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Chiral Dirac superconductors: Second-order and boundary-obstructed topology
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We analyze the topological properties of a chiral p + ip superconductor for a two-dimensional metal and
semimetal with four Dirac points. Such a system has been proposed to realize second-order topological super-
conductivity and host corner Majorana modes. We show that with an additional C4 rotational symmetry, the
system is in an intrinsic higher-order topological superconductor phase, and with a lower C2 symmetry, is in a
boundary-obstructed topological superconductor phase. The boundary topological obstruction is protected by a
bulk Wannier gap. However, we show that the well-known nested Wilson loop is in general unquantized despite
the particle-hole symmetry, and thus fails as a topological invariant. Instead, we show that the higher-order
topology and boundary-obstructed topology can be characterized using an alternative defect classification
approach, in which the corners of a finite sample are treated as a defect of a space-filling Hamiltonian. We
establish “Dirac+(p + ip)” as a sufficient condition for second-order topological superconductivity.
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I. INTRODUCTION

The study of topological phases of matter concerns itself
with classifying ground states of gapped quantum systems
and characterizing them via certain robust properties which
remain insensitive to adiabatic deformations [1–4]. A crucial
manifestation of topological phenomena is the bulk-boundary
correspondence which predicts the existence of nontrivial
(ingappable, degenerate, or long-range entangled) degrees of
freedom on the boundary of a topological phase purely by
analyzing the bulk properties. Paradigmatic examples of such
phenomena are the appearance of an odd number of Dirac
cones on the surface of the three-dimensional (3D) topological
insulator [5], ingappable helical modes on the edge of the
quantum spin Hall insulator [6,7], and chiral Majorana modes
on the edge of the p + ip topological superconductor [8], to
name a few.

In the past years there have been a gamut of developments
that have generalized the bulk-boundary correspondence to in-
clude more subtle phenomena. Two classes of generalizations
known as higher-order topological phases and boundary-
obstructed topological phases are of relevance to this work.
Broadly speaking, phases that have a gapped bulk as well
as gapped codimension-1 boundaries but necessarily support
nontrivial degrees of freedom on higher-codimension bound-
aries are known as higher-order topological insulators and
superconductors [9–41]. A system that supports nontrivial
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states on codimension-q corners belongs to a qth-order topo-
logical phase. Yet another subclass of topological phases, the
so-called “boundary-obstructed topological phases” [32,42],
also host states localized on higher-codimension boundaries.
However, such states are not protected by the bulk energy
gap. Instead, as the name suggests, they are protected by the
boundary energy gap (or relatedly the bulk Wannier band
gap). In the literature, such a topological phase is also referred
to as an “extrinsic” higher-order topological phase [15], in
distinction with the “intrinsic” ones protected by a bulk energy
gap. The two phases are closely related, and their connection
has been studied in Ref. [42] in the context of topological
insulators, in which spatial symmetries play an important role.
In this work we focus on topological superconductors, in
which, as we shall see, the role of spatial symmetries is rather
different. Specifically, we study a class of two-dimensional
(2D) superconductors that can be either second-order topo-
logical superconductors (HOTSC2) or boundary-obstructed
topological superconductors (BOTSC2) depending on the dis-
crete rotational symmetry of the system.

The topological properties of Bogoliubov–de Gennes
(BdG) Hamiltonians in the weak-pairing limit can often be un-
derstood simply and efficiently in terms of the Fermi surface
properties of the normal state Hamiltonian and are indepen-
dent of the details of the electronic structure away from the
Fermi surface. This is not unexpected since Cooper pairing
is indeed dominant only in the neighborhood of the Fermi
surface. In one dimension (1D), a gapless fermionic system
with two Fermi points subject to p-wave pairing is a topo-
logical superconductor with Majorana zero modes at its ends
[8]. Similarly, in 2D a system with a Fermi surface that
encloses the � point in the Brillouin zone, subject to chiral
p + ip pairing is a topological superconductor that hosts chiral
Majorana modes at its edge [43–48]. Similar low-energy
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criteria have been proposed for time-reversal-invariant su-
perconductors [49] in various dimensions. All of the above
results share the remarkable feature that the topological
bulk-boundary correspondence is completely contingent on
the low-energy description of the normal state. Apart from
contributing toward a clear theoretical understanding, such
criteria are useful from the perspective of materials search.
It is therefore highly desirable to formulate higher-order and
boundary-obstructed topology in the context of superconduc-
tors in terms of similar low-energy criteria.

Toward this end, a low-energy criterion was proposed in
Ref. [16] for a topological superconductor with corner Majo-
rana modes, which stated that a 2D HOTSC2 can be realized
in a doped two-band Dirac semimetal with four Dirac points
in the presence of finite-range attractive interactions. With a
finite density of states, i.e., for a nonzero chemical potential
μ, the leading pairing instability is toward a p + ip order. A
“minimal model” of such a state is given by the following
Hamiltonian (see also Ref. [50]):

H =
∫

dk{c†(k)(t cos kxσx + t cos kyσz − μ)c(k)

+ c†(k)(� sin kx + i� sin ky)c†(k) + H.c}, (1)

in which c(k) is a two-component spinor field in the
band basis, and the normal state has four Dirac points at
(±π/2,±π/2). It has been argued that the zero modes remain
robust upon various small deformations.

While Ref. [16] demonstrated the existence of four Majo-
rana zero modes at the corners of a finite sample, it remained
to be elucidated what its topological classification is, and
what topological invariant characterizes its nontrivial topol-
ogy. One well-known topological invariant for second-order
topological insulator, both intrinsic and boundary-obstructed
(extrinsic), with mirror reflection symmetries is the nested
Wilson loop [10,11], defined as the polarization of a Wan-
nier band, a band formed by orthonormal filled states that
are extended in one direction but exponentially localized in
the orthogonal direction. In the presence of mirror reflection
symmetries, the nested Wilson loop is quantized to be 0 or
1
2 , and the second-order topology is captured by two nested
Wilson loops along the x and y directions. However, if μ �=
0, the Hamiltonian in Eq. (1) breaks the accidental mirror
symmetry [16], and the nested Wilson loop is unquantized.
Further attempts to quantize the nested Wilson loop using
particle-hole symmetry are also unsuccessful as explained in
the main text. Importantly, in sharp contrast with the case of
regular Wilson loop (polarization), the particle-hole symmetry
does not impose quantization conditions on nested Wilson
loops. Consequently, we argue that the nested Wilson loop
does not generally provide a topological invariant for BdG
Hamiltonians without mirror symmetries.

