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Interferences between Bogoliubov excitations in superfluids of light
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Paraxial fluids of light represent an alternative platform to atomic Bose-Einstein condensates and superfluid
liquids for the study of the quantum behavior of collective excitations. A key step in this direction is the precise
characterization of the Bogoliubov dispersion relation, as recently shown in two experiments. However, the
predicted interferences between the phonon excitations that would be a clear signature of the collective superfluid
behavior have not been observed to date. Here, by analytically, numerically, and experimentally exploring
the phonon phase velocity, we observe the presence of interferences between counterpropagating Bogoliubov
excitations and demonstrate their critical impact on the measurement of the dispersion relation. These results are
evidence of a key signature of light superfluidity and provide a characterization tool for quantum simulations
with photons.
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I. INTRODUCTION

The weakly beyond-mean-field description of a Bose quan-
tum fluid, initially introduced by Bogoliubov, relies on small
collective excitations on top of a time-independent conden-
sate [1,2]. These excitations are described as noninteracting
quasiparticles with a specific energy spectrum: soundlike at
low momenta and free-particle-like at large momenta. Due to
these linear then parabolic dependences at, respectively, low
and large momenta, a system exhibiting this type of dispersion
satisfies the Landau criterion for superfluidity [3], which is a
benchmark for the system to behave as a superfluid, one of the
most striking manifestations of quantum many-body physics.

In optics, a growing community focuses on quantum-fluid
physics with light in nonlinear media [4]. For exam-
ple, Bose-Einstein condensation has been observed both in
exciton-polariton [5] and dye-filled [6] microcavities. Initially
proposed by Pomeau and Rica [7] and neglected experi-
mentally for a long time, paraxial fluids of light present
exciting perspectives for studying quantum-fluids physics
[8,9]. In this approach, photons acquire an effective mass
as a consequence of the paraxial approximation while ef-
fective repulsive photon-photon interactions are mediated by
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the optical nonlinearity of the medium in which they propa-
gate. Experimental implementations rely on the propagation
of an intense laser beam within a negative third-order, Kerr
nonlinear medium such as photorefractive crystals [10,11],
thermo-optic media [12,13], and hot atomic vapors [14,16].
In this (2+1)-dimensional geometry, the system is two di-
mensional (2D) in the transverse direction and the propagation
coordinate is analogous to an effective time.

Recently, two experiments have measured the dispersion
relation of weak-amplitude excitations on top of a paraxial
fluid of light with two complementary approaches [15,16]
following a proposal of Ref. [8]. The evolution of these el-
ementary excitations is described by the Bogoliubov theory,
revealing the rich analogy existing between nonlinear pho-
tonics and quantum condensed matter physics. If this analogy
is now well established, theoretical works [17,18] have ques-
tioned the presence and the impact of interferences between
counterpropagating Bogoliubov excitations in paraxial fluids
of light. In this paper, we present experimental evidence of
these interferences and we demonstrate their dramatic impact
on the reconstruction of the dispersion relation and on the
identification of superfluidity of light. Moreover, we propose
an interpretation of these interferences as stimulated analogs
of the Sakharov oscillations of cosmology [19,20], recently
observed in an atomic condensate [21].

Finally, we show that this effect is robust across sev-
eral experimental systems used for paraxial fluids of light
by numerically taking into account the photon absorption,
the finite size of the fluid, the saturation, and the nonlo-
cality of the photon-photon interactions. Because all these
corrections only marginally impact the observed behavior,
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our paper opens the way to novel experimental techniques
for probing paraxial fluid of light, based on the observation
of Bogoliubov-excitation interferences. For example, we pro-
pose that extracting the contrast of constructive interference
fringes in the output plane as a function of the probe param-
eters will give access to the efficiency at which we can excite
phonons, also known as the static structure factor [22].

II. PARAXIAL FLUID OF LIGHT

We consider a monochromatic beam of light propagating
along the positive-z direction in a χ (3) nonlinear medium. In
the paraxial and scalar approximations, the evolution of the
slowly varying envelope E (r⊥, z) of the complex electric field
E (r⊥, z) = E (r⊥, z)ei(k0z−ωt ) is known to obey the nonlinear
Schrödinger equation (NLSE) of nonlinear optics [23]:

i
∂E
∂z

=
(

− 1

2k0
∇2

⊥ − 3k0χ
(3)

8n2
|E |2 − iα

2

)
E . (1)

In this equation, k0 = nω/c is the laser propagation constant
in the medium with n the linear refractive index, ω the laser
angular frequency, and c the vacuum speed of light; ∇⊥ is
the gradient with respect to the transverse coordinates r⊥ =
(x, y); and α � 0 is the absorption coefficient describing pho-
ton losses.

Except for the last term describing losses, (1) is formally
analogous to the Gross-Pitaevskii equation (GPE) describing
the temporal evolution of the macroscopic wave function of
an atomic Bose-Einstein condensate (BEC) in two dimen-
sions [2]. In the right-hand side in particular, the Laplacian
term mimics the kinetic-energy term with a mass corre-
sponding to the laser propagation constant k0. In Eq. (1),
there is no external potential acting as a trapping term
since the transverse beam expansion is assumed to be small.
This hypothesis will be later validated in the discussion
of Fig. 5(b). On the other hand, the χ (3) contribution is
analogous to the contact-interaction potential with an inter-
action parameter g proportional to the Kerr susceptibility:
g = −3k0χ

(3)/(8n2). In the following, we consider the non-
linearity to be self-defocusing (χ (3) < 0) so that the effective
photon-photon interactions are repulsive (g > 0). In this anal-
ogy, the fluid density ρ(r⊥, z) is directly proportional to the
field intensity I (r⊥, z) according to ρ(r⊥, z) = |E (r⊥, z)|2 =
2I (r⊥, z)/(cε0n), where ε0 denotes the vacuum permittivity.
However, while the GPE describes the evolution of a con-
densate wave function for a matter quantum fluid in time, the
NLSE describes how the electric-field envelope E (r⊥, z) of
the light beam propagates in space, along the z axis. There-
fore, the propagation coordinate z is equivalent to an effective
time in the NLSE. As a consequence, every transverse plane
(spanned by r⊥) along the propagation axis z can be regarded
as a snapshot of the evolution of the two-dimensional paraxial
fluid of light (see Fig. 1). The role of the physical time t as a
third spatial coordinate for propagating light was highlighted
in Ref. [24]. These features are, however, not relevant in the
monochromatic excitation case under investigation here.

