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We establish the theory of critical transport in amorphous Chern insulators and show that it lies beyond the
current paradigm of topological criticality epitomized by the quantum Hall transitions. We consider models of
Chern insulators on percolation-type random lattices where the average density determines the statistical prop-
erties of geometry. While these systems display a two-parameter scaling behavior near the critical density, the
critical exponents and the critical conductance distributions are strikingly nonuniversal. Our analysis indicates
that the amorphous topological criticality results from an interpolation of a geometric-type transition at low
density and an Anderson localization-type transition at high density. Our work demonstrates how the recently
discovered amorphous topological systems display unique phenomena distinct from their conventionally studied

counterparts.
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I. INTRODUCTION

Recent theoretical advances have brought the full topologi-
cal classification of crystalline matter in sight [1-3]. However,
there are rapidly emerging lines of research in topological
systems without spatial symmetry. Since nontrivial topology
in general does not rely on spatial order, amorphous systems
provide an interesting new platform for topological matter
[4-21]. Previously, the question as to whether the topological
behavior of amorphous systems and crystalline systems dis-
play fundamental differences has remained largely unclear. In
this work we answer this question affirmatively by establish-
ing that the critical transport of amorphous Chern insulators
exhibit striking departures from their spatially ordered coun-
terparts.

The theory of quantum Hall (QH) plateau transitions, ini-
tiated by Khmelnitskii and Pruisken [22,23], has achieved a
paradigmatic role in the theory of topological phase transi-
tions. This theory, with generalizations to various symmetry
classes and models, describes topological phase transitions as
a form of Anderson localization (AL) transition with diverg-
ing localization length (LL) [24,25]. The topological phase
transition corresponds to an unstable fixed point, character-
ized by universal critical exponents, in a two-parameter space.
This picture, with appropriate modifications, is believed to
capture the generic features of topological phase transition
in noninteracting systems. In particular, the transitions are
classified by a set of universal critical exponents that only
depend on the symmetries and generic features of the system
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but not on microscopic details. While theoretically predicted
values for the LL exponents in the QH transition exhibit
a degree of variation and seem to somewhat overestimate
the experimental ones [26-31], the values extracted from
widely different models typically fall in the range v = 2.4-2.6
[32-43]. This degree of agreement lends significant credibility
to the orthodox theory. In the present work we establish
the critical theory of amorphous Chern insulators and show
that it lies strikingly beyond the universal scaling paradigm.
We study transport properties of amorphous topological states
defined on random lattices with variable density as depicted in
Fig. 1(a). By numerically evaluating configuration-averaged
longitudinal and Hall conductivities oy, oy, in setups illus-
trated in Figs. 1(b) and 1(c), we study their scaling behavior as
a function of density. While conductivities are shown to obey
two-parameter scaling behavior near the critical density p,,
the critical exponent v characterizing the diverging LL as & o
o — p|7" is strongly nonuniversal v = 1.01(1)-1.35(2). To
further characterize the nonuniversality, we calculate the crit-
ical conductance distributions (CDs) and show how they
interpolate between two distinct types, one which exhibits
QH-type features at high density, and another which exhibits
a striking low-conductance peak stemming from geometric
fluctuations at low density. We conclude that the amorphous
topological criticality (ATC) arises from the interpolation of a
geometric percolation-type and the AL-type transitions.