We note that recently an exhaustive classification scheme
of BdG Hamiltonians with additional spatial symmetries
[51–53] has been developed based on organizing the BdG as
well as normal state bands according to their symmetry eigen-
values at high-symmetry points in the Brillouin zone. Within
this approach, we prove that our BdG, when augmented with
a C4 rotation symmetry, realizes an intrinsic HOTSC2 phase.
However, such an ancillary C4 symmetry is rather peculiar

TABLE I. A BdG superconductor with four Dirac points in the
normal state Hamiltonian and an odd-parity pairing term [Eq. (2)]
hosts Majorana zero-mode corner states. When enriched by spatial
C4 rotation symmetry, such a model is a second-order topological
superconductor (HOTSC2). When the C4 symmetry is reduced to
a C2 subgroup, the model continues to host Majorana zero modes
as a boundary-obstructed topological superconductor. We contrast
these cases with the analogous cases without particle-hole symmetry,
i.e., by treating the BdG Hamiltonian as an insulator wherein the
phase with and without C4 symmetry is a second-order topological
insulator (HOTI2) and a trivial insulator, respectively.

Model With C4 With C2

With PH HOTSC2; BOTSC2;
corner Majorana corner Majorana

Without PH HOTI2; Trivial
filling anomaly no filling anomaly

and artificial. In particular, its corresponding operator satisfies
Ĉ4

4 = −1, and its eigenvalues are half-integers. For a super-
conductor in 2D, it is more natural to have twofold rotation
symmetry than fourfold rotation symmetry, since the former
relates k with −k and is crucial to a Cooper instability. In the
presence of C2 symmetry, we find that our system is trivial
in terms of intrinsic higher-order topology. Therefore, this
approach does not capture the BOTSC2 phase in the absence
of C4 symmetry.

In this paper, in addition to the k-space bulk approach de-
scribed above, we provide an alternative real-space boundary
approach. We view corner states of a finite-size Hamiltonian
as topological defects of a space-filling Hamiltonian. Since a
topological defect, by definition, being only dependent on the
topological winding number, is insensitive to the details of the
band structure away from the Fermi level we can directly work
with a low-energy description of the model. Further, since a
topological defect is locally insensitive of the bulk rotational
symmetry, this real-space approach naturally lends itself to
analyzing and proving the “Dirac+p + ip” low-energy crite-
rion for both HOTSC2’s and BOTSC2’s. In order to establish
this criterion, we carefully study a general BdG Hamiltonian
with four Dirac points in the normal state subject to odd-
parity pairing. The Dirac points of the normal state can be
protected by a chiral symmetry, or a product of time-reversal
and inversion symmetry, but both these symmetries are broken
in the superconducting state. For our purposes, we simply
take the Dirac points as an input. In addition to particle-hole
symmetry, such a model may have certain spatial symmetries.
We show that depending on whether or not one imposes the
additional C4 rotation symmetry on the model, the Majorana
modes can be protected by either the bulk or the edge energy
gap implying intrinsic higher-order or boundary-obstructed
topology, respectively. The different cases with and without
C4 symmetry are summarized in Table I. To emphasize the
role of particle-hole symmetry of the BdG Hamiltonian, we
list in Table I the topological classification of the system
had we interpreted it as an insulator without particle-hole
symmetry.
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The rest of the paper is organized as follows. In Sec. II,
we introduce our model and describe its various symmetries.
In Sec. III, we study our model, enriched by C4 rotational
symmetry on a C4-symmetric open geometry and show that
it hosts corner Majorana modes. We first review a well-
established symmetry-based indicator approach in Sec. III A
to establish the existence of corner Majoranas before moving
onto a real-space approach in Sec. III B. In Sec. IV, we relax
the rotation symmetry constraint and show that the model
is nontrivial in the sense of boundary-obstructed topology.
In Sec. V, we conclude with a summary and some further
directions.

II. MODEL

Consider a generic Bogoliubov–de Gennes (BdG) Hamil-
tonian HBdG = ∫

dk �†(k)H(k)�(k), in which �†(k) ≡
(c†(k), c(−k)) and

H(k) =
∑
i=1,2

[ fi(k)�i + gi(k)�i+2] − μ�34, (2)

where fi(k) and gi(k) are even and odd functions, respectively.
We use the convention �1 = X 31, �2 = X 33, �3 = X 10, �4 =
X 20, and �5 = �1�2�3�4 where X μν := τμ ⊗ σ ν , such that
σμ acts within the subspace of the normal state bands while τ ν

act on the Nambu space indices. The f1,2 terms correspond to
the normal state dispersion, with Dirac points at the common
zeros of f1,2. Constrained by periodicity and parity of f1,2, the
number of Dirac points are necessarily multiples of four. In
this work, we assume that there are four such Dirac points at
±kF and ±k′

F . The chemical potential term is proportional to
�34, where we use �μν := −i�μ�ν . The pairing terms g1,2

are of odd parity, which in the simplest case corresponds
to a p + ip symmetry. It has been shown [16] that such a
generic BdG Hamiltonian is the superconducting ground state
of a two-band Dirac semimetal with a finite-range attractive
interaction. For the rest of this paper, we will take Eq. (2) as
input and analyze its topology.

By construction, the BdG Hamiltonian is particle-hole
symmetric, such that

PH(k)P−1 = −H(−k), (3)

where P = X 10K and K implements complex conjugation.
Furthermore, if μ = 0, the model has an additional chiral or
sublattice symmetry generated by S = �5 such that

SH(k)S−1 = −H(k). (4)

Therefore, the model Eq. (2) with μ �= 0 belongs to the AZ
class D while for μ = 0, it belongs to class BDI. To analyze
its higher-order topology, it will be instructive to augment the
model with an additional C4 rotation symmetry generated by

Ĉ4 = �15 + �52

√
2

exp

{
− iπ�34

4

}
, (5)

where �5 = ∏4
i=1 �i. The rotation symmetry acts on the �

matrices as

Ĉ4 :

⎡⎢⎢⎢⎢⎣
�1

�2

�3

�4

�5

⎤⎥⎥⎥⎥⎦ �→ Ĉ4

⎡⎢⎢⎢⎢⎣
�1

�2

�3

�4

�5

⎤⎥⎥⎥⎥⎦(
Ĉ4

)† =

⎡⎢⎢⎢⎢⎣
�2

�1

�4

−�3

−�5

⎤⎥⎥⎥⎥⎦. (6)

The rotational symmetry defined in Eq. (5) corresponds to a
double group representation as can be seen explicitly from the
fact that Ĉ4

4 = −1. Invariance of the Hamiltonian under such
a rotational symmetry action further imposes the following
constraints on the functions fi(k) and gi(k) in addition to the
one imposed by particle-hole symmetry:

f1,2(C4�k) = f2,1(k),

g1,2(C4�k) = ±g2,1(k), (7)

where C4�k := (ky,−kx ) denotes the action of C4 rotation in
momentum space. As we mentioned f1,2 each have a contour
of zeros that intersects at four isolated Dirac points; these four
Dirac points are related by the C4 symmetry. A simple exam-
ple of a Hamiltonian invariant under such a set of symmetries
is precisely Eq. (1). In BdG form, we have

H(k) =
∑
i=1,2

[t cos(ki )�
i + � sin(ki )�

i+2] − μ�34. (8)

In Sec. IV, we will relax the C4 symmetry and analyze the fate
of the second-order topology.

