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Input-driven bifurcations and information processing capacity in spintronics reservoirs
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Spintronics devices generate diverse nonlinear dynamics and have been studied as promising candidates for
physical reservoir computing systems. However, the dynamic properties of spintronics reservoirs driven by input
streams are largely yet to be uncovered. This study reveals that two types of bifurcation, from order to chaos
and from chaos to order, can be induced by increasing the strength of input signals to the spintronics reservoir,
and the information processing capacity of the reservoir changes drastically according to these bifurcations.
The significant contributions of input-induced diversity in magnetization dynamics are demonstrated through
numerical experiments, which include a real-world sensor emulation task. Our results suggest that modulating
input settings can generate a diverse repertoire of magnetization dynamics without tuning the physical platform
itself, providing valuable insights into neuromorphic applications.
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I. INTRODUCTION

Physical reservoir computing (PRC) is a method that orig-
inated from schemes of recurrent neural network training
[1,2], and it exploits physical dynamics as computational re-
sources [3]. Target substrates include a range of physics, from
mechanical systems [4,5] to photonics [6–9] and quantum
systems [10–12]. Among physical substrates, spintronics de-
vices known as spin-torque oscillators (STOs) have recently
gained attention due to their high-speed time scale, minute
size, and high level of energy efficiency [13–19]. Spintron-
ics devices are also known to be robust against soft errors
under radiation exposure [20], making them good candidates
for information processing in extreme environments, such as
outer space and disaster zones, where conventional computers
usually break down. The STO dynamics are based on limit
cycles and include complex phenomena, such as bifurcations
and synchronizations [21–30]. It was revealed recently that
spintronics devices exhibit chaos when driven by a sinusoidal
wave or feedback current fed into their dynamics [31–33].

In this paper, we aim to clarify the rich repertoire of
STO dynamics as input-driven bifurcations and reveal their
relevance to system information processing capability, which
has been largely uncovered to date. A spintronics reservoir is
represented as a nonlinear dynamical system injecting input
signals when exploited as an information processing resource
of PRC. We will show that two bifurcations, which are from
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order to chaos and from chaos to order, can be induced by
changing input conditions, such as input current magnitudes
and switching intervals. The internal parameters of PRC, un-
like input parameters, are difficult to change after fixing the
device configuration, which contrasts with traditional neural
networks. Therefore it would be beneficial to have diverse
dynamics repertories generated only by input configuration.
Furthermore, we will also show that the information process-
ing capability of the spintronics reservoir changes drastically
according to these bifurcations. We analyze these bifurca-
tions numerically using the Lyapunov exponent and echo state
property (ESP) [2,34]. The dynamics possess (linear) memory
capacity (MC) [35] and information processing capacity (IPC)
[36], which provide comprehensive criteria for analyzing lin-
ear and nonlinear MCs. As a result, we reveal that the MC and
IPC properties change completely depending on bifurcations,
and there are singular phenomena of MC at certain input
intervals that are multiples of the original oscillation period
of the STO dynamics. Accordingly, we demonstrate that per-
formance of machine-learning tasks, which are emulations of
nonlinear dynamical systems called the nonlinear autoregres-
sive moving average (NARMA2) [37] when referred to as
virtual tasks and called the length emulation of pneumatic
artificial muscle (PAM) [38] when referred to as real-world
tasks of edge computing, can be improved significantly only
by tuning input parameters.

II. SYSTEM DESCRIPTION

Our STO model is shown in Fig. 1(a). The unit vectors
point in the magnetization directions in the free and refer-
ence layers and are denoted as m and p, respectively. The
magnetization in the free layer autonomously oscillates and
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FIG. 1. Typical STO dynamics driven by input stream. (a) A
schematic view of the system. (b) Typical dynamics of the magne-
tization m in a steady state in Cartesian coordinate space. The input
interval is τ = 50 ps, and the input magnitudes are A = 0.0, 5.0, and
500 mA (blue, red, and green, respectively). (c) Time series of input
signal jin (t ) injected to the STO in (b). (d) and (e) Time series with x
and z components of the magnetization in the free layer, respectively.
The color correspondence is the same as in (b).

is followed by the Landau-Lifshitz-Gilbert (LLG) equation,
given by

dm
dt

= −γ m × H − γ Hs(t )m × (p × m) + αm × dm
dt

,

(1)

Hs(t ) = h̄η j(t )

