|1, 0〉〈1, 1| + H.c. (32)

We also found eight “as-a-sum” annihilators through the
covariance-matrix algorithm discussed above, but we will not
discuss these annihilators further here.

The terms in Eq. (32) break SU(3) symmetry and keep the
Hamiltonian from commuting with the two SU(3) Casimirs;
hence, taking HA to be a linear combination of these bond-
wise annihilators at each site is sufficient to eliminate the
symmetry, and indeed can lead to a spectrum that is ergodic
in the nonscarred Hilbert space. This is seen in Fig. 3, which
shows the entanglement entropy in the k = 0 and inversion-
symmetric sector of the Hamiltonian

H =
∑

j

Sz
j + 1.3

(
Sz

j

)2 − 0.5P4, j + 1.2P5, j

+ 0.9P6, j − 1.7P7, j + 1.7P8, j − 1.5P9, j . (33)

We have colored the scar states according to their values of
m from Eq. (29); we have an evenly spaced tower of states
for each value of m, with n ranging from m to L. As we
increase m by one, the resulting tower has one fewer state than
the previous. For the parameters chosen here, increasing m
corresponds to increasing the energy by 2.3, while increasing
n corresponds to decreasing the energy by .3.

These scar states also allow us to construct families of
simple product states that exhibit periodic or quasiperiodic re-
vivals. For any two complex parameters c1 and c2, the product

FIG. 3. Entanglement entropy in the momentum k = 0 and spa-
tial inversion-symmetric sector of the SU(3) scarred Hamiltonian in
Eq. (33) for a periodic chain of length L = 10. The scar states are
colored according to their values of m in Eq. (29).

states

|c1, c2〉 = ⊗i

( |+〉i + c1|0〉i + c2|−〉i√
1 + |c1|2 + |c2|2

)
(34)

are superpositions of the scar states with no overlap with states
outside the scar sector. To see this, first define n+, n0, and n−
as the number of |+〉, |0〉, |−〉 in a given Sz product state, SL

as the set of permutation operators on a length L chain, and
the normalization N = ( 1√

1+|c1|2+|c2|2
)
L
. Then, expanding the

product above yields

|c1, c2〉 = N
∑

n+, n0, n− � 0;
n+ + n0 + n− = L

cn0
1 cn−

2

n+!n0!n−!

×
∑
P∈SL

P
(⊗n+

i=1|+〉i ⊗n++n0
j=n++1 |0〉 j ⊗L

k=n++n0+1 |−〉k
)

= N
∑

0�m�n�L

cn−m
1 cL−n

2

m!n!
Qm

α+
2
Qn

α+
1
|ψ0〉, (35)

where |ψ0〉 = | − − · · · − −〉 is the polarized state as before.
Let h be the coefficient of

∑
i Sz

i and D be the coefficient
of

∑
i(S

z
i )2 in the Hamiltonian; we noted above that the scar

states had energy L(D − h) + (h − D)n + (h + D)m. Thus,
for (h − D) and (h + D) commensurate, the above family of
product states undergoes exactly periodic revivals, while for
(h − D) and (h + D) incommensurate we have quasiperiodic
revivals for c1, c2 �= 0. The periodic revivals will have the
usual period associated with two different nonzero angular
frequencies; i.e., writing h+D

h−D = p
q for integers p and q, we will

have a period of p
h+D 2π . There are also a couple of interesting

limits of the coefficients. Setting c1 to zero, c2 to zero, or c1

and c2 to infinity will give perfectly periodic revivals with
periods π

h , 2π
h−D , and 2π

h+D , respectively.
We demonstrate periodic revivals from initial states |c1, c2〉

with c1 = 0, c2 = 2 with the Hamiltonian in Eq. (33) in Fig. 4
(top). The choice of c1 = 0 means |c1, c2〉 will only have
overlap with the scar states that have only |+〉’s and |−〉’s,
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FIG. 4. Fidelity F = |〈ψ (t )|ψ (0)〉|2 of the state in Eq. (34) with
c1 = 0, c2 = 2 (top) and c1 = 1, c2 = 2 (bottom) under the time
evolution generated by the Hamiltonian in Eq. (33) for L = 10. The
periods of π and 20π are marked with vertical red lines.

and so the scar states will be separated by an energy spacing
of 2h = 2, giving a period of π . We also demonstrate periodic
revivals with c1 = 1, c2 = 2 with the Hamiltonian in Eq. (33)
after a period of 20π . The structure of these revivals is more
complicated; there are partial revivals at intermediate times,
arising from the two different sets of energy spacings.

1. Higher-rank Lie symmetries from spin operators

A priori, it is not obvious under what conditions higher-
rank Lie group symmetries would arise in real solid-state
systems, such as spin chains. In fact, however, we are naturally
led to these if we consider raising operators of the form

Q+
i = 1

N (S+
i )n, Q−

i = (Q+
i )†, Qz

i = [Q+
i , Q−

i ] (36)

for 1 � n � 2S, where N is a normalization constant. For n =
1 or 2S, with a suitable choice of N the operators Q+

i , Q−
i ,

and Qz
i form an SU(2) algebra. For n < 2S − 1 and S > 3

2 ,
however, in general Eq. (36) does not describe an SU(2)
algebra. Indeed, the set Q+

i , Q−
i , Qz

i is not closed under com-
mutation. Closing these operators under commutation leads
to a set of raising operators associated with a larger Lie group
symmetry.

To illustrate this, we begin with S = 5
2 and n = 2 in

Eq. (36). We define

P+ = [Qz, Q+], P− = −[Qz, Q−], Pz = [P+, P−],

R+ = [P+, Q+], R− = [Q−, P−]. (37)

Here, P+ (P−) is a second, linearly independent operator that
raises (lowers) Sz by 2, and R+ (R−) is a third raising operator,
which raises (lowers) Sz by 4. It is convenient to change basis,
defining the raising operators:

Qα+
1

= 13

12
√

5
Q+ + 1

12
√

5
P+, Qz

1 = 1

1512
(−Qz + Pz ),

Qα+
2

= − 1

36
(Q+ + P+), Qz

2 = 3037

7560
√

3
Qz − 13

7560
√

3
Pz,

Qα+
3

= 1

36
√

5
R+, (38)

where we have taken N = 1
2
√

2
, and as usual, the lowering

operators are given by Q−α j = Q†
α j

. As above, the roots α j are
given by Eq. (28). The three raising operators Qα j act on our
states according to

Qα+
1
|5/2,−5/2〉=|5/2,−1/2〉, Qα+

1
|5/2, 1/2〉=|5/2, 5/2〉,

Qα+
2
|5/2,−1/2〉=|5/2, 3/2〉, Qα+

2
|5/2,−3/2〉=|5/2, 1/2〉,

Qα+
3
|5/2,−5/2〉=|5/2, 3/2〉, Qα+

3
|5/2,−3/2〉=|5/2, 5/2〉,

where states not shown are annihilated by the raising operator
in question.

It is straightforward to check that the raising operators
{Qα+

j
}, together with the corresponding lowering operators

{Qα−
j
}, and two diagonal generators Qz

j , obey the commutation
relations of the eight generators of the Lie group SU(3). Under
the action of these eight matrices, the six states in s = 5

2 split
into two sets of three, which are not connected by any raising
operator. Thus, the representation on each site consists of
one copy of the fundamental (triplet) representation of SU(3),
containing the states | 5

2 ,− 5
2 〉, | 5

2 ,− 1
2 〉, and | 5

2 , 2
2 〉, and a copy

of the conjugate (anti-fundamental) representation, containg
the states | 5

2 ,− 3
2 〉, | 5

2 , 1
2 〉, | 5

2 , 5
2 〉.

For general spin S and n = 2, we show the following in
Appendix B. For half-integer S, the relevant Lie algebra is
SU(S + 1

2 ), with the 2S + 1 states on each site dividing into a
copy of the (S + 1

2 )-dimensional fundamental representation,
and a copy of its conjugate. For integer S, the algebra can
be divided into two sets of operators, which act only on even-
and odd-integer spins, respectively. This leads to a Lie algebra
structure SO(S + 1) × Sp(S) for even S, and SO(S) × Sp(S +
1) for odd S. For even S, the Hilbert space at each site
corresponds to a copy of the (S + 1)-dimensional vector rep-
resentation of SO(S + 1), containing the even-integer spins,
and a copy the S-dimensional fundamental representation of
Sp(S), containing the odd-integer spins. For odd S the S + 1
odd-integer spins transform in the (S + 1)-dimensional funda-
mental representation of Sp(S + 1), while the S even-integer
spins transform in the S-dimensional vector representation of
SO(S).

For these examples, though the Cartan generators Qz
μ,i all

commute with Sz
i , it is not in general the case that Sz

i can
be expressed as a linear combination of the Qz

μ,i since it
is not necessarily traceless when acting on each irreducible
representation of the relevant Lie group in the Hilbert space.
Thus, a natural alternative to an HSG of the form (10) is to take
HSG = Sz = h

∑
i Sz

i , which satisfies an SGA commutation
relation of the form (11) for all raising operators Qα+

j
. In this

case, the value of ω is fixed by how much Qα+
j

raises Sz.
Thus, all frequencies are integer multiples of the elementary
frequency 2nh, and in general multiple Q+

i operators will be
associated with the same frequency.

With this choice, we find degeneracies in the scar tower
characteristic of the underlying larger Lie group symmetry.
For example, consider the spin- 5

2 system described above,
with an SU(3)-symmetric scar tower. The two operators
Qα+

1
, Qα+

2
both raise Sz by 2, while Qα+

3
= Qα+

2
Qα+

1
raises Sz

by 4. Taking |ψ0〉 = | − 5
2 ,− 5

2 ,− 5
2 , . . .〉 to have energy 0, we

see that (Qα+
1

)2|ψ0〉 and Qα+
2
Qα+

1
|ψ0〉 are linearly independent
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states with the same energy of 4h. In contrast, in the SU(2)
case, all states in the scar tower have distinct energies since
each power of Q+ applied to |ψ0〉 necessarily raised the eigen-
value of Sz by the same amount.

E. q-deformed towers

In the preceding sections, we considered scar states that
transformed in a single irreducible representation of some
group. However, we can also consider scar states transform-
ing in representations of “q-deformed groups.” q-deformed
groups have found many applications, including solving the
quantum Yang-Baxter equation [47], describing anyons [48],
and phenomenologically describing perturbations to other-
wise symmetric models [49]. Reference [50] gives a thorough
introduction to the mathematics of quantum groups, and we
use that reference’s notation for the two kinds of q deforma-
tions [n]q and [[n]]q mentioned below. For the purposes of this
work, we restrict our attention to SUq(2), though we expect
that our key results generalize to other q-deformed groups.

The characteristic feature of q-deformed groups is a pa-
rameter q that modifies the generator algebra. For example,
SUq(2) has the following algebra:

[S̃z, S̃±] = ±S̃± and [S̃+, S̃−] = [2S̃z]q, (39)

where

[x]q = qx − q−x

q − q−1
. (40)

The deformation is such that q → 1 returns the algebra to the
usual SU(2) algebra.

For real, positive q, the representations of q-deformed
SU(2) that satisfy the algebra share many similarities with
the usual representations. The irreducible representations are
(2S + 1)-dimensional with Sz independent of q:

(S̃z ) = Sz (41)

and with

〈m′|(S̃±)|m〉 = √
[S ∓ m]q[S ± m + 1]qδm′,m±1. (42)

The S̃± operators are the same as S± for spin S < 1.
The Casimir operator that commutes with the generators

and labels the multiplets is S̃2 = S̃−S̃+ + [Sz]q[Sz + 1]q with
eigenvalues [S]q[S + 1]q; that such an operator commutes
with the generators can be checked by explicit computation.
We will also define

S̃x = S̃+ + S̃−

2
, S̃y = S̃+ − S̃−

2i
(43)

for use below.
However, because of the deformation, some of the usual

properties of representations of Lie algebras no longer hold.
In the regular SU(2) algebra, if we had a representation
{S+, S−, Sz} we could form a direct product representation,

{S+ ⊗ I + I ⊗ S+, S− ⊗ I + I ⊗ S−, Sz ⊗ I + I ⊗ Sz},
(44)

which would also satisfy the algebra. This is how we would
describe the action of SU(2) on, say, two spin-S particles.
Such a set of would-be generators generally fail to satisfy

the q-deformed algebra; instead, for SUq(2), we have that the
operators

{S̃+ ⊗ qSz + q−Sz ⊗ S̃+, S̃− ⊗ qSz

+ q−Sz ⊗ S̃−, Sz ⊗ I + I ⊗ Sz} (45)

satisfy the deformed algebra if {S̃+, S̃−, Sz} do. Similarly, S̃±
acting on a chain of length L picks up “tails” of diagonal
operators to the left and right for each site:

S̃± =
L∑

i=1

(⊗i−1
j=1 q−Sz

j
) ⊗ S̃±

i ⊗ (⊗L
j=i+1 qSz

j
)

(46)

while S̃z is the same as Sz.
For generating scar towers, we will consider a single-site

representation of SUq(2):[
Qz

i , Q̃±
i

] = ±Q̃±
i and [Q̃+

i , Q̃−
i ] = [

2Qz
i

]
q. (47)

From the single-site representation, we can construct a chain-
wide representation through

Q̃± =
L∑

i=1

e±iφi
(⊗i−1

j=1 q−Qz
j
) ⊗ Q̃±

i ⊗ (⊗L
j=i+1 qQz

j
)

(48)

for arbitrary phase factor φi. The freedom to choose an
arbitrary phase factor while maintaining the commutation
relations may seem surprising, as Q̃± is a sum of tailed op-
erators. Nevertheless, (⊗i−1

j=1q−Qz
j ) ⊗ Q̃+

i ⊗ (⊗L
j=i+1qQz

j ) and

(⊗m−1
j=1 q−Qz

j ) ⊗ Q̃−
m ⊗ (⊗L

j=m+1qQz
j ) commute for i �= m, and

the phase factors cancel for i = m, so the phases do not affect
the commutation relations.