III. SECOND-ORDER TOPOLOGY FROM THE BULK
PROTECTED BY ROTATIONAL SYMMETRY

In this section we analyze the C4-symmetric BdG Hamil-
tonian described in Eq. (2) and show that it is in a HOTSC2

phase. We adopt two complementary approaches to diagnose
the second-order topology in such systems. First, in Sec. III A,
we use a symmetry-indicator-based approach [51–55] to show
that when treated as a C4-symmetric band insulator, the model
in Eq. (2) is in the obstructed atomic limit which exhibits a
filling anomaly and therefore hosts corner states on four C4-
related corners. Furthermore, particle-hole symmetry requires
that the corner states are Majorana zero modes. The results
and methodology in Sec. III A closely follow recent works
[51–53,55–58]. In Sec. III B, we adopt a real-space approach
to show that the C4 symmetry pins topological defects at the
four corners of the aforementioned spatial geometry. Then,
second-order topology can be demonstrated using an index
theorem in conjunction with the fact that topological defects in
Altland-Zirnbauer classes D and BDI host Z2 and Z classified
Majorana zero modes [59].

A. Momentum-space approach from symmetry indicators

Let us consider our model in Eq. (2) as a band insulator and
for the moment ignore particle-hole symmetry. The model has
two occupied and two unoccupied bands. Our strategy is to
first analyze the C4 eigenvalues of the occupied bands at the
high-symmetry points, from which we deduce the positions
of the Wannier centers that induce these bands in the “atomic
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limit.” We note that a proper definition of the atomic limit
for superconductors has also been addressed [52,53,60], but
for our purposes we will simply treat Eq. (2) as an atomic
insulator. It is known that the rotation symmetry indices can
only determine the Chern number of the system mod four
[61]. Our model with vanishing chemical potential has an
additional chiral symmetry which ensures vanishing Chern
number and therefore Wannier representability. Furthermore,
for small enough chemical potential that does not close the
gap, which is what we assume, the model remains Wannier
representable.

Now that we know there are no Wannier obstructions,
we can proceed in calculating the C4 indices. Since the lit-
tle groups at �, M points and X, X ′ points contain the C4-
and C2-symmetry operators, respectively, the corresponding
symmetry eigenvalues for the occupied bands are topological
indices, in that they cannot be changed without a bulk gap
closing. Further, we note that the p + ip order parameter
gi(k) vanishes at these high-symmetry points due to Eq. (7),
which means the order parameter does not directly affect the
eigenvalues at these points. However, this does not imply
that these terms do not play any role in the topology of the
system, they have two important effects: (i) they affect the
form of the C4 operator, indeed these terms are responsible
for the C4

4 = −1 property of the operator; and (ii) without
these terms, the system is gapless which renders the eigen-
values of the C4,2 operators at the high-symmetry points
meaningless. The C4 symmetry also imposes that f1(0, 0) =
f2(0, 0) =: f� , f1(π, π ) = f2(π, π ) =: fM , and f1,2(π, 0) =
f2,1(0, π ) =: fX,X ′ . The Hamiltonian (2) takes the following
form at the high-symmetry points:

H�,M = f�,M[�1 + �2],

HX,X ′ = fX,X ′�1 + fX ′,X �2. (9)

We list the eigenvales for the high-symmetry points in
Table II, from which it can be seen that the eigenvalues only
depend on sgn( f� ) and sgn( fM ). There are four possibilities,
corresponding to distinct configurations of atomic orbitals
from which the filled bands can be induced. These have
been summarized in Table III. Notably, depending on whether
sgn( f� )sgn( fM ) = +1 or −1, the bands can be induced from
a pair of atomic orbitals localized at the Wyckoff position 1a
or 1b, i.e., at r = (0, 0) or ( 1

2 , 1
2 ). These two cases correspond

to an unobstructed and obstructed atomic limit, respectively,
as we shall see below.

Next, we confirm that our model (2) is indeed in
an obstructed atomic limit by showing that the condition

TABLE II. The eigenvalues of the C4 operators at the � and M
points as well as the C2 eigenvalues at the X and X ′ points in the
Brillouin zone.

k∗ C4,2 eigenvalues of H(k∗)

� = (0, 0) {−sgn( f� ) e
iπ
4 , sgn( f� ) e− iπ

4 }
X ′ = (0, π ) {e iπ

2 , e
−iπ

2 }
X = (π, 0) {e iπ

2 , e
−iπ

2 }
M = (π, π ) {−sgn( fM ) e

iπ
4 , sgn( fM ) e− iπ

4 }

FIG. 1. A closed loop built from composing two C4 rotation
related path segments γ and C4 · γ enclose a single Dirac point of
the normal state Hamiltonian Hnor (k) [Eq. (10)].

sgn( f� )sgn( fM ) = −1 follows from the fact that the normal
state Hamiltonian in Eq. (2) contains a single Dirac cone per
Brillouin zone quadrant. The normal state Hamiltonian takes
the form

Hnor(k) = f1(k)σ x + f2(k)σ z =: || f ||n̂ · σ, (10)

where || f (k)|| and n̂ are the norm and unit vector correspond-
ing to f := ( f1(k), f2(k)). The C4 transformation acts within
the normal state via the operator

Ĉnor
4 := 1√

2
(σ x + σ z ), (11)

as a mirror reflection about the (1,1) axis in the x-z plane
in spinor space, i.e., Ĉnor

4 , i.e., Ĉnor
4 : (σ x, σ z ) → (σ z, σ x ).