In the following theoretical description of the paraxial fluid
of light and of its Bogoliubov excitations, we disregard the
effect of photon losses by taking α = 0. This approach has
the advantage of shining light on the general features without

FIG. 1. Paraxial fluid of light. In the paraxial and scalar approxi-
mations, a laser beam propagates along the z axis in a χ (3) nonlinear
medium according to the effective Gross-Pitaevskii equation (1). The
field profile on each transverse r⊥ = (x, y) plane along the propaga-
tion direction z is equivalent to a snapshot of the evolution of the
paraxial fluid of light.

harming the generality of our conclusions. A complete the-
ory including photon losses will be presented later in Fig. 5,
showing no qualitative change.

In the ideal lossless case, we assume that the beam main-
tains a wide flat-top and z-independent intensity profile all
along its propagation, so that the corresponding solution of
(1) reads

E0(z) = √
ρ0e−ik0�nz. (2)

In this equation, ρ0 is the density of the homogeneous paraxial
fluid of light and �n = gρ0/k0 is the change of refractive
index induced by the optical nonlinearity. A small departure
from the uniform and stationary configuration (2) is described
by a solution of (1) of the form

E (r⊥, z) = E0(z) + δE (r⊥, z), (3)

where |δE (r⊥, z)| � |E0(z)|. Such an expansion depicts
weak-amplitude fluctuations (for example, intensity fluctu-
ations) on top of the homogeneous (i.e., r⊥-independent)
background defined in (2). The complex field δE (r⊥, z),
which is a solution of the linearized version of (1), can be
decomposed following the Bogoliubov approach [2] as a lin-
ear superposition of plane waves counterpropagating in the
transverse r⊥ plane with opposite wave vectors ±k⊥ and os-
cillating in the effective time z at the same angular frequency

B(k⊥):

δE (r⊥, z) = e−ik0�nz
∫

d2k⊥
(2π )2

{
u(k⊥)bk⊥ei[k⊥·r⊥−
B(k⊥ )z]

+ v∗(k⊥)b∗
k⊥e−i[k⊥·r⊥−
B(k⊥ )z]

}
. (4)

In this expression, the complex amplitudes of the plane waves
with wave vectors k⊥ and −k⊥ are, respectively, denoted
by u(k⊥)bk⊥ and v∗(k⊥)b∗

k⊥ , where bk⊥ is chosen to be ho-
mogeneous to a voltage times a length so that u(k⊥) and
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v(k⊥) are by construction dimensionless. The latter satisfy the
eigenvalue problem [2]

L(k⊥)

[
u(k⊥)
v(k⊥)

]
= 
B(k⊥)

[
u(k⊥)
v(k⊥)

]
, where

L(k⊥) =
[

k2
⊥/(2k0) + k0�n k0�n

−k0�n −k2
⊥/(2k0) − k0�n

]
,

(5)

with the wave number k⊥ = |k⊥|. Without loss of generality,
we take u(k⊥) and v(k⊥) to be real. Setting the normaliza-
tion condition u2(k⊥) − v2(k⊥) = 1, we get the dispersion
relation


B(k⊥) =
√

k2
⊥

2k0

(
k2
⊥

2k0
+ 2k0�n

)
and (6)

u(k⊥) ± v(k⊥) =
[

k2
⊥

2k0

/

B(k⊥)

]± 1
2

. (7)

Equation (6) is the optical analog of the Bogoliubov excitation
spectrum of a homogeneous two-dimensional atomic BEC at
rest and (7) gives the k⊥ dependence of the Bogoliubov ampli-
tudes u(k⊥) and v(k⊥). Here, the linear combinations u + v

and u − v, respectively, correspond to the density and phase
amplitudes of the Bogoliubov collective wave in wave-vector
space.

From (6), we can extract the peculiar behavior of the
Bogoliubov dispersion relation 
B(k⊥), which is linear
(soundlike) at small k⊥ and parabolic (free-particle-like) at
large k⊥:


B(k⊥) �
⎧⎨⎩

csk⊥ when k⊥ξ � 1
k2
⊥

2k0
+ k0�n when k⊥ξ � 1.

(8)

These asymptotic behaviors bring up the optical analogs of
the Bogoliubov sound velocity, cs = √

�n, and of the healing
length, ξ = 1/(k0

√
�n) = 1/(k0cs), of atomic BECs. In the

present optical context, cs is by construction dimensionless,
as it corresponds to the propagation angle with respect to the
z axis. The peculiar refraction properties corresponding to the
constant cs in the kξ → 0 limit were highlighted in Ref. [16].
In the large kξ limit, the shift in 
B(k⊥) is simply linked to
the nonlinear refractive index change.

III. EXTRACTING THE BOGOLIUBOV DISPERSION
RELATION FROM THE PHASE VELOCITY

The phase velocity vph(k⊥) of a Bogoliubov plane wave
with wave vector k⊥ is related to the Bogoliubov dispersion
relation 
B(k⊥) through

vph(k⊥) = 
B(k⊥)

k⊥
. (9)

Therefore, it is expected that we can directly reconstruct

B(k⊥) from the measurement of vph(k⊥), which can be
assessed from the measurement of the distance

S(k⊥) = vph(k⊥)L (10)

that the Bogoliubov excitation travels in the transverse plane
between the effective times z = 0 and z = L, where L stands
for the length of the nonlinear medium.

In the experimental configuration initially proposed in
Ref. [15] and studied here, S(k⊥) corresponds to the trans-
verse displacement of a weak interference pattern obtained
by overlapping a large-intensity flat-top background with a
low-intensity probe, slightly tilted by an angle θi with the
z axis along which the background propagates. These two
beams come from the same laser, have the same frequency and
polarization, and thus interfere, producing a small fluctuation
δE (r⊥, z) on top of the background envelope E0(z) in the non-
linear medium. The norm k⊥ = (k0/n) sin θi of the transverse
wave vector of the incident probe is controlled by changing θi,
which must be small enough so that the whole optical system
falls into the paraxial limit k⊥ � k0 considered here.