For φi = kri, powers of these operators (Q̃±)n have a
simple MPO representation with bond dimension n + 1 (see
Appendix A). It is striking that the MPO representation is
linear in n rather than exponential in n. This means that
(Q±)n will only increase entanglement entropy by a factor
of at most O( log(n)), rather than by n. Thus, Q̃+ with an
associated q-deformed symmetry and symmetric base states
are good candidates for scar states with additional q-deformed
symmetry relative to the Hamiltonian.

To illustrate some of these ideas, consider the following q
deformations of previously discovered models. The simplest
is a q deformation of the model with SU(2) scars in Eq. (21):

H = 
∑

i

Sz
i +

L−1∑
i=1

Vi−1,i+2P̃i,i+1, (49)

where P̃i,i+1 is a projector onto the two-site q-deformed spin
singlet. Explicitly,

P̃i,i+1 = 1

[2]q

(√
q|↑ ↓〉 − 1√

q
|↓ ↑〉

)

×
(√

q〈↑ ↓| − 1√
q
〈↓ ↑|

)
. (50)

The new scar states are those simultaneous eigenstates of Sz

and S̃2 generated by S̃+ on the Sz = −L/2 state.
We can also modify more complicated models and extract

q-deformed scar states. We introduce here a deformed version
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of the spin-1 XY model [28,32,34,35] in Eq. (24):

H =
L−1∑
i=1

Jh̃(q)
i,i+1 +

L−3∑
i=1

J3h̃(q3 )
i,i+3 +

L∑
i=1

hSz
i + D

(
Sz

i

)2
, (51)

where

h̃(q)
i,i+1 = (

S̃x
i qSz

i+1
)(

q−Sz
i S̃x

i+1

) + (
S̃y

i qSz
i+1
)(

q−Sz
i S̃y

i+1

)
(52)

and

h̃(q3 )
i,i+3 = (

S̃x
i q3Sz

i+3
)(

q−3Sz
i S̃x

i+3

) + (
S̃y

i q3Sz
i+3
)(

q−3Sz
i S̃y

i+3

)
. (53)

Here, S̃x and S̃y are deformed using the value of the defor-
mation parameter given in the superscript of h̃. This model
has scar states generated by a deformed version of the raising
operator in Eq. (23) with k = π , S = 1 and with a deformation
parameter of 1

q2 :

Q̃± =
L∑

i=1

(−1)i
(⊗i−1

j=1 q2Qz
j
) ⊗ Q̃±

i ⊗ (⊗L
j=i+1 q−2Qz

j
)

(54)

with Q̃±
i = 1

2 (S±
i )2. Notice that Q̃±

i is not 1
2 (S̃±

i )2: in the
undeformed model, Q+

i = 1
2 (S+

i )2 furnishes a reducible rep-
resentation which is a direct sum of a singlet plus a doublet,
and we want the q deformed Q̃i to furnish a reducible rep-
resentation which is a direct sum of a deformed singlet and
deformed doublet; however, the q deformations of singlets and
doublets are independent of q [cf. Eq. (42)]. One can check
directly that this Q̃+ is a ladder operator for SU1/q2 (2). The
scar states are (Q̃+)n|ψ0〉, where |ψ0〉 is the fully polarized
down state of | − · · · −〉. There exists a separate ladder op-
erator for which (−1)i → eiπ

∑i
j=1 Sz

j that also generates these
same scar states. This second operator is a ladder operator
for a separate SU1/q2 (2) symmetry, so we must be careful to
break the two different SU1/q2 (2) Casimirs associated with
the different ladder operators. The tower of scar states is
annihilated by the J and J3 terms in Eq. (51), and these terms
keep the Casimirs from commuting with the Hamiltonian: the
nearest-neighbor term J is sufficient to violate conservation
of the Casimir of the first ladder operator, while the J3 term
violates conservation of the Casimir corresponding to the first
and second ladder operators. The similarities to the discussion
of the original spin-1 XY model in Eq. (24) should be clear.

In Fig. 5, we plot the entanglement entropy in the Sz = −2
sector of the q-deformed XY Hamiltonian in Eq. (51), for
q = 1.2 and J = J3 = h = D = 1. This symmetry sector con-
tains only a single scar state circled in orange. The scar state
is (Q̃+)4 acting on the fully polarized | − − − · · · − − − −〉
state with energy E/L = 0.8.

We turn next to the issue of revivals from simple initial
states. For the undeformed q = 1 model, Ref. [28] noted a
simple product state that would undergo perfect revivals. This
product state was an eigenstate of Qx = (Q+ + Q−)/2 with
maximal eigenvalue:

|c = 1, q = 1〉 = ⊗i

( |+〉 − (−1)i|−〉√
2

)
. (55)

Such a state has maximal q = 1 Q2 by virtue of having maxi-
mal Qx and, hence, is a superposition of scar states. The scar

FIG. 5. Entanglement entropy in the Sz = −2 sector of the q-
deformed spin-1 XY Hamiltonian for q = 1.2 and J = J3 = h =
D = 1. The chain has open boundary conditions and a length L = 10.
The scar state within this sector is circled.

states are evenly spaced in energy with spacing 2h, yield-
ing perfect revivals of the state under the time evolution of
Eq. (51) with q = 1. Furthermore, grouping the product states
within the state above according to their total z magnetization,
it follows that

|c, q = 1〉 = ⊗i

( |+〉 − (−1)ic|−〉√
1 + |c|2

)
(56)

is also a superposition of the scar states, for arbitrary complex
parameter c. We can also write this state more explicitly in
terms of the q = 1 Q+ operator by noting that

|c, q = 1〉 = N ⊗i

(
|−〉 − (−1)i 1

c
|+〉

)

= N ⊗i

(
1 − 1

c
Q+

i

)
|ψ0〉

= N ⊗i (e− 1
c Q+

i )|ψ0〉
= N e− 1

c Q+|ψ0〉, (57)

where we have defined N = (−1)
1
2 L(L+3)( c√

1+|c|2 )L.

For our deformed model, we can write a similar family of
product states:

|c, q〉 = ⊗i

( |+〉 − (−q2)ic|−〉√
1 + q4i|c|2

)
. (58)

Here, c is an arbitrary complex parameter. Note that the q
dependence changes across the chain. This product state is
again a superposition of the (now q-deformed) scarred states.
To write the superposition explicitly, we will introduce the
notation for m and n positive integers,

[[n]]q = 1 − qn

1 − q
, [[n]]q! =

n∏
m=1

[[m]]q. (59)
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FIG. 6. Fidelity F = |〈ψ (t )|ψ (0)〉|2 of the state in Eq. (58) with
c = 1 under the time evolution generated by the Hamiltonian in
Eq. (51) for q = 1.2 and L = 10. The period of π is marked with
a vertical red line.

Then, comparing (Q̃+)n|ψ0〉 to the terms in |c, q〉 with n sites
|+〉, we have the explicit superposition

|c, q〉 = −N
L∑

n=0

cL−n qL(L+1)−n(n+L)

[[n]] 1
q4

!
(Q̃+)n|ψ0〉, (60)

where

N =
(

L∏
i=1

1√
1 + |c|2q4i

)
. (61)

Furthermore, the scar states are again evenly spaced in en-
ergy with spacing 2h, yielding perfect revivals of this product
state under the time evolution of Eq. (51) for the correspond-
ing value of q. As an example, we demonstrate in Fig. 6
periodic revivals of Eq. (58) with c = 1 with the Hamiltonian
in Eq. (51) with q = 1.2 after a period of π .

The above discussion holds for any values of q > 0. We
note as an aside that for q = 1 + ε for small ε, the spin-1 XY
model is only weakly deformed from the regular spin-1 XY
model. Further, the scar states are also close to their unde-
formed counterparts (although when L is large, their overlap
is only non-negligible when ε is small relative to 1

L ). This
implies that the simple product state |c, q = 1〉 which shows
perfect revivals in the undeformed spin-1 XY model will show
imperfect revivals in the deformed model with a magnitude of
oscillation decaying with growing ε and L.

IV. GENERALIZED AKLT SCARS

Thus far, we have constructed scarred Hamiltonians in
which the scarred eigenstates transform as a single irreducible
representation of a (possibly q-deformed) symmetry group G,
and have a unique eigenvalue for the Casimir operator(s) C.
Here, we describe a qualitatively different family, in which the
scarred states are not eigenstates of C and do not transform
in a single irrep of the symmetry. These will be built by
considering Hsym with an enhanced symmetry, which allows
us to pick base states that do not have a definite eigenvalue for
the Casimir(s) but are nevertheless eigenstates of Hsym.

For specificity, we focus on one-dimensional spin-S gen-
eralized AKLT chains for which the Hamiltonians can be
written as a sum of projectors. In Sec. IV B we present two
models, the q-deformed and SO(2S+1) generalizations of
the spin-S AKLT model, and show that they have towers
of scarred eigenstates generated by the action of the ladder

operator:

Q+
AKLT =

∑
j

1

(2S)!
(−1) j (S+

j )2S (62)

on their respective ground states. Note that Q+
AKLT is the same

as the raising operator associated with Q-SU(2) discussed
earlier, Eq. (23) with k = π . However, because the base state
is not an eigenstate of Q2, the projector onto the resulting
asymmetric scarred manifold does not commute with the Q-
SU(2) symmetry. Previous work showed that the spin-S AKLT
model also has an asymmetric tower of scarred eigenstates
generated by the same Q+

AKLT [11,32].
To understand how this fits with our broader symmetry-

based picture, we note that Ref. [32] showed that the spin-1
AKLT model can be deformed to an Hsym with Q-SU(2)
symmetry while preserving the scar states as eigenstates. To
make the AKLT ground state an eigenstate of Hsym, despite not
being an eigenstate of Q2, also requires degeneracies between
tunnels of states with different values of the Casimir Q2,
allowing superpositions with indefinite Q2 to be eigenstates of
Hsym. This points to an expanded symmetry in Hsym leading
to a much larger set of degeneracies. By taking advantage
of these degeneracies, one can prepare base states that are
eigenstates of Hsym and HSG, even if they are not eigenstates of
Q2 and Qz. We discuss in Sec. IV C a nontrivial set of Hsym for
a very general set of base states with indefinite Q2. These Hsym

allow us to decompose the generalized AKLT Hamiltonians
into Hsym, HSG, and HA and connect to our broader symmetry-
based framework.

Finally, in Sec. IV D, we study deformations between
scarred Hamiltonians with different sets of scar towers. In
particular, we discuss generalizations of a deformation in
Ref. [33] between the spin-S AKLT model and an integrable
point with Q-SU(2) symmetry.

A. Structure of scars in generalized AKLT models

The scars in the AKLT model and its generalizations are a
consequence of the following general structure, first discussed
by Refs. [32,33]. Consider a Hamiltonian H = ∑

j h j, j+1, a
base state |ψ0〉 with zero energy and a ladder operator Q+ =∑

j eik jQ+
j . We assume periodic boundary conditions with kL

being a multiple of 2π ; we discuss the generalization to open
boundary conditions briefly in the next subsection and in more
detail in Appendix G. We also assume that we can group
the two-site Hilbert space into the three disjoint subspaces
G, R, and M. The subspace G (not to be confused with the
non-Abelian symmetry group G of Hsym) contains all two-
site configurations (which we will refer to as bonds) that are
present in the base state. The subspace R contains the image
of all bonds in G under the action of q+

j, j+1 = Q+
j + eikQ+

j+1,
while the subspace M is the complement of G ∪ R. If hj, j+1

and q+
j, j+1 have the following general forms,

h j, j+1 =
⎡
⎣hMM 0 0

0 ωI 0
0 0 0

⎤
⎦, (63)

q+
j, j+1 =

⎡
⎣q+

MM 0 0
q+
RM 0 q+

RG
q+
GM 0 0

⎤
⎦, (64)
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then the model has a scar tower generated by Q+ with energy
spacing 2ω. The above result follows from explicitly calculat-
ing the commutator of H and Q+, as shown in Eq. (67). Here,
the matrices hMM, q+

MM, q+
RM, q+

GM are completely free
and can be zero or nonzero. Additionally, the choice of hMM
can depend on the site j. However, the blocks labeled 0 must
be zero.