The occupied state for the Hamiltonian (10), i.e., | − n̂(k)〉
therefore satisfies

Ĉnor
4 |n̂(k)〉 = eiλ|M(1,1) · n̂(k)〉

= eiλ|n̂(C4 · k)〉, (12)

where M(1,1) implements a reflection about the (1,1) axis
in spinor space. It follows that the spinor at rotation-
invariant points � and M must correspond to n̂(k�,M ) =
±(1/

√
2, 1/

√
2) which correspond to sgn( f�,M ) = ∓1. Now,

consider a closed loop constructed from two C4-related paths
γ and C4 · γ̄ as illustrated in Fig. 1. Such a loop encloses a

TABLE III. The signs of f� and fM completely determine the
Wannier representation of the occupied bands. If sgn( f� )sgn( fM ) =
−1, the insulator is in an obstructed atomic limit.

sgn( f� ) sgn( fM ) Orbitals and Wyckoff position

+ + j = 7/2, j = 5/2 @ r = (0, 0)
+ − j = 7/2, j = 5/2 @ r = (1/2, 1/2)
− + j = 3/2, j = 1/2 @ r = (1/2, 1/2)
− − j = 3/2, j = 1/2 @ r = (0, 0)
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(a) (b)

FIG. 2. Depiction of the Wannier centers for a sample with
boundaries. The blue circles are bulk Wannier orbitals and there are
two orbitals per unit cell both of which sit at the Wcykoff position
r = ( 1

2 , 1
2 ). (The slight offsetting in the figure is just a visual aid

to emphasize the existence of two centers.) The cyan ellipses are
boundary orbitals and the red circles in (b) represent corner orbitals.
When interpreted as an insulator system, filling the orbitals in a
C4-symmetric manner necessarily leads to a violation of charge
neutrality at the corners. In (a) and (b) we show the two different
C4-symmetric fillings, the former have −e/2 corner charge, while
the latter have e/2 corner charge. For a BdG Hamiltonian, this filling
anomaly corresponds to corner Majorana zero modes.

single Dirac cone and therefore the spinor wave function must
wind an odd number of times when traversing this closed path.
Let us denote the winding number around a path γ as Nw(γ ),
then

Nw(γ ◦ (C4 · γ̄ )) = 2Nw(γ ), (13)

where ◦ denotes composition of paths. Therefore, we have
Nw(γ ) ∈ Z + 1/2. It can readily be seen that this can be
achieved only if n̂(k� ) = −n̂(kM ). This concludes the proof
that sgn( f� )sgn( fM ) = −1. We will be again using this rela-
tion in Sec. III B.

Interpreting the BdG Hamiltonian as a C4-symmetric insu-
lator with open boundary conditions, it can be shown that for
the phase with Wannier centers at ( 1

2 , 1
2 ) there is no way to

satisfy both C4 symmetry and neutrality. This phenomenon,
known as the filling anomaly, necessitates corner states as
long as the spatial rotation symmetry is unbroken [62]. It
is important to check that the system has no polarization,
otherwise the edges will be gapless and it would not make
sense to talk about corner modes. That the polarization is zero
can be checked by simple counting of the charges as shown in
Fig. 2. Configuration (a) in Fig. 2 has the minimum amount of
electrons to achieve neutrality of bulk and the edges, however,
it is two electrons short for overall system neutrality. Since the
system is C4 symmetric we will have +e/2 charge localized
on each corner. Two electrons cannot be added to the system
in a C4-symmetric manner. The other closest configuration to
neutrality is shown in Fig. 2(b). In this case, the system has
two electrons in excess than that needed for neutrality, and
hence −e/2 charge localized on each quadrant.

In a noninteracting fermion system, a filling anomaly [27]
manifests itself as a degeneracy of states, each localized at
the opposite boundaries. In the presence of particle-hole sym-
metry, these degenerate localized states are pinned at zero
energy. In the context of BdG Hamiltonians, these localized

zero modes are Majorana zero modes. This is in contrast with
systems with filling anomaly without particle-hole symmetry,
in which the degenerate states are not zero modes and can
even lie completely within the filled bands.

B. Real-space approach from defect classification

In this section we construct a real-space topological in-
variant to diagnose the purported Majorana corner states by
treating the corner of a finite system as a topological defect of
a space-filling Hamiltonian.

Consider placing the model in Eq. (2) on an open C4-
symmetric spatial geometry M such that the region outside
M corresponds to a BdG Hamiltonian with the same form as
Eq. (2) but where the normal state, being featureless, has a
vanishing Fermi surface. For concreteness, we may assume
that the “outside” is described by a BdG Hamiltonian

Htriv(k) =
∑
i=1,2

[− f0�
i + � sin(ki )�

i+2] − μ�34, (14)

where f0 > 0. Note that we have assumed a specific p + ip
form of the pairing potential for the sake of simplicity of
presentation, however, the analysis would not change had
we chosen general functions gi(k) that satisfy the symmetry
constraints in Eq. (7). In going from inside to outside, the
sign of fi must change at exactly one of the high-symmetry
points � or M since sgn( f� )sgn( fM ) = −1, as we proved
earlier. Therefore, the boundary physics is determined entirely
by the vicinity of that particular high-symmetry point. The
Hamiltonians about the two high-symmetry points have the
following Dirac-type forms:

H(k� + q) =
∑

i

[ f��i + �qi�
i+2] − μ�34,

H(kM + q) =
∑

i

[ fM�i − �qi�
i+2] − μ�34. (15)

Both these Hamiltonians belong to class D or BDI depend-
ing on whether the chemical potential is vanishing or not as
the chiral symmetry generated by S = �5 is broken by the
chemical potential term. It is known that topological defects
in classes D and BDI host Majorana zero modes and are classi-
fied by Z2 and Z, respectively [59,63]. Here, we first explicitly
compute the invariant associated to a defect (localized at a
given corner of M) using the chiral index theorem for the case
of μ = 0. For the case of μ �= 0, it is known that the index
is simply the chiral index evaluated modulo 2 as long as the
chemical potential is small enough such that it does not close
the gap, thereby potentially changing the topological invariant
[64].

For concreteness let f0 = f� > 0 and fM < 0 in Eq. (15).
Then, the low-energy physics is well described by the Dirac
Hamiltonian linearized about the � point. In order to show the
existence of a Majorana zero mode on the edge, we consider
a loop (see Fig. 3) � parametrized by the angular variable
θ , which intersects the edge ∂M at points x0 and x1 which
are related by a C4 rotation. The mass of the Dirac Hamil-
tonian take values f0 inside, − f0 outside and vary smoothly
in a narrow region close to the edges. For a general point in
space there are two Dirac mass terms allowed: m1,2(r)�1,2.
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FIG. 3. A real-space sample with two different loops � and �̃. �

encloses only one corner and intersects the boundary of the sample at
C4-related points. �̃ encloses two corners and intersects the boundary
of the sample at C2-related points.