II. MODELS OF AMORPHOUS CHERN INSULATORS

Following Ref. [44], we study two-band Chern insulators
with the tight-binding Hamiltonian
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FIG. 1. (a) Schematic setup for transport studies in amorphous
Chern insulators. The studied random geometries are generated by
discrete and continuum percolation lattices. (b) Longitudinal con-
ductivity can be extracted from the two-terminal conductance with
periodic boundary conditions in the transverse direction (top) which
is equivalent to the setup below. (c) Hall conductivity can be ex-
tracted from the two-terminal setup with open boundary conditions
(top). The conductivity corresponds to the Hall conductivity obtained
from the four-terminal setup (bottom).

where M is the time-reversal breaking mass term in the
units of a characteristic hopping amplitude and T;; =
——e””/ "0(R — r;;) describes the spatial decay of the hop-
pmg amplitudes. Here r;; = |r; — r;] is the distance between
sites 7, j, the parameters 1, R describe the decay of hopping,
and the phase factor is given by €% = (r}; + ir};)/Tij, Where
ri; = x; — x;. We mainly consider disk hopping models with
n = oo but also check that the discovered qualitative features
are present for smooth spatial decay with constant 1 and

R — oo. The studied model belongs to the Altland-Zirnbauer
symmetry class D.

We study the model (1) on random percolation-type ge-
ometries on a square lattice as well as in a continuum, as
illustrated in Fig. 1(a). As in percolation theory, the lattice
sites in the discrete case are independently populated with
probability p, whereas in the continuum problems the sites are
independently distributed in the two-dimensional (2d) contin-
uum with intensity p particles per unit area.

III. SCALING THEORY OF TRANSPORT

We assume that the electronic states are half filled (one
electron per site) and study electrical conductance averaged
over different random configurations as a function of the
density of lattice sites. More precisely, in the discrete case
we study the topological criticality as a function of p and
in the continuum case as a function of p. For discrete ran-
dom realizations, we evaluate conductances by employing
the KWANT package [45]. For continuum configurations, we
employ the Green’s function method outlined in Sec. I of
the Supplemental Materials (SM) [46]. The longitudinal and
Hall conductivities are obtained from square-shaped samples
in the two-terminal setups illustrated in Figs. 2(b) and 2(c).
The correspondence between the Hall conductivity obtained
from the four-terminal setup and the two-terminal setup is
illustrated in Sec. III in the SM [46—48]. The central piece
of computational technology in our work is to carry out the
configuration averages with fixed number of lattice sites n and
subsequently exploit the analytical connection between n and
p (p). In Sec. I of the SM [46] we show that this procedure
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FIG. 2. (a) Topological phase diagram (Chern numbers) in the density-mass plane for the discrete (top) and the continuum (bottom) model.
The red dots labeled by roman numerals indicate the positions where the scaling analysis was carried out. The black dotted line indicates the
percolation threshold of the lattice. (b) Conductance scaling in the lattice model at the optimal point I. The inset in the bottom shows the flow
in the conductivity plane. (c) Same as panel (b) but in a higher-density regime. (d) Conductance scaling in the continuum model at VIII. The
curves are generated from over 10° configurations.
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significantly reduces the statistical fluctuations compared with
direct sampling of p.

We postulate that the conductivities for density-driven
topological transition satisfy a two-parameter scaling form

o =F[L"¢1(p). L'&2(p)]. @

where L is the linear system size, v is the critical exponent of
localization length, and y < 0 describes the irrelevant scaling
direction [49]. Here F(x,y) is an a priori unknown scaling
function and ¢;(p), &> (p) describe the relevant and irrelevant
scaling variables, respectively. In the large-system limit we
recover a single-parameter scaling characterized by the LL
& o |p — p|7V where p, is the critical density. For continuum
problems we postulate a similar expression with p and p.
substituted by particle intensity per unit area p and its critical
value p.. The statistical analysis [50] of extracting v, p., and
y from the conductance data is presented in Sec. II in the SM
[46].