In other words, if G and R are disjoint, (q+
j, j+1)2 = 0 when

acting on G, and the Hamiltonian takes the form above, then
the model is scarred. We show that the generalized AKLT
models in Sec. IV B satisfy these conditions (with ω = 1), and
their ground states are not eigenstates of Q2. Hence, they each
have asymmetric scar towers.

Remarkably, we can also construct a large, continuously
connected class of matrix product states (MPS) such that G
and R are disjoint for Q+ = Q+

AKLT. These are spin-S, bond-
dimension S + 1 matrix product states of the form

|ψ0, A〉 =
∑

m

Tr[A[m1]A[m2] . . . A[mL]]|m1 . . . mL〉,

A[m]
i j = 0 for j − i �= m (65)

with mi = −S,−S + 1, . . . , S. The condition A[m]
i j =

0 for j − i �= m means A[m] is nonzero only on the mth
diagonal.9 Each such state acts as a base state for a different
tower generated by Q+

AKLT, and we can enumerate the states
in G, R, M to construct Hamiltonians of the form in Eq. (63)
scarred by the corresponding tower. This class of states
includes the q-deformed and regular spin-S AKLT ground
states [51,52], though the SO(2S + 1) AKLT models’ ground
states have a different structure for S > 1 [53].

To bring these myriad scar towers into our symmetry-based
framework, we note in Sec. IV C that all states of the form
in Eq. (65), as well as all of the SO(2S + 1) AKLT models’
ground states, enjoy a canonical QAKLT-SU(2) symmetric par-
ent Hamiltonian for which (Q+)n|ψ0〉 are all eigenstates of
the same energy. This parent Hamiltonian differs for different
base states |ψ0〉, but its form is the same in terms of the corre-
sponding base state’s G, R, and M. This parent Hamiltonian
further allows us to write all of the generalized AKLT models’
Hamiltonians and all the Hamiltonians of the form in Eq. (63)
in terms of Hsym, HSG, and HA.

Because the MPS are continuously connected, we can give
continuous deformations between scarred Hamiltonians along
which the asymmetric scarred states persist and are continu-
ously deformed. To demonstrate the power of this large class
of states, in Sec. IV D we revisit the deformation of Ref. [33]
of the spin-1 AKLT model to an integrable point along a path
with (continuously varying) scarred eigenstates. We show that
there are many such deformations between the spin-S AKLT
model and corresponding high-symmetry integrable points.

9We use the usual convention for mth diagonal: m = 0 is the main
diagonal, m = S is the upper right corner, and m = −S is the lower
left corner.

B. Generalized AKLT models

Affleck, Kennedy, Lieb, and Tasaki (AKLT) introduced
the spin-1 AKLT model to analytically describe the Haldane
gap in integer spin chains [54]. Subsequent work discov-
ered that the AKLT chain has fractionalized edge spins in
open chains, and is a symmetry-protected topological phase
with nonlocal string order [55,56]. The spin-1 AKLT chain’s
interesting properties prompted many generalizations, includ-
ing generalizations to spin-S, q-deformed spin-S [51,52,57–
60], and other symmetry groups like SO(2S + 1) [53]. These
generalizations are all examples of the Haldane phase with
exact matrix product ground states. We demonstrate that these
models have a second curious property in common, not di-
rectly related to the Haldane phase: they all have scar towers
generated by Q+

AKLT on appropriate ground states.
Each term hα

j, j+1 in the Hamiltonian Hα = ∑
j hα

j, j+1 of
a generalized AKLT model of type α can be expressed as a
sum of projectors. For the spin-S, q-deformed spin-S, and the
SO(2S + 1) AKLT models, we have

hS
j, j+1 =

2S∑
t=S+1

P(t )
j, j+1,

h
Sq

j, j+1 =
2S∑

t=S+1

P̃(t )
j, j+1, (66)

hSO(2S+1)
j, j+1 =

S∑
k=1

P(2k)
j, j+1.

Here, the two-site operators P(t )
j, j+1 and P̃(t )

j, j+1 project onto total
spin t and q-deformed total spin t , respectively. We give their
explicit forms in terms of spin operators and q-deformed spin
operators in Appendix D. The projectors P(t )

j, j+1 are SU(2)
invariant, and thus HS and HSO(2S+1) are SU(2) invariant.10

In comparison, P̃(t )
j, j+1 is SUq(2) symmetric for all j except

for j = L, implying that HSq is SUq(2) symmetric with open
boundary conditions but not periodic boundary conditions.
Notice that HS and HSO(2S+1) agree for S = 1. We also empha-
size here that although HSq has q-deformed SU(2) symmetry,
its scar tower is generated by the “usual” raising operator
Q+

AKLT defined in Eq. (62), and not by q-deformed raising
operators of the form (48).

The three models have exactly known matrix product
ground states. With periodic boundary conditions, the ground
states are frustration free and unique. With open boundary
conditions, the regular and q-deformed spin-S AKLT models
have (S + 1)2 frustration-free ground states, and the SO(2S +
1) AKLT Hamiltonian has 4S frustration-free ground states.

We briefly comment on the difference between the scar
towers in periodic and open chains (see Appendix G for more
details). Assume that we have disjoint G and R with h and q

10The larger SO(2S + 1) symmetry of HSO(2S+1) comes from iden-
tifying

∑S
k=1 P(2k)

j, j+1 as a projector onto the (2S2 + 3S)-dimensional
irreducible representation of SO(2S + 1) within the direct product of
two fundamental representations [53].
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FIG. 7. Entanglement entropy in the Sz = 7 and S̃2 = [7]q[8]q

sector of the q-deformed spin-1 AKLT Hamiltonian for q = 1.2,
L = 12, and open boundary conditions. The circled scar state at
energy E/L = 0.5 is (Q+)3 on the Sz = 1 ground state.

as given in Eqs. (63) and (64). In periodic chains, we have

[HPBC, Q+] = 2ωQ+ +
L∑

j=1

eik jA j, j+1, (67)

where Aj, j+1=[h j, j+1, q+
j, j+1] − ωq+

j, j+1, HPBC=∑L
j=1 h j, j+1.

Computing the operator Aj, j+1 using Eqs. (63) and (64), we
see that Aj, j+1 annihilates all the two-site configurations on
sites ( j, j + 1) that appear in the states of the scar tower. The
form in Eq. (67) matches the condition in Eq. (2). In open
chains, the commutator is modified to be

[HOBC, Q+] = 2ωQ+ +
L−1∑
j=1

eik jA j, j+1 − eikωQ+
1 − eikLωQ+

L .

(68)
The critical change is the presence of Q+

1 and Q+
L acting on

the physical edge spins, which restricts which of the ground
states in open boundary conditions will be a good base state
for the tower of states. We argue in Appendix G that Q+

1 and
Q+

L must individually annihilate the physical edge spins in
these models, which we show occurs for S2 out of (S + 1)2

ground states of the regular and q-deformed spin-S AKLT
models and 4S−1 out of 4S ground states in the SO(2S + 1)
AKLT model. This discussion of open boundary conditions is
especially important for the q-deformed AKLT models, as the
models lose their interesting SUq(2) symmetry with periodic
boundary conditions.

In Appendices E and F, we prove that G and R are disjoint,
and that Eqs. (63) and (64) hold with ω = 1 and hMM = I
for all three models. Appendix E additionally shows that G
and R are disjoint under Q+

AKLT for all base states of the form
given in Eq. (65). This furnishes the proof that the spin-S,
q-deformed spin-S, and the SO(2S + 1) AKLT models have
asymmetric scar towers generated by Q+

AKLT on their respec-
tive ground states with periodic boundary conditions. The
discussion of open boundary conditions follows additionally
from Appendix G.

Figure 7 shows the eigenstate entanglement entropy of the
open q-deformed spin-1 AKLT model for q = 1.2 in a fixed

Sz sector vs the energy density. In every Sz = 2m + 1, S̃2 =
[2m + 1]q[2m + 2]q sector with integer m � 0, we expect a
unique scar state at energy density 2m/L generated by the
action of (Q+

AKLT)m on the Sz = 1 ground state.11 The fact that
S̃ = 2m + 1 follows from an argument analogous to the q = 1
case in Ref. [11]. The circled state at E/L = 0.5 is thus the
predicted scar state in the Sz = 7 and S̃2 = [7]q[8]q sectors.

C. Parent Hamiltonians for the generalized AKLT models

Even though our generalized AKLT models have scar
states that do not transform in an irreducible representation
of the SU(2) symmetry associated with Q+, we can bring
these models into our symmetry-based framework by de-
composing their Hamiltonians into Hsym, HSG, and HA. More
specifically, we detail how to write the spin-S AKLT models,
the q-deformed spin-S AKLT models, the SO(2S + 1) AKLT
models, and all the models of the form (63) with the base
states of Eq. (65) in terms of a canonical Q-SU(2)-symmetric
parent Hamiltonian H (C)

sym and an appropriate HSG and HA. Our
proposed canonical parent Hamiltonian is different for each
model, but it can be written universally in the language of G,
R, and M discussed above; for this reason, we call this parent
Hamiltonian “canonical.” For ease, we will assume periodic
boundary conditions in this section.

It will be useful in the following to decompose M further.
As before, define G as those bonds in the base state of the
tower and define R as the span of the bonds to which G is
mapped under the action of q+. However, additionally define
L as the span of the bonds to which G is mapped under the
action of q−, the Hermitian conjugate of q+. Finally, define
M̃ as the complement of G ∪ R ∪ L. It follows that M = L ∪
M̃.

L and M̃ have a simple physical meaning in terms of scar
towers. In particular, it is straightforward to verify that for the
base states discussed above, choosing a Hamiltonian of the
form [cf. Eq. (63)]

h j, j+1 =

⎡
⎢⎣

hM̃M̃ 0 0 0
0 ωRI 0 0
0 0 0 0
0 0 0 ωLI

⎤
⎥⎦ (69)

will have an evenly spaced scar tower generated by Q+
AKLT

with spacing 2ωR, and an evenly spaced scar tower generated
by Q−

AKLT = (Q+
AKLT)† with spacing 2ωL on the ground state

in periodic boundary conditions.12 The above makes clear the
physical meaning of this decomposition: a two-site local per-
turbation with support only in M̃ will not affect the existence
of the scar states, a perturbation with support in L but not R
will typically break the tower generated by Q−

AKLT but cannot
affect the Q+

AKLT tower, and a perturbation with support in R
but not L will generically break the tower generated by Q+

AKLT
but cannot affect the tower generated by Q−

AKLT. To clarify

11As follows from Appendix G, for S = 1 in open boundary con-
ditions, the Sz = 1 q-deformed ground state is the only ground state
hosting a tower of eigenstates generated by the action of Q+.

12An analogous discussion of the form of q− and disjoint G, L, and
R follows immediately from the arguments in Appendices E and F.
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the role of Q−
AKLT, we emphasize that Q−

AKLT will not undo
the action of Q+

AKLT on the states in the tower since the scar
states are superpositions of states with different eigenvalues
under the Casimir Q2. Furthermore, for the models we de-
scribe, (Q+)n(Q−)m|ψ0〉 for n, m > 0 will generically not be
an eigenstate of the Hamiltonian.

Additionally, for the base states we are considering, q+ has
a special form in terms of its action on M̃, R, G, and L:

q+
j, j+1 =

⎡
⎢⎢⎣

0 0 0 q+
M̃L

q+
RM̃ 0 q+

RG 0
0 0 0 q+

GL
0 0 0 0

⎤
⎥⎥⎦. (70)

As before, the q+
RM̃

and the like can be either zero or nonzero,
but the blocks labeled with zeros must be zero. This form is
stricter than that given in Eq. (64), and we prove this form for
all the base states we are considering in Appendix H.