2e(1 + λm · p)MV
, (2)

where γ and α are the gyromagnetic ratio and the Gilbert
damping constant, respectively. The magnetic field H =
[Happl + (HK − 4πM )mz]ez consists of an applied field Happl,
interfacial magnetic anisotropy field HK, and demagnetization
field −4πM. M and V are the saturation magnetization and
the volume of the free layer, respectively. The spin-transfer
torque strength Hs is characterized by the spin polarization η

and spin-transfer torque asymmetry λ. The magnetization p
in the reference layer is fixed to positive x. The current j(t )
added to the time-variant input signal jin(t ) is given by j(t ) =
jdc + A jin(t ), where A is the input magnitude, jdc = 2.5 mA is
a constant, and the input signal is jin(t ) = un (n = max{n ∈
Z | n < t/τ }), where un is an independent and identically dis-
tributed (i.i.d.) random variable whose distribution function is
a uniform distribution with an interval of [−1, 1] and τ > 0
as the input interval. This type of square input is common not
only in spintronics reservoir computing [13–17] but also in
other physical reservoirs generally [6,9–11,39]. Particularly,
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FIG. 2. Input-driven bifurcations and an echo state property.
(a) Bifurcation diagram of the STO with input interval τ = 400 ps.
Local minimums of the z component are plotted. The input signal is
constant as j = jdc + A for the black points and random as j(t ) =
jdc + A jin (t ) for the red points. (b) Color map of the conditional
Lyapunov exponent. (c) Color map of the synchronization indices.
The black dotted lines in (b) and (c) represent input conditions in (a).

the MC of spintronics reservoirs injected with binary square
input signals has been studied theoretically [14,19] and exper-
imentally [15,16]. In this paper, all internal STO parameters
are fixed, and we survey only external parameters of the input
signal, which has input magnitude A and input interval τ .
STO parameters are set to reflect a real-world setting and
are derived from experiment [23] together with a theoretical
analysis [40] (see Appendix A).

We numerically solve the LLG equation using the fourth
Runge-Kutta method. Orbits of the LLG equation with three
input conditions and the input signal are shown in Figs. 1(b)–
1(e). When the input is switched off with A = 0 mA, the
magnetization dynamics are periodic. When the input mag-
nitude is A = 5.0 mA, the dynamics fluctuates from the limit
cycle of A = 0 mA. When the input magnitude is extremely
strong, A = 500 mA, the magnetization switches between par-
allel and antiparallel alignments of the magnetizations in the
free and reference layers [24,25]. (x, y, z) = (−1, 0, 0) and
(1, 0, 0) are fixed points corresponding to when the sign of
current is positive or negative, respectively. Hence the orbit
rapidly switches between the two fixed points.

III. BIFURCATIONS

Here, we investigate input-driven bifurcations of the STO.
The typical bifurcation diagram along the input magnitude
is shown in Fig. 2(a). Local minimums of the z component
after transient time are plotted. The input signal is constant
for the black points as j = jdc + A, whereas it is random for
the red points as j(t ) = jdc + A jin(t ). In the constant input
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signal, the dynamics are always ordered. By contrast, given a
random input signal, the dynamics become chaotic and show
a pointlike spread once the input magnitude exceeds 1 mA.
Furthermore, when the input magnitude exceeds 30 mA, the
dynamics become orderly again and return to a line. This can
be understood as two existing bifurcations: order to chaos and
chaos to order.

To investigate these bifurcations quantitatively, we calcu-
lated the Lyapunov exponent, the criterion of initial state
sensitivity of dynamics. A positive Lyapunov exponent is
typically a feature of chaos. It should be noted that this system
is nonautonomous; due to the time variant of the input signal,
we calculated conditional Lyapunov exponents [41] that are
restricted to the expanding rate of the magnetization m (see
Appendix B). Figure 2(b) shows the color map of the largest
conditional Lyapunov exponents for the STO. The red regions
correspond to positive Lyapunov exponents, confirming chaos
in certain input conditions. In addition, bifurcation points
show periodic structures along the axis of the input interval.
The input intervals τ = 160, 320, and 480 ps, in which the
chaos regions are shrunk, are multiples of the period T = 160
ps of the limit cycle oscillation in the absence of the random
input. If the input interval is nT , where n is a positive integer,
it is hard to induce chaos, but if the input interval is nT − T/2,
chaos can be induced with a smaller input magnitude. In white
regions with zero Lyapunov exponents, the dynamics are pure
limit cycle, and the input signal is never reflected.