The topological phase diagrams of lattice and continuum
disk hopping models are evaluated following Ref. [44] and
illustrated in Fig. 2(a). The red dots indicate the points -V
and VI-IX on the phase boundary where the critical parame-
ters have been evaluated. The localization exponents are listed
in Fig. 2(a) and the full scaling data are presented in Tables
I to III in the SM [46]. The behavior of conductivities as a
function of density is illustrated in Figs. 2(b)-2(d). In general,
we obtain an excellent fit of the conductance data with the
two-parameter scaling form at each studied point. For discrete
and continuum disk models we observe that the nontrivial
phase reaches down to the percolation threshold which is the
theoretical lower limit for the topological phase for these mod-
els [44]. The critical density p. = 0.596(2) at point I matches
well the percolation threshold of square lattice pf.] ~ (0.593.
Also, the LL exponents at peak points I [v = 1.34(2)] and VI
[v = 1.32(3)] are in excellent agreement with the correlation
length exponent 4/3 of 2d percolation [51]. These results
together indicate that when the critical density approaches the
geometric percolation threshold of the lattice, the critical wave
functions are restricted only by the geometry of the underlying
lattice, not quantum interference effects.

At higher densities away from I and VI, the critical ex-
ponents do not agree with the low-density value and show
large nonuniversal variation. This remarkable behavior is in
in striking contrast with the universal behavior of the class
D disordered systems for which the exponent has the well-
known value v = 1 [25]. This value is reached in the studied
system only in p — 1 regime. We observe continuous varia-
tion of critical exponents v = 1.01(1)-1.35(2) for the discrete
model and similar for the continuum disk model. As listed
in the SM [46], the critical conductance values also exhibit
large nonuniversal variation. This is in sharp contrast with
QH systems, where the universality of o, [52-55] is believed
to follow from universal multifractal properties [40,56—58].
The strong variation of the critical properties suggests that
topological phase transitions at high- and low-density regimes
are dominated by qualitatively different mechanisms. At low
density, the agreement of v and p, with the correlation length
exponent and the threshold in classical percolation suggest
that the reduced lattice connectivity drives the transition. The
conductance distribution functions calculated below confirm

this observation as well as suggest that the transition at high
densities is dominated by conventional AL mechanism.

We note that the topological transition can also be induced
at fixed density by varying the mass parameter M through a
critical point (p., M,) on a phase boundary. Since conduc-
tance is an analytic function of p and M for finite systems, the
exponent v’ characterizing the divergence &y oc |M — M|~
is expected to coincide with the critical exponent v in the
density-driven transition. Indeed, in Sec. V in the SM [46]
we illustrate that the two exponents are consistent.

IV. CRITICAL CONDUCTANCE DISTRIBUTIONS

To gain better insights into the critical behavior, we now
study the critical conductance distribution functions (see
Sec. Il in the SM [46] for technical details). Figures 3(a)-3(c)
illustrate the behavior of the longitudinal CDs at I, II, IV
(top row) and VI, VII, IX (bottom row) indicated in Fig. 2.
At high densities, distributions are qualitatively similar to the
one shown in Fig. 3(a), illustrating that the conductance is
broadly distributed between 0 and 1 (in the units of e?/h) with
a tendency to peak when approaching 1. The variance of con-
ductance is clearly scale invariant at p, (up to weak finite-size
corrections) and exhibits a double-peak feature reminiscent of
the one observed in the QH transition [59]. These properties
are qualitatively similar to those of critical distributions in
disordered systems [56,60-66].

When decreasing density towards the threshold I (or VI),
the CD acquires a peak near zero conductance [Fig. 3(b)],
ultimately becoming a delta peak when density approaches the
percolation threshold of the lattice [Fig. 3(c)]. At the thresh-
old, the CD can be expressed as f, (o) = (1 —a)é(o) +
ah(o) with 0 < @ < 1 denoting the fraction of connected lat-
tice configurations. Here / is a normalized distribution which
controls the finite conductance part. The striking appearance
of the low-conductance peak is a consequence of the vicinity
of the percolation threshold, where 50% of the configura-
tions become disconnected with vanishing conductance. In the
thermodynamic limit, the zero-conductance § function will
vanish above the percolation threshold but unavoidably leaves
behind a nonsingular low-conductance peak. Interestingly, the
double-peak feature of the variance near p, is not observed at
low densities.