We introduced q− and L in order to motivate the form of a
useful contribution to Hsym. First, consider the operator

HZ2 =
∑

j

(
P(R)

j, j+1 − P(L)
j, j+1

)
, (71)

where P(R)
j, j+1 projects onto the bonds in R and P(L)

j, j+1 projects
onto the bonds in L, i.e.,

P(R)
j, j+1 − P(L)

j, j+1 =

⎡
⎢⎣

0 0 0 0
0 I 0 0
0 0 0 0
0 0 0 −I

⎤
⎥⎦. (72)

Using [P(R)
j, j+1 − P(L)

j, j+1, q+
AKLT] = q+

AKLT, we can show

[HZ2, Q+
AKLT] = 2Q+

AKLT, (73)

i.e., HZ2 is a candidate operator for HSG. Indeed, HZ2 has the
base state of interest as an eigenstate as it annihilates all the
bonds in G, so it correctly acts like HSG. Note that we also have
Sz as another operator that acts like HSG: since Q+

AKLT raises
the total z magnetization by 2S, [Sz, Q+

AKLT] = 2SQ+
AKLT. It is

useful here to then select only one of these operators for HSG

and to take an appropriate linear combination of the two for
Hsym. We take

HSG = 1

S
Sz, H (C)

sym = HZ2 − 1

S
Sz. (74)

Here, H (C)
sym is the canonical parent Hamiltonian. It commutes

with Q+
AKLT, and hence is Q-SU(2) symmetric. As Sz and HZ2

annihilate the base state, H (C)
sym also annihilates the base state

and, hence, under this Hamiltonian, all the scar states have
zero energy due to the Q-SU(2) symmetry. Interestingly, H (C)

sym
is generically an “as-a-sum” annihilator of the scar states;
these can be difficult to predict a priori.

H (C)
sym allows us to write a unified version of the regular and

generalized spin-S AKLT models in terms of HSG, Hsym, and
HA. All of these models are described by the Hamiltonian

Hunify = H (C)
sym + 1

S
Sz +

∑
j

P(L)
j, j+1 +

∑
j

P(M)
j, j+1, (75)

where P(M)
j, j+1 projects onto the bonds in M. This Hamiltonian

is a sum of projectors with unit coefficients onto all bonds
except those in the base state.

In Eq. (75), we identify Hsym = H (C)
sym, HSG = 1

S Sz, and
HA = ∑

j PL
j, j+1 + ∑

j PM
j, j+1.13 To fully specify the Hamilto-

nian in Eq. (75), we must fix the form of the projectors, i.e., we
must specify the base state |ψ0〉. Picking |ψ0〉 as the ground
state of any of the AKLT models discussed in Eq. (75) will
return the corresponding generalized AKLT Hamiltonian; the
resulting scar tower is obtained by acting with Q+

AKLT on |ψ0〉.
A slight modification of the coefficients yields a more

general Hamiltonian, of the form given in Eq. (63):

Hgen = ω

(
H (C)

sym + 1

S
Sz

)
+ ω

∑
j

P(L)
j, j+1 +

∑
j

hMM j, j+1.

(76)
We see that these models have the same structure as the
generalized spin-S AKLT models described by Eq. (75),
with Hsym = ωH (C)

sym, HSG = ω
S Sz, and HA = ω

∑
j PL

j, j+1 +∑
j hMM j, j+1. By choosing base states of the form in Eq. (65)

to specify the projectors, we expose a unifying structure relat-
ing generalized AKLT scar towers to this more general family
of scar states. Moreover, a more general class of Hamiltonians
with the same scar eigenstates is obtained by changing the
coefficient of Sz, as well as adding the alternating as-a-sum
annihilator discussed in Appendix C. All of these share a
common form for the parent Hamiltonian H (C)

sym and HSG.
From Eqs. (75) and (76), we see that H (C)

sym is a natural
part of the generalized AKLT Hamiltonians, expressible in
terms of a simple, universal form in terms of the spaces R
and L of the base state. It is interesting, however, to con-
sider H (C)

sym as a model in its own right. For the spin-1 AKLT
model, H (C)

sym reduces to the integrable parent Hamiltonian H0

discovered in Ref. [32]. Although we do not know whether
H (C)

sym is integrable in the more general case, its spectrum is
much more degenerate than required by Q-SU(2) symmetry
alone, suggesting that additional non-Abelian symmetries be-
yond Q-SU(2) are generically present in these models. This
enhanced degeneracy allows multiple multiplets with different
Q2 eigenvalues to have degenerate energy eigenvalues, which
is necessary to allow the asymmetric scar states to be eigen-
states of a Q-symmetric Hamiltonian.

We can provide a loose lower bound on the degeneracies
for S > 1 by noting first that R and L for any base state |ψ0〉
will only contain bonds that have at least one |S〉 and one | −
S〉, respectively. Then, HZ2 must have at least (2S − 1)L states
with zero energy, corresponding to those product states that

13Within this HA will generically be some operators that will also
commute with Q+, such as |2S, 0〉〈2S, 0| for the regular spin-S AKLT
model. For simplicity, we will group them in HA as they can all be
understood as bond-wise annihilators within hMM. Quite generally,
there will be multiple operators comprising a scarred Hamiltonian
that are Q symmetric and annihilate the tower of states, and while
it is possible to identify all of them as contributing to Hsym, it can
be useful to make a different delineation to emphasize an interest-
ing symmetric parent Hamiltonian. See, for example, the discussion
around Eq. (77).
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lack both | − S〉 and |S〉 since those states will be annihilated
by P(L)

j, j+1 and P(R)
j, j+1. We have that H (C)

sym = HZ2 − 1
S Sz, but note

that Sz and HZ2 commute. Since Sz has only 2LS + 1 unique
eigenvalues, the addition of Sz to HZ2 is not enough to change
the asymptotically exponential-in-L degeneracy of H (C)

sym.
It is also interesting to study parent Hamiltonians that have

multiple sets of scar towers as eigenstates, such that the choice
of HA will dictate which towers survive as eigenstates. As a
simple example, consider the operator

H (2S)
sym =

∑
j

|t = 2S, t z = 0〉〈t = 2S, t z = 0| j, j+1. (77)

Q+
AKLT and Q−

AKLT will annihilate bonds with total spin t even
and total z magnetization t z = 0, which means that

∑
j |t =

2S, t z = 0〉〈t = 2S, t z = 0| j, j+1 is Q-SU(2) symmetric. This
operator annihilates the ground states of the regular spin-
S and SO(2S + 1) AKLT models since |t = 2S, t z = 0〉〈t =
2S, t z = 0| j, j+1 projects onto a bond that is not in said ground
states. It follows by the Q-SU(2) symmetry that the states
in the towers are all at zero energy. Similarly to H (C)

sym, this
example Hamiltonian has a very large degeneracy. We can
provide a lower bound on the degeneracy by noting that bonds
with t z �= 0 are annihilated by this Hamiltonian, which implies
that at least (2S + 1)(2S − 1)(2S)L−2 (2S)L product states are
annihilated. Consider a given Sz product state from left to
right. We have (2S + 1) choices for the first site, but to ensure
that the first bond is not t z = 0, we have 2S choices for the sec-
ond site. This follows similarly for the third through (L − 1)th
sites, but the last site on the chain has two constraints from
sites L − 1 and 1 and so there are 2S − 1 choices for that site.
In the next section, we discuss deformations between scarred
Hamiltonians and illustrate some of the connections between
the Hamiltonians discussed above by way of an explicit ex-
ample involving the spin-S AKLT scar tower and a tower of
eigenstates of an integrable point.

D. Paths between scarred Hamiltonians

In this section, we give examples of deformations between
scarred Hamiltonians with different scar towers along which
the scar states deform continuously. In particular, we use
the above-discussed continuously connected class of spin-S,
bond-dimension S + 1 matrix product states of the form

|ψ0, A〉 =
∑

m

Tr[A[m1]A[m2] . . . A[mL]]|m1 . . . mL〉,

A[m]
i j = 0 for j − i �= m (78)

to deform between the regular spin-S AKLT model and an
integrable point. We noted above that the tower of states
(Q+

AKLT)n |ψ0, A〉 are eigenstates of Hamiltonians of the form
in Eq. (76) for the corresponding G, L R, M̃ determined by
|ψ0, A〉. We also noted that this class of states includes the
q-deformed and regular spin-S AKLT models’ ground states.

The above results allow us to generalize the deformation
of Ref. [33] of the spin-1 AKLT model’s ground state to a
ground state of an integrable point. Reference [33] described
a deformation of the matrices in the spin-1 AKLT ground
state to that of an eigenstate of an integrable pure-biquadratic

model (discussed below). That is, they considered

A[+] = c+σ+, A[0] = c0σ
z, A[−] = c−σ− (79)

for varying c±,0. The spin-1 AKLT ground state has coeffi-
cients c0 = −1, c− = −√

2, c+ = √
2, while c0 = −1, c− =

−i, c+ = i correspond to an eigenstate of the integrable pure-
biquadratic model. The authors used “numerical brute force”
to verify their version of the conditions that G and R are
disjoint and that Eq. (64) holds for every choice of the c±,0

coefficients. They thus constructed a family of Hamiltonians
with the form in Eq. (63) that connected the spin-1 AKLT
model to the pure-biquadratic model. However, we see that
numerical brute force is not needed; the conditions on G, R,
and q+ follow as an immediate corollary of our results in
Appendix E on MPS of the form in Eq. (78), as the matrices
in Eq. (79) are only nonzero on the correct diagonals.

We will now generalize the deformation of Ref. [33] of
the spin-1 AKLT ground state to a ground state of the pure-
biquadratic model to spin S. We note that the Hamiltonian
of the spin-1 integrable pure biquadratic point is equivalent
to a sum of projectors onto two-site spin singlets. A spin-S
chain with Hamiltonian given by a sum of projectors onto spin
singlets (the singlet-projector model SP)

HS,SP =
∑

j

P(0)
j, j+1 (80)

is similarly integrable14 [61,62]. Furthermore, we note that
there is a simple matrix product eigenstate of HS,SP, which
can be written in terms of the matrices A[m]

S,AKLT that define the
ground state of the spin-S AKLT model:

A[m]
S,SP =

√
(−1)m

(
2S

S + m

)
A[m]

S,AKLT. (81)

It can be shown that this resulting state is annihilated by
every two-site spin-singlet projector. Just like A[m]

S,AKLT, A[m]
S,SP

is only nonzero on the mth diagonal, and hence serves as a
nice end point for a deformation between the spin-S AKLT
model and the integrable spin-S singlet-projector model. This
construction reduces to the form of the MPS in Ref. [33] for
S = 1.

We note that the spin-S singlet-projector model is spin-
SU(2) and Q-SU(2) symmetric.15 The Q-SU(2) invariance
arises because the spin singlet (and more generally any bond
with even total spin and z magnetization 0) is annihilated
by Q+ and Q−, as mentioned in Appendix F. Because the
model is Q-SU(2) invariant, the scar states all have the same
energy. The model in fact corresponds to ω = 0, and hMM
zero except for the projector onto the spin singlet. However, at
the cost of breaking the spin-SU(2) and Q-SU(2) invariance,
we can assign energies to the scar states by setting ω > 0.
We can furthermore make the model thermalizing outside the
scar manifold by introducing generic hMM, e.g., a sum of
projectors with unit coefficients.

14It is Temperley-Lieb equivalent to the Bethe-ansatz solvable XXZ
model [61].

15It is in fact SU(2S + 1) symmetric if one uses different represen-
tations of SU(2S + 1) on alternating sites [62].
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FIG. 8. Schematic sketch of paths in the space of Hamiltonians.
The paths and points are colored according to whether they have
spin SU(2) [S-SU(2)] and/or Q-SU(2) symmetry. The label of each
point corresponds to one of the Hamiltonians in Eq. (83). Horizontal
lines represent deformations of Hamiltonians that preserve a specific
scar tower. Vertical lines represent deformations that change the scar
states according to Eq. (82) while keeping the general structure of
the Hamiltonian fixed.

Between the end points of the spin-S AKLT model and
singlet-projector model are many different paths along which
the scar states deform continuously. For example, one could
take the path

A[m] = cmA[m]
S,AKLT (82)

and interpolate cm between 1 and
√

(−1)m
( 2S

S+m

)
as some func-

tion of some parameter λ, where hMM and ω are functions
of λ.

We give a schematic sketch of such a path and other
interesting deformations in Fig. 8. We look at deformations
between six Hamiltonians labeled A, B,C, D, E , F . Here,

A = HS,AKLT,

B = H (2S)
sym ,

C = H (C)
sym(AS,AKLT),

D = Hunify(AS,SP),

E = HS,SP,

F = H (C)
sym(AS,SP). (83)

Note that we have made the dependence of H (C)
sym and

Hunify on the base state explicit; H (C)
sym(A) and Hunify(A) refer

to the H (C)
sym and Hunify in Eqs. (74) and (75) constructed for

the base state |ψ0, A〉 in Eq. (65). Additionally, HS,AKLT refers
the regular spin-S AKLT model. The schematic is designed
so that every horizontal line corresponds to a linear space
of Hamiltonians that has a specific tower of states as eigen-
states. That is, moving horizontally does not change the scar
states, while moving vertically does, i.e., the Hamiltonians
A, B, C all have the spin-S AKLT tower of states as eigen-
states, while the Hamiltonians D, E , F all have the states
(Q+

AKLT)n|ψ0, AS,SP〉 as eigenstates.
Vertical lines represent families of Hamiltonians that share

a common form, but with different operators and scar towers
due to a distinct choice of base state. Explicitly, the leftmost
vertical line AD corresponds to Hamiltonians of the form of
Hunify in Eq. (75) for states of the form in Eq. (82) inter-
polating between AS,AKLT and AS,SP. Similarly, the rightmost
vertical line CF corresponds to Hamiltonians of the form of
H (C)

sym in Eq. (74) for said states. The middle line BE cor-

responds to Hamiltonians of the form
∑S

k=0 am|t = 2k, t z =
0〉〈t = 2k, t z = 0| with coefficients chosen to annihilate the
interpolating states. Finally, the oblique line AE corresponds
to a more general path in Hamiltonian space between HS,AKLT

and HS,SP; an example would be the deformation given in
Ref. [33] for S = 1.