At this point, we investigated an important reservoir prop-
erty: ESP [2,34], which is defined so the current state of a
reservoir is a function of the past input series. The ESP is
a similar concept to generalized synchronization between an
input signal and a system response, and it is confirmed by the
occurrence of a common-signal synchronization [42–44]. We
defined the following quantity, the synchronization index, to
numerically confirm the ESP of STOs [43]:

F (R, S) = 1

S

∫ R+S

R
d(m1(t ), m2(t ))dt, (3)

where R, S � 0 are transient time and evaluation time, respec-
tively, m1(t ), m2(t ) are magnetizations with common input
signals and different initial conditions, respectively, and d(·, ·)
is the distance for the magnetizations. If R and S are suf-
ficiently large, F (R, S) are independent of R and S. If the
STO has common-signal synchronization, F (R, S) approxi-
mately equals zero, and the STO has the ESP. Figure 2(c)
shows the color map of the synchronization index (parameters
of the numerical analyses are shown in Appendix C). We
confirmed that the synchronization index equals zero when
the conditional Lyapunov exponent in Fig. 2(b) is negative.
The result that the negative conditional Lyapunov exponent
is the condition of the common-signal synchronization was
theoretically proven by Refs. [42,45].

IV. INFORMATION PROCESSING CAPABILITY

To evaluate the system’s information processing capability,
we introduce two measures: MC [35] and IPC [36]. We define
X = {xn} as the output series of the system, where input
series {un} is injected. The capacity for a target function series

{yn} = {y(un, un−1, . . .)} is defined by the following equation:

C[X, y] = 1 − minŷn MSE[yn, ŷn]〈
y2

n

〉

= 〈ynxn〉T
〈
xnxT

n

〉−1〈ynxn〉〈
y2

n

〉 , (4)

where prediction value ŷn is linearly transformed from output
value xn, MSE[yn, ŷn] is the mean-square error between {yn}
and {ŷn} through n, and 〈y2

n〉 denotes the average of y2
n through

n. 0 � C[X, y] � 1 always holds [35]. When C[X, y] = 0, the
system never reconstructs target y, but when C[X, y] = 1, the
system can reconstruct target y completely. If the input series
is an i.i.d. random sequence with uniform distribution, −1 �
un � 1, y(un, un−1, . . .) can be decomposed into the following
orthogonal polynomials: {yl (un, un−1, . . .)}l=0,1,..., which is

yl (un, un−1, . . .) =
∏
d=1

Pkl,d (un−d ), (5)

where Pk (u) is the Legendre polynomial with degree k and
kl,d � 0 is a series of degrees for yl . We restrict the delay of
input series un, . . . , un−D to D and set S (D, K ) of orthogonal
basis function yl to total degree K = ∑D

d=0 kl,d . Here, IPC and
MC with delay D and total degree less than or equal to K are
defined as follows:

IPC[X, D, K] =
K∑

k=1

D∑
d=0

∑
yl ∈S(d,k)

C[X, yl ], (6)

MC[X, D] = IPC[X, D, 1] =
D∑

d=0

∑
yl ∈S(d,1)

C[X, yl ]. (7)

The IPC is the sum of capacities for all orthogonal basis
functions, and MC is restricted to linear basis functions.
Particularly, the memory function is defined as m(d ) =
C[X, un−d ], which is a decomposition of MC through delay
d . For a number N of the linear independent output of system
X , the following two important equations hold [36]:

lim
D→∞

MC[X, D] � lim
D,K→∞

IPC[X, D, K] � N (8)

and, if X has ESP,

lim
D,K→∞

IPC[X, D, K] = N. (9)