After propagation inside the medium of length L, the back-
ground (“bg”) and the probe (“p”) have accumulated different
phases �bg and �p(k⊥). According to (4), the latter depends
on the Bogoliubov dispersion relation 
B(k⊥). The difference

�(k⊥) = �p(k⊥) − �bg (11)

between these two phases is responsible for an interference
pattern in the transverse plane, shifted by

S(k⊥) = �(k⊥)

k⊥
. (12)

Experimentally, it is possible to have access to

�S(k⊥) = SNL(k⊥) − SL(k⊥), (13)

the relative deviation between the fringes patterns obtained at
high and low background intensity, that is, in the nonlinear
(“NL”) regime and the linear (“L”) one, respectively. This
quantity can be, at first, estimated in a geometrical approach,
as detailed below.

A. Geometrical approach

In the linear regime, simple geometry yields the following
expressions for the phases accumulated by the background
and the probe beams:

�bg,L = k0L and (14)

�p,L(k⊥) = k0

√
L2 + L2 tan2 θr � k0L

(
1 + θ2

r

2

)
, (15)

where θr � θi/n is the refraction angle of the probe at the
entrance of the medium. Using k⊥ � (k0/n)θi, we then obtain

�L(k⊥) = k2
⊥

2k0
L. (16)

In a geometrical approach, the same formula is supposed
to hold in the nonlinear regime provided the free-particle
dispersion relation k2

⊥/(2k0) is replaced with the Bogoliubov
spectrum (6) and we obtain using (11)

�NL(k⊥) = 
B(k⊥)L. (17)

In the light of Eqs. (12) and (13), this geometric approach then
leads to

�S(k⊥) = k⊥
2k0

⎡⎣√
1 + �n

(
2k0

k⊥

)2

− 1

⎤⎦L. (18)
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This expression states that �S(k⊥) saturates to a constant
value proportional to the Bogoliubov speed of sound in the
deep phonon regime:

�S(k⊥) �
k⊥ξ�1

√
�nL = csL. (19)

This approach has been experimentally implemented for non-
local photon fluids [15]. In particular (19) suggests that the
displacement �S(k⊥) tends at small k⊥ towards the intuitive
geometric value given by the product of the sound velocity cs

by the effective time L.
Surprisingly, this geometric approach differs drastically

from the results of the full theory in Refs. [17,18], which pre-
dict instead a linear increase of �S(k⊥) with � = 2π/k⊥ at
small k⊥, even in the limit of weak interactions (�n → 0). In
the following, we explain the physical origin of this correction
and show that interferences between the counterpropagating
Bogoliubov collective excitations are responsible for the dis-
agreement between Ref. [15] and Refs. [17,18] in the sonic
regime (k⊥ξ � 1).

B. Theoretical model including the interferences between
counterpropagating Bogoliubov excitations

Let us first introduce qualitatively this effect before de-
riving the full analytical solution. When the background and
the probe enter the nonlinear medium, both experience a sud-
den jump of the χ (3) susceptibility, analogous to a quantum
quench of the interactions [24–26]. This generates a conjugate
beam, due to the boundary condition on the electric-field
amplitude at the interface. The conjugate field oscillates at
the same frequency as the background and the probe, and
propagates in the transverse direction with a wave vector −k⊥
opposite to the one of the incident probe. In optics, this third-
order nonlinear wave-mixing process is known as degenerate
four-wave mixing [27–29].

Interestingly, the interferences between the two coun-
terpropagating Bogoliubov excitations (the probe and the
conjugate within the medium), neglected in the geometrical
model [15], are continuously taking place all along their
propagation in the nonlinear medium. Since the pump, probe,
and conjugate have the same frequency, they do fulfill the
phase-matching condition only when they are copropagating,
that is, when k⊥ = 0. This can be seen by evaluating the ratio
of the conjugate Bogoliubov amplitude v(k⊥) to the probe one
u(k⊥) using (7). In the free-particle regime k⊥ξ � 1, this ratio
is small as it scales as 1/(k2

⊥ξ 2). In this limit, the impact of
the interferences between the conjugate and the probe can be
safely neglected and (17) is valid, as shown in the next section.
However, in the phonon regime k⊥ξ � 1, |v(k⊥)/u(k⊥)| � 1
and a full model taking into account the interferences between
the counterpropagating Bogoliubov excitations gives drasti-
cally different results from the geometric approach detailed
above.

In the case of a finite diameter probe mode (not a plane
wave), the geometric model of (18) is recovered when the
length L of the medium is long enough for the probe and
conjugate wave packets to get spatially separated during the
propagation [8]. In this limit, the distance between of the
wave-packet centers gives access to the group velocity [16],

while the position of the fringes within the wave packets
gives access to the phase velocity. For realistic parameters,
this requires impractically long samples.

In the following, we derive an exact expression for the
relative phase �NL(k⊥) = �p,NL(k⊥) − �bg,NL accumulated
by the probe with respect to the background after propagation
through the medium. We use an approach similar to the quan-
tum optics input-output formalism [30,31] with a description
of the medium given by the Bogoliubov theory [17].

In air (i.e., z < 0 and z > L) the envelope of the electric
field including the background and its fluctuations may be
expanded as

Eair (r⊥, z) =
√

ρair (z)ei�air (z) + ei�air (z)
∫

d2k⊥
(2π )2

ak⊥ (z)eik⊥·r⊥ .