The horizontal lines between adjacent points X and Y in-
terpolate between the relevant models, e.g., λX + (1 − λ)Y ,
with λ varying from 0 to 1. More generally, moving along the
horizontal lines corresponds to changing the specific choices
of HA and Hsym for the fixed base state (as well as changing
the coefficient of HSG to change the energy spacing of the scar
states, such as along AB).

The paths and points are color coded according to whether
they have spin-SU(2) or Q-SU(2) symmetry. The vertical line
BE has Q-SU(2) symmetry, as Q+ and Q− annihilate states of
the form |t = 2k, t z = 0〉. The vertical line CF has Q-SU(2)
symmetry by the careful design given in Sec. IV C. We do not
share any explicit paths in Hamiltonian space with spin-SU(2)
symmetry, and it is not clear a priori that such paths exist
that interpolate between the spin-S AKLT tower of states and
properly chosen towers of eigenstates in the singlet projector
model. We would not necessarily expect such paths a priori,
as Q-SU(2) symmetry and S-SU(2) are on different footings
because the ladder operator is a generator for Q-SU(2) and
not S-SU(2). Furthermore, there are more Q-SU(2)- than S-
SU(2)-symmetric Hamiltonians. This follows because of the
reducibility of the Q-SU(2) representation at the single-site
level, which yields a larger number of Q-SU(2)-symmetric
nearest-neighbor bonds from the larger number of two-site
multiplets with definite Q2 eigenvalues.

Finally, we emphasize that this schematic shows a very
small selection of paths between the points. Each horizontal
line lies in a hyperplane of parameters like ω and those in
hMM. There are, e.g., paths between A and C that do not
pass through B, and paths between B and C lying in the
horizontal hyperplane that lack Q-SU(2) symmetry. There are
also many vertical and oblique paths which will depend not
only the choices of ω and hMM, but also on the particular
path in state space interpolating between |ψ0, AS,AKLT〉 and
|ψ0, AS,SP〉 [in this case, how each cm interpolates between

1 and
√

(−1)m( 2S
S + m)]. There is a very rich space of scarred

Hamiltonians to explore.

V. CONCLUSIONS AND OUTLOOK

In this work, we have presented a general framework
for understanding how quantum scars emerge from parent
Hamiltonians with non-Abelian (and possibly q-deformed)
symmetries. Generators of the symmetry furnish a natural set
of operators with spectrum-generating commutation relations,
and the parent Hamiltonians have rich structure in their eigen-
spectrum as a consequence of the symmetry. In particular,
the spectrum of Hsym is organized as degenerate multiplets
(“tunnels”) that transform as irreps of the symmetry. Scars
emerge when perturbations generically destroy the symmetry
and give a thermal spectrum, but do so in a manner that pre-
serves a shadow of the symmetry so that a particular multiplet
of low-entanglement states fails to mix with the rest of the
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Hilbert space. This furnishes one qualitative “picture” for how
and when one might expect scars to arise generally, something
that has thus far been largely missing in the literature.

Our framework applies to several known models with scars
in the literature, but it has allowed us to also introduce several
models with exact quantum scars, significantly generalizing
the types of systems known to harbor this phenomenon. These
models fall into two broad classes. In the first class, the
scar states transform in a single irreducible representation
of the symmetry group. Our examples in this class include
models where the symmetry is a q deformation of SU(2),
as well where the relevant symmetry is SU(3) rather than
SU(2). In the second class, the scar states do not belong
to a single representation of the relevant symmetry group,
which requires the parent Hamiltonian to have an enhanced
symmetry. We have presented examples of this type not pre-
viously known in the literature, including generalizations of
the AKLT model and families of scarred Hamiltonians that
can be smoothly deformed into each other. It is interesting
to note that prior studies have tried to explain scars in the
PXP model via deformations toward integrable models [17]
and those with approximate SU(2) symmetry [18,26]. Hence,
this symmetry-based framework may prove key to eventually
fully understanding scars in the PXP model, too.

Our framework leaves open many important questions
about the qualitative features that distinguish Hamiltonians
with quantum scars from their ETH-satisfying peers. For ex-
ample, what distinguishes models in which the symmetry is
broken in a generic way from those in which a scarred sub-
space persists? A key general question concerns the stability
of scars to perturbations, and whether scars can survive these
perturbations either in an asymptotic or “prethermal” sense
[17,63]. Indeed, to classify scars as a new kind of dynamical
phase of matter with “intermediate” thermalization properties,
neither fully ergodic nor fully localized, requires scarred mod-
els to display some degree of stability in phase space. One im-
portant consequence of our picture is that it furnishes a family
of scarred models emanating from symmetric parent Hamil-
tonians, and thus shows that scarred models can have at least
some degree of stability to certain classes of perturbations.

Note added. Recently, we became aware of two related
recent works, Refs. [64,65], which also apply group-theoretic
considerations to scarred Hamiltonians. Our results agree
where they overlap, although the scope of our work is broader
than Ref. [64] which only considers Casimir singlets, and our
results on q-deformed and asymmetric scar towers also lie
outside the constructions of Ref. [65].
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APPENDIX A: MPO REPRESENTATIONS FOR (Q+)n

In the text, we discuss creating scars by repeated action
of some operators on a base state. We show in this Appendix
that for operators Q+ of the form discussed here, (Q+)n has
a simple MPO representation with a bond dimension of only
n + 1. This implies that acting (Q+)poly(L) on some base state
can only increase the entanglement entropy of the base state
by at most O( log(L)). Our approach is inspired by the ex-
amples given in [27]. We extend the results there and take
a different style of proof. We emphasize that our arguments
apply to raising operators Qα discussed above for general Lie
groups, as well as the raising operators relevant to q-deformed
SU(2).

Consider an operator Q+ that can be expressed as a
momentum-k sum of operators:

Q+(L) =
L∑

m=1

eikm
(⊗m−1

j=1 L j
) ⊗ Q+

m ⊗ (⊗L
j=m+1 Rj

)
. (A1)

Note that each term in the sum can have a nonlocal “tail,” rep-
resented by the products over L j and Rj . We will additionally
require that at the single-site level,

[Li, Ri] = 0, LiQ
+
i = 1

l
Q+

i Li, and RiQ
+
i = rQ+

i Ri

(A2)
for some arbitrary numbers r and l .

As an example, we could have Q+
j = S+

j , L j = Rj = I j ,
and k = 0; the commutation relations are satisfied with r, l =
0. This choice corresponds to Q+ = S+. As another example,
consider Q+

j = S̃+
j , L j = q−Sz

j , Rj = qSz
j , and k = 0; this has

r = q and l = 1
q . This choice corresponds to the raising oper-

ator for SUq(2), as discussed in Sec. III E.
We begin by specializing to k = 0. Define the n + 1 by n +

1 matrix

Mα,β (X,Y, Z ) = 1

[[β − α]]rl !
(X n+1−βY β−αZα−1) (A3)

for β � α and 0 otherwise. Here, we have defined

[[n]]q = 1 − qn

1 − q
, [[n]]q! =

n∏
m=1

[[m]]q (A4)

for m and n positive integers. From M, we define the L matri-
ces

Mj = M(L j, Q+
j , Rj ). (A5)

Our claim is that

vT
l

(
L∏

i=1

Mi

)
vr = 1

[[n]]rl !
(Q+(L))n, (A6)

where (vr )i = δi,1 and (vl )i = δi,n+1.
We will prove (A6) by way of a stronger result:

L∏
i=1

Mi = Mα,β

(⊗L
i Li, Q+(L),⊗L

i Ri
)
. (A7)

This stronger result implies Eq. (A6) by the definition (A3)
through

M1,n+1
(⊗L

i Li, Q+(L),⊗L
i Ri

) = 1

[[n]]rl !
(Q+(L))n. (A8)
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We will prove Eq. (A7) by induction on L. The base case of L = 1 follows by inspection. Assume the form in Eq. (A7) holds
for L − 1. Then,(

L∏
i=1

Mi

)
αβ

=
∑

γ

(
L−1∏
i=1

Mi

)
αγ

MLγ β
(A9)

=
∑

γ

1

[[γ − α]]rl !

(⊗L−1
i=1 Li

)n+1−γ
(Q+(L − 1))γ−α

(⊗L−1
i=1 Ri

)α−1 ⊗ 1

[[β − γ ]]rl !
Ln+1−β

L (Q+
L )β−γ Rγ−1

L (A10)

= 1

[[β − α]]rl !

(⊗L
i=1 Li

)n+1−β

[∑
γ

[[β − α]]rl !

[[β − γ ]]rl ![[γ − α]]rl !

(⊗L−1
i=1 Li ⊗ Q+

L

)β−γ
(Q+(L − 1) ⊗ RL )γ−α

]

× (⊗L
i=1 Ri

)α−1
. (A11)

We can simplify the sum on γ by noting that for two matrices A and B such that BA = xAB,

(A + B)n =
n∑

p=0

[[n]]x!

[[n − p]]x![[p]]x!
ApBn−p. (A12)

See, for example, the “q-Calculus” chapter in Ref. [50]. We see that the bracketed sum in Eq. (A11) is indeed of this form for
x = lr as follows from the commutation relations in Eq. (A2). Simplifying the bracketed sum yields(

L∏
i=1

Mi

)
αβ

= 1

[[β − α]]rl !

(⊗L
i=1 Li

)n+1−β( ⊗L−1
i=1 Li ⊗ Q+

L + Q+(L − 1) ⊗ RL
)β−α(⊗L

i=1 Ri
)α−1

(A13)

= M
( ⊗L

i=1 Li, Q+(L),⊗L
i=1Ri

)
αβ

. (A14)

This concludes the proof for k = 0 of Eq. (A7) which, as noted above, immediately implies our goal of (A6).
For k �= 0, note that L′

j = eikL j , (Q+)′j = eikQ+
j , R′

j = Rj also satisfy the commutation relations in Eq. (A2). Thus, the proof
above holds for these primed single-site operators. This implies that for (M ′

i )αβ = M(L′
i, (Q+)′i, R′

i ),

vT
l

(
L∏

i=1

M ′
i

)
vr =

(
L∑
i

(⊗i−1
j=1 L′

j

) ⊗ (Q+)′i ⊗ (⊗L
j=i+1 R′

j

))n

(A15)

=
(

L∑
j

eik j
(⊗ j−1

i=1 Li
) ⊗ Q+

j ⊗ (⊗L
i= j+1 Ri

))n

, (A16)

i.e., the correct form for the momentum-k sum. Thus, we have
proven that the same MPO with L → eikL and Q+

j → eikQ+
j

works for the momentum-k version of (Q+)n.

APPENDIX B: SPIN CHAINS AND HIGHER-RANK
SYMMETRIES

Here, we present a detailed derivation of how higher-rank
Lie groups are related to raising operators of the form (S+)2

acting on spin-s representations, with s > 3
2 . We will use

notation more conventional to Lie algebras, such that E (i)
a,b

are raising operators, F (i)
a,b are lowering operators, and H will

denote operators in the CSA.
We have

(S+)i+1,i+2 =
√

s(s + 1) − (i − s)(i + 1 − s) (B1)

and

(S+)2
i,i+2 = (S+)i,i+1(S+)i+1,i+2. (B2)

Notice that

(S+)i+1,i+2 = (S+)2s−i,2s−i+1 (B3)

and, therefore,
(S+)2

i,i+2 = (S+)2
2s−i,2s−i+2. (B4)

We thus define the raising operators

E (i)
a,b = δa,iδb,i+2 + δa,2s−iδb,2s−i+2,

F (i)
a,b = (

E (i)
a,b

)†
, (B5)

where i is between 1 and s − 1
2 for half-integer s and between

1 and s for integer s − 1. For integer s, note that if i = s, the
two matrices in the first line are the same, and we additionally
define

E (s)
a,b = δa,sδb,s+2. (B6)

Other raising operators, which raise the spin by 4 or more, can
be obtained by taking commutators of these E (i), i.e., the roots
associated with these generators will be the simple roots.