We present the results of MC[X, 999] in Fig. 3 (parameters
of the numerical analyses are shown in Appendix D). Here,
the output series mn is defined as the magnetization mn =
m((n + 1)τ ) at the time of changing the next input signal. The
color map of the MC is shown in Fig. 3(a). We present two in-
teresting findings related to the bifurcations and the MC. First,
the MC properties are completely different before and after
bifurcations. Figures 3(b) and 3(c) show the MC graphs with
input intervals τ = 80 and τ = 160 ps, respectively, separated
by delay components. Given an input interval equal to τ =
80 = nT − T/2, where n is a positive integer and T = 160 ps
is the oscillation period of the STO without random inputs,
there are two peaks before and after chaos regions. This result
is in accordance with a previous study [46] that found that MC
improves at the edge of chaos. In an ESP region with a smaller
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FIG. 3. Analyses of the memory capacity (MC). (a) Color map
of the MC. White lines represent bifurcation points. Cross marks
represent input conditions in (d) and (e). (b) and (c) MC properties
with input interval (b) τ = 80 ps and (c) τ = 160 ps. Red, green,
blue, purple, light blue, yellow, and gray correspond to delay d = 0,
1, 2, 3, 4–19, 20–199, and 200–499, respectively. Black dotted lines
represent bifurcation points. (d) and (e) Memory functions m(d ) with
an input interval of 350 and 320 ps, respectively. The green, red, and
blue lines represent an input magnitude of 0.29 mA before the chaos
region, an input magnitude of 3.087 mA in the chaos region, and an
input magnitude of 83.56 mA after the chaos region, respectively.
(f) Color map of the memory function m(d ) with input magnitude
A = 0.242 mA. The color represents capacity of the corresponding
delay d and input interval τ .

input magnitude, capacities of extremely long delays greater
than or equal to 200 and less than 500 are dominant. When the
input magnitude increases and the chaos region is approached,
the dynamics no longer have ESP, and the MC decreases.

The extremely long delay components from 200 to 499 are
lost, making delay components from 20 to 199 predominant.
Comparing an ESP region with a smaller input magnitude and
chaos region in Fig. 3(d), we find that components up to delay
20 coincide and it loses extremely long delay components
from delay 20. When the input strength is increased further
and the ESP region is approached again after the bifurcation,
the MC improves once more.

The second finding is that the MC decline in chaos regions
does not occur when input interval τ = 160, 320, 480 = nT
ps. Memory functions at input interval τ = 320 ps are shown
in Fig. 3(e). Memory functions of ordered dynamics with a
small input magnitude and chaos coincide in all delays. For
input interval τ = 160 = nT ps, there are no peaks before
or after the chaos regions. Given an ESP region with a small
input magnitude, memory functions with extremely long de-
lays vanish. In the ESP region with a large input magnitude,
MC does not peak around the edge of bifurcation, and there
is no decrease of MC in the chaos regions; therefore MC
always has a high value in the input magnitude. Figure 3(f)
shows memory functions for the input interval as a color map,
confirming that the MC tail vanishes sharply at input intervals
τ = nT .

It is important to note that in recent studies of ran-
domly coupled recurrent neural networks, the input-driven
bifurcation and its relationship with MC were theoretically
investigated in both continuous-time [47] and discrete-time
[48] settings. These studies suggest that randomly coupled
networks with sigmoid activation functions driven by random
input streams only exhibit a bifurcation from chaos to or-
der when the input magnitude increases and network MCs
are modulated accordingly. Interestingly, our results have
shown that spintronics reservoirs exhibit completely different
bifurcation structures and MC behaviors compared with con-
ventional neural networks, which have higher diversity in the
dynamics.

Next, we show the results of the IPC. Figure 4(a) shows
the color map of the IPC[X, 4, 29] for input conditions. IPC =
N = 3 is not held in the ESP regions, as in Eq. (9). The reason
for this is the restriction of the target function that is used
for the IPC calculation. In the ESP regions where the input
magnitude is smaller, there are long delay components with
a delay from 20 to 500, but here, only target functions up
to D = 4 are calculated. In addition, in ESP regions where
the input magnitude is larger, the IPC is close to 2.0. This
is because not all degrees are calculated, and when the input
magnitude increases asymptotically, the IPC converges to 2.0
because the z component does not respond to input. This is
exemplified by the green line orbit of Fig. 1(e). The variations
of the degree components are shown in Fig. 4(b). Low-degree
K = 1, 3 components have a peak at the edge of chaos. Note
that the degree K = 1 is the MC. However, high-degree com-
ponents beyond the edge of chaos are higher than ones at
the edge of chaos, and there is a trade-off between low- and
high-degree components. Moreover, odd-degree K = 1, 3, . . .

components are dominant in the spintronics reservoir. This
suggests that the function from input series to output values
is similar to the odd function.