(20)
In this equation, ρair (z) and �air (z) are the density and the
phase of the homogeneous background in air. Due to the
conservation of energy at z = 0 and z = L, the densities
are related by ρair = ρair (z > L) = nρ0, while the phases are
�air (z < 0) = 0 and �air (z > L) = −k0�nL. In (20), ak⊥ (z)
denotes the Fourier amplitude of the fluctuations superim-
posed on the background in air. In our experiment, only one
k⊥ component (corresponding to the probe mode for z = 0−)
is injected into the medium and all the other modes are set
to zero. Using the sign convention adopted in (4), the phase
difference �NL(k⊥) can then be expressed as follows:

�NL(k⊥) = −arg

[
ak⊥ (L+)

ak⊥ (0−)

]
. (21)

To derive the input-output relation between ak⊥ (L+) and
ak⊥ (0−) we need to use both energy conservation at the inter-
faces and the Bogoliubov formalism for the evolution within
the medium. In a first step, when entering the medium at
z = 0, the probe of amplitude ak⊥ (0−) transforms, by energy
conservation, into ak⊥ (0+) = √

n ak⊥ (0−). Then, in analogy
to the quantum formalism of dilute Bose gases, we can con-
sider the term ak⊥ (0+) to be equivalent to the annihilation
operator for the weakly interacting particles. Following the
Bogoliubov approach, it can be connected to the noninteract-
ing Bogoliubov operators bk⊥ using the transformation[

ak⊥ (0+)
a∗

−k⊥ (0+)

]
=

[
u(k⊥) v(k⊥)
v(k⊥) u(k⊥)

][
bk⊥

b∗
−k⊥

]
. (22)

Thereafter, the counterpropagating Bogoliubov excitations
evolve along the optical axis, accumulating a propaga-
tion phase provided by the Bogoliubov dispersion relation

B(k⊥). This evolution is analogous to those observed af-
ter a quench in atomic BEC, and leads to synchronized
phases between the counterpropagating phonon modes (bk⊥
and b∗

−k⊥ ). Interestingly, this synchronized effect is at the
origin of Sakharov oscillations [21]. We obtain[

ak⊥ (L−)
a∗

−k⊥ (L−)

]
=

[
u(k⊥)e−i
B(k⊥ )L v(k⊥)ei
B(k⊥ )L

v(k⊥)e−i
B(k⊥ )L u(k⊥)ei
B(k⊥ )L

][
bk⊥

b∗
−k⊥

]
.

(23)

We can then invert (22) using the Bogoliubov normalization
u2(k⊥) − v2(k⊥) = 1 and inject the result into the right-hand
side of (23). Finally, taking into account energy conservation
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at the medium output ak⊥ (L−) = √
n ak⊥ (L+), we obtain the

following input-output relations:[
ak⊥ (L+)

a∗
−k⊥ (L+)

]
=

[
U (k⊥) V ∗(−k⊥)
V (k⊥) U ∗(−k⊥)

][
ak⊥ (0−)

a∗
−k⊥ (0−)

]
, (24)

where U (k⊥) and V (k⊥) are defined by

U (k⊥) = u2(k⊥)e−i
B(k⊥ )L − v2(k⊥)ei
B(k⊥ )L and (25)

V (k⊥) = −2iu(k⊥)v(k⊥) sin[
B(k⊥)L]. (26)

In our configuration, right before the medium entrance (z =
0−), the mode with wave vector −k⊥ has a zero amplitude
(i.e., the conjugate mode is seeded by vacuum) and therefore
we set a∗

−k⊥ (0−) = 0 in (24). As a result, we eventually come
to the simple relation

ak⊥ (L+) = U (k⊥)ak⊥ (0−), (27)

from which we can simplify (21) and obtain the 
B(k⊥)
dependence of �NL(k⊥) from Eqs. (6), (7), and (25):

�NL(k⊥) = −arg[U (k⊥)]

= 
B(k⊥)L − arg[u2(k⊥) − v2(k⊥)e2i
B (k⊥ )L]

= arctan

{
[k2

⊥/(2k0)]2+
B(k⊥)2

k2
⊥/k0 × 
B(k⊥)

tan[
B(k⊥)L]

}
.

(28)

The second expression of (28) allows for a direct under-
standing of the role of the interferences between Bogoliubov
phonon excitations in the correction to (18).

In the free-particle regime (k⊥ξ � 1), the v2 term in the
second expression of (28) is negligible. This is equivalent
to saying that the phase-matching condition is not fulfilled
and the four-wave-mixing process is inefficient to create the
conjugate mode. Since u(k⊥) is real, we get

�NL(k⊥) �
k⊥ξ�1


B(k⊥)L. (29)

This limit exactly corresponds to the geometric model of
(17) and correctly describes the transverse fringes displace-
ment �S(k⊥). However, this approximation is only valid in
the parabolic dispersion limit at large momenta k⊥ξ � 1.

In the phonon regime (k⊥ξ � 1) where superfluidity is
manifest, there are fundamental differences between the pre-
dictions of the geometrical approach and the full model,
because the v2 term cannot be neglected anymore in the
second expression of (28). This interference term leads to a
correction to (17), which we can expand analytically in the
limit k⊥ξ � 1 to get at the leading order

�NL(k⊥) =
k⊥ξ�1

arctan(2k0�nL) + O(k2
⊥ξ 2). (30)

An essential feature of (30) is that the nonlinear phase dif-
ference �NL(k⊥) at the medium output converges towards
a constant nonzero value for small k⊥. This can be clearly
seen in Fig. 2(a) for realistic experimental parameters. This
nonzero value holds independently of the strength of the in-
teractions �n, and therefore is a general feature of paraxial
fluids of light and a direct consequence of the interferences
between Bogoliubov phonons. At large �n, this offset satu-
rates towards π/2.

FIG. 2. (a) Nonlinear phase shift �NL(k⊥) and (b) relative
fringes displacement �S(�) as functions of, respectively, the
Bogoliubov wave number k⊥ = |k⊥| and the Bogoliubov wavelength
� = 2π/k⊥ for different values of the optical nonlinearity �n.
(a) The phase shift �NL(k⊥) generally follows 
B(k⊥)L on average
(dashed lines), except for small k⊥, where it saturates at a nonzero
value for all values of �n 	= 0. According to (30), the k⊥ = 0 limit
�NL(k⊥ = 0) is a growing function of �n and tends towards π/2
for large �n. (b) The staircase structure of �NL(k⊥) translates into
oscillations in �S(�), most visible for large interactions. At long
�, �S(�) increases linearly according to (31). This trend is present
even for weak interactions (�n → 0). Solid lines correspond to the
full model and the black dash-dotted line shows for comparison the
displacement obtained from the geometric approach of (18) with
�n = 10−4.