The Cartan subalgebra is equal to the vector space of diag-
onal matrices H (i) = [E (i), F (i)]. For i �= s,

H (i)
a,b = δa,iδb,i + δa,2s−iδb,2s−i (B7)

−δa,i+2δb,i+2 − δa,2s−i+2δb,2s−i+2 (B8)
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and, additionally, for integer s,

H (s)
a,b = δa,sδb,s − δa,s+2δb,s+2. (B9)

Finally, in this basis, we have

(S+)2 =
∑

i

ai(s)E (i), (B10)

where ai(s) = √
s(s + 1) − (i − s − 1)(i − s) ×√

s(s + 1) − (i − s)(i + 1 − s).

1. Half-integer spin case

If the spin is half-integer, the matrices E (i), F (i), and
H (i) = [E (i), F (i)] are a linear combination of the fun-
damental and antifundamental representations of the Lie
group SU(s + 1

2 ). Specifically, the spins separate into two
sets: (−S,−S + 2, . . . , S − 3, S − 1) and (−S + 1,−S +
3, . . . , S − 2, S). The difference between spins in the first set
and those in the second set is always an odd integer, so these
two sets are not connected by the action of our generators.
However, each raising operator acts simultaneously on one
spin from each set, such that the matrices E (i), F (i), and H (i)

are linear combinations of a matrix in the fundamental repre-
sentation, and one in the antifundamental representation. As a
result, this set of matrices is not block diagonal, and the matrix
commutators behave like a single irreducible representation of
SU(s + 1

2 ).
To see this, we will compute the Cartan matrix of this

representation. For a rank-R Lie algebra, the Cartan matrix
is an R × R integer matrix defined by

Ci j = 2
α(i) · α( j)

α(i) · α(i)
, (B11)

where α(i) are the simple roots.
Note that the roots α(i) must be computed using an or-

thonormal basis {H̃ (a)} of the CSA for which the inner product
Tr[H̃ (a)H̃ (b)] = δab. For the matrices H (a) = [E (a), F (a)] of
Eq. (B7), we have Tr[H (a)H (a)] = 4, Tr[H (a)H (a+2)] = −2,
and Tr[H (s−1/2)H (s−3/2)] = −2, with all other inner products
0; the H (a) basis is not orthonormal. Using these inner prod-
ucts, it is straightforward to verify that an orthonormal basis
is given by

H̃ (1) = N1H (1), H̃ (2) = N2H (2), (B12)

H̃ ( j) = Nj

[
1

Nj−2
H̃ ( j−2) + ceil

(
j

2

)
H ( j)

]
(B13)

for 2 < j < s − 1/2, (B14)

H̃ (s−1/2) = Ns−1/2(H (s−1/2) + C1H̃ (s−5/2) + C2H̃ (s−3/2)),
(B15)

where

C1 =
√

2 ceil[(s − 5/2)/2]

ceil[(s − 1/2)/2]
,

C2 =
√

2 ceil[(s − 3/2)/2]

ceil[(s + 1/2)/2]
. (B16)

Here, Ni are normalization constants:

Nj = 1√
2 ceil( j/2)ceil( j/2 + 1)

(B17)

for j < s − 1
2 , and

Ns−1/2 = 1√
4 − C2

1 − C2
2

. (B18)

In this orthonormal basis, the simple roots are

[H (a), E (b)] = α(b)
a E (b). (B19)

To find the roots in this orthonormal basis, we exploit the
fact that

[H (a), E (b)] = (2δa,b − δa,b+2 − δa,b−2)E (b) (B20)

for a < s − 1
2 , and

[H (s−1/2), E (b)] = (2δb,s−1/2 − δb,s−3/2 − δb,s−5/2)E (b),

(B21)

[H (s−3/2), E (s−1/2)] = −E (s−1/2). (B22)

From these, we obtain

[H̃ (a), E (b)] =
√

ceil[a/2 + 1]

2 ceil[a/2]
δa,b −

√
ceil[a/2]

2 ceil[a/2 + 1]
δa,b−2

(B23)
for a, b < s − 1

2 . The remaining nonzero commutators are

[H̃ (s−1/2), E (s−1/2)] = Ns−1/2
[
2 − 1

2

(
C2

1 + C2
2

)]
E (s−1/2),

[H̃ (s−3/2), E (s−1/2)] = − 1
2C2E (s−1/2), (B24)

[H̃ (s−5/2), E (s−1/2)] = − 1
2C1E (s−1/2).

Thus, the nonzero components of the roots are

α(a)
a =

√
ceil[a/2 + 1]

2 ceil[a/2]
, (B25)

α
(a)
a−2 = −

√
ceil[a/2 − 1]

2 ceil[a/2]
(B26)

for a < s − 1
2 , and

α
(s−1/2)
s−1/2 = Ns−1/2

(
2 − 1

2

(
C2

1 + C2
2

))
(B27)

=
√

1 − 1

4

(
C2

1 + C2
2

)
, (B28)

α
(s−1/2)
s−3/2 = −1

2
C2, (B29)

α
(s−1/2)
s−5/2 = −1

2
C1, (B30)

where here the superscript indexes the raising operator, and
the subscript is a vector index. We can see that these roots
obey

α(a) · α(a) = 1, (B31)

α(a) · α(a±2) = − 1
2 , (B32)

α(s−1/2) · α(s−3/2) = − 1
2 (B33)
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with all other root vectors orthogonal. After reordering the
roots (taking all odd roots in increasing order, followed by all
even roots in decreasing order), this gives the Cartan matrix
of SU(s + 1

2 ):

C =

⎛
⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
...

...
...

... . . .
...

0 . . . 0 −1 2 −1
0 . . . 0 0 −1 2

⎞
⎟⎟⎟⎟⎠. (B34)

2. Integer spin case

For integer spin, E (2i) connects only states with even in-
teger Sz, while E (2i)+1 connects only states with odd integer
Sz. Thus, the raising and lowering operators split into two
commuting sets: one acting on even Sz, which we refer to as
the even generators, and one acting on odd Sz, which we refer
to as the odd generators. Each of these two independent sets
constitutes a matrix representation of a Lie group, which we
will show here is either Sp(n) or SO(n), for n = s, s + 1.

Again, in order to construct the Cartan matrix, we must
use an orthonormal basis of our CSA. For integer s, we still
have Tr[H (a)H (a+2)] = −2, but note that Tr[H (a)H (a)] = 4
only for a < s − 1. Notice that Eqs. (B7) and (B9) imply
that Tr[H (s−1)H (s−1)] = Tr[H (s)H (s)] = 2. From these inner
products, we construct an orthonormal basis {H̃ (a)}:

H̃ (2a+1) = Na

(
a+1∑
b=1

bH (2b−1)

)
(B35)

on odd generators, and similarly

H̃ (2a) = Na

(
a∑

b=1

bH (2b)

)
(B36)

on even generators. Here,

Na =
{

1√
2a(a+1)

, a < amax
1√
2a

, a = amax
(B37)

where amax = ceil[s/2] (floor[s/2]) for the odd (even) gener-
ators, respectively.

If s is an odd integer, then we have (s + 1)/2 odd raising
operators E (2b+1), and (s − 1)/2 even raising operators E (2b).
The commutation relations of the odd generators with our
original basis for the CSA are

[H (2a−1), E (2b−1)] = (2δa,b − δa,b+1 − δa,b−1)E (2b+1) (B38)

for 1 � a � (s + 1)/2 and 1 � b � (s − 1)/2. Also,

[H (2a−1), E (s)] = 2(δa,(s+1)/2 − δa,(s−1)/2)E (s). (B39)

For the operators acting on even Sz states, we have

[H (2a), E (2b)] = (2δa,b − δa,b+1 − δa,b−1)E (2b) (B40)

for 1 � a � (s − 1)/2 and 1 � b � (s − 3)/2, and

[H (2b), E (s−1)] = (δb,(s−1)/2 − δb,(s−3)/2)E (s−1). (B41)

The remaining commutators between raising operators and
elements of the CSA vanish.

Thus, if the spin s is odd, we find the following roots
associated with the odd generators:

α
(a)
b =

√
a + 1

2a
δb,a −

√
a − 1

2a
δb,a−1 (B42)

for a < (s + 1)/2, and

α
[(s+1)/2]
b = −2

√
s − 1

2s + 2
δb,(s−1)/2 + 2√

s + 1
δb,(s+1)/2.

(B43)
Thus, for a < (s + 1)/2,

α(a) · α(a) = 1, α(a) · α(a−1) = − 1
2 (B44)

while

α[(s+1)/2] · α[(s+1)/2] = 2, α[(s+1)/2] · α[(s−1)/2] = −1.

(B45)
The resulting Cartan matrix is

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
...

...
...

... . . .
...

0 . . . −1 2 −1 0
0 . . . 0 −1 2 −2
0 . . . 0 0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B46)

indicating that the algebra is Sp(S + 1).
The even generators are associated with the roots

β
(a)
b =

√
a + 1

2a
δb,a −

√
a − 1

2a
δb,a−1 (B47)

for a < (s − 1)/2, and

β
[(s−1)/2]
b = −

√
s − 3

2(s − 1)
δb,(s−3)/2 + 1√

s − 1
δb,(s−1)/2.

(B48)
Thus, for a < (s − 1)/2,

β(a) · β(a) = 1, β(a) · β(a−1) = − 1
2 (B49)

while

β[(s−1)/2] · β[(s−1)/2] = 1
2 , β[(s−1)/2] · β[(s−3)/2] = − 1

2 .

(B50)
The resulting Cartan matrix is

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
...

...
...

... . . .
...

0 . . . −1 2 −1 0
0 . . . 0 −1 2 −1
0 . . . 0 0 −2 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B51)

indicating that the algebra is SO(S).
If s is an even integer, then there are s/2 odd raising

operators E (2b+1) and s/2 even raising operators E (2b). The
relevant nonvanishing commutators are

[H (2a−1), E (2b−1)] = (2δa,b − δa,b+1 − δa,b−1)E (2b−1) (B52)

for 1 � a � s/2 and 1 � b � (s − 2)/2. In addition,

[H (2a−1), E (s−1)] = (δa,s/2 − δa,s/2−1)E (s−1). (B53)
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For the even generators, we find

[H (2a), E (2b)] = (2δa,b − δa,b+1 − δa,b−1)E (2b) (B54)

for 1 � a � s/2 and 1 � b � (s − 2)/2. Finally,

[H (2b), E (s)] = (2δb,s/2 − 2δb,s/2−1)E (s). (B55)

If the spin s is even, Eq. (B42) [Eq. (B47)] holds for b �
s/2, a < s/2 for odd (even) generators, and

α
(s/2)
b = −

√
s − 2

2s
δb,s/2−1 + 1√

s
δb,s/2, (B56)

β
(s/2)
b = −2

√
s − 2

2s
δb,s/2−1 + 2√

s
δb,s/2, (B57)

where, as above, α(i) denote the roots associated with odd
generators and β(i) denote the roots associated with even gen-
erators. We therefore find the same Cartan matrices as above,
but with the role of even and odd generators interchanged.
Thus, we obtain SO(s + 1) on the even generators and Sp(s)
for the odd generators.

APPENDIX C: A DIFFERENT CLASS OF AS-A-SUM
ANNIHILATORS

In this Appendix, we show that the alternating spin-1
AKLT Hamiltonian

HA =
∑

j

(−1) jP(2)
j, j+1 (C1)

provides a different as-a-sum annihilator of the tower of states
generated by the ladder operator Q+

AKLT [Eq. (62) with S =
1] and the S = 1 AKLT base state. We therefore add to the
known classes of Hamiltonians [33,35] with the spin-1 AKLT
tower of states; for example, the staggered AKLT model

H =
∑

j

c jP
(2)
j, j+1, c j = c j+2 (C2)

has a scarred tower with energy spacing c1 + c2.
Equation (C1) is a specific application of the following

general theorem. Consider models H = ∑
j h j, j+1 with the

form discussed in Sec. IV, namely, the Hamiltonian has a
scar tower generated by an operator Q+ acting on a base state
|ψ0〉, such that the corresponding sets G and R are disjoint
and further such that Eqs. (63) and (64) are satisfied. Then,

HA =
∑

j

(−1) jh j, j+1 (C3)

annihilates the scar tower as a sum. As the generalized AKLT
models introduced in Sec. IV satisfy Eqs. (63) and (64), this
result allows us to identify terms that annihilate the scar tow-
ers in the spin-S, the q-deformed spin-S, and the SO(2S + 1)
AKLT chain.