Here, we calculate the MCs, IPCs, and memory functions
of only one component in x, y, and z of the magnetization.
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(a) Color map of the IPC. The white lines represent bifurcation
points. (b) IPC trade-off of delay with input interval τ = 50 ps. Red,
green, blue, purple, light blue, and gray are degree k = 1, 2, 3, 4, 5,
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Figure 5 shows the MC[X, 499] and IPC[X, 4, 29] for each
of the components. The MCs of the x and y components,
which are oscillating variables of the limit cycle, decrease
when the input interval is equal to nT . In contrast, MCs
of the z component, which is almost an orthogonal variable
of the limit cycle, are high value in the chaos region when
input interval is equal to nT . The IPC of the x component
converges to 1 as Eq. (9) in the ordered region with large input
magnitude; however, IPCs of the y and z components do not
converge to 1. The reason that the IPCs using all the vari-
ables investigated in the previous paragraph do not converge
is considered to be due to the y and z components. As can
be seen from the plots, each variable contains different types
of computational capability. Figures 5(g)–5(i) show memory
functions with the same parameters as in Fig. 3(f). In these
figures, we can clearly find extremely long memory tails and
sharp vanishing of memory tails at input intervals τ = nT .
Furthermore, memory tails have periodic structure and are
composed of strange units, whose lengths are about delay 16.
It may be considered that these phenomena are driven by the
original limit cycle dynamics. Further investigations into the
details of the behavior of IPC, MC, and memory function are
needed.

V. BENCHMARK TASKS

Finally, we solve benchmark tasks with the spintronics
reservoir and show how these diverse repertoires in magneti-
zation dynamics contribute to the task performance. The tasks
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FIG. 5. MCs, IPCs and memory functions of each component in
the STO. (a) and (b) are MC and IPC of the x coordinate, respectively.
(c) and (d) are MC and IPC of the y coordinate, respectively. (e) and
(f) are MC and IPC of the z coordinate, respectively. (g), (h), and
(i) are memory functions of the x, y, and z coordinates, respectively,
with input magnitude A = 0.242 mA. The color represents capacity
of the corresponding delay and input interval.

that we focus on are the emulation of a nonlinear dynamical
system, called the NARMA2 [37] and a length emulation of
PAM [38] (details of these tasks are provided in Appendix E).
NARMA2, represented as a difference equation with nonlin-
ear processing of previous inputs, is a model whose emulation
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the PAM length emulation. (b) Time series of PAM length emulation.
The color correspondence is the same as in (a).

capability is widely used as a benchmark in a recurrent neural
network [4,10,11,39]. The PAM length emulation task is a
real-world task for edge computing that emulates the PAM
length from an injected pressure value, which is important
for soft robotics applications [38]. Short-term memory and
nonlinearity are necessary to solve these tasks. By fixing the
input interval, 50 types of input magnitudes from 0.1 to 1000
mA are injected into different spintronics reservoirs driven in
parallel, a scheme called spatial multiplexing [11].

Figures 6(a) and 6(b) show the prediction results of the
NARMA2 and the PAM length emulations, respectively,
where the input signal is injected as an input value for the
NARMA2 and pressure in the real experiment for PAM length
emulation. We can confirm that each task was solved effec-
tively by the STO, with optimized input settings.

Table I, which shows the normalized mean-square error
(NMSE), quantitatively supports the above results. The high-
est performance input intervals were 470 ps for the NARMA2
and 170 ps for the PAM length emulation. These input inter-
vals were approximately equal to the multiples of the inputless
period of the STO, and the chaos region is narrow along the
input magnitude within the intervals.

We confirmed the relationship between the NMSE of tasks
and their largest capacities by plotting color maps. Since the
target time series of each task can be expressed as a function of
the previous input sequence, we can also calculate the IPC of
each task [49]. Here, target functions of the largest capacity
of NARMA2 and PAM tasks are P1(un−1) and P1(un), re-

TABLE I. NMSE for benchmark tasks.

Input interval

470 ps 170 ps

NARMA2 0.2694 0.4672
PAM length emulation 0.1344 0.0789
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FIG. 7. Color maps of the largest capacity and NMSE of
the NARMA2 and PAM length emulations. (a) The largest ca-
pacity of the NARMA2 is C[X,P1(un−1)]. (b) NMSE of the
NARMA2. (c) The largest capacity of the PAM length emulation is
C[X,P1(un)]. (d) NMSE of the PAM length emulation. White lines
show the best input interval using the spatial multiplexing method for
each task.

spectively. A more detailed analysis of the IPC of each task
is given in Appendix E. Figure 7 shows the color maps of the
largest capacity and NMSEs. Note that we used the spatial
multiplexing method; however, we analyzed a performance of
a single spintronics reservoir in Figs. 7(b) and 7(d). In the
NARMA2, the reservoir performance improved at the edge
of chaos. In the PAM length emulation, the reservoir perfor-
mance improved in the ESP region after chaos. The NMSEs
are improved when the largest capacity is a high value.