In between these two asymptotic limits, we also observe
numerically a smooth staircase structure, which follows on
average the trend of the geometric prediction (18) in the large-
k⊥ limit [dashed lines in Fig. 2(a)]. This staircase structure
becomes more and more visible as the optical nonlinearity
�n increases. This effect is less robust than the nonzero value
of �NL(k⊥) in the small k⊥ limit previously described and
does not hold for weak interactions �n [see the green curve
of Fig. 2(a)]. Therefore, in order to evidence the presence of
interferences between the Bogoliubov phonons, we will focus
our attention on the phase difference at small k⊥ by looking at
the displacement �S as a function of � = 2π/k⊥.

In Fig. 2(b), we present this displacement �S (accessible
experimentally) as a function of the density modulation wave-
length �. Because of the staircase structure of �NL(k⊥), the
displacement �S(�) oscillates at short �. Once again this
effect disappears for weak interactions �n [green curve of
Fig. 2(b)]. In contrast, the linear increase of �S(�) when
� � ξ is always present for all �n and can be computed from
(30) as

�S(�) �
�/ξ�1

arctan(2k0�nL)

2π
�. (31)

This expression significantly contrasts with (19), obtained
within the geometrical approach. For comparison, the total
displacement [Eq. (18)] predicted by the geometric method is
plotted for �n = 10−4 in black dash-dotted line in Fig. 2(b).
As expected, the two descriptions match in the free-particle
regime, but the linear increase [Eq. (31)] at long � is only
present in the full model and not predicted by (18).

In the next section, we explore experimentally this con-
figuration in a hot atomic vapor to compare and verify the
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FIG. 3. (a) Experimental setup. A laser is shaped with two
cylindrical lenses (CL). It is split and recombined (BS1) within
an unbalanced Mach-Zehnder (MZ) interferometer to create a low
contrast fringes pattern. Two sets of fringes (low and high intensity)
are vertically shifted using a 90:10 beam-splitter (BS2) before going
into an atomic vapor cell. The cell output is imaged on a camera after
filtering in the Fourier space (FS). (b), (c) Background-subtracted
images reveal the small amplitude density modulation which prop-
agates on a low (b) and a high intensity background fluid (c). The
blue and red points in (d) are obtained by integrating the intensity in
between the white dashed lines in (b) and (c), respectively. We first
filter out the high-frequency noise (dashed lines) and then normalize
the envelopes (solid lines). The shift is computed by measuring the
nearest peak-to-peak distance between the solid lines. (e) Fourier
space image obtained by inserting a microscope objective (MO).

predictions of the two models. We will show evidences of
the interference between the counterpropagating Bogoliubov
collective excitations at small k⊥ and of their role on the
measurement of the dispersion relation following (31).

IV. EXPERIMENTAL EVIDENCES OF INTERFERENCES
BETWEEN BOGOLIUBOV EXCITATIONS

A. Experimental setup

Our experimental setup is sketched in Fig. 3(a). A
continuous-wave laser field at 780 nm is elongated in the x
direction using a set of two cylindrical lenses. This cylindrical
telescope is slightly defocused in order to loosely focus the
beam onto the medium input facet. In this plane, the minor
axis width ω0,y (radius at 1/e2) is 500 μm while the major
axis one ω0,x is 1 cm. The Rayleigh length associated to ω0,y

is much longer than the cell length (L = 7.5 cm). The cell is
filled with an isotopically pure 85Rb vapor heated up to 400 K.
The laser frequency is 2.6-GHz red-detuned with respect to
the F = 3 → F ′ transition of the 85Rb D2 line, which ensures

a linear index of refraction close to 1 and a transmission larger
than 60%.

The weak intensity modulation pattern is created using an
unbalanced Mach-Zehnder interferometer. The beam is then
split in two with a 90 :10 (R :T ) beam splitter and recombined
with a vertical shift to have simultaneously a weak intensity
modulation evolving on top of a high intensity beam forming
the photon fluid. The medium exit plane is imaged on a cam-
era with a 4 f telescope. By inserting a microscope objective
on the beam path, we can image the momentum distribution
[Fig. 3(e)]. Spatial Fourier filtering using a razor blade is
conducted in this plane to filter out the conjugate beam that
blurs the fringes pattern. As sketched in Fig. 3, we perform
simultaneously the experiment in two regimes: (i) low fluid
density and (ii) high fluid density. The low density fluid cor-
responds to the case of a negligible nonlinearity and provides
a reference (�L) for the fringe displacement. Comparing both
patterns we observe the fringe displacement and measure �S.

B. Data analysis and results

After removing the background intensity distribution to
keep only the small density modulation on top of it, typical
interference patterns obtained at the medium output plane are
shown in Figs. 3(b) and 3(c). The displacement between the
fringes of the low intensity reference [Fig. 3(b)] and high
intensity fluid [Fig. 3(c)] �S is clearly visible. We can note
that the fringes are slightly bent in Fig. 3(c) because the inten-
sity profile along the vertical axis is Gaussian and therefore
the nonlinear phase shift accumulated during the propagation
depends on y. In order to avoid errors during the data analysis,
we average the intensity profile over the central region in
between the white dotted line in Figs. 3(b) and 3(c).

After averaging, the resulting profiles are plotted in
Fig. 3(d): the blue points are for the low intensity reference
[Fig. 3(a)] while the red ones are for the high intensity nonlin-
ear case [Fig. 3(b)]. The high-frequency noise is filtered out
and we remove the envelopes using a cubic spline interpola-
tion method to normalize it and obtain the blue and red solid
curves. The relative displacement is computed by averaging
on several fringes the distance (black arrows) between the
nearest maxima in the low intensity reference and in the high
intensity case.