Recall that Eqs. (63) and (64) imply that the term Aj, j+1 =
[h j, j+1, q+

j, j+1] − ωq+
j, j+1 annihilates every term in the scar

tower, where Q+ = ∑
j eik jQ+

j , q+
j, j+1 = Q+

j + eikQ+
j+1, and

the base state has zero energy. We will show below that the
above HA annihilates the tower in periodic chains whenever
(−1)LeikL = 1. Such a condition is met by periodic chains of
even length with kL an integer multiple of 2π or in periodic

chains of odd length with kL an odd-integer multiple of π . We
find

[HA, Q+]PBC =
L∑

j=1

L∑
l=1

(−1) j[h j, j+1, eikl Q+
l ]

=
L∑

j=1

(−1) jeik j[h j, j+1, Q+
j + eikQ+

j+1]

=
L∑

j=1

(−1) jeik j[ω(Q+
j + eikQ+

j+1) + Aj, j+1]

= ω

(
L∑

j=1

(−1) jeik jQ+
j +

L∑
j=1

(−1) jeik( j+1)Q+
j+1

)

+
L∑

j=1

(−1) jeik jA j, j+1

= −ωeikQ+
1 [1 − (−1)LeikL]

+
L∑

j=1

(−1) jeik jA j, j+1

= 0 +
L∑

j=1

(−1) jeik jA j, j+1. (C4)

Thus,

[HA, Q+]PBC |ψ0〉 = 0 (C5)

which is of the form in Eq. (2) with ω = 0. This completes the
proof that HA in Eq. (C3) annihilates the scar tower in periodic
chains with (−1)LeikL = 1. HA is certainly an as-a-sum (rather
than bond-wise) annihilator, as without the alternating sign it
would give energy to the scar states.

In open chains, the left-hand side of the above expression
has boundary terms proportional to Q+

1 and Q+
L :

[HA, Q+]OBC = −ω[eikQ+
1 + (−1)LeikLQ+

L ]

+
L−1∑
j=1

(−1) jeik jA j, j+1. (C6)

In order for [HA, Q+]OBC |ψ0〉 = 0, we need to choose a
base state that is annihilated by each of the boundary terms
Q+

1,L |ψ0〉 = 0. For the generalized AKLT models, there is
always such a base state in the ground-state manifold [see
Appendix G, where we additionally show that such states
are valid base states for building a tower of eigenstates for
a Hamiltonian of the form in Eq. (63)]. With this choice of
base state, HA in Eq. (C3) annihilates the scar tower.

We have thus shown that HA = ∑
j (−1) jh j, j+1 annihilates

the scar tower as a sum for all models satisfying Eqs. (63) and
(64) for suitable base states and chain lengths.

APPENDIX D: EXPLICIT FORMS FOR AKLT
PROJECTORS

In discussing the AKLT Hamiltonians, we noted that all
of them could be written as sums of two-site projectors onto
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manifolds with various total spin or total q-deformed spin
eigenvalues. We did not need the explicit forms of the pro-
jectors for our discussion. In this Appendix, we give forms
for the AKLT projectors in terms of spin operators, which
are useful for generating the AKLT Hamiltonians for exact
diagonalization.

For total spin S, we can project into the total-spin t mani-
fold by projecting out everything else:

P(t )
12 =

∏
s �=t

(S1 + S2)2 − s(s + 1)

t (t + 1) − s(s + 1)
(D1)

will vanish when acting on a two-site state of total spin s �= t ,
and will reduce to 1 acting on a state of total spin t .

Similarly, for the q-deformed models, we can write

P(t )
12 = P̃(t ) =

∏
s �=t

S̃−
12S̃+

12 + [
Sz

12

]
q

[
Sz

12 + 1
]

q
− [s]q[s + 1]q

[t]q[t + 1]q − [s]q[s + 1]q
,

(D2)
where we have defined

S̃−
12 = S̃−

1 ⊗ qSz
2 + q−Sz

1 ⊗ S̃−
2 (D3)

and

S̃+
12 = S̃+

1 ⊗ qSz
2 + q−Sz

1 ⊗ S̃+
2 . (D4)

Here, we have used the fact that the Casimir for SUq(2) is
S̃−S̃+ + [Sz]q[Sz + 1]q with eigenvalue [s]q[s + 1]q.

For the explicit form of the single-site S̃i, see Eqs. (41) and
(42).

APPENDIX E: VERIFYING THE FORM OF q+ FOR THE
q-DEFORMED AKLT MODEL

In this Appendix, we verify that G and R are disjoint un-
der the action of Q+ = 1

(2S)!

∑
i(−1)i(S+

i )2 in the q-deformed
AKLT model. We also show that the form for q+ matches that
of Eq. (64). As noted in the text, these two facts will complete
our proof of scars in the q-deformed AKLT model in periodic
boundary conditions.

We will prove these facts for a much wider set of base states
than just the q-deformed spin-S ground states. Namely, we
will show that for towers built with Q+ on top of the states in
Eq. (65), repeated here for ease,

|ψ0, A〉 =
∑

m

Tr[A[m1]A[m2] . . . A[mL]]|m1 . . . mL〉,

A[m]
i j = 0 for j − i �= m (E1)

that G and R are disjoint and q+ has the stated form. The
ground state of the q-deformed spin-S AKLT model is indeed
a matrix product state of this form for all q [51,52].

The space of two-site bonds present in a given translation-
ally invariant matrix product state of bond dimension χ will
be contained within the span of the χ2 states:

|AA〉i j =
∑

m1,m2,k

A[m1]
ik A[m2]

k j |m1m2〉. (E2)

In the case at hand, this product involves a matrix with
nonzero elements only on the mth

1 diagonal and a matrix with
nonzero elements only on the mth

2 diagonal. The result is a

matrix with nonzero elements only on the m1 + mth
2 diagonal.

Thus, |AA〉i j has contributions only from kets with m1 + m2 =
j − i. Since | j − i| � S, it follows that −S � m1 + m2 � S
for all the states in G. The number of linearly independent
states with magnetization m1 + m2 is given by the number of
choices of i and j with 0 � i, j � S, and j − i = m1 + m2,
which is S + 1 − |m1 + m2|.

To see that G and R are disjoint, note that the action of
q+

j = 1
(2S)! [(S

+
j )2S − (S+

j+1)2S] increases the magnetization of
m1 + m2 by 2S. Thus, q+ takes the states in G with m1 +
m2 > −S to those with total z magnetization > S, which is
outside of G. There is only one state within G with magneti-
zation m1 + m2 = −S, |AA〉S+1,1, and there is only one state
in G with magnetization S, |AA〉1,S+1. In order to complete
the proof of disjoint G and R, we have to verify that de-
spite having the same z magnetization as |AA〉1,S+1, the state
q+|AA〉S+1,1 is orthogonal to |AA〉1,S+1.

Within |AA〉S+1,1, all the |m1m2〉 states are annihilated
under q+ except for | − S0〉 and |0 − S〉, which are
mapped to |S0〉 and −|0S〉, respectively. Thus, looking
at the explicit form of |AA〉i j , we see q+|AA〉S+1,1 ∝
A[−S]

S+1,1A[0]
11 |S0〉−A[0]

S+1,S+1A[−S]
S+1,1|0S〉∝A[0]

11 |S0〉−A[0]
S+1,S+1|0S〉.

On the other hand, |AA〉1,S+1 ∝ A[0]
S+1,S+1|S0〉 + A[0]

11 |0S〉 +
“terms with m1, m2 < S,” which is orthogonal to q+|AA〉S+1,1.
That is, q+ maps |AA〉S+11 to a state outside of G, and hence
all states in G are mapped to states outside of G under the
action of q+. We have thus shown that R and G are disjoint
for towers built with Q+ on top of the matrix product states
described above.

Further, noting that (q+)2 raises the total z magnetization
by 4S and hence annihilates all the states in G, we see that
q+ annihilates the states in R. Putting all the information
together, we see that the form for q+ (namely, the blocks of
zeros) is indeed the one given in Eq. (64).

Thus, we have proven the lemma about disjoint G and R
and the form of q+ for the spin-S q-deformed AKLT models,
completing the proof that the tower of states are indeed eigen-
states for these models. We emphasize that disjoint G and R,
and the form for q+, were all satisfied for the large class of
matrix product states in Eq. (65).

APPENDIX F: VERIFYING THE FORM OF q+ FOR THE
SO(2S + 1) AKLT MODEL

In this Appendix, we verify that G and R are disjoint un-
der the action of Q+ = 1

(2S)!

∑
i(−1)i(S+

i )2 in the SO(2S + 1)
AKLT model. We also show that the form for q+ matches that
of Eq. (64).

The Hamiltonian is
∑

j

∑S
k=1 P(2k)

j, j+1, which projects onto
two-site total spin t even and greater than zero. Since the
ground state is frustration free, the bonds of the ground state
necessarily live within either total spin odd or zero total spin.
That is, G is contained within the span of total spin-odd states
and the zero-spin state.

Under the action of q+, the t-odd states in G are mapped to
t-even states, and vice versa. This is because (S+

1 )2S − (S+
2 )2S

is odd under exchange of 1 and 2, and states with total spin
even (odd) are even (odd) under exchange of 1 and 2. Thus, the
action of (S+

1 )2S − (S+
2 )2S acting on a total spin-odd (-even)
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state yields a state that is even (odd) under exchange, proving
the stated result. This useful property of q+ was noted in
Ref. [32].

Under the action of q+, the unique state of total (two-site)
spin zero, |t = 0, t z = 0〉, is annihilated. Further, no states are
mapped via q+ to the total spin-zero state. This is because q+
acting on a state with t z = 0 needs to return a state with t z =
2S, but the only such state, |t = 2S, m = 2S〉, has the same
total spin parity (even) as |t = 0, t z = 0〉. Similarly, the only
state satisfying t z = −2S is |t = 2S, m = −2S〉, which again
the same total spin parity as |t = 0, m = 0〉, and hence cannot
be mapped onto it by the action of q+.

Putting this together, this means that the total spin-odd
states in G are mapped to total spin-even and greater than zero,
i.e., states outside of G, while the total spin-zero state in G is
just annihilated, so R and G are disjoint. Since (q+)2 raises t z

by 4S and none of the bonds in G have t z = −2S, we again
see that q+ must annihilate the states in R. Putting this all
together, q+ must have the form given in Eq. (64).

This proves the lemma for the AKLT-type point of the
SO(2S + 1) AKLT model and completes the proof that the
tower of states built off the ground state are all eigenstates
of the Hamiltonian.

APPENDIX G: SCAR TOWERS IN GENERALIZED
AKLT MODELS WITH OBC

Our discussion about the generalized AKLT models in the
main text was limited to periodic boundary conditions (PBC).
However, there are several key differences between PBC and
open boundary conditions (OBC): in OBC, the ground state is
no longer unique; instead the number of ground states grows
with S. As a consequence, the number of linearly independent
scar towers that can be formed by using one of these ground
states as a base state also grows with S. However, not every
ground state will be a good base state for a scar tower. In
particular, we will show that, in OBC, for the q-deformed and
regular spin-S AKLT models only S2 out of (S + 1)2 ground
states constitute the base of linearly independent scar towers;
towers built on the other ground states are not eigenstates of
the OBC Hamiltonian. For the SO(2S + 1) models, we show
that the corresponding number is 4S−1 out of 4S ground states.
In past work on the subject, Ref. [11] described one of the S2

towers in the regular spin-S AKLT model in OBC.
In order to count the ground states, note that the ground

states of the PBC models were frustration free, unique, and
could be represented as matrix product states

|ψ0[A]〉 =
∑

m

Tr[A[m1]A[m2] . . . A[mL]]|m1 . . . mL〉 (G1)

for some model-dependent A with some model-dependent
bond dimension χ . In open boundary conditions, the models
enjoy χ2 frustration-free ground states, i.e.,

|ψ0[A]〉i j =
∑

m

(A[m1]A[m2] . . . A[mL] )i j |m1 . . . mL〉. (G2)

Such states are ground states in OBC because they are
in the kernel of the projectors in the Hamiltonian: They
are composed of the same bonds as in the PBC ground state
save for the bond between the edge spins at 1 and L. Since

the bond dimension of A is S + 1 for the q-deformed and
regular AKLT models, while the bond dimension of A is 2S

for the SO(2S + 1) models, there are (S + 1)2 ground states
of the q-deformed and regular AKLT models, while there are
4S ground states of the SO(2S + 1) models. A small subtlety
is that the SO(2S + 1) models need to have long enough chain
lengths L for all the ground states found this way to be linearly
independent; we will assume that is the case.16

The main change for the proof of scars in the above mod-
els in open boundary conditions is that the missing hL,1 in
HOBC changes the commutator of [H, Q+]. We had before in
Eqs. (67) and (68) that

[HPBC, Q+] = 2ωQ+ +
L∑

j=1

eik jA j, j+1, (G3)

where Aj, j+1 annihilated the j, j + 1 bond in all the states of
the tower. Now, we will have

[HOBC, Q+] = 2ωQ+ +
L−1∑
j=1

eik jA j, j+1 − ωeikQ+
1 − ωeikLQ+

L ,

(G4)
where, in the cases discussed here, k = π , ω = 1 and O is
proportional to (S+)2S .