VI. CONCLUSION

In this paper, we revealed two input-driven bifurcations in
the STO and confirmed that the information processing capac-
ity property changed drastically through these bifurcations.
Even through the internal parameters of the spintronics reser-
voir are fixed, the STO shows diverse dynamics depending on
the input configuration. Therefore we can design the dynami-
cal properties of the spintronics reservoir only by adjusting the
input setting after fixing the device configuration. Clarifying
the input-driven bifurcations of a device is important for un-
derstanding the appropriate input configuration. Additionally,
changing the input configuration, such as input magnitude and
interval, also changes the energy injected into the system, and
we will be able to consider improving the energy efficiency of
the devices.
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APPENDIX A: VALUE OF PARAMETERS

The values of parameters in the LLG equation are derived
from an experimental study [23] and a theoretical study [40]
and are shown in Table II.

APPENDIX B: LYAPUNOV EXPONENTS

Here, we introduce how the Lyapunov exponents were
measured for the LLG equation. As a premise, we solved
the LLG equation using the fourth Runge-Kutta method. The
LLG equation holds that ||m|| = 1. It has been confirmed that
||m|| does not change with a sufficiently small time incre-
ment instead of using, for instance, the symplectic method.
The Lyapunov exponents are calculated with the Shimada-
Nagashima method [50], which is based on an expanding rate
of a perturbation vector. Note that the degrees of freedom of
the perturbation vector are not 3 as a dimension of m, but 2 be-
cause of the constraint ||m|| = 1. The calculation of Lyapunov
exponents uses a distance between state variables; we chose
an angle on the sphere ||m|| = 1. See Ref. [32] for details on
how to give perturbations on the sphere ||m|| = 1 and how to
measure distances on the sphere. Figure 2(b) shows the largest
Lyapunov exponents in this two-dimensional space.

The LLG equation with time-dependent input signals is a
nonautonomous system. Therefore, to calculate the noncon-
ditional Lyapunov exponents, we replaced the state variable
with the following equation that adds the time variable to cal-
culate the nonconditional Lyapunov exponents: m̃ = (m t )T .

See Ref. [32] for how to measure the distance of m̃. Further-
more, our system is a switched (hybrid) dynamical system
because of the noncontinuity of the input signal jin. In a
switched dynamical system, the Lyapunov exponents are
based on expanding rates in piecewise continuous intervals
[51]. This system is constant for a time in piecewise con-
tinuous intervals; hence the Lyapunov exponent of the time

TABLE II. Value of parameters.

Symbol Explanation Value

M Saturation magnetization 1448.3 emu/cm3

HK Interfacial magnetic anisotropy field 18.616 kOe
Happl Applied field 2.0 kOe
V Volume of the free layer π × 602 × 2 nm3

η Spin polarization 0.537
λ Gyromagnetic ratio 0.288
γ Spin-transfer torque asymmetry 1.764 × 107 rad/(Oe s)
α Gilbert damping constant 0.005
jdc Constant current 2.5 mA

direction is always zero and is independent of other Lyapunov
exponents. Accordingly, the (nonconditional) Lyapunov ex-
ponents are two m-conditional Lyapunov exponents and one
time direction Lyapunov exponent that equals zero. The
results of calculating the Lyapunov exponents are shown in
Fig. 8.

APPENDIX C: COMMON-SIGNAL SYNCHRONIZATION

We calculate the synchronization index of Eq. (4) in the
main as the transient time R = 4.0 × 105 ps and the evaluation
time S = 2.0 × 103 ps. The distance in Eq. (3) is defined as
the angle of the sphere, which is the same as the distance in
the Lyapunov exponents. The results are the average of five
numerical analyses that had different initial points and input
signals.

APPENDIX D: MEMORY CAPACITY AND INFORMATION
PROCESSING CAPACITY

1. The details of the numerical analysis

Here, we give the details of the numerical analysis of the
MC and IPC. We calculated the MC and IPC from the 105

data, with the exception of the 1000 washout data. Capacities
under the threshold ε = 2.0 × 10−4 are considered to be zero
because overestimation caused by finite data calculation can-
not be ignored [36]. Orthogonal basis functions with a range
[−1, 1] follow the Legendre polynomials:

Pn(u) =
√

2n + 1

2

(−1)n

2n!

dn

dun
(1 − u2)n (n = 0, 1, . . .).