Without loss of generality we assume that along the path � the

norm of the mass is constant, i.e.,
√

m2
1 + m2

2 = f0 := m. We
parametrize the masses by a single variable �(θ ) such that
the defect Hamiltonian takes the form of a continuum Dirac
model

H(q, θ ) =
∑

i

�qi�
i+2 + m[cos(�)�1 + sin(�)�2]. (16)

Interestingly, we note that this defect Hamiltonian is dual to
that for the celebrated Fu-Kane superconductor [65], which
describes the s-wave pairing vortex of a Dirac fermion, while
the first term comes from pairing and the second from normal
state band structure in our case, it is the opposite in the Fu-
Kane superconductor. It is well known [59] that a pointlike
mass defect in a class BDI Hamiltonian traps Nw Majorana
zero modes where Nw corresponds to the winding number of
the defect.

Consider a continuum model of the form H(q, θ ) =∑4
i=1 n̂i�

i where n̂ is a map from R2 × S1 to S3. Such a
Hamiltonian can be obtained from Eq. (16) by simply includ-
ing an overall normalization factor of

√
�2|q|2 + m2 which

does not alter the winding number as it is positive definite.
Furthermore, by adding a C4-symmetric |k| → ∞ regulariza-
tion such as ε|k|2(�1 + �2) and eventually taking the ε → 0
limit, the field n denotes a map from S3 to S3. The topolog-
ical invariant then is the winding number of this map, which
simplifies to the winding number of �:

Nw : = 1

4π2

∫
S3

εi jkl nidn j ∧ dnk ∧ dnl

= 1

2π

∮
�

d�. (17)

Let θ = 0 correspond to a point in the bulk and θ = π outside.
The points x0, x1 ∈ ∂M correspond to θ = α and −α, respec-
tively. Then, it can be seen that �(0) = π/4 while �(π ) =
5π/4. Finally, close to x0 and x1, �(−α) = π/2 − �(α) due

to the C4 action defined in Eq. (6). Using these relations it can
be shown that

Nw(γ ) = 1

2π

∮ 2π

0
d�(θ )

= 1

2π

∫ π

0
d�(θ ) + 1

2π

∫ 0

π

d�(−θ )

= 1

π

∫ π

0
d�(θ )

= (2n + 1), (18)

which signals that there are an odd number of zero modes
localized on the edge between x0 and x1. For the case of
finite chemical potential μ, this index is reduced modulo 2
and, therefore, there is a single Majorana zero mode localized
between x0 and x1. Similarly, we may consider the winding
number around a loop �̃ that intersects ∂M at two points x̃0 and
x̃1 that are related by a C2 rotation. The symmetry constraint
imposes that �(−θ ) = π

2 − [π
2 − �(θ )] = �(θ ), therefore,

the winding number corresponding to such a loop evaluates
to

Nw(�̃) = 1

2π

∮ 2π

0
d�(θ )

= 1

2π

∫ π

0
d�(θ ) + 1

2π

∫ 0

π

d�(−θ )

= 0. (19)

Consequently, a path of the type �̃ encloses two Majorana zero
modes with opposite topological indices.

IV. BOUNDARY-OBSTRUCTED TOPOLOGY IN THE
ABSENCE OF ̂C4

In this section we focus on characterization of the topol-
ogy of the chiral Dirac superconductor in the absence of C4

rotation symmetry. The Dirac points in the normal state are
generically described by the following Hamiltonian:

Hnor (k) = f1(k)σx + f2(k)σz, (20)

in which f1,2(k) are even functions and the location of the
Dirac points is given by their simultaneous zeros. We assume
as input that there are four Dirac points at ±(kx0, ky0) and
±(k′

x0, k′
y0). The Dirac points are locally (in k space) protected

by a “minimal” symmetry which is the product of a time-
reversal T = K symmetry and a Ĉ2 = Ĉ2

4 rotation symmetry.
For our purpose, we assume that the two symmetries are sep-
arately preserved, which makes Cooper pairing energetically
favorable. In the presence of p + ip pairing, the time-reversal
symmetry is broken, and the only symmetry of the BdG
Hamiltonian in consideration is a C2 rotational symmetry.

A. Lack of bulk topological invariants

We note that just like C4 symmetry, C2 symmetry can also
potentially protect intrinsic higher-order topological phases.
However, it can be confirmed by checking the symmetry-
based indicators that our Hamiltonian is in the trivial phase
as classified by C2 symmetry. To see this, note that the two
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FIG. 4. A snapshot of the Wannier orbitals during a C2-
symmetric process that connects the bulk Wannier centers from
the Wyckoff positions r = (0, 0) to r = ( 1

2 , 1
2 ). As argued in the

main text, the edge orbitals are pinned to the r = ( 1
2 , 1

2 ) because of
particle-hole symmetry and C2 symmetry. This shows the importance
of particle-hole symmetry for the boundary-obstructed phase.

Wannier orbitals at r = ( 1
2 , 1

2 ) found in Sec. III can be adiabat-
ically moved in opposite directions, and each can merge with
a Wannier orbital from the neighboring Wannier orbital at
the Wyckoff position r = (0, 0), trivializing the phase without
closing the bulk energy gap. Such a process is forbidden by
the C4 symmetry but allowed by the C2 symmetry.

However, particle-hole symmetry ensures that the corner
Majorana zero modes are stable unless there is a gap closing,
in the bulk or on the boundary. We show that, in this case the
second-order topology is extrinsic [15]. In our case without a
topological invariant for the energy bands, the bulk energy gap
does not need to close when the Majorana modes disappear.
In this situation the Majorana zero modes can vanish via a
gap closing at the edges only. In the terminology introduced
in Ref. [42], the corner Majorana modes are protected by a
boundary obstruction. Indeed, from the perspective of real-
space Wannier orbitals, while in the bulk the two Wannier
orbitals can continuously move from r = ( 1

2 , 1
2 ) to r = (0, 0),

at the boundary the sole filled Wannier orbital per unit cell
cannot move. This is because in order to maintain zero po-
larization for the completely filled bands, the empty Wannier
orbital [for convenience we refer to the negative (positive)
energy states of the BdG Hamiltonian as filled (empty) bands]
would have to move in the opposite direction, which then
violates onsite particle-hole symmetry. We illustrate such a
situation in Fig. 4.