The ground states of the OBC Hamiltonian, given in
Eq. (G2), and towers of states built on top of them by Q+ will
be annihilated by each Aj, j+1 in

∑L−1
j eik jA j, j+1. This follows

because the set of bonds in the states and the towers built on
top of the states are the same as in PBC, i.e., G, R, and M
are independent of boundary conditions, the towers contain
only bonds in G and R, and Aj, j+1 annihilates G and R. (Of
course, the ground states for OBC may have bonds between L
and 1 that are not in G or R, but AL,1 is also not in the sum∑L−1

j=1 Aj, j+1.) However, the χ2 OBC ground states |ψ0[A]〉i j

will not generically be annihilated by Q+
1 and Q+

L .
There is a simple sufficient condition for a scar tower with

OBC to be annihilated by Q+
1 and Q+

L : its base state must be
a sum of Sz product states such that in each product state,
the edge spins are annihilated by Q+

1 and Q+
L . Clearly, this

condition ensures that the base state is annihilated by Q+
1

and Q+
L . Furthermore, it guarantees that on each product state

within the base state, the action of Q+ cannot change the edge
spins. Hence, each state in the tower will remain a sum of
product states whose edge spins are annihilated by Q+

1 and
Q+

L . Thus, the whole tower of states will be annihilated by Q+
1

and Q+
L .

In our cases, Q+
1 and Q+

L are proportional to (S+)2S , so
satisfying the above condition simply means that the edge
spins in the product states comprising the base state cannot
have |Sz = −S〉.

For the q-deformed and regular AKLT models, S2 out of
the (S + 1)2 OBC ground states satisfy this condition, and
hence host towers of eigenstates. This follows from the ex-
plicit form of the ground states |ψ0[A]〉i j in Eq. (G2). A[m] is

16Certainly, we need (2S + 1)L , the number of states in the chain,
larger than 4S , the ground-state degeneracy; numerically, we find a
larger threshold value of L, which increases with S.
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an [[(S + 1) × (S + 1)]-dimensional matrix that lives only on
the mth diagonal (i.e., A[m] is nonzero only for j − i = m).
The possible values of Sz

1 in |ψ0[A]〉i j are determined by the
leftmost matrix A[m1]

ik , where k is summed over in the matrix
product with A[m2]. Since the eigenvalue of Sz

1 is k − i, the
eigenvalues of Sz

1 will range from 1 − i to S + 1 − i on the
different product states in |ψ0[A]〉i j depending on the value of
k ∈ {1, 2, . . . , S + 1}. Similarly, −S − 1 + j � Sz

L � j − 1.
Thus, for the S2 states with both i < S + 1 and j > 1, the edge
spins are not | − S〉 and hence are annihilated by Q+

1 and Q+
L .

That is, for i < S + 1 and j > 1, the towers built on top of
|ψ0[A]〉 are all eigenstates.

The q-deformed AKLT PBC ground state includes contri-
butions from |ψ0[A]〉11 and |ψ0[A]〉(S+1)(S+1), which contain
some product states with | − S〉 at the right and left edges,
respectively. This means that the PBC ground state, despite
also being one of the ground states of the OBC Hamiltonian,
does not satisfy the above sufficient condition of Q+

1 and Q+
L

annihilating all the edge states.
We now show that the condition that our base state

be a sum of product states, each of which is annihi-
lated by both Q+

1 and Q+
L , is in fact necessary to produce

a scar tower in these models. To show this, it is suf-
ficient to show that if Q+

1 + eik(L−1)Q+
L annihilates an

AKLT ground state |ψ[A]〉, then both Q+
1 and Q+

L must
annihilate |ψ[A]〉.

First, let us consider one of the ground states |ψ0[A]〉i j

of the q-deformed or regular spin-S AKLT models. In gen-
eral, |ψ0[A]〉i j has 1 − i � Sz

1 � S + 1 − i and −S − 1 + j �
Sz

L � j − 1. We have already shown that the ground states
with both i < S + 1 and j > 1 are annihilated by Q+

1 and Q+
L

individually. If i = S + 1, we have −S � Sz
1 � 0, such that for

any j, |ψ0[A]〉S+1, j generically contains product states with
Sz

1 = −S and Sz
L = 0. Similarly, for j = 1, −S � Sz

L � 0, and
|ψ0[A]〉i,1 generically contains product states with Sz

1 = 0 and
Sz

L = −S. For L > 2, each of these ground states with i =
S + 1 and/or j = 1 will therefore contain at least one product
state with one of the two configurations (Sz

1 = 0, Sz
L = −S) or

(Sz
1 = −S, Sz

L = 0). These terms are annihilated by Q+
1 (Q+

L );
under Q+

L (Q+
1 ), they are sent to terms of the form Sz

1 = 0,
Sz

L = +S (or vice versa). However, since there is no state
|ψ〉 such that Q+

1 |ψ〉 has Sz
1 = 0 (Q+

L |ψ〉 has Sz
L = 0), these

terms cannot be canceled by terms obtained from Q+
1 |ψ0[A]〉i j

(Q+
L |ψ〉), i.e., Q+

1 + eik(L−1)Q+
L cannot annihilate these ground

states.
Next, we show that all superpositions of the OBC ground

states |ψ0[A]〉i j with either i = S + 1 or j = 1 necessarily
contain at least one of these problematic product states, i.e.,
we cannot construct a superposition in which the problematic
terms cancel. Because the terms to be canceled are product
states in the Sz

i basis, only terms with the same eigenvalue
under Sz

tot can cancel. The |ψ0[A]〉i j are eigenstates of Sz
tot with

eigenvalue j − i. There is only a single ground state with both
i = S + 1 and j = 1, which is the unique ground state with
Sz

tot = −S; for this state, there are no others which can be used
to cancel out its problematic product states. Now, consider the
possible choices of i and j with a given eigenvalue j − i > −S
of Sz

tot : a single one of them has i = S + 1 and a single one has
j = 1. The corresponding state with i = S + 1 will contain

some product states that begin with | − S〉 and end in |0〉 and
the state with j = 1 will contain product states that begin with
|0〉 and end with | − S〉, but not vice versa. As they contain
different problematic product states, these states cannot be
superposed to eliminate the problematic product states. We
have thus shown that the existence of problematic product
states ensures that the sufficient condition that the base state
is a sum of product states that are each annihilated by Q+

1 and
Q+

L is in fact a necessary condition.
We can make a similar set of arguments for the

spin-S SO(2S + 1) AKLT model to show that 4S−1 of
the 4S OBC ground states host towers of exact eigen-
states generated by Q+. For these models, A[0] = − ⊗S

i=1

σ z
i and for m > 0, A[±m] = (±1)m

√
2(⊗S−m

i=1 σ z
i ) ⊗ σ±

S+1−m ⊗
(⊗S

j=S+2−mσ 0
j ). This form of the MPS, though not quite ex-

plicitly given in Ref. [53] for general S, follows from that
reference up to similarity transformations of the A. This means
A[−S] = (−1)S

√
2σ−

1 (⊗S
j=2σ

0
j ), so the only nonzero values in

A[−S] fall on the −2S−1th diagonal. Then, |ψ0[A]〉i j does not
have | − S〉 edge spins when i � 2S−1 and j > 2S−1; all these
4S−1 states will thus host towers of exact eigenstates generated
by Q+ as they satisfy the sufficient condition.

We believe that, similar to the case of the q-deformed
AKLT model, it is in fact necessary that both Q+

1 and Q+
L an-

nihilate the base state for the SO(2S + 1) AKLT model. This
is because each ground state in Eq. (G2) that fails to satisfy
i � 2S−1 or j > 2S−1 will contain problematic product states17

for large enough L. However, we will not prove necessity in
this case since here it is more challenging to prove that every
superposition of these ground states contains the problematic
product states.

Finally, note that the discussion of the q-deformed AKLT
model in OBC used only the property that A[m] is only nonzero
on its mth diagonal, so the proofs there extend to all the states
in Eq. (65).

APPENDIX H: VERIFYING THE STRICT FORM OF q+

FOR THE GENERALIZED AKLT MODELS

In this Appendix, we verify that the “strict” form of q+
given in Eq. (70) holds for the base states in Eq. (65) (which
include the regular and q-deformed spin-S AKLT models) as
well as for the base states of the SO(2S + 1) AKLT models.

First, the fact that R is annihilated under q+ was already
shown in Appendices E and F. Additionally, that q+ maps
G only to R the definition of R and those same appendices.
It follows that q+

M̃R, q+
RR, q+

GR, q+
LR and q+

M̃G, q+
GG, q+

LG are
all zero.

That q+ cannot send L to L nor M̃ to L follows from the
fact that L is not in the image of q+. To see this, first note
that none of the base states contain the fully polarized bond
|S, S〉: as noted in Appendix E, the base states in Eq. (65) only
contain bonds with total z magnetization between −S and S,
while Appendix F noted that the SO(2S + 1) base states do not

17That is, states that have Sz
1 = −S and Sz

L �= S or vice versa.
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contain any bonds with even total spin above 0. This means
that the states in L will have total z magnetization below 0,
as q− lowers the z magnetization of its image by 2S. In turn,
this means that L cannot be in the image of q+, as the states
in the image of q+ all have total z magnetization greater than
or equal to 0. Hence, we have q+

LM̃, q+
LL = 0.

Because M̃ is disjoint from L by definition, it follows that
the image of q+ on M̃ has null intersection with G. If it did
not, then the image of q− on G would have nontrivial intersec-
tion with M̃, a contradiction. Hence, we have q+

GM̃ = 0.

Finally, we must now show that q+
M̃M̃ and q+

RL are all zero,

namely, that we cannot map M̃ to M̃; nor can we map L to
R. We will show these facts separately for the base states in
Eq. (65) and the base states of the SO(2S + 1) models.

We showed in Appendix E that R for the base states in
Eq. (65) contains A11|S0〉 − A(S+1)(S+1)|0S〉. Note that this is
the only total z magnetization t z = S bond in R, as it is
in the image of the only t z = −S state in G. Analogously,
A(S+1)(S+1)| − S0〉 − A11|0 − S〉 is the only t z = −S state in
L. Under the action of q+, A(S+1)(S+1)| − S0〉 − A11|0 − S〉 is
mapped to A(S+1)(S+1)|S0〉 + A11|0S〉, which is orthogonal to
A11|S0〉 − A(S+1)(S+1)|0S〉. Since no other states in L and R
have a t z that is 2S apart, it follows that q+

RL = 0.
In showing that q+

M̃M̃ = 0, we will use the fact that M̃ is
disjoint from L, R, and G and hence must only contain states
orthogonal to the states in L, R, and G. Quite generically, the
states in L with z magnetization Sz = m < −S will span the

two-state space | − S, m + S〉, |m + S,−S〉, as said states have
at least two states in G in their preimage.18 Furthermore, from
the above paragraph, the union of L and G generically con-
tains both | − S0〉 and |0 − S〉. Accordingly, the bonds in M̃
with Sz � −S will not contain any factors of | − S〉 and hence
will be annihilated under the action of q+. A similar argument
shows that the bonds in M̃ with Sz � S do not contain any
factor of |S〉 and hence have an empty preimage under q+, so
the bonds in M̃ with t z � −S (i.e., those that are mapped to
bonds with t z � S) are mapped to bonds orthogonal to M̃.
Thus, q+

M̃M̃ = 0.
Now, we turn to the base states of the SO(2S + 1) AKLT

model. Note that G corresponds exactly to those bonds with
odd total spin or total spin zero, and so it follows by the
disjoint nature of G,M̃,R that the states in M̃ and R̃ have
total spin even and greater than zero. As noted in Appendix F,
q+ changes total spin even to total spin odd and vice versa, so
q+
M̃M̃ and q+

RM̃ are immediately zero.
This concludes the proof of the form of q+ for all these

base states.

18If many of the generically nonzero entries of the mth diagonal of
A[m] are fine tuned or set to zero, there could be pathological cases
where L does not contain | − S, m〉, |m, −S〉. For these measure-zero
cases, in designing the operator (72), the projector P(L)

j, j+1 should
project onto the union of L and the states | − S, m〉 for all m < 0,
and analogously for P(R)

j, j+1.
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Z. Papić, Quantum scarred eigenstates in a rydberg atom chain:
Entanglement, breakdown of thermalization, and stability to
perturbations, Phys. Rev. B 98, 155134 (2018).

[17] V. Khemani, C. R. Laumann, and A. Chandran, Signatures
of integrability in the dynamics of rydberg-blockaded chains,
Phys. Rev. B 99, 161101(R) (2019).

043305-28

https://doi.org/10.1103/PhysRevLett.54.1879
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevLett.119.030601
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.105.250401
http://arxiv.org/abs/arXiv:2002.10475
https://doi.org/10.1103/PhysRevB.98.155134
https://doi.org/10.1103/PhysRevB.99.161101


FROM TUNNELS TO TOWERS: QUANTUM SCARS FROM … PHYSICAL REVIEW RESEARCH 2, 043305 (2020)

[18] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis,
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