(D1)

2. Asymptotic value of memory capacity

In Figs. 3(b) and 3(c), the MC converges to a constant when
the input magnitude is sufficiently large. We estimate the
convergence value from the magnetization dynamics. When
the input magnitude is sufficiently large, the magnetization
switching occurs, and the magnetization converges to m =
(−1, 0, 0) or m = (1, 0, 0), depending on the sign of the
input signal value. Therefore capacities with nonzero delay
are always zero, and the capacities with zero delay have the
following value:

C[X, un] = 〈unxn〉T
〈
xnxT

n

〉−1〈unxn〉〈
y2

n

〉

= 〈un[−sgn(un)]〉2〈
u2

n

〉〈[−sgn(un)]2〉

= 12

2
3 × 2

= 0.75, (D2)

where we use the fact that the component depending on un is
only mx and its value −sgn(un) to calculate from the first line
to the second. Note that the theoretical value of 0.75 is slightly
smaller than the experimental value in Fig. 3 because when the
random value of input signal is nearly zero, the dynamics do
not converge to the fixed point but rather to the limit cycle.
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FIG. 8. Color maps of the (a) first Lyapunov exponent, (b) second Lyapunov exponent, and (c) third Lyapunov exponent.

APPENDIX E: BENCHMARK TASKS

1. NARMA2

In this section, we introduce the NARMA2 task. The
NARMA2 is a virtual benchmark that tests memory and
nonlinear processing capacity of a recurrent neural network
[37]. It is represented as the following second-order difference
equation:

yk+1 = αyk + βykyk−1 + γ z3
k + δ, (E1)

zk = μ + σuk, (E2)

where {yk}k=1,... is the target signal, {uk}k=0,... is the
input signal, and (α, β, γ , δ, μ, σ ) are parameters of
NARMA2. We used the parameters (α, β, γ , δ, μ, σ ) =
(0.4, 0.4, 0.6, 0.1, 0.25, 0.25) [23,37,52].

2. PAM length emulation

Here, we introduce the PAM length emulation task. The
McKibben PAM is frequently used as a practical soft robot
device because of its advantages of being ultralightweight and
powerful. The dynamics of PAM are very complex for high
dimensionality and nonlinearity; hence the length of PAM is
usually measured by an infrared sensor [38]. However, there is
a problem because the infrared sensor, as a rigid device, loses
the softness of the PAM. The physics model-based method
is also not practical because it requires estimating many pa-
rameters [53]. However, an echo state network can solve this
task with the same accuracy as an infrared sensor [38]. Since
this task aims to replace the sensor, it can be said to be an
edge-computing task suitable for reservoir computing. The
input signal of this task is a pressure value that is injected in
the PAM, and the target signal is the length of the PAM at the
time of switching to the next input signal. We obtained data
from an experiment involving an actual PAM device. Here,

TABLE III. NARMA2’s largest capacities.

Target function Capacity value

P1(un−1) 0.5847
P1(un−2) 0.1453
P2(un−1) 0.1109
P1(un−3) 0.0697
P1(un−4) 0.0292

the input signal is linearly transformed to the [0.0,0.5] MPa
range. The input signal switches every 0.3 s. The load that is
added to the PAM is 100 N. See Ref. [38] for further details of
the experiment. The training and evaluation data sets used in
this experiment are provided as Supplemental Material [54].

3. Details of the numerical analysis

We injected the same input signal into spintronics reser-
voirs in both tasks and predicted target signals from the
reservoir output signals. We adopted the spatial multiplexing
method [11] to improve performance. In this case, we injected
the same input signal to 50 different spintronics reservoirs,
and output signals of the spintronics reservoirs were used for
the prediction in parallel. The 49 998-input data set of uniform
random variables with an interval of [−1, 1] was split into
998 for the washout data, 40 000 for the training data, and
9000 for the evaluation data. We calculated the normalized
mean-square error as follows:

NMSE = 1

9000

∑49 998
k=40 999 (yk − ŷk )2∑49 998

k=40 999 y2
k

, (E3)

where yk is the target signal and ŷk is the prediction value of
spintronics reservoirs.