A boundary-obstructed topological superconductor and a
trivial superconductor with its edge wrapped by a 1D topolog-
ical superconductor are similar in the sense that in both cases,
nontrivial topology is hosted on a 1D subsystem. However,
they can be distinguished by the fact that in the former case
the edge topology ultimately comes from bulk properties. One

such example is the quantized quadrupole insulator [10,11,42]
in which the fractional corner charge and the fractional edge
polarization come from a fractional bulk quadrupole moment.
As a result, an edge gap-closing transition is indeed captured
by a bulk transition. However, such a transition happens in the
bulk Wannier bands, rather than the energy bands. The Wan-
nier band describes the spectrum, as a function of momentum
along one direction, say kx, of the projected position operator
(also known as the Wannier Hamiltonian for a lattice system)
ν̂y(kx ). Loosely speaking, ν̂y(kx ) ∼ P̂occ(k)ŷP̂occ(k), where ŷ
is defined modulo 1 for a lattice system, and P̂occ(k) is the
projection operator onto the filled bands. More rigorously,
according to the definition in Refs. [10,11],

e2π iν̂y (kx ) ≡
Ly−1∏
n=0

P̂occ

(
ky + 2πn

Ly
, kx

)
, (21)

where Ly is the system size along the y direction. We note
that the operator on the right-hand side of the above equation
acts on a four-dimensional Hilbert space. However, because
of the projection operators involved, it has a two-dimensional
null space, and effectively the Wannier Hamiltonian is two
dimensional. Further, ν̂x(ky) is not single valued but defined
modulo 1. For definiteness we set |ν̂x(ky)| � 1

2 .1

The eigenvalues {νx,±(ky)} of the Wannier Hamiltonian
correspond to the center of the hybrid Wannier states, local-
ized in the x direction and extended in the y direction with
momentum ky. In our case, we find that the edge gap closing
upon which the corner Majorana zero modes disappear is also
detected by a bulk Wannier gap-closing transition. As a con-
crete example, we consider the following BdG Hamiltonian:

H = (cos kx + γx )σxτz + cos kyσzτz − μτz

+ � sin kxτx + � sin kyτy, (22)

where normal state Dirac points and corner Majorana zero
modes exist for |γx| < 1 [see Fig. 5(b)]. At γx = 1 there is a
gap closing in the x-edge spectrum, through which the corner
Majorana modes annihilate. At the same point, we show in
Fig. 5(a) that there is a Wannier gap closing for the Wannier
Hamiltonian ν̂y(kx ) at kx = 0, exactly where the edge gap
closes.

One may ask if the bulk Wannier transition is captured
by the change in a bulk topological invariant. In the pres-
ence of mirror symmetries, such a topological invariant is the
Berry phase of the 1D Wannier band, known as the nested
Wilson loop [10,11,42], which is quantized by symmetry to
take the value 0 or 1

2 . In our case, the p + ip pairing order
in general violates all mirror symmetries. One may naively
expect that the particle-hole symmetry to quantize the nested
Wilson loop. However, the two Wannier bands from the filled
states with opposite eigenvalues of the Wannier Hamiltonian
ν̂y(kx ) are not related by particle-hole symmetry; the two

1One subtlety is that the eigenstates of the Wannier Hamiltonian are
not a Wannier state, but rather a Bloch state with definite kx and ky. Its
eigenvalues, on the other hand, are independent on kx and correspond
to the center position of the Wannier states. We have suppressed the
kx argument in the definition of ν̂x (ky ).
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FIG. 5. Snapshots of the Wannier spectrum as γx is changed. μ = 0.2 and � = 0.4 for all graphs. Top, middle, and bottom panels are for
γx = 0.9, 1, and 1.1, respectively. (a) Shows the Wannier bands for Wilson loops along x (y) on the left (right). For this graph, we changed our
convention for the range of the Wannier bands to be [0,1) to make the gap closing easier to visualize. In studying the system with open boundary
conditions in both the x and the y directions with grid size (40 × 40), (b) shows the probability densities for the four wave functions with the
lowest energies. (c) Shows the spectrum of the system in a cylindrical geometry, with periodic boundary condition along the x direction. The
size of the system along the y direction is 40. The graph shows the lowest 100 levels.

bands form a Hilbert subspace of the filled bands only, and
particle-hole conjugation does not transform one to the other.
Due to the C2 symmetry, the Wannier Hamiltonian satis-
fies ν̂y(kx ) = −Ĉ2ν̂y(−kx )Ĉ2, which can be thought of as a
composite of chiral symmetry and 1D inversion symmetry.
However, unlike the mirror symmetry, this symmetry does not
host any topologically nontrivial classifications.

To circumvent this difficulty with the Wannier Hamilto-
nian, one can consider the pair of Wannier bands from the
filled state and the empty states with the same eigenvalue for
ν̂y and ν̂ ′

y ∼ P̂emp(k)ŷP̂emp(k), respectively (P̂emp = 1 − P̂occ is
the projection operator to the empty bands). They are eigen-
states of the following Wannier-projected Hamiltonian:

HP± (kx ) = P±(kx )HP±(kx ), where

P±(kx ) ≡ 1 ± P̂occ(k)sgn(ν̂y) ± P̂emp(k)sgn(ν̂ ′
y)

2
. (23)

The Wannier-projected Hamiltonian is not to be confused with
the Wannier Hamiltonian, but it shares the same eigenstates
with νy(kx ) [ν ′

y(kx )] for filled (empty) bands. When the Wan-
nier gap closes, the eigenstates |νy,±(kx )〉 develop a singularity
as a function of kx, which can be detected both in ν̂y(kx )
and HP± (kx ).

In the Hilbert subspace subtended by these two bands,
particle-hole conjugation indeed transforms one band to the
other. However, since the projection operators P̂± depend on
ky and are thus nononsite in the y direction, the projected
particle-hole symmetry operator is also nononsite. Indeed, it
is not difficult to show that the projected particle-hole operator

for the Wannier projected Hamiltonian HP± (kx ) is given by

P̃(kx )K = P±(kx )P[P±(−kx )]∗K,

HP± (kx ) = −P̃(kx )H∗
P± (−kx )P̃†(kx ). (24)

Such a nononsite operator does not quantize the Berry phase
of the Wannier band, i.e., the nested Wilson loop, since in the
proof of Berry phase quantization by the regular particle-hole
symmetry, one needs to commute the particle-hole operator
with ∂k [66]. Indeed, the nested Wilson loop can be computed
via

e2π iν̂±x
y (kx ) ≡

Ly−1∏
n=0

P̂±x

(
kx, ky + 2πn

Ly

)
,

P̂±x(k) ≡1 ± P̂occ(k)sgn(ν̂x )