The CDs for oy, are shown in Fig. 3(d). At high densi-
ties, the distributions of oy, and o,, show strong qualitative
differences as in the QH systems [65]. However, when ap-
proaching the threshold I (or VI), both distributions acquire a
similar form. This further reinforces the fact that the critical
behavior at low and high densities is dominated by distinct
mechanisms. Since the distribution functions in discrete and
continuum geometries (including the exponential hopping
model studied in Sec. VI in the SM [46]) lead to qualitatively
similar conclusions, we identify the low-conductance peak as
a generic characteristic of ATC.

Together, the conductance scaling and the CDs provide
a compelling evidence that the remarkable characteristics of
ATC arise from the interpolation of a geometric-type tran-
sition at low and conventional localization-type transition at
high densities. Near the threshold I (or VI), the localization
length exponent and the CD functions are consistent with the
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FIG. 3. Evolution of CDs for the discrete (top row) and the continuum model (bottom row) along the phase boundary. The insets in
panels (a)—(c) illustrate the variance of the distribution near critical density. The inset in panel (d) highlights the difference of the o, and o,
distributions at high density. Distributions are generated from up to 10° configurations.

picture that the critical wave functions essentially reflect the
geometry of the underlying lattice. As the density is increased,
these signatures evolve smoothly to a different form and the
CDs share qualitative features of QH systems.

V. DISCUSSION

The discovered features of ATC, while striking in the light
of the literature accumulated during the last four decades, do
not contradict the conclusions of the conventional scaling the-
ory in disordered systems. Despite the superficial similarity,
the essential features of the transition on random lattices with
varying density are not captured by disordered models on reg-
ular geometries. Varying p introduces a variable length scale
I oc|p— pc'|=*? in the system, where p! is the percolation
threshold of the lattice. When p > pf,’, this scale character-
izes the linear size of randomly placed holes in the lattice.
The geometry near p = 1 is described by dense system with
isolated vacancies, while in the limit p — pil the holes on a
lattice diverge [ — oo, leaving only a fractal critical cluster
at p’. In the dense system the geometric correlations have
very short range, while they diverge at p<'. Since the nature
of correlations in the disordered systems are known to affect
the universality class of the transition [64,67], it is natural
to consider the variable scale / of the geometric fluctuations
as the source of the nonuniversality. Interestingly, when some
aspects of geometric fluctuations were recently implemented
in disordered models, the critical exponents were observed to
exhibit variation [35,37,68]. We speculate that the reason for
that behavior reflects the nonuniversal scaling established in
the present work.

The present work has fundamental ramification on the
rapidly growing field of amorphous topological systems. The
first experimental realizations of elemental and artificial amor-
phous topological systems have recently become accessible.
Thus, it is plausible that the remarkable aspects of ATC can
soon be probed in experiments. A comprehensive character-
ization of ATC can be carried out by probing systems at
different densities or variable geometric fluctuations. This
could be most naturally carried out in designer systems [5,14]
where density of lattice sites or geometry of the lattice can be
easily controlled. The present work also opens many new lines
of research. For example, what are the consequences of ATC
on other symmetry classes and dimensions such as recently
studied amorphous Bi, Ses [6]?7 How do the statistical proper-
ties of wave functions reflect the ATC? How are the dynamical
properties affected? What new features will quenched disor-
der add to ATC? These questions will be studied in the future.

VI. SUMMARY

In this work we studied critical transport in Chern in-
sulators with random geometry and discovered remarkable
amorphous scaling behavior. In striking contrast to conven-
tional expectations, the critical exponents and critical conduc-
tance distributions characterizing the transition are strongly
nonuniversal. Our results indicate that, by varying density
without affecting symmetries, amorphous topological phase
transitions interpolate between a geometric percolation-type
and Anderson localization-type transitions. The discovered
nonuniversal scaling is a generic feature of amorphous topo-
logical matter, indicating striking departure from conventional
topological systems.
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