4. Properties of tasks

In both tasks, we calculated the IPCs of the target signal
for the input signal. If the ESP was held, the IPC equaled 1.0,
and we reconstructed the function from the input signal to the
target signal [49]. IPC[X, D, K] with the maximum delay D =
6 and maximum degree K = 5 had the following values:

IPCNARMA2[X, 6, 5] = 1.009, (E4)

IPCPAM[X, 6, 5] = 0.964. (E5)

TABLE IV. The PAM length emulation’s largest capacities.

Target function Capacity value

P1(un) 0.6278
P1(un−1) 0.2583
P1(un−2) 0.0389
P2(un)P1(un−1) 0.091
P2(un−1)P1(un−2) 0.085
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Both IPCs are sufficiently close to 1.0; hence the maximum
delay and maximum degree are considered appropriate. The
reason that IPCNARMA2 slightly exceeds 1.0 is because of an
accumulation of overestimation, and the reason that IPCPAM

is below 1.0 may be due to the loss of ESP by noise. The top
five capacities of both tasks are shown in Tables III and IV,
where Pk (un−d ) is the Legendre polynomial with the degree k
and the argument un−d .

[1] W. Maass, T. Natschläger, and H. Markram, Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations, Neural Comput. 14, 2531
(2002).

[2] H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication,
Science 304, 78 (2004).

[3] K. Nakajima, Physical reservoir computing—an introductory
perspective, Jpn. J. Appl. Phys. 59, 060501 (2020).

[4] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, Information
processing via physical soft body, Sci. Rep. 5, 10487 (2015).

[5] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, Exploiting the
dynamics of soft materials for machine learning, Soft Robotics
5, 339 (2018).

[6] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M.
Gutiérrez, L. Pesquera, C. R. Mirasso, and I. Fischer, Photonic
information processing beyond turing: An optoelectronic im-
plementation of reservoir computing, Opt. Express 20, 3241
(2012).

[7] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer,
Parallel photonic information processing at gigabyte per second
data rates using transient states, Nat. Commun. 4, 1364 (2013).

[8] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G.
Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, and P.
Bienstman, Experimental demonstration of reservoir computing
on a silicon photonics chip, Nat. Commun. 5, 3541 (2014).

[9] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, and M. Jacquot, High-speed photonic reser-
voir computing using a time-delay-based architecture: Million
words per second classification, Phys. Rev. X 7, 011015 (2017).

[10] K. Fujii and K. Nakajima, Harnessing Disordered-Ensemble
Quantum Dynamics for Machine Learning, Phys. Rev. Appl.
8, 024030 (2017).

[11] K. Nakajima, K. Fujii, M. Negoro, K. Mitarai, and M.
Kitagawa, Boosting Computational Power through Spatial Mul-
tiplexing in Quantum Reservoir Computing, Phys. Rev. Appl.
11, 034021 (2019).

[12] S. Ghosh, T. Paterek, and T. C. H. Liew, Quantum Neuromor-
phic Platform for Quantum State Preparation, Phys. Rev. Lett.
123, 260404 (2019).

[13] J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D.
Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima,
H. Kubota, S. Yuasa, M. D. Stiles, and J. Grollier, Neuromor-
phic computing with nanoscale spintronic oscillators, Nature
(London) 547, 428 (2017).

[14] T. Furuta, K. Fujii, K. Nakajima, S. Tsunegi, H. Kubota, Y.
Suzuki, and S. Miwa, Macromagnetic Simulation for Reservoir
Computing Utilizing Spin Dynamics in Magnetic Tunnel Junc-
tions, Phys. Rev. Appl. 10, 034063 (2018).

[15] S. Tsunegi, T. Taniguchi, S. Miwa, K. Nakajima, K. Yakushiji,
A. Fukushima, S. Yuasa, and H. Kubota, Evaluation of memory
capacity of spin torque oscillator for recurrent neural networks,
Jpn. J. Appl. Phys. 57, 120307 (2018).

[16] S. Tsunegi, T. Taniguchi, K. Nakajima, S. Miwa, K. Yakushiji,
A. Fukushima, S. Yuasa, and H. Kubota, Physical reservoir
computing based on spin torque oscillator with forced synchro-
nization, Appl. Phys. Lett. 114, 164101 (2019).

[17] W. Jiang, L. Chen, K. Zhou, L. Li, Q. Fu, Y. Du, and R. Liu,
Physical reservoir computing using magnetic skyrmion mem-
ristor and spin torque nano-oscillator, Appl. Phys. Lett. 115,
192403 (2019).
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