2
. (25)

Similar as with the definition of the Wannier Hamiltonian,
the nested Wilson loop operator as defined on the right-hand
side of the above equation acts on a four-dimensional Hilbert
space, but it has a three-dimensional null space. This makes
the nested Wilson loop a c number. A direct evaluation of
the nested Wilson loop Pν (k) = (ν+y

x (ky), ν+x
y (kx )) shows that

they are not only unquantized, but also depend on their respec-
tive starting point ky,x. For the Hamiltonian (22) at � = 0.4,
and μ = 0.2, gives Pν ( π

2 , π
2 ) = (0.46, 0.5) for γx = 0.9 and

Pν ( π
2 , π

2 ) = (0.96, 0.5) for γx = 1.1.
Still, the bulk Wannier transition corresponds to the change

in a topological invariant. With the projected particle-hole
symmetry P̃(kx ), the Wannier transition occurs through a
gap closing at high-symmetry momenta, e.g., kx = 0, π . The
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FIG. 6. An illustration of the defect Hamiltonian in Eq. (27).
We first restrict to the line joining two Dirac points related by C2

symmetry. Then, within perturbation theory, it can be shown that the
edge traps a pointlike mass defect where the θ0 line intersects the
edge of the sample in real space.

Wannier-projected Hamiltonian HP± (kx = 0, π ), as two zero-
dimensional subsystems, are invariant under the respective
projected particle-hole symmetry P̃(kx = 0, π )K and do each
admit a Z2 classification [1,2,66]. The Wannier transition,
through which the corner Majorana modes annihilate, is thus
captured by the change in one of the Z2 invariants of the
Wannier-projected Hamiltonian. However, since the particle-
hole symmetry HP± at kx = 0 and π are different, we cannot
use their Z2 invariants to construct a “relative parity” that cap-
tures the property of the whole band {|νy,±(kx )〉}. As a result,
these Z2 invariants do not capture the presence or absence of
corner Majorana modes: it only detects the change in their
existence. In the next section we directly show the existence
of the corner Majorana modes from low-energy properties of
the model through the defect classification approach.

B. Real-space approach from defect classification

We consider a system with rounded corners, whose size is
much greater than the lattice scale, as shown in Fig. 6. Without
loss of generality, we take the BdG Hamiltonian

H (k) = f1(k)σxτz + f2(k)σzτz − μτz

+ εg1(k)τx + εg2(k)τy. (26)

By the twofold rotation symmetry Ĉ2 = Ĉ2
4 = τz, f1,2(k) and

g1,2(k) are even and odd functions of k, respectively. For
convenience we take the weak-pairing limit where ε is small;
increasing ε will not change our result. In the absence of
additional spatial symmetries, we define the corner direction
to be pointing from k = 0 to a pair of Dirac points, say at
±kF (cos θ0, sin θ0). (Without loss of generality, we assume a
rectangular lattice.) The rounded corner is parametrized by an
angle θ ∈ (0, π/2) � θ0. We define the local momentum coor-
dinates (k‖(θ ), k⊥(θ )) as locally parallel and perpendicular to
the piece of edge parametrized by θ . In turn, one can express
kx and ky in terms of the local k coordinates and θ as

kx(θ ) = k⊥ cos θ − k‖ sin θ,

ky(θ ) = k⊥ sin θ + k‖ cos θ. (27)

Let us focus on the slice of the bulk attached to the
piece of edge at θ0. Since our goal is to obtain the
low-energy modes on a smooth edge, we take a continuum
limit and expand around small k‖. We expand the
Hamiltonian using the local k coordinates at θ = θ0.
Before we do so, it is convenient to perform a unitary
transformation on the Hamiltonian H → H̃ = UHU †,
σx,z → σ̃x,z(k⊥(θ0)) = U (k⊥(θ0))σx,zU †(k⊥(θ0)), τx,y →
τ̃x,y(k⊥(θ0)) = U (k⊥(θ0))τx,yU †(k⊥(θ0)), where

U (k⊥(θ0)) = exp

(
iσy

2
tan−1 f2(k⊥, k‖ = 0)

f1(k⊥, k‖ = 0)

)
× exp

(
− iτz

2
tan−1 g2(k⊥, k‖ = 0)

g1(k⊥, k‖ = 0)

)∣∣∣∣
θ0

. (28)

This transformation is not onsite (since its Fourier transform
is not a δ function), but since it is periodic and smooth in k⊥
(tan−1 [ f2(k)/ f1(k)] is smooth even at the Dirac point), it is
exponentially localized in real space. Thus, such a transfor-
mation does not change the exponential localization of wave
packets. After the transformation, the Hamiltonian takes a
simple form at k‖ = 0:

H̃ (k⊥, k‖ = 0; θ0) = f̃1(k⊥)σxτz + εg̃1(k⊥)τx − μτz, (29)

where

f̃1(k⊥) = f1(k⊥, k‖ = 0)

√
1 + f 2

2 (k⊥, k‖ = 0)

f 2
1 (k⊥, k‖ = 0)

,

g̃1(k⊥) = g1(k⊥, k‖ = 0)

√
1 + g2

2(k⊥, k‖ = 0)

g2
1(k⊥, k‖ = 0)

. (30)

The Hamiltonian (29) describes two decoupled copies of 1D
p-wave superconductor. As long as μ does not exceed the
bandwidth, they are in the weak-pairing phase with Fermi
momenta at the two Dirac points. They give rise to two zero
modes at the boundary, which, in a disk geometry, is the edge
with well defined k‖. The edge zero-mode wave function can
be found via solving a differential equation with the replace-
ment k⊥ → i∂⊥ with the proper boundary conditions. This has
been done in Ref. [67]. Following the results there, in the
weak-pairing limit, the wave function comes predominantly
from the low-energy components in the bulk, i.e., modes near
the Fermi point. The k-space part of the wave function of the
edge state is given by

ψ (k⊥) = N
∫ ∞

0
eik⊥x sin(kF x)e−�x dx

2π

= N
4π

[
1

k⊥ + kF + i�
− 1

k⊥ − kF + i�

]
, (31)

where � = εγ1(kF ) and N is a normalization factor. In the
weak-pairing limit, |ψ (k⊥)|2 indeed is strongly peaked at
|k − kF | � �. The internal part of the wave function is an
eigenstate of σ̃x τ̃y. We can further expand the Hamiltonian for
small k‖ as