In Fig. 4(a), we present the experimentally measured �S
as a function of the modulation wavelength �. The probe
power is taken to ensure a modulation depth of less than
5%. The full model is shown in blue solid line. For compar-
ison, the geometrical model computed with (18) is plotted
in black dash-dotted line. These experimental results are a
clear evidence that the geometrical model fails to describe the
displacement �S at large �. Indeed, at large �, we observe
a clear signature of the linear increase of �S, as predicted by
the full model. By including the interferences between ele-
mentary Bogoliubov excitations, the full model also allows us
to predict the value of the slope as a function of the nonlinear
refractive index change �n. To verify the consistency of our
model, we repeated the measurement of �S for various field
intensities I and estimated �n from the theoretical predic-
tions, using (31). An intriguing feature of this equation is the
nonlinear behavior of the phase shift and the saturation at large
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FIG. 4. (a) Displacement �S as a function of the modulation
wavelength � for a fluid intensity of 1.3 W cm−2. The laser is
2.6-GHz red-detuned with respect to the F = 3 → F ′ transition of
the 85Rb D2 line and the cell length is 7.5 cm. The experimental
data (blue circle) are fitted with the full theory (blue line) for �n =
1.3 × 10−6. For comparison, the displacement obtained using (18)
has been plotted (black dash-dotted line). (b) Slope of the asymptotic
linear increase of �S at large � as a function of the fluid intensity.
(c) �n extracted with Eq. (30) from the slope of �S at large � as
a function of the fluid intensity plotted in (b). The linear scaling of
�n with I confirms that we are not saturating the nonlinearity, i.e.,
�n = n2I with n2 = 1 × 10−10m2/W.

interaction �n [Fig. 4(b)]. However, as visible in Fig. 4(c),
the value of �n extracted from (31) depends linearly with the
background intensity I as expected for a Kerr medium and it
validates our experimental approach.

V. INTERFERENCES BETWEEN BOGOLIUBOV WAVES

A. Is this interference effect robust with respect to corrections
to the lossless local Kerr model?

Several nonlinear media have been proposed and imple-
mented for fluid of light experiments, including atomic vapor
[14,32], methanol [12], photorefractive crystal [10,11,33], and
nematic liquid crystals [18]. In these systems the microscopic
origin of light-matter interaction strongly differs and can im-
pact the properties of these fluids of light. To verify that these
variations do not change significantly the long-wavelength
behavior of �S, we numerically studied the dependence on
four key parameters: (i) the losses α, (ii) the width of the pump
beam w0,y, (iii) the nonlocality, and the (iv) saturation of the
nonlinear response.

FIG. 5. Numerical simulations (symbols) and analytical solu-
tions (solid and dashed line) of �S as a function of �. (a) Different
cell transmissions t . The simulations and the theory model are similar
as long as the transmission remains large (t > 0.5). (b) Differ-
ent background widths w0,y. (c) Different nonlocal transport length
scales lb. The oscillations are smoothed by nonlocality. In our system
lb < 10 μm. (d) Different saturation intensities Is of the nonlinear
Kerr interaction. Once again oscillations are smoothed by a satura-
tion of the medium. For all the simulations �n = 1.0 × 10−5.

All the simulations have been performed using a second-
order split-step method on the 2D nonlinear Schrödinger
equation and a common set of parameters. The background
intensity is set to ρ0 = 2.5 × 105 W/m2, the linear index is
set to n = 1, and the nonlinear index is set to n2 = 4 × 10−11

m2/W. In the lossless situation, the nonlinear change of refrac-
tive index is equal to �n = 1.0 × 10−5. Typical interactions
accessible in our experimental configurations are between
�n = 1.0 × 10−4 and 1.0 × 10−7. The simulation results are
presented in Fig. 5.

In Fig. 5(a), the displacement �S is plotted, for different
cell transmissions t = exp(−αL). The colored points stem
from numerical simulations whereas the theoretical curves are
plotted in black solid. A full derivation of the analytical model
is given in the Appendices A and B. Absorption smooths
out the oscillations at small �, similarly to a reduction of
the nonlinear interactions �n as seen in Fig. 2. However the
long-� limit is qualitatively unchanged from the lossless case.
The analytical predictions (dashed lines) give an accurate
estimation of the long-� slope for transmission larger than
0.5.

In Fig. 5(b), the effect of the finite beam width w0,y on
the displacement �S is studied. We notice a reduction in
the displacement oscillations amplitude when w0,y decreases.
Similarly to the absorption, this effect does not affect the
general shape of the displacement curve and its large � linear
trend. It can be understood intuitively, because for smaller
beam width w0,y the Kerr self-defocusing effect increases and
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therefore the background density spreads faster in the trans-
verse plane along the propagation. This results in a decrease
of the beam intensity on the major axis during the propagation
and a consequent reduction of the effective interaction �n.

In Fig. 5(c), the impact of nonlocality is reported. The
nonlinear phase shift formula (17) has been generalized using
the nonlocal dispersion relation to take ballistic transport of
excited atoms into account in the theory (see the Appendix C
for details). The theoretical predictions are plotted in black
solid line and match perfectly with simulations. The main
effect here is more subtle than the ones of the losses or
the finite width of the beam. The slope of the linear trend
at high � remains unchanged but a significant modification
of the displacement in the oscillating part is observed. This
effect becomes significant for nonlocal ballistic length scales
lb much longer than the typical ones of atomic vapors (typ-
ically, ld ≈ 8 μm at 400 K). The situation is very different
in the thermo-optic media considered in Ref. [15], where the
nonlocal length is on the order of 100 μm [12] and thus is
able to significantly modify the behavior of the displacement
for small �.

Finally, in Fig. 5(d), we have studied the impact of a
saturation of the nonlinearity. The interaction strength �n is
replaced by �n × 1

1+I/Is
, where Is is the saturation intensity.

This model reproduces saturation observed in atomic media
and photorefractive crystals. Compared to losses, finite beam
width, and nonlocality, the effect of saturation on the dis-
placement is the most important, as it not only attenuates the
oscillations at small � but also modifies the slope at large �.
This correction is a consequence of the reduction of the sound
velocity by a larger factor to cs × 1

(1+I/Is )2 . Nevertheless, sat-
uration does not lead to a constant value for the large-� limit
predicted by the geometrical approach.

All these simulations confirm that the corrections to the
ideal lossless model are able to modify the behavior of �S
at small �, but do not affect the linear trend at large �.
The impact of the interferences between Bogoliubov modes is
therefore robust and can thus be envisioned as a tool to probe
the dispersion and the static structure factor of the photon
fluid, in a similar way to what was done with atomic BEC [22].
In the last part of this paper, we propose an explanation for
the robustness of these interferences and for their importance
to understand the superfluid behavior based on a universal
mechanism known as the Sakharov oscillations [19,21].

B. Stimulated Sakharov-like oscillations

The Bogoliubov excitation [Eq. (4)] generated at the en-
trance of the nonlinear medium consists in a superposition of
counterpropagating plane waves in the r⊥ plane with opposite
wave vectors k⊥ and −k⊥. These Bogoliubov components
are simultaneously generated at the medium entrance and
oscillate at the respective angular frequencies 
B(k⊥) and
−
B(k⊥) along the propagation axis, which is analogous to
time. As a consequence, at a given effective time z, these
components will have acquired a relative phase difference
of 2
B(k⊥)z. Interestingly, this behavior is very similar to
the one predicted for the Sakharov oscillations in cosmology
[19,20] and can be understood in terms of the interference be-
tween the counterpropagating phonons that are spontaneously

FIG. 6. Evolution along the z axis of the transverse field intensity
in a given y plane for (a) k⊥ξ = 0.5 and (b) k⊥ξ = 1. The background
intensity is subtracted on both images. The black dashed curves
follow the center of a bright fringe. The blue solid line is a trajectory
of a Bogoliubov mode at the speed of sound. (c) Visibility of the
interference fringes at the output plane z = L as a function of k⊥
(solid blue line). Visibility maxima are shown by green diamonds
and minima are shown by black circles. The dispersion relation (solid
red line, right axis) is reconstructed using a sampling based on the
position of the maxima [
B(k⊥) = pπ/L] and minima [
B(k⊥) =
(p + 1/2)π/L]. Here �n = 1.0 × 10−5.

generated after a quantum quench [21,34,35]. Here, we draw
the analogy and we consider our experimental observations
as a stimulated analog of the Sakharov-like oscillations by
seeding phonons on the +k⊥ mode.

For paraxial fluids of light experiments, we only have
access to the intensity at z = L and not inside the
medium. Therefore, we have solved numerically the nonlinear
Schrödinger equation [Eq. (1)] and computed the intensity of
the total electric field inside the nonlinear medium at every
transverse plane along the z axis to evidence the stimulated
Sakharov-like oscillations in this optical system. In Fig. 6,
we present the intensity profiles along x in both the phonon
regime (k⊥ξ � 1) in Fig. 6(a) and the free-particle regime
(k⊥ξ > 1) in Fig. 6(b). In this figure, the background fluid
density has been subtracted. Two remarkable observations can
be highlighted in Fig. 6.

First, constructive (maximum contrast) or destructive (min-
imum contrast) interferences between the counterpropagating
Bogoliubov waves are clearly visible in the transverse di-
rection. Along z, constructive interferences are located at

B(k⊥)z = pπ , with p � 1 integers valued. In contrast, when

B(k⊥)z = (p + 1/2)π , Bogoliubov modes destructively in-
terfere and the contrast is minimum. Interestingly, these
interference patterns can also be observed at a fixed effective
time (e.g., z = L) by changing the value of k⊥. In Fig. 6(c),
we have extracted the dispersion relation using this approach.
At fixed z = L, we reported each value of k⊥ leading to a
visibility maximum, as we know that 
B(k⊥) = pπ/L [green
diamonds in Fig. 6(c)]. To increase the resolution of the recon-
struction we can apply the same procedure with the visibility
minima [black circles in Fig. 6(c)] and obtain a sampling of
the dispersion for 
B(k⊥) = (p + 1/2)π/L.

Second, we can notice that the reduction in the contrast
of the interference fringes that is observed when the two
Bogoliubov components destructively interfere is more pro-
nounced at low [Fig. 6(a)] than at large [Fig. 6(b)] wave
vectors. This effect is not present in the spontaneous Sakharov
oscillations triggered by zero-point fluctuations [21] and is a
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direct consequence of the stimulation of the process by the
classical incident field in the +k⊥ mode.

Indeed, by seeding the process we break the symmetry
between +k⊥ and −k⊥ modes, so the visibility reduction can
be understood by comparing |u2(k⊥)| and |v2(k⊥)| using (6).
When k⊥ξ � 1, then |v2(k⊥)| becomes small comparing to
|u2(k⊥)| and therefore the interference contrast is reduced. As
a consequence, we can see in Fig. 6 that the trajectories of a
bright fringe (black dashed line) are much less deformed with
respect to the speed of sound propagation (blue solid line) for
k⊥ξ = 1 [Fig. 6(b)] than for k⊥ξ = 0.5 [Fig. 6(a)], where a
staircaselike structure is apparent. This exemplifies once again
why the geometrical approach is a good approximation only
in the free-particle regime (k⊥ξ > 1).

VI. CONCLUSION

In this paper, we have studied the Bogoliubov excitations
of a photon superfluid. We have experimentally demonstrated
a previously hidden phenomenon whereby the propagation
of plane-wave excitations in the fluid does not tend to the
geometric prediction for the displacement, namely, the prod-
uct of the sound velocity cs by the effective time L, but
keeps growing linearly with the excitation wavelength. This is
shown to be a direct consequence of the interference between
counterpropagating Bogoliubov modes that are generated at
an interaction quench and have only been observed in atomic
superfluids [36]. These interferences can also be interpreted
as stimulated Sakharov oscillations [21], i.e., an analog of
fluctuations imprinted in the primordial universe and visible
as oscillations in the cosmic microwave background power
spectrum [19,20]. These results shows that these interferences
are an essential element to describe accurately the dynamics
of excitations in superfluids of light in the classical regime. It
brings a different understanding of superfluidity for paraxial
fluids of light and the next generation of experiments can now
be conducted without the external classical excitations (no
probe beam). In this configuration, the laser intrinsic noise
(the spatial shot noise) will trigger the generation of phonons
in the fluid. By measuring the spatial noise spectrum (the static
structure factor) it will then become possible to probe the
spontaneous creation of phonons due to the quantum fluctu-
ation and possibly observe quantum depletion.
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APPENDIX A: EXPERIMENTAL ALIGNMENT
PROCEDURE

In order to accurately measure the displacement �S, one
needs to precisely align the reference beam with respect to the
high-power one. The alignment procedure is as follows.

(1) We first make sure that both background beams (probe
off) roughly propagate with the same transverse wave vector
and are correctly positioned one above the other (their respec-
tive center should lie on the same vertical axis).

(2) We then switch the probe beam on. The next step
is to align the interference fringes of the lower and upper
interference patterns. We start by removing the cell and make
sure that bright fringes on the bottom face bright fringes on
the top. Of course, by doing so, the optical axes of the lower
and upper beams are not parallel anymore. We should then
switch to k space, bring back the backgrounds to the initial
position (k⊥ = 0), and repeat this procedure iteratively (beam
walking). We finally check that for every transverse wave vec-
tor k⊥ the interference fringes remain aligned before putting
the cell back on the beam path.

APPENDIX B: PHOTON ABSORPTION

Photon absorption is described in (1) by the term propor-
tional to α � 0. When α 	= 0, the r⊥-independent electric-
field envelope E0 and its linearized fluctuations δE acquire the
following z dependences:

E0(z)= √
ρ0e−αz/2−ik0�n(1−e−αz )/α, (B1)

δE (r⊥, z)= e−ik0�n(1−e−αz )/α

×
∫

d2k⊥
(2π )2

{
u(k⊥, z)bk⊥ei[k⊥·r⊥−∫ z

0 dz′
B(k⊥,z′ )]

+ v∗(k⊥, z)b∗
k⊥e−i[k⊥·r⊥−∫ z

0 dz′
∗
B(k⊥,z′ )]

}
. (B2)

In Eqs. (B1) and (B2), ρ0 is the density of the paraxial fluid of
light at z = 0 and �n = gρ0/k0 is the corresponding nonlin-
earity. We treat the z dependence of the Bogoliubov spectrum

B and of the Bogoliubov amplitudes u and v in the adiabatic-
evolution approximation [17,37]. Searching for real-valued u
and v such that u2 − v2 = 1 for all z, this gives


B(k⊥, z) =
√

k2
⊥

2k0

(
k2
⊥

2k0
+ 2k0�ne−αz

)
− iα

2
, (B3)

u(k⊥, z) ± v(k⊥, z) =
{

k2
⊥

2k0

/
Re[
B(k⊥, z)]

}± 1
2

. (B4)

All the observables computed in this paper rely on the
input-output relation (24), which also holds when α 	= 0 pro-
vided (25) and (26) are, respectively, replaced with

U (k⊥)= u(k⊥, 0)u(k⊥, L)e−i
∫ L

0 dz
B(k⊥,z)

− v(k⊥, 0)v(k⊥, L)ei
∫ L

0 dz
∗
B(k⊥,z), (B5)

V (k⊥)= u(k⊥, 0)v(k⊥, L)e−i
∫ L

0 dz
B(k⊥,z)

− v(k⊥, 0)u(k⊥, L)ei
∫ L

0 dz
∗
B(k⊥,z). (B6)

For example, the nonlinear phase �NL(k⊥) expected for α 	=
0 reads

�NL(k⊥)

= arctan

(
[k2

⊥/(2k0)]2 + Re[
B(k⊥, 0)]Re[
B(k⊥, L)]

k2
⊥/(2k0) × {Re[
B(k⊥, 0)] + Re[
B(k⊥, L)]}

× tan

{ ∫ L

0
dzRe[
B(k⊥, z)]

})
, (B7)
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from which we infer the following linear trend of the trans-
verse displacement �S(�) in the long-wavelength, superfluid
regime:

�S(�) � 1

2π
arctan

(
2k0�nL × 2

αL

1 − e−αL/2

1 + e−αL/2

)
�. (B8)

APPENDIX C: NONLOCALITY MODEL

So far, we have assumed that the nonlinear change of
refractive index �n(r⊥) at a given position r⊥ in the trans-
verse plane only depends on the laser intensity at this point,
∝ |E (r⊥)|2, and not on the intensity nearby. However, such
a local dielectric response may not correctly describe hot
atomic vapors, in which the ballistic transport of excited atoms
on large length scales induces nonlocality [38]. Indeed, the
coherence between the ground and excited states of an atom,
from which the medium nonlinear response arises, is more
likely to be transported away in hot vapors, as the atomic
motion is more significant at large temperatures.

Following Ref. [38], we can express the nonlocal nonlinear
change of refractive index �nnl(r⊥) as follows:

�nnl(r⊥) = n2

∫
d2r′

⊥Gb(r⊥ − r′
⊥)|E (r′

⊥)|2, (C1)

where Gb stands for the steady-state ballistic response func-
tion. By using the convolution theorem, we can then easily
rewrite the Bogoliubov dispersion relation (6) in the nonlocal
case:


nl
B (k⊥) =

√
k2
⊥

2k0

[
k2
⊥

2k0
+ 2k0|n2|ρ0G̃b(k⊥)

]
, (C2)

where G̃b is the Fourier transform of Gb. By introduc-
ing the ballistic transport length scale �b = uτ—where u =√

2kBT/m is the most probable speed of the atoms in the
transverse plane (at the vapor temperature T ) and τ = 2/γ

is the characteristic decoherence time—and by calling erfc
the complementary error function, G̃b can be written in the
following way:

G̃b(k⊥) = √
π

e1/(k⊥�b )2

k⊥�b
erfc

(
1

k⊥�b

)
. (C3)

The solid lines in Fig. 5(c) have been obtained by plugging
(C2) into (28). In the experiment, the vapor temperature was
400 K, leading to a nonlocal ballistic length �b of about
8 μm. As can be seen in Fig. 5(c), nonlocal effects do not
significantly affect the shift �S for such a small value of �b.
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