H̃ (k‖, k⊥; θ0) = f̃1(k⊥)σxτz + εg̃1(k⊥)τx − μτz

+ ϕ1(k⊥)k‖σxτz + ϕ2(k⊥)k‖σzτz

+ εγ1(k⊥)k‖τx + εγ2(k⊥)k‖τy. (32)
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Since f1,2(k) are even functions and g1,2(k) are odd, one
can vary that the expansion coefficients ϕ1,2(k⊥) are an odd
function and γ1,2(k‖) are even. For small k‖, one can solve
the spectrum of H̃ by perturbation theory. For a small k‖, the
spectrum of (32) can be found by perturbation theory

h(k‖, θ0) =
∫

dk⊥|ψ (k⊥)|2P̂+
⊥ H (k‖, k⊥; θ0)P̂+

⊥

= εγ2(kF )k‖P+
⊥ τy, (33)

where P±
⊥ = (1 ± σxτy)/2 is the internal projection operator

for the two edge states. We have used the fact that P+
⊥ τyP+

⊥ =
P+

⊥ τy. Importantly, we see that only the γ2(k⊥) term survives
the projection: ϕ1,2 terms drop out because they are odd in k⊥,
and γ1 term gets projected out by P+

⊥ .
We also expand the edge Hamiltonian as a function of

coordinate δθ = θ − θ0, which we treat as a small quantity.
For this edge, the parallel and perpendicular momenta related
to those at θ0 via

k‖(θ ) = k‖(θ0) − k⊥(θ0)δθ,

k⊥(θ ) = k⊥(θ0) + k‖(θ0)δθ. (34)

At k‖(θ ) = 0, we have, to leading order, k‖(θ0) = k⊥(θ0)δθ
and k⊥(θ0) = k⊥(θ ). The Hamiltonian (32) can then be reex-
pressed with local k coordinates at θ as

H̃ (k‖ = 0, k⊥; θ ) = f̃1(k⊥)σxτz + εg̃1(k⊥)τx − μτz

+ ϕ1(k⊥)k⊥δθσxτz + ϕ2(k⊥)k⊥δθσzτz

+ εγ1(k⊥)k⊥δθτx + εγ2(k⊥)k⊥δθτy.

(35)

Without the terms ∝δθ , this again describes two decoupled
1D topological superconductors, leading to edge zero modes.
The δθ terms can be treated perturbatively. We have

h(k‖ = 0, θ0 + δθ ) =
∫

dk⊥|ψ (k⊥)|2P̂+
⊥ H (k‖, k⊥; θ0)P̂+

⊥

= ϕ2(kF )kF δθP+
⊥ σzτz. (36)

Now we see that only the ϕ2(k⊥)k⊥ term survives the momen-
tum and internal projection since this term is now even in k⊥.
Combining Eqs. (33) and (36), we get the edge Hamiltonian
near θ0 and with small k′

‖:

h(k‖, θ0 + δθ ) = εγ2(kF )k‖(P+
⊥ τy) + ϕ2(kF )kF δθ (P+

⊥ σzτz ).

(37)

Since P+
⊥ commutes with both τy and σzτz, we have

{P+
⊥ τy, P+

⊥ σzτz} = 0. As P+
⊥ projects the internal Hilbert space

dimension from 4 to 2, we can represent the edge Hamiltonian
in the projected Hilbert space as

h(k‖, θ0 + δθ ) = αk‖sx + βδθsy, (38)

where α = εγ2(kF ) and β = kF ϕ2(kF ), and sx,y are Pauli ma-
trices.

From a classification perspective, for a 1D system the
Z2 defect classification (in class D) is very simple, whose
topological index is simply the relative sign of the mass term
on the two sides of θ = θ0. From (38), it is nontrivial in our

case. This completes our proof; notice that even though the
nontrivial topology comes from an edge Hamiltonian, it is
ultimately determined by the bulk properties. By analogy with
the 1D Jackiw-Rebbi model [68], the Hamiltonian in (38)
hosts a Majorana zero mode localized at θ = θ0.

It is instructive to consider the localization length of
a rounded corner with radius R, k‖ = −i∂θ/R. By solving
Eq. (38), we found that the angular localization of the zero
mode is given by

ξθ =
√

β

αR
∼

√
εa0

R
, (39)

where a0 ∼ 1/kF is the lattice constant. On the other hand, for
the localization length, we have

ξ ∼ √
εRa0, (40)

which vanishes in the sharp edge limit R → 0 and weak-
pairing limit ε � 1, and diverges as in the straight edge limit
R → ∞. The straight edge thus hosts delocalized gapless
states; this is not surprising since this edge corresponds to a
single angle with θ = θ0.

Two remarks are in order here. First, it is possible to ana-
lyze the defect classification using a 2D space-filling “bulk”
Hamiltonian, for which one would proceed almost identically
as in the C4-symmetric case. However, here there is no sym-
metry protecting the mass pattern described in Sec. III B. It
is thus possible to alter the topological index by deforming
the 2D Hamiltonian and destroy the corner zero mode. What
we found in this section, however, is that such a gap-closing
deformation cannot occur as long as the bulk Dirac points in
the normal state persist.

Second, it is clear that the above analysis does not require
the normal state band structure have exactly four Dirac points.
It instead applies to any two Dirac points from the two bands

with E±(k) = ±
√

f 2
1 (k) + f 2

2 (k). One caveat, however, is that
f1,2(k) are required to be even functions and, consequently,
the two Dirac points at opposite momenta to have the same
chirality. One notable candidate is the two Dirac points in
the flat bands of twisted bilayer graphene which have the
same chirality owing to fragile topology [69]. We leave this
interesting extension to future work.

V. SUMMARY

In this work, we analyzed the second-order topology of
a generic two-band doped Dirac semimetal in 2D with four
Dirac nodes that are subject to p + ip pairing. We showed
that this model realizes either a HOTSC2 or a BOTSC2 phase,
depending on the presence of an additional C4 symmetry.
The two topological superconducting phases are intimately
connected, with the difference being whether the energy gap
protecting the Majorana modes is from the bulk or the bound-
ary. We showed that while the nested Wilson loop approach in
general fails to capture the boundary topological obstruction,
both intrinsic higher-order topology and boundary-obstructed
topology are naturally captured in an alternative defect
classification approach. We thus establish the “Dirac+(p +
ip)” as a low-energy criterion for TSC2 phase, which can
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be viewed as an extension of the family tree of p-wave
TSC’s.

Based on our results, it would be interesting to search for
chiral superconductivity in Dirac materials, such as the sur-
face of topological crystalline insulators and graphene-based
systems. Moreover, our result can be generalized to three
dimensions to p-wave superconductivity in Weyl semimetals,
which we leave to future